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a b s t r a c t

Blind separation of sound sources aims at reconstructing the individual sources which
contribute to the overall radiation of an acoustical field. The challenge is to reach this goal
using distant measurements when all sources are operating concurrently. The working
assumption is usually that the sources of interest are incoherent – i.e. statistically

simultaneous measurements, which amounts to diagonalizing the cross-spectral matrix.
Principal Component Analysis (PCA) is traditionally used to this end. This paper reports
two new findings in this context. First, a sufficient condition is established under which
“virtual” sources returned by PCA coincide with true sources; it stipulates that the sources
of interest should be not only incoherent but also spatially orthogonal. A particular case of
this instance is met by spatially disjoint sources – i.e. with non-overlapping support sets.
Second, based on this finding, a criterion that enforces both statistical and spatial
orthogonality is proposed to blindly separate incoherent sound sources which radiate
from disjoint domains. This criterion can be easily incorporated into acoustic imaging
algorithms such as beamforming or acoustical holography to identify sound sources of
different origins. The proposed methodology is validated on laboratory experiments. In
particular, the separation of aeroacoustic sources is demonstrated in a wind tunnel.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A fundamental issue in noise and vibration engineering is to identify sound sources of different origins. With the
development of more and more stringent standards in terms of acoustical quality, especially in the transportation industry,
the need of dedicated techniques for localizing, quantifying, and ranking sound sources has become crucial [1]. In this
Orthogonality; 3S, Supervised Source Separation; BSS, Blind Source Separation; CLT, Central Limit
nt Source Method; EVD, Eigen-Value Decomposition; HELS, Helmholtz's Equation Least-Squares; ICA,
ximate Diagonalization; MCMC, Markov Chain Monte Carlo; NAH, Near-field Acoustical Holography;
ctral Density; SNR, Signal-to-Noise Ratio; SO, Statistical Orthogonality (Only); SOI, Source Of Interest;
e Fourier Transform; SVD, Singular Value Decomposition

ius1013@gmail.com (B. Dong), jerome.antoni@insa-lyon.fr (J. Antoni),
W. Kellermann).

www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2016.07.018
http://dx.doi.org/10.1016/j.jsv.2016.07.018
http://dx.doi.org/10.1016/j.jsv.2016.07.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2016.07.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2016.07.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2016.07.018&domain=pdf
mailto:bin.dong@insa-lyon.fr
mailto:sagittarius1013@gmail.com
mailto:jerome.antoni@insa-lyon.fr
mailto:antonio.pereira@ec-lyon.fr
mailto:wk@LNT.de
http://dx.doi.org/10.1016/j.jsv.2016.07.018


B. Dong et al. / Journal of Sound and Vibration 383 (2016) 414–445 415
respect, a recurrent challenge is to separate the partial contributions of the different sound sources that contribute to the
overall radiated noise, in particular when sources are all active at the same time and have overlapping frequency spectra.

Many methods have been proposed in the past to meet the above requirements and to replace the traditional subsystem
masking techniques which are time consuming and prone to influence the operation conditions of the object under study.
Among the most popular approaches, acoustic imaging techniques such as beamforming and Near-field Acoustical Holo-
graphy (NAH) are particularly interesting because they allow contactless measurements recorded by an array of micro-
phones and are rather universal in their principle. Introduction by Maynard, Williams and Lee in the 80's [2,3], NAH has the
remarkable capability to indirectly reconstruct sound sources (typically parietal pressure and normal component of particle
velocity) with a good spatial resolution and reasonable quantification. Several other sound imaging techniques have been
proposed to meet different industrial needs, such as Statistically Optimized NAH (SONAH) [4,5], the Helmholtz's Equation
Least-Squares (HELS) [6], the Equivalent Source Method (ESM) [7,8], Bayesian Focalization [9], to name just a few. Reviews of
some of these methods can be found for instance in Refs. [10] and [11]. They will be referred to herein as “backpropagation”
methods as they all aim at reconstructing the sound source distributions by backpropagating the measured acoustical
pressure to the source domain. This implies solving an inverse problem.

Backpropagation methods are good enough to localize and identify the Sources Of Interest (SOIs) when their spacing is
large enough as compared to the attainable spatial resolution (e.g. Rayleigh's limit) and when their relative levels are within
the available dynamic range. In other situations, when the SOIs are physically very close to each other, slightly overlap in
space, and/or exhibit significant differences in level, their visual separation by traditional acoustic imaging techniques may
be difficult or even impossible. As a consequence, the reconstructed source distribution still contains a superposition of
mixed components that remain to be unraveled.

One way to solve the problem is to exploit the property that sound sources of distinct physical origins can reasonably be
assumed mutually independent and then to resort to statistical criteria to achieve their separation. This is the realm of
“source separation”, whose objectives are of prime interest in practice.

Technically speaking, there are essentially two types of source separation methods found in the literature: Supervised
Source Separation (3S) and Blind Source Separation (BSS). 3S methods can separate out any SOI for which an external
reference is available. A “reference” is a signal measured simultaneously with the radiated acoustical field and which is
perfectly coherent with the SOI (e.g. a vibration signal captured close to the SOI). This implies that it is uncorrelated – i.e.
statistically orthogonal – with the other sources in the mixture. Thus, a mean-square-error prediction filter (also called
Wiener filter) can be constructed which maps the reference signal to the sound measurements. By definition, the output of
the prediction filter is an estimate of the SOI. Other – but theoretically equivalent – implementations are based on the use of
partial coherences [12]. Due to its simplicity, the method began to attract attention in the late 70's right after the dual
channel analyzers came out. References [13–16] report early applications to acoustic imaging (mainly NAH). The method has
been extended later to account for various scenarii such as weakly nonstationary sources [17] and cyclostationary sources
[18]. However, 3S methods have fundamental limitations: 1) references must be available, 2) they must be of excellent
quality (in a sense to be described shortly), and 3) they must be of sufficient number (at least as many references as SOIs).
Requirement (1) is not always fulfilled, in particular due to accessibility constraints or to limited numbers of tracks of the
data acquisition system. Requirement (2) is probably the most difficult to attain: it implies the measurement of external
signals with theoretically infinite Signal-to-Noise Ratios (SNR), which are fully coherent with the SOI and totally uncorre-
lated with the other sources. Positions where these conditions are met may not exist at all and, even if they do, their
localization would ideally require solving the source identification problem first. Requirement (3) is also a strong one in
particular when several sources are to be separated.

In order to alleviate some of these limits, Tomlinson made use of the Principle Component Analysis (PCA) in an attempt
to correct a set of non-ideal references [19]. Another elegant solution has been proposed in Ref. [20] which is to replace
external references by “numerical” ones returned by a first resolution of the inverse problem. Yet this is likely to succeed
only in the case of sources which are initially well separated in space [21–23].

Indeed, early efforts have been spent to avoid the need of any reference at all. This brings us to the second group of
source separation methods. Historically, first contributions to the subject are probably due to Price et al. [24] and Otte et al.
[25] in the late 80's who proposed to decorrelate a set of measurements in order to force them to comply with the property
of references. The resulting uncorrelated signals are then interpreted as “virtual sources”. Technically speaking, this amounts
to the diagonalization of the Cross-Spectral Matrix (CSM), which may be achieved either by PCA, partial coherences (an
implementation of Gram-Schmidt orthogonalization), Cholesky factorization, etc. As pointed out by Price et al., there is no
reason that the so separated virtual sources are totally consistent with a physical origin. Reference [26] demonstrates that
PCA separation actually holds provided that the SOI is dominating; similarly, virtual sources obtained by partial coherences
are meaningful only if the iterative orthogonalization is performed in a pyramidal order where the n-th measurement (used
at iteration n) contains no more contributions than n SOIs including the n�1 previously extracted ones (at iterations 1,…,
n�1). Given an arbitrary numbering of the SOIs and of the measurements, this means that the first selected measurement
must contain only SOI#1, the second selected measurement – to be orthogonalized with the first one – must contain only
SOIs #1 and #2, the third selected measurement – to be orthogonalized with the subspace spanned by the first and the
second ones – must contain only SOIs #1, #2 and #3, etc. Needless to say that such a pyramidal order is hardly encountered
in practice. A similar limitation was pointed in Ref. [27] in 1976. Although it was early recognized that virtual sources do not
match the SOIs in general, the technical literature contains numerous instances of the application of PCA in sound source
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identification, sometimes with surprisingly good separation results (see e.g. [28]). Section 3 of this paper establishes a
sufficient condition under which virtual sources actually equal the physical sources, which, as far as the authors know, has
never been published and which may explain some of the observations found in the literature.

Elaborating on the fact that decorrelation alone is generally not sufficient for separating sources, several new BSS
techniques have been proposed during the last decades within the context of Independent Component Analysis (ICA). The
paradigm is that statistical independence rather than statistical orthogonality (decorrelation) should be forced, so that a
unique solution can be found [29–32]. In other words, ICA replaces the need for references by strong a priori information on
the statistical distribution of the SOIs. From the algorithmic point of view, ICA often amounts to diagonalizing the CSM
jointly with another matrix comprising non-linear measures of inter-dependence between a set of signals (e.g. higher-order
statistics) [33–35], but not only (other sources of “diversity” such as non-stationarity and sparsity can be exploited). Since
ICA was first proposed in the field of signal processing in the 80's [36], it has quickly spread in many other disciplines,
including acoustics [37–40]. Unfortunately, the direct application of ICA to the separation of sound sources still faces several
difficulties, the most critical of which are reminded hereafter.

� First, ICA requires that no more than one SOI has a Gaussian distribution. This is incompatible with most of the noise
identification problems encountered in acoustics which are usually solved in the frequency domain: according to the
Central Limit Theorem (CLT), the Fourier coefficients quickly tend to be distributed according to a Gaussian distribution
even if the original signals are non-Gaussian in the time-domain [41].

� Second, ICA does not embody the spatial dimension related to 1) the sound propagation from the sources to the mea-
surements and to 2) the possible extension of the source shapes (i.e. the fact that sources are spatially distributed) which
involve a spatial convolution not to be confused with the time convolution addressed in “convolutive” BSS methods (e.g.
[42]).

The consideration of sound propagation has been investigated in a series of works intending to couple ICA with
beamforming [43–50]. However, most of these researches are restricted to separating the directions of arrival of competing
sources (localization from the far-field) and do not consider the reconstruction of the spatial distributions of the SOIs. Zhang
et al. recently proposed an ICA method based on second-order statistics to blindly separate and reconstruct broadband and
spatially distributed sound sources in both the frequency and space domains [51]. It assumes that the mixing coefficients are
smooth functions of frequency and makes use of Markov Chain Monte Carlo (MCMC) sampling, a computer intensive
method. It is noteworthy that the separation is achieved in the backpropagated domain of the sources, which is surely
advantageous to better regularize the inverse problem. In Ref. [52], the authors proposed a method based on the principle of
“least spatial entropy” to blindly separate and reconstruct SOIs with compact spatial distribution. Although the performance
of the method was found fully satisfactory, its implementation remained quite involved. The question then arises as whether
a simpler approach could possibly return comparable separation results under similar working assumptions.

The separation criterion proposed in [52] is quite general and can be applied to separate sound sources no matter
whether they overlap in space or not. One way to restrict the problem is to consider the specific case where sound sources
are emitted from disjoint regions, an assumption which in spite of being less general still reflects many real-life config-
urations, as shown in Fig. 1.

The object of this paper is to propose a simple and fast method – “fast” as compared to the method published in Ref. [52]
– to blindly separate and reconstruct sound sources, possibly of broadband nature, that radiate from disjoint domains (the
SOIs may otherwise overlap both in the time and frequency domains). Note that the problem is not trivial, since the fact that
sound sources are spatially disjoint is not necessarily “seen” by the array of microphones placed in the radiated acoustical
field. Indeed, the partial acoustical fields radiated by the individual sources on the array will fully overlap in general, as
shown in Fig. 1.
Fig. 1. Schematic illustration of disjoint sources overlapping in the domain of the measurements. The intermediate plane illustrates that the sound fields
radiated by disjoint sources will overlap in general.
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The rest of the paper is organized as follows. Section 2 addresses the backpropagation of the measurements to the source
domain, the resulting mixing model inherent to BSS, and discusses the non-uniqueness of the separation returned by PCA.
The condition under which virtual sources returned by PCA actually match the SOIs is then elucidated in Section 3. Next,
Section 4 presents a method to separate incoherent and spatially disjoint sound sources by jointly enforcing statistical and
spatial orthogonality. The proposed methodology is eventually validated in Section 5 via numerical and laboratory
experiments. An illustration is also provided for the separation of aeroacoustic sources in an open-jet anechoic wind tunnel.
Conclusions are drawn in Section 6.
2. Blind source separation from decorrelation

As discussed in the previous section, specificities of the acoustical context require a careful formulation of the BSS
problem. Since the aim is to separate and reconstruct the SOIs from distant pressure measurements, BSS has to be coupled
with a backpropagation procedure (a mathematical operation detailed in Subsection 2.1). In principle, BSS could be per-
formed either before backpropagation, directly on the measured microphone pressures, or after backpropagation, in the
space of the reconstructed sources. The second approach is adopted in this paper since it is more amenable to the con-
sideration of spatial properties of the SOIs, as explained in Section 4. Therefore, the BSS problemwill be formulated on some
expansion coefficients of the sources.
2.1. Backpropagation of measurements to the source domain

Assume that an array of microphones spatially samples the sound field radiated from a set of spatially distributed and
mutually incoherent sound sources, referred to as the SOIs. Incoherence means that the SOIs are statistically orthogonal as a
consequence of originating from different physical mechanism. The aim is to recover each SOI, which implies their
separation and individual reconstruction.

The sound field is considered statistically stationary and ergodic. There is no specific assumption on the probability
density functions and the power spectral densities of the SOIs, which may be Gaussian or not, and narrow- or broad-band. A
linear mapping is supposed to hold between the source field and the measured pressures, typically characterized by a set of
Green functions or transfer functions hereafter denoted as the “propagation operator”.

The pressure measurement at the m-th microphone of the array is denoted as p(rm, t), where rm stands for the position
vector of the m-th microphone and t for the time index. The signal p(rm, t) is then transformed into a series of “snapshots”,
pðrm;ω;ϖÞ, at angular frequency ω, and indexed by ϖ (time position of the snapshots), by application of the Short Time
Fourier Transform (STFT). Then, each snapshot pðrm;ω;ϖÞ is modeled as

pðrm;ω;ϖÞ ¼
Z
Γ
Gðrm; r;ωÞsðr;ω;ϖÞdΓðrÞþεðω;ϖÞ; (1)
Fig. 2. (a) Expansion of the sound field sðrÞ (superposition of all sources of interest) onto spatial basis functions ϕbðrÞ. (b) Expansion of a given source of
interest siðrÞ onto spatial mode shapes φiðrÞ.
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with

sðr;ω;ϖÞ ¼
XNs

i ¼ 1

siðr;ω;ϖÞ; (2)

where Gðrm; r;ωÞ stands for the propagation operator between the array of microphones and the sound sources siðr;ω;ϖÞ, r
for the position vector, Ns for the number of active sound sources, Γ for the source domain, and εðω;ϖÞ for “measurement”
noise (a combination of instrumentation noise, modeling errors, etc.). Note that Eq. (2) explicitly expresses the total source
field as a superposition of Ns sound sources.

In an attempt to reconstruct sound sources from measurements, the total source distribution sðr;ω;ϖÞ is modeled as a
weighted summation of spatial basis functions ϕbðr;ωÞ,

sðr;ω;ϖÞ ¼
XB
b ¼ 1

ϕbðr;ωÞcbðω;ϖÞ ¼ ϕðr;ωÞcðω;ϖÞ; (3)

where cb denotes the expansion coefficient of the b-th spatial basis function ϕbðr;ωÞ, ϕ¼ ϕ1 ϕ2 ⋯ ϕB
� �

, c¼ c1 c2 ⋯ cB½ �T , and
superscript T indicates the transpose operator. Formulation (3) is left intentionally general so as to accommodate for various
linear sound imaging methods which have been presented in the literature. For instance classical NAH uses the discrete
Fourier basis in ϕ and SONAH an overcomplete set of plane waves, in which cases the expansion coefficients in c represent
values of the spatial spectrum of the sound field; besides, beamforming uses spatial Dirac impulses (e.g. monopoles) for the
column of ϕ and the expansion coefficients in c then represent the source strengths. Among other possible choices, the
optimal spatial functions proposed in Ref. [9] may be preferred as they achieve a minimum reconstruction error with the
number B of basis functions then being equal to the number M of microphones in the array. By means of an example, Fig. 2
(a) illustrates the expansion of a one-dimensional source onto a set of sinusoidal spatial basis functions.

For convenience, let us now consider the discretized version of the problem which, independently of the used dis-
cretization scheme, leads to the general formulation

pðω;ϖÞ ¼GðωÞΦðωÞcðω;ϖÞþεðω;ϖÞ; (4)

where p¼ pðr1Þ pðr2Þ ⋯ pðrMÞ½ �T ,Φ¼ ½ϕðr1ÞT ϕðr2ÞT ⋯ ϕðrNÞT �T is an N � B matrix, and GðωÞ an M � N matrix, where N stands
for the number of discretization points.

The traditional way to reconstruct the source field sðr;ω;ϖÞ from pressure measurements pðrm;ω;ϖÞ) is to estimate the
unknown vector of coefficients cðω;ϖÞ by inverting the system of Eq. (4), that is

ĉðω;ϖÞ ¼ ½GðωÞΦðωÞ�þpðω;ϖÞ; (5)

where ½GΦ�þ stands for some inverse operator. Eq. (5) reflects the backpropagation operation performed from the mea-
surement to the source domain.

As before, the notation is left sufficiently general to accommodate for different backpropagation methods. In NAH, ½GΦ�þ
stands for the pseudo-inverse of the matrix GΦ which usually requires careful regularization (e.g. see Ref. [9]). In beam-
forming, ½GΦ�þ comprises the steering vectors in all scanned directions (i.e. it is made of the conjugate inverse elements of
½GΦ�).

Eq. (5) solves the source reconstruction problem. A further step is now necessary to separate the SOIs, that is to solve Eq.
(2) for each of its constituent. As stated in Ref. [52], the SOIs can be decomposed onto spatial mode shapes

siðr;ω;ϖÞ ¼ φiðr;ωÞαiðω;ϖÞ; (6)

where φi stands for the spatial mode shape corresponding to the i-th source si and αi for its assigned modal coordinate. This
is illustrated in Fig. 2(b). Contrary to model (3), Eq. (6) is more amenable to source separation as will be seen shortly.
Without loss of generality, coefficient αi is assumed to be a random variable with zero mean and unit variance (the scale is
absorbed in the mode shapes). Since the sound sources are assumed mutually incoherent, they are statistically orthogonal in
the sense that

Eϖfsiðr;ω;ϖÞs�j ðr0;ω;ϖÞg ¼ 0; ia j; 8ðr; r0Þ; (7)

where Eϖ stands for the averaging operator over snapshots and superscript * for the complex conjugate. Combining Eqs. (6
and 7), one has

Eϖfαiðω;ϖÞα�j ðω;ϖÞg ¼ δij; (8)

where δij stands for the Kronecker delta. Therefore, applying Eqs. (6–8), the power of the i-th source is simply defined as (see
Fig. 2(b))

πiðr;ωÞ ¼ φiðr;ωÞ
�� ��2; (9)

that is the squared magnitude of the (scaled) mode shape.
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Let us now expand the mode shape φiðr;ωÞ onto the spatial basis functions ϕbðr;ωÞ,

φiðr;ωÞ ¼
XB
b ¼ 1

ϕbðr;ωÞaibðωÞ ¼ ϕðr;ωÞaiðωÞ; (10)

where aib stands for the expansion coefficient of the b-th spatial basis function ϕbðr;ωÞ and ai ¼ ai1 ai2 ⋯ aiB½ �T . Thus
combining Eqs. (2), (3), (6), and (10) and dealing with all the Ns sources together, one arrives at

cðω;ϖÞ ¼AðωÞαðω;ϖÞ; (11)

with A¼ a1 a2 ⋯ aNs

� �
and α¼ α1 α2 ⋯ αNs

� �T . Finally, substituting ĉ of Eq. (5) in Eq. (11), the estimated vector ĉ can be
rewritten as

ĉðω;ϖÞ ¼ AðωÞαðω;ϖÞþnðω;ϖÞ; (12)

where n embodies the difference between the two representations, Aα and ½GΦ�þp, or loosely speaking, the “estimation
noise”. So far, only the left-hand side of Eq. (12) is available, but the variables on the right side are still unknown, which is
the standard description of the BSS problem [32,34]. It is seen that if one succeeds to recover the mixing matrix A in model
(12), the source powers πi can be individually estimated according to Eqs. (9) and (10). This is the aim of the rest of the paper.

2.2. PCA and virtual sources

Let us now proceed by investigating how to recover the mixing matrix A. Variable ω will be ignored hereafter for the
purpose of notational simplification whenever there is no ambiguity. The matrix A has the Singular Value Decomposition
(SVD)

A¼UDVH ; (13)

where, U and V are two unitary matrices such that UUH ¼ IB and VVH ¼ INs , respectively, and D is a B� Ns nonnegative
diagonal matrix (superscript H accounts for the Hermitian transpose and I for the identity matrix). Combining Eqs. (8) and
(12 and 13), the CSM of the estimated coefficient vector ĉ can be written as

Eϖ ĉĉH
n o

¼AAHþσ2nI¼UD2UHþσ2nI; (14)

where σ2n denotes the variance of the noise n, assuming spatially white random variable. Equation (14) is recognized as the
Eigen-Value Decomposition (EVD) of matrix EϖfĉĉHg, which thus returns a unique solution of the two matrices U and D[53].

This is the basis of the PCA method, which consists in finding a set of uncorrelated sound sources, so called “virtual
sources” by diagonalizing the CSM (either of the source expansion coefficients as in Eq. (14) or directly of the pressure
measurements) [24,25]. Because it is an orthogonal transformation it conserves energy and the sum of the powers of the
virtual sources actually equal the sum of the powers of the SOIs, which is a remarkable property. However, this is not enough
to conclude that the virtual sources equal the SOIs.
Fig. 3. Schematic illustration of source separation by statistical orthogonalization (e.g. PCA) using two different unitary matrices (a) V1 and (b) V2: although
the sum of partial powers is conserved, the virtual sources are not uniquely linked to the true sources.
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To see this, let us explicitly formulate the partial source power πi (power contribution from source i). Using Eqs. (9), (10),
and (13), one arrives at

πiðrÞ ¼ φiðrÞ
�� ��2 ¼ ϕðrÞaiaHi ϕHðrÞ ¼ ϕðrÞUDVHei

zfflfflfflfflffl}|fflfflfflfflffl{ai

eTi VDU
H

zfflfflfflfflffl}|fflfflfflfflffl{aHi

ϕHðrÞ; (15)

where vector ei is the i-th column of the identity matrix. Now, considering virtual sources, aiaHi in formula (15) is implicitly
replaced by the eigen contribution diuiuH

i (where ui is the i-th column of matrix U and di the i-th diagonal element of matrix
D), thus leading to

πvirtuali ðrÞ ¼ ϕðrÞ d2i uiuH
i

� �
ϕHðrÞ ¼ ϕðrÞUDeieTi DUHϕHðrÞ: (16)

Although by construction the sum of the partial powers is conserved,

XNs

i ¼ 1

πvirtuali ðrÞ ¼ ϕðrÞ UD2UH|fflfflfflffl{zfflfflfflffl}PNs
i ¼ 1

aiaHi

φHðrÞ ¼
XNs

i ¼ 1

πiðrÞ; (17)

there is no reason why the virtual sources should match the true sources in general. In fact, comparing Eqs. (16) and (15), it
is readily seen that

πvirtuali ðrÞaπiðrÞ: (18)

The conservation of power reflected by Eq. (17) is actually satisfied by any unitary matrix V in Eq. (15), thus leading to
sound sources with different spatial distributions. This leaves infinity of solutions to the BSS problem, as schematically
illustrated in Fig. 3. More specifically, by equating Eqs. (15) and (16), the i-th true source reads

si rð Þ ¼ ϕðrÞUDVHei ¼ ϕðrÞUD|fflfflfflffl{zfflfflfflffl}
svirtual1 ⋯ svirtualNs

h i VHei|ffl{zffl}
v�1i
⋮

v�Ns ;i

2
64

3
75
¼

XNs

k ¼ 1

v�kis
virtual
k ðrÞ; (19)

with v�ki the element (k, i) of matrix VH, which proves that the true source si rð Þ is a linear combination of the virtual sources
svirtualk ðrÞ – and vice-versa.

In conclusion, statistical orthogonality as achieved by PCA is a necessary but not a sufficient condition for source
separation as long as the unitary matrix V is unknown. The conclusion naturally holds for any related method, such as
partial coherences, Cholesky factorization of the CSM, etc. As mentioned in the introduction, this result is not new; yet, as
demonstrated in the next section, its derivation in the domain of the source coefficients (rather than in the domain of the
measured pressures p) will reveal special configurations under which statistical orthogonality of the sources happens to be a
sufficient condition for their separation.
3. When are virtual sources coinciding with true sources?

3.1. Problem formulation

Subsection 2.2 discussed the difference between the virtual sources – as obtained from statistical orthogonalization –

and the true sources. The question now arises whether there exist physical configurations where the two concepts can
coincide. First, the requirement has to be slightly relaxed since in most practical instances one will content oneself with
equality of the partial powers of the virtual and true sources (rather than the sources themselves). Formally, the objective is
to arrive at

πvirtuali ðrÞ ¼ πiðrÞ; i¼ 1; :::;Ns: (20)

Thus, the virtual sources are allowed to be different from the true sources up to an arbitrary (but constant) phase φ,

svirtuali ðrÞ ¼ siðrÞejφ; i¼ 1; :::;Ns; (21)

which is reminiscent to the classical indeterminacies of BSS [54]. From the results of the previous section (see Eq. (19)) it is
clear that such a configuration imposes the constraint V ¼ Π with Π a diagonal matrix with unit-magnitude complex
entries.

It is now proved that the scenario corresponds to the case where the sound sources are spatially orthogonal.
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3.2. A sufficient condition: spatially orthogonal sources

Let us consider the configuration where the SOIs are spatially orthogonal, that is when the following scalar products of
any pair of two distinct sources is nil,

si; sj
� 	

M ¼
Z
Γ
s�i ðrÞsjðrÞMðrÞdΓðrÞ ¼ 0; 8 ia j (22)

with MðrÞ a given metric introduced for the sake of generality. Resorting to the discretization scheme introduced in Eq. (4),
this is equivalently expressed as

si; sj
� 	

M ¼ αiαjeTi Ψ
HΜΨej ¼ 0; 8 ia j (23)

in terms of the matrix of mode shapes,

Ψ¼
φ1ðr1Þ ⋯ φNs

ðr1Þ
⋮ ⋮

φ1ðrNÞ ⋯ φNs
ðrNÞ

2
64

3
75; (24)

and

M¼
Mðr1ÞΔΓðr1Þ

⋱
MðrNÞΔΓðrNÞ

2
64

3
75; (25)

a diagonal “metric matrix”. Typical choices for the metric are the identity, M ¼ I, or the Gramian of the propagation
operator, M¼GHG, in which case spatial orthogonality is not assessed in the source domain but in an arbitrary domain to
which sources are radiated (e.g. the measurement domain). Eq. (23) states the spatial orthogonality of the sources is
equivalent to having their mode shapes orthogonal with respect to a given metric. As to be seen in Fig. 2(b), a simple case of
this instance is when the sources are disjoint in space – a case of special interest which will be considered in the next
section; another case is when the sources have disjoint spatial spectra (i.e. when they are disjoint in the wavenumber
domain). In order to investigate the effect of spatial orthogonality on virtual sources, let us now express Eq. (23) in terms of
the spatial basis Φ,

αiαjeTi A
HΦHΜΦAej ¼ 0; 8 ia j: (26)

Since the above equation must be true whatever the values of the latent variables αi and αj, it implies that AHΦHΜΦA is a
diagonal matrix,

AHΦHΜΦA¼
λ1

⋱
λNs

2
64

3
75¼Λ: (27)

Finally, substituting A for its SVD given in Eq. (13), the above equation becomes

V DUHΦHΜΦUD
� �

VH ¼Λ: (28)

This is the main result of this section. It states that spatial orthogonality of the sources is equivalent to having the unitary
matrix V diagonalizing the product of matrices DUHΦHΜΦUD. This can be exploited in two ways. First, it provides a recipe
to estimate V, which will be further investigated in Section 4. Second, it returns a sufficient condition for virtual sources to
be equal to the true sources. As mentioned above this condition requires V ¼ Π which, upon insertion into Eq. (28), gives

DUHΦHΜΦUD¼Π�1ΛΠ�H|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
diagonal

: (29)

Equality (29) can be satisfied in several ways. i) A simple configuration is when the metric is proportional to the identity,
MpI, and the spatial basis is canonical,Φ¼ I, such as with beamforming, or orthonormal,ΦHΦ¼ I, such as in classical NAH.
In both cases ΦHΜΦpI and therefore DUHΦHΜΦUDpD2 is diagonal. ii) Another configuration is with the optimal spatial
basis introduced in Ref. [9] which, by construction, satisfies ΦHΣ�1Φ¼ I with Σ a so-called “aperture function”. iii) If it
happens that the actual mode shapes of the SOIs are known, then orthogonality is satisfied by setting Φ¼Ψ. iv) Finally, a
more general case is when ΦHΜΦ¼UΔUH where Δ stands for a diagonal matrix, which has less obvious physical meaning.

To summarize and keep only the physically most relevant configurations, the virtual sources equal the true sources (in
the sense of Eq. (21)) if

) the sources are spatially orthogonal in a given domain as specified by Eq. (22),
) and the spatial basis Φ is chosen orthonormal in that domain (i.e. ΦHΜΦpI).
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It is highlighted that the two above conditions must hold simultaneously. Although condition (2) is less natural than
condition (1), it reflects the fact that the eigen-elements U and D returned by the EVD in Eq. (14) generally depend on the
choice of the spatial basis Φ. In other words, the results of PCA depend on the domain in which they are obtained.

Noteworthy is that condition (2) holds generally, in particular not only when PCA is applied on the source coefficients c,
but also when it is applied directly on the measured pressures p, as seen when setting M¼ GHG. It is believed that this result
explains some of the successes of PCA for BSS that have been reported in the literature, for instance when using the
canonical basis Φ¼ I and in the far field where GHG tends to diagonality.

A particular case of spatial orthogonality of the SOIs that has a high physical relevance is reported in the next subsection.

3.3. A particular case: spatially disjoint sources

The configuration with spatially disjoint sources (i.e. sources with non-overlapping support sets in physical space) is a
particular case of spatially orthogonal sources with practical interest. Indeed, there are many instances where sound sources
are likely to originate from different (disjoint) spatial regions, even though their radiated fields rapidly overlap in space at
some distance from the source domain. In mathematical terms, Eq. (22) then naturally holds for any metric M since the
product of the mode shapes of disjoint sources is always zero. This configuration is investigated in some depth in the next
section in order to devise a simple BSS algorithm. Following similar lines, an algorithm could also be developed to separate
sources with disjoint spatial spectra, which is another instance of spatial orthogonality, yet not investigated in this paper.
4. Blind separation of spatially disjoint sources

4.1. 4.1. Objectives

The previous section has established a sufficient condition under which virtual sources equal the SOIs. The result is
particularly interesting for separating disjoint sources, which is a likely instance of spatially orthogonal sources. In theory,
PCA is therefore enough to solve the BSS problem. However, in practice, the condition of perfectly disjoint supports may be
difficult to reach for different reasons. First, backpropagation is never perfect and always involve some spatial leakage.
Second, the exact topography of the source domain is hardly known in practice and the sources are backpropagated on a
surface close to it but not coinciding with it. This necessarily involves radiation from one SOI towards the other SOIs (see the
intermediate plane in Fig. 1). Third, the notion of a compact support set may be only approximate in reality, such as with
aeroacoustic sources. A last but not least limitation is the requirement to use an orthonormal spatial basis Φ.

For all these reasons, PCA alone may not be the most effective method when trying to separate spatially disjoint sources.
Based on the results of the previous section, a more robust BSS method is to recover SOIs which are forced to be statistically
orthogonal (by using PCA) and, at the same time, as disjoint as possible. This will be referred to as joint statistical and spatial
orthogonalization in the following.

4.2. Enforcing statistical and spatial orthogonality

In this section, an algorithm is designed to blindly separate incoherent and disjoint sound source independently of the
choice of the basis functions Φ used in the backpropagation step.

The starting point of the proposed algorithm is Eq. (28) where it is seen that the unknown matrix V that relates the
virtual sources to the true ones (see Eq. (19)) actually diagonalizes the product of matrices DUHΦHΜΦUD wherein all
quantities are known. For disjoint sources, this is true whatever the metric M. Thus, in theory, V can be uniquely recovered.
Going back to Eq. (23), this enforces the diagonality of the matrix product ΨHΜΨ for any metric M and therefore the spatial
orthogonality (22). This novel criterion is referred to as “spatial orthogonalization”. The idea is illustrated on one-
dimensional signals in Fig. 4.

Therefore, the proposed algorithm is the following:
Fig. 4. Principle of the criterion of spatial orthogonalization: when disjoint, two source distributions s1ðrÞ and s2ðrÞ always have zero scalar product even if
pre-multiplied by an arbitrary spatial function MkðrÞ. This is illustrated here with MkðrÞ generated by sinusoids with increasing wavenumbers.
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) Statistical orthogonalization: estimate the eigen-elements U and D from the EVD (i.e. PCA) of the CSM EϖfĉĉHg as
conducted in Eq. (14),

) Construct a set of matrices DUHΦHΜkΦUD
n oK

k ¼ 1
for different candidate metrics Mk,

) Spatial orthogonalization: find the unitary matrix V that jointly diagonalizes the set of matrices DUHΦHΜkΦUD
n oK

k ¼ 1
,

) Recover the individual sources si ¼ΦUDVHei.

It is noteworthy that the algorithm can be used with any choice of the spatial basis Φ – this includes NAH and beam-
forming as particular cases, but not only. On the contrary, the metrics Mk should be carefully chosen. Here, the harmonic
functions are recommended, although other orthogonal polynomials such as Legendre and Chebyshev have been tested
with success. The definition of the harmonic functions is

MkðrÞ ¼ expðJrTkkÞ; J2 ¼ �1; (30)

where kk denotes the k-th element of a set of arbitrary wavevectors used to synthesize oscillating functions embedded in
the metric Mk – see the second row in Fig. 4. How to jointly diagonalize the set of matrices in Step (3) of the algorithm is
addressed in the following subsection.

4.3. Joint approximate diagonalization algorithm

Let us define

C½k�
ij ðVÞ ¼ eTj VDU

HΦHΜkΦUDVHei: (31)

The joint diagonalization of the set of weighted spatial correlation coefficients C½k� Vð Þ
n oK

k ¼ 1
may be naturally achieved by

minimizing the sum of the squared magnitudes of their off-diagonal elements, that is

V̂¼ Argmin
V

XK
k ¼ 1

Off C½k�ðVÞ
n o��� ���2

( )
; s:t:VVH ¼ I; (32)

where operator “Off” zeroes the diagonal elements of a matrix. Fortunately, the cost function in Eq. (32) is common in BSS
and enjoys several optimization algorithms. Here, the Joint Approximate Diagonalization (JAD) algorithm of Ref. [55] has
been used.

Similarly to most BSS methods, the proposed one also needs the determination of the number of sources before
separation. The authors suggest the use of the methods introduced in Section 3 of Ref. [52], especially the criterion of
“entropic L-curve”, although other criteria may also be considered.
5. Experimental validation

This section validates the separation of incoherent and disjoint sources on two experimental setups. The first one
involves piston-like sources produces by loudspeakers. The second one deals with the more difficult case of aeroacoustic
sources generated by an airfoil submitted to a turbulent flow.
Fig. 5. The configuration of experiments conducted in a semi-anechoic chamber (1 – the loudspeaker; 2 – the slice wheel array of microphones).
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5.1. First experimental setup: piston-like sources

The experiments were conducted in a semi-anechoic chamber. Their configuration is depicted in Fig. 5. Four loud-
speakers produced incoherent and wideband random sound sources with frequency spectra ranging up to 8 kHz. Two range
distances of 10 cm and 100 cm between the source domain of interest and the slice wheel array of microphones were used.
These two distances will be referred to as near-field and far-field, respectively, where near-field is understood here as the
area that is closer to the sound source than one wavelength (this corresponds to the highest frequencies of 3400 Hz and
340 Hz, respectively). The spacing D between adjacent loudspeakers is 12 cm in the near-field and 18 cm in the far-field. The
sampling frequency was set to 16.384 kHz and recording time to 4 min. Measurements were also performed with only a
single loudspeaker switched on in order to obtain references for the true sources and allow comparisons. More details on
the experimental apparatus can be found in Subsection 4.1 of Ref. [52].

Data recorded in the near-field and in the far-field were then processed by the two proposed approaches: Statistical
Orthogonality Only (SO) by PCA and joint Statistical and Spatial Orthogonality (2SO) by the algorithm proposed in Sub-
section 4.2 with ðNsþ1Þ2 harmonics functions generated with increasing wavenumbers – see Eq. (30). In all cases, the
backpropagation method described in Ref. [9] was used. First, the separation results are presented in the whole working
frequency band by means of the quadratic velocity spectrum (i.e. Eq. (9)). Second, the quality of the spatial distribution of
the separated sources is assessed by means of the spatial correlation spectrum between the separated, ŝi, and the true
sources, si, as a function of frequency,

ρi ωð Þ ¼

PN
l ¼ 1

Eϖ ŝiðrl;ωÞs�i ðrl;ωÞ
�� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
l ¼ 1

Eϖ ŝiðrl;ωÞ
�� ��2 PN

l ¼ 1
Eϖ s�i ðrl;ωÞ

�� ��2s : (33)

5.2. Separation results from statistical orthogonalization

As demonstrated in Section 3.2, forcing only the statistical orthogonalization of the sources by diagonalizing the CSM
may return satisfactory separation results provided that the sound sources have spatially orthogonal distributions. This is
experimentally verified in the next subsection.

5.2.1. Source separation in the near-field
In the near-field, the working frequency is set to 1800 Hz (as will be seen shortly, this corresponds to a frequency range

where SO works well; it also corresponds to the frequency used in Ref. [52] so as to allow comparisons). The separation
Fig. 6. Separated sources from statistical orthogonalization in the near-field at 1800 Hz. The total quadratic velocity π0ðr;ωÞ is decomposed into compo-
nents π̂iðrÞ, i ¼ 1,…,4. The dynamic range is held constant to 6 dB whereas scale is adapted to allow the visualization of the smallest sources.



Fig. 7. True sources obtained from individual measurements in the near-field at 1800 Hz. (Dynamic range ¼ 6 dB).

Fig. 8. Quadratic velocity spectra of the separated sources, (a) π̂1ðωÞ, (b) π̂2ðωÞ, (c) π̂3ðωÞ, and (d) π̂4ðωÞ, from simple statistical orthogonalization (red solid
line) compared to true sources (black dashed line) in the near-field. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 9. Spatial correlation spectra between the separated and true sources, (a) ρ1ðωÞ, (b) ρ2ðωÞ, (c) ρ3ðωÞ, and (d) ρ4ðωÞ, in the near-field.
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results from SO are displayed in Fig. 6 which shows how the quadratic velocity (normal component to the source plane)
π0ðr;ωÞ before separation is decomposed into components π̂iðr;ωÞ, i ¼ 1, …, 4, relating to each source. It appears that all the
estimated sources account properly for the sound power and that they could be successfully separated because, at this
frequency, their supports are mainly disjoint, a sufficient condition for SO. To evaluate the separation performance, the
corresponding four true sources obtained from individual measurements are displayed in Fig. 7. Excellent matching is
observed between the separated and the true sources with respect to both magnitude and location estimation.

Next, the separation results are displayed in terms of quadratic velocity spectra in Fig. 8 and spatial correlation spectra in
Fig. 9 in the whole available frequency band. In order to solve the permutation ambiguity inherent to BSS (arbitrary labeling
of the separated sources at each frequency), the separated sources were re-ordered at each frequency according to the
spatial correlation between the separated sources and the true ones. The lower bound of the spectra is determined by the
size of the microphone array, whereas the corresponding upper bound depends on the minimum spacing between two
adjacent microphones. From Fig. 8 it can be seen that the spectra of the separated sources are consistent with those of the
true sources except in the very low frequency interval [400,600] Hz and in the frequency band [1300,1500] Hz which both
enclose zeros of the quadratic velocity spectrum of the true source s1. However, as shown in the spatial correlation spectra
(see Fig. 9), there exists some discrepancies even though the power distributions seemed to match well. The highest spatial
correlation – above 0.8 – is mostly at high frequencies (above 1600 Hz) where the source supports become more and more
disjoint due to finer and finer spatial resolution. The spatial correlation coefficients between the separated sources and the
four true ones are 0.99, 0.98, 0.98 and 1 at 1800 Hz.
5.2.2. Source separation in the far-field
The separated and true sources in the far-field are displayed in Figs. 10 and 11, respectively. Separation results are very

satisfactory in terms of estimated magnitudes, locations, and spatial distributions. This demonstrates that statistical
orthogonalization can actually achieve good spatial separation provided the sources are spatially orthogonal, a condition
which is naturally satisfied here when their supports are disjoint.



Fig. 10. Separated sources from statistical orthogonalization in the far-field at 3600 Hz. The total quadratic velocity π0ðr;ωÞ is decomposed into components
π̂iðrÞ, i ¼ 1,…,4. (Dynamic range ¼ 6 dB).

Fig. 11. True sources obtained from individual measurements in the far-field at 3600 Hz. (Dynamic range ¼ 6 dB).
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Figs. 12 and 13 display the quadratic velocity spectra and the spatial correlation spectra in the whole available frequency
band, respectively. Similarly to the near-field, the boundaries of the whole working frequency band are determined by the
characteristic parameters of the microphone array and by the distance Z. The lower working frequency limit depends on the
ratio of the distance Z and the size of the applied array (e.g. the diameter of the slice wheel array here). On the contrary, the
upper limit of working frequency is inferred by the ratio between the distance Z and the minimum spacing between two
adjacent microphones.



Fig. 12. Quadratic velocity spectra of the separated sources, (a) π̂1ðωÞ, (b) π̂2ðωÞ, (c) π̂3ðωÞ, and (d) π̂4ðωÞ, from statistical orthogonalization (red solid line)
compared to true sources (black dashed line) in the far-field. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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The quadratic velocity spectra of the separated sources match remarkably well with those of the true sources, even at the
zeros of the first source (see Fig. 12(a)). This is due to the larger source spacing – D ¼ 18 cm set in the far-field. Fig. 13 shows
that, in the entire frequency band, the spatial correlation is most above 0.8. The corresponding spatial correlation coeffi-
cients of the four separated sources are 0.98, 1, 0.96 and 1 at 3600 Hz.

5.3. Separation results from joint statistical and spatial orthogonalization

When sound sources are disjoint in space, they might be better separated by enforcing both statistical and spatial
orthogonalization (see Section 4). The experimental parameters of this subsection are the same as that in Section 5.2.

5.3.1. Source separation in the near-field
The working frequency is chosen as 833 Hz (all working frequencies have been selected so as to illustrate at best typical

cases where statistical orthogonalization alone does not work and needs to be replaced by joint statistical and spatial
orthogonalization in Section 5.3; they also correspond whenever possible to the working frequencies used in Ref. [52] so as
to allow comparisons). As illustrated in Fig. 14, only one source can be separated by statistical orthogonalization, because, at
such a low frequency, the spatial resolution is no longer sufficient to guarantee disjoint supports and thus spatial
orthogonality.

To improve separation results, spatial orthogonality is then enforced jointly with the statistical orthogonality as
explained in Subsection 4.2. This is illustrated in Fig. 15, which shows an excellent match to the true sources in Fig. 16. There
are few errors between the separated and true sources in terms of energy and spatial distribution, although the shapes of
the sound sources are slightly distorted.

The example shows that enforcing both statistical and spatial orthogonality is effective, with similar performance as for
the method introduced in Ref. [52]. With the same spatial resolution (1 mm) and the same computational power, the former



Fig. 13. Spatial correlation spectra between the separated and true sources, (a) ρ1ðωÞ, (b) ρ2ðωÞ, (c) ρ3ðωÞ, and (d) ρ4ðωÞ, in the far-field.

Fig. 14. Separated sources from statistical orthogonalization in the near-field at 833 Hz. The total quadratic velocity π0ðr;ωÞ is decomposed into compo-
nents π̂iðrÞ, i ¼ 1,…,4. (Dynamic range ¼ 6 dB).
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Fig. 15. Separated sources from joint statistical and spatial orthogonalization in the near-field at 833 Hz. The total quadratic velocity π0ðr;ωÞis decomposed
into components π̂iðrÞ, i ¼ 1,…,4. (Dynamic range ¼ 6 dB).

Fig. 16. True sources obtained from individual measurements in the near-field at 833 Hz. (Dynamic range ¼ 6 dB).
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achieves virtually identical separation results ten times faster (however it should be kept in mind that the least spatial
entropy criterion applies more generally to compact sources, which are not necessarily disjoint).

The quadratic velocity and spatial correlation spectra are shown in Figs. 17 and 18, respectively.
The spatial correlation spectra in Fig. 18 show improved separation sources in the whole working frequency band as

compared to simple statistical orthogonalization in Fig. 9. Remarkably, the spatial correlations on the third and fourth true
sources are more than 0.98 at most frequencies in the working band (see Fig. 18(c) and (d)). Note however that the spatial



Fig. 17. Quadratic velocity spectra of the separated sources, (a) π̂1ðωÞ, (b) π̂2ðωÞ, (c) π̂3ðωÞ, and (d) π̂4ðωÞ, from joint statistical and spatial orthogonalization
(red solid line) compared to true sources (black dashed line) in the near-field. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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correlation drops in some frequency bands where the amplitude of the true source is very small (e.g. around 2 kHz for
source 2 in Fig. 18(b)); in such cases, the source is below the noise level and can hardly be separated.

The spatial correlation coefficients between the true and separated sources at 833 Hz are listed in Table 1. It is seen that
joint orthogonalization slightly improved the separation results in most cases.
5.3.2. Source separation in the far-field
The separated sources from 2SO in the far-field at 2437 Hz are all displayed in Fig. 20. As for the separated sources from

simple SO and the true sources, they are presented in Figs. 19 and 21, respectively. The separated sources from 2SO match
perfectly the true sources as shown in Fig. 21.

The quadratic velocity and spatial correlation spectra of the separated sources are shown in Figs. 22 and 23. Just as in the
near-field case, the quadratic velocity spectra match closely the references except maybe near the zeros and in the low
frequency interval [1600,2400] Hz. The good performance of the 2SO separation is also verified by means of the spatial
correlation spectra (see Fig. 23).

The spatial correlations coefficients between the separated and true sources at 2437 Hz are listed in Table 2.
5.4. Second experimental setup: aeroacoustic sources

In this section the proposed BSS method is employed for the investigation of aeroacoustic sources by means of both
simulation and real experiments. In the first part, a numerical experiment is designed to validate the BSS algorithm for
aeroacoustic sources. In the second part, results from a real experiment realized in an open-jet anechoic wind tunnel are
presented. Both examples aim to illustrate the advantages of blind source separation for the analysis of physical noise
sources.



Fig. 18. Spatial correlation spectra between the separated and true sources, (a) ρ1ðωÞ, (b) ρ2ðωÞ, (c) ρ3ðωÞ, and (d) ρ4ðωÞ, in the near-field.

Table 1
Spatial correlation coefficients between the separated and true sources from SO and 2SO in the near-field at 833 Hz.

s1 s2 s3 s4

SO 0.82 0.88 0.86 1
2SO 0.97 0.91 0.99 0.99
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5.4.1. Numerical experiment of spatially distributed sources
The designed simulation is representative of sources encountered in practice in aeroacoustics. That is, spatially dis-

tributed sources which may or may not be correlated. The dimensions of the problem (microphone array and source
dimensions) match those from the experimental application to be presented in Subsection 5.4.2. The source length L equals
the airfoil span (�30 cm) used in the real experiment. The geometry of the simulation is presented in Fig. 24. In the first
case, the distributed source is divided into two groups of mutually correlated sources, each group with a source length equal
to Ls¼L/2. The two groups are mutually uncorrelated. The acoustic pressure is simulated according to the model described in
Eq. (4). In this model, the vector c is a realization (represented here by a snapshot) of a multivariate random process
distributed according to CN k 0; σcΣcð Þ, which is a multivariate complex Gaussian distribution of dimension k, zero mean
vector and with a covariance matrix equal to σcΣc. The degree of correlation between sources is modeled by the matrix of
correlation coefficients Σc, which is shown in Fig. 25 for the two simulation cases. The same variance σc is assigned to all
source coefficients. Additive noise is also added to the simulated acoustic pressure, according to Eq. (4). The noise vector ε is
drawn from the multivariate complex Gaussian distribution CNM 0; σnIMð Þ, where σn is the variance of the noise and IM is the
identity matrix of dimension M. It is thus assumed that the noise is uncorrelated between microphones. The number of
snapshots is set to 400 and the values of σc and σn are chosen such as to keep an SNR of 40 dB.

The spatial distributions of sources are reconstructed at the source plane by forcing statistical orthogonality only and by
jointly forcing statistical and spatial orthogonality. Results are shown in Figs. 26–28 for different frequencies or, equivalently,



Fig. 19. Separated sources from statistical orthogonalization in the far-field at 2437 Hz. The total quadratic velocity π0ðr;ωÞ is decomposed into components
π̂iðrÞ, i ¼ 1,…,4. (Dynamic range ¼ 6 dB).

Fig. 20. Separated sources from joint statistical and spatial orthogonalization in the far-field at 2437 Hz. The total quadratic velocity π0ðr;ωÞ is decomposed
into components π̂iðrÞ, i ¼ 1,…,4. (Dynamic range ¼ 6 dB).
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λ/Ls ratios. It can be seen in Fig. 26(a) and (b) that results obtained with PCA (i.e. statistical orthogonalization only) do not
allow to separate the two uncorrelated source fields. Virtual sources do not coincide with the true sources. The first virtual
source, see Fig. 26(a), embodies the two sources while the second virtual source has a spatial distribution similar to a dipole
(in fact, by looking at the phase between the two lobes, it was seen that they are out-of-phase). Care must be taken thus, for
the interpretation of results obtained with PCA for spatially distributed and closely spaced uncorrelated sources. On the



Fig. 21. True sources obtained from individual measurements in the far-field at 2437 Hz. (Dynamic range ¼ 6 dB).

Fig. 22. Quadratic velocity spectra of the separated sources, (a) π̂1ðωÞ, (b) π̂2ðωÞ, (c) π̂3ðωÞ, and (d) π̂4ðωÞ, from joint statistical and spatial orthogonalization
(red solid line) compared to true sources (black dashed line) in the far-field. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 23. Spatial correlation spectra between the separated and true sources, a) ρ1ðωÞ, b) ρ2ðωÞ, c) ρ3ðωÞ, and d) ρ4ðωÞ, in the far-field.

Table 2
Spatial correlation coefficients between the separated and true sources from SO and 2SO in the far-field at 2437 Hz.

s1 s2 s3 s4

SO 1 0.86 1 0.84
2SO 0.97 1 0.99 0.98
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Fig. 24. Geometry of the simulation for the case of aeroacoustic sources: (a) front view and (b) side view. The microphone positions are shown as black
dots. The source plane is located at a distance of 35 cm from the microphone plane. The sources are divided into two groups of mutually correlated sources
(one group represented by gray stars and the other by red dots). Sources of different groups are uncorrelated. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 25. Matrices of correlation coefficients correspond to the two simulation cases. 16 source coefficients are used for both cases: (a) two mutually
uncorrelated groups and (b) four mutually uncorrelated groups. The value of correlation coefficient is given by the color scale and ranges from 0 (no
correlation) to 1 (full correlation). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Reconstructed source maps obtained with SO (the first row) and 2SO (the second row). Results are shown at 1500 Hz or λ/Ls ¼ 1.5: (a) the first
component or virtual source for SO; (b) the second component or virtual source for SO; (c) the first separated source for 2SO; and (d) the second separated
source for 2SO.
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other hand, results are improved if spatial orthogonality in addition to statistical orthogonality is forced, see panels (c) and
(d) of Figs. 26–28. It can be seen that the uncorrelated source components are correctly separated at the studied frequencies.

Results for wavelengths of comparable size and smaller to the source dimensions, see Figs. 27 and 28, are basically the
same as the previous. It can be seen that PCA results are slightly improved as the frequency increases, nevertheless it still
does not provide a full separation of the two uncorrelated sources.



Fig. 27. Reconstructed sources obtained with SO (the first row) and 2SO (the second row). Results are shown at 2250 Hz or λ/Ls ¼ 1: (a) the first
component or virtual source; (b) the second component or virtual source; (c) the first separated source; and (d) the second separated source.
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A second simulation experiment is realized with now four groups of uncorrelated sources as shown in Fig. 29.
The results obtained with PCA and with the proposed BSS algorithm are shown in Figs. 30–32. Similarly to the previous

simulation case, we observe that statistical orthogonalization only (PCA) is not sufficient for the separation of the four
uncorrelated components, even as frequency increases. The reconstructed source map corresponding to each virtual source
does not correspond to the physical sources in this case. Contrary to the results obtained with SO, we can see that forcing the
spatial orthogonality allows the correct separation of the four uncorrelated sources, see the second row of Figs. 30–32.

One may notice that at the frequency of 2250 Hz, the fourth separated source using 2SO, see Fig. 30(h), has still a small
contribution from the other three sources. This is in fact due to the limited spatial resolution of the backpropagation
(preliminary step to the BSS algorithm) method at this frequency. Note that the wavelength (λ) is large as compared to the
source dimension λ/Ls¼ 2 at this frequency. This result could be possibly improved by using sparsity enforcing methods in
the backpropagation step, however it is not in the scope of the present paper and it is left as a perspective of further
research.

5.4.2. Real experiment in an anechoic wind-tunnel
The aeroacoustic experiment was carried out in an open-jet anechoic wind tunnel at the École Centrale de Lyon (ECL), see

Fig. 33. A symmetric NACA 0012 airfoil with a chord length of 10 cm is placed at the potential core of a rectangular jet of
width 15 cm and height 30 cm. A commercially available microphone array (HDcam) with 54 microphones (GRAS ¼" Type
40PL) is placed parallel to the flow direction at a distance of 35 cm from the NACA0012 airfoil, see Fig. 33(b). A turbulence
grid placed inside the nozzle provides a turbulent flow condition impacting the airfoil, see Fig. 33(c). Measurements have
been carried out for different free stream velocities and different flow regimes. A 56-channel SCADAS acquisition system is
used with a sampling frequency of 25.6 kHz and the acquisition time set to 10 s.

It is well known that different noise mechanisms simultaneously appear when an airfoil is submitted to a turbulent flow
[56–59]. One example is the noise originated from the impingement of upstream turbulence at the leading edge (known as
turbulence-interaction noise or leading edge noise). Another one is the noise due to the scattering of the turbulent boundary



Fig. 28. Reconstructed sources obtained with SO (the first row) and 2SO (the second row). Results are shown at 4550 Hz or λ/Ls ¼ 0.5: (a) the first
component or virtual source; (b) the second component or virtual source; (c) the first separated source; and (d) the second separated source.

Fig. 29. Geometry of the simulation for the case of aeroacoustic sources: (a) front view and (b) side view. Microphone positions are shown as black dots.
The source plane is located at 35 cm from the microphone plane. The source is divided into four groups of mutually correlated sources, each group with
characteristic dimension Ls. Each two source groups are uncorrelated to each other.
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layer as it passes through the trailing edge (trailing edge noise or airfoil self-noise). In practice for a turbulent flow, both of
these noise mechanisms co-exist and the noise captured by a far field microphone will be a sum of both contributions. An
example of measured acoustic pressure spectrum in Fig. 34 shows the broadband nature of the noise.

As an example of source reconstruction, Bayesian focusing is used for the backpropagation of measurements to the
source surface. The reconstructed source field at different working frequencies is shown in Fig. 35. It can be seen that



Fig. 30. Reconstructed sources obtained with SO (the first row) and 2SO (the second row). Results are shown at 2250 Hz or λ/Ls ¼ 2: (a)–(d) the first to the
fourth principal component or virtual source; and (e)–(h) the first to the fourth separated source.

Fig. 31. Reconstructed sources obtained with SO (the first row) and 2SO (the second row). Results are shown at 4550 Hz or λ/Ls ¼ 1: (a)–(d) the first to the
fourth principal component or virtual source; and (e)–(h) the first to the fourth separated source.

Fig. 32. Reconstructed sources obtained with SO (the first row) and 2SO (the second row). Results are shown at 5650 Hz or λ/Ls ¼ 0.8: (a)–(d) the first to
the fourth principal component or virtual source; and (e)–(h) the first to the fourth separated source.
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Fig. 33. Experimental set-up shows the open-jet anechoic wind tunnel: (a) side view, (b) front view, and (c) detail of turbulence grid installed upstream of
the NACA 0012 airfoil.
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Fig. 34. Acoustic pressure spectrum averaged over all microphones for a free stream velocity of U ¼ 40 m/s.

Fig. 35. Reconstructed normal velocity on the plane containing the airfoil at different frequencies: (a) 3100 Hz, (b) 5200 Hz, and (c) 5600 Hz. The airfoil
geometry, the side plates and the nozzle exit are also sketched on all panels of the figure.
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sources are basically located either on the leading edge or on the trailing edge of the airfoil, with different intensities
depending on the frequency. At lower frequencies sources located at the leading edge are more energetic whereas at higher
frequencies noise originated in the vicinity of trailing edge contributes the most to the far field acoustic pressure.

A first attempt has been to perform source separation by forcing the statistical orthogonality only, by means of PCA.
Results of separated sources at the frequency of 3100 Hz are shown in Fig. 36. Similarly to the numerical experiments, SO
fails to correctly separate the multiple uncorrelated sources. Indeed, this approach reconstructs "virtual sources" that, in this
case, do not represent the physical behavior of true sources. Since the airfoil is submitted to a turbulent flow, one should
rather expect physical sources to be spatially orthogonal along both the trailing edge and the leading edge.

Blind source separation is then applied by forcing statistical and spatial orthogonality (using the algorithm presented in
Subsection 4.3). The separated sources at the two different frequencies are shown in Figs. 37 and 38. It can be noticed that
uncorrelated sources are separated along the spanwise direction and are basically located either on the leading or the
trailing edge of the airfoil. It is interesting to remark that contrary to the "global" result presented in Fig. 35(a), the indi-
vidual contributions due to leading edge (Fig. 37(a)–(d)) and trailing edge noise (Fig. 37(e)–(g)) are separated. Indeed, this
observation is in agreement with the discussion in Ref. [56] that argues that, based on measurements of wall pressure
fluctuations along the airfoil chord at different turbulent ranges, turbulence-interaction noise and leading edge noise are
uncorrelated. Notice that sources are also located at the edge of the nozzle, see Fig. 37(h) and (i), in spite of being more than
10 dB lower in level.

The results at a higher frequency (5600 Hz) are shown in Fig. 38. Similar observations are found, where sources on both
leading and trailing edge noise are separated. Advantages of the BSS algorithm applied to this problem as compared to the
global source reconstruction result are described hereafter. First, looking at the global result at the frequency of 3100 Hz, see



Fig. 36. Separated sources (a)–(i) obtained with statistical orthogonalization only. Results are shown at 3100 Hz. The dynamic range of results is set to 6 dB.
The airfoil geometry, the side plates and the nozzle exit are also sketched on all panels of the figure.
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Fig. 35(a), one sees that the separation between leading edge and trailing edge noises is limited by the dynamic range of the
reconstructed source. One advantage of BSS is to improve the spatial separation capability of the reconstructed field, even if
one source is considerably less energetic than others (see example in Subsection 5.3.2). Second, the uncorrelated sources
separated by the method may give us an indication on the number of uncorrelated source components necessary to describe
a physical phenomenon, equivalently to a source correlation length. For example, at the frequency of 5600 Hz, see Fig. 38,
five uncorrelated components along the trailing edge are necessary to describe this noise source mechanism.

A final exercise is done to obtain the Power Spectral Density (PSD) related to each noise source mechanism, that is,
trailing edge and leading edge noise. It consists of a post-processing of results delivered by the BSS algorithm. More pre-
cisely, each separated source is grouped by its spatial location and the source maps are spatially integrated around both the
leading edge and the trailing edge. The obtained result is shown in Fig. 39. It can be seen that, as observed elsewhere [56],
the turbulence-interaction noise is more important at low- and mid-frequencies whereas the trailing edge noise becomes
dominant at higher frequencies. The same exercise has been tested directly with the results of the backpropagation step (i.e.
without source separation), however the discrimination between leading edge and trailing edge noise was not successful,
especially at low and mid-frequencies. In effect, the discrimination between both noise mechanisms was limited by the



Fig. 37. Separated sources (a)–(i) obtained with the proposed BSS algorithm. Results are shown at 3100 Hz. The dynamic range of results is set to 6 dB. The
airfoil geometry, the side plates and the nozzle exit are also sketched on all panels of the figure.
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dynamic range of the reconstructed source field, in other words, residual contribution of leading edge noise was present in
the integration region associated to trailing edge noise.
6. Conclusions

The findings of the paper are twofold. First, it addressed the question as whether PCA can return virtual sources that
coincide with the true sound sources. It has been demonstrated that a unique solution exists in the case of “spatially
orthogonal” incoherent sound sources. A particular case of interest of such a configuration is when sound sources are
radiated from disjoint regions. Second, the endeavor for separating spatially disjoint sources has led to the so-called cri-
terion of spatial orthogonalization and a related BSS algorithm. The proposed algorithm is fully original and has been found
successful in situations where classical approaches, which do not make use of spatial information, fall short. It can
accommodate any backpropagation method, such as beamforming, NAH, etc.

Two points are to be highlighted. First, the proposed BSS algorithm is computationally efficient and, because it runs
about ten times faster, can advantageously replace the BSS method of Ref. [52] in the case of disjoint and compact sources;



Fig. 38. Separated sources (a)–(i) obtained with the proposed BSS algorithm. Results are shown at 5600 Hz. The dynamic range of results is set to 6 dB. The
airfoil geometry, the side plates and the nozzle exit are also sketched on all panels of the figure.
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Fig. 39. Power spectral density of the particle velocity as obtained by the integration of the spatial source distribution around the Leading Edge (LE) and
the Trailing Edge (TE).
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however it should be carefully remembered that the principle of least spatial entropy in Ref. [52] applies more generally to
sources which are “compact” and not necessarily disjoint. Second, the assumption of spatially disjoint sources strongly relies
on the ability of backpropagation to resolve close sources, especially when spatial resolution is limited at low frequencies.
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Finally, an interesting perspective for future work is to extend the proposed criteria of spatial orthogonalization to the
case of coherent sources (i.e. mutually correlated), e.g. to be able to account for image sources produced by reflection. Even
though this would imply skipping the PCA step, enough “equations” are theoretically left by spatial orthogonalization to
solve the problem.
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