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Summary
Conditions for an impedance model to be physically admissible are checked for some popular models in the
outdoor sound propagation community. They require that the definition of the impedance model is extended in
the whole complex plane and that its inverse Fourier transform is real, causal and passive. For the many impedance
models that are written as the square-root of a rational function, such as the Zwikker and Kosten model, the four-
parameter Attenborough model and the Hamet and Bérengier model, these conditions are shown to be satisfied
for a semi-infinite ground and for a rigidly backed layer. The case of polynomial type models is then investigated.
The Delany and Bazley model is not physically admissible as it is real or causal depending on its extension in the
complex plane, but it can not simultaneously fulfill both conditions. The Miki model for a rigidly backed layer
does not satisfy also the passivity condition as its real part is negative for low frequencies. A new polynomial
model is thus proposed and is shown to be physically admissible.
PACS no. 43.28.En

1. Introduction

Reflection of acoustic waves over a natural ground is typ-
ically modelled with an impedance boundary condition,
which relates the Fourier transforms of the acoustic pres-
sure and the normal velocity to the ground through the
surface impedance. This quantity accounts for the ground
properties, such as the air flow resistivity, the porosity and
the tortuosity. Up until 10 years ago, analytical and nu-
merical models for outdoor sound propagation were de-
veloped in the frequency domain. Consequently, most of
the impedance models used for natural grounds have been
proposed in this context. Nowadays, time-domain meth-
ods have become increasingly popular for studying out-
door propagation in complex meteorological conditions
[1, 2]. Accounting for ground effects in time domain mod-
els has proved challenging and, therefore, two main strate-
gies have been adopted. In the first one, propagation in the
ground medium is explicitely modelled through propaga-
tion equations, using usually those proposed by Zwikker
and Kosten [1, 2] as it does not lead to the computa-
tion of convolutions, which is cumbersome for long-range
sound propagation [3]. More complex propagation equa-
tions, which involve convolutions, such as those based on
the Wilson’s relaxation model [4] have been proposed but
related numerical solvers are limited up to now to one-
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dimensional and two-dimensional configurations [5, 6, 7],
due to the high computational cost of the direct evalua-
tion of convolution integrals. In the second strategy, the
impedance boundary condition is translated into the time
domain, using the local reaction assumption, which is gen-
erally valid for natural grounds [8]. The surface impedance
is usually approximated by polynomials [9] or rational
functions [10, 11, 12, 13, 14, 15] to avoid the computa-
tion of convolutions. In the proposed applications, many
impedance models have been used such as the Delany and
Bazley model [9], the Miki model [12, 14], the variable
porosity model [13], the Zwikker and Kosten model [11],
the Attenborough model [11] or the Hamet and Bérengier
model [16].

However, it is not clear if the surface impedance mod-
els proposed in the frequency domain are adapted to time-
domain computations. Indeed, the translation of the im-
pedance boundary condition into the time domain leads
to some restrictions on the possible analytical expressions
of the impedance [17]. First of all, the definition of the
impedance must be extended to the whole complex plane.
Then, the inverse Fourier transform of the impedance must
be real-valued and causal. In addition, the ground must
also be passive, because no acoustic energy comes from
the ground. Rienstra [17] has proposed three conditions in
the frequency domain for an impedance model to be physi-
cally admissible, which have been checked for some mod-
els used in the duct acoustics community. The causality
condition has already been investigated by Berthelot [18]
by invoking the Kramers-Krönig relations. Besides, other
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studies have been concerned with the causality of propa-
gation equations in porous media for various models such
as the Johnson and Allard model [19] or the power-law
attenuation model [20].

The main objective of this paper is to check some
widely spread impedance models in the outdoor sound
propagation studies against Rienstra’s conditions. A recent
study of Attenborough et al [21] presents the impedance
models available to characterize natural grounds. In this
paper, two types of impedance models which are those,
which can be written as a square root of a rational function
and which are referred to as the square-root type models,
and the polynomial-type models are investigated for both
semi-infinite ground media and for rigidly backed layer
media.

The paper is organized as follows. In section II, the
conditions proposed by Rienstra are reviewed and dis-
cussed. In section III, these conditions are considered for
the square-root type impedance models. Section IV is con-
cerned with the polynomial models, and a new model
which satisfies the Rienstra’s conditions is proposed.

2. Sufficient conditions

The impedance boundary ċondition is classically ex-
pressed as P (ω)+ZS (ω)Vn(ω) = 0, where ω is the angu-
lar frequency, ZS is the surface impedance and P (ω) and
Vn(ω) are the Fourier transforms of the acoustic pressure
and acoustic velocity normal to the ground, respectively.
Throughout the paper, the convention e−iωt is used for the
Fourier transform. The impulse response corresponding to
the inverse Fourier transform of the surface impedance is
thus given by

zs(t) =
1
2π

+∞

−∞
ZS (ω) e−iωt dt. (1)

Consequently, the impedance boundary condition is writ-
ten in the time domain as the convolution,

p(t) = −
∞

−∞
zS (t − t
) vn(t
) dt
. (2)

2.1. Rienstra’s conditions

Rienstra has proposed three conditions in the frequency
domain for a surface impedance model to be physically
admissible:
• reality condition: ZS (ω) = ZS (−ω),
• passivity condition: Re[ZS (ω)] ≥ 0 for ω > 0,
• causality condition: ZS (ω) is analytic in Im(ω) ≥ 0,

|ZS (ω)| is square integrable over the real ω-axis and
there is a real t0 such that ZS (ω)e−it0 → 0 uniformly
with regard to arg(ω) for |ω| → ∞ in Im(ω) ≥ 0,

where Z denotes the complex conjugate of Z. The first
condition expresses that, as p(t) and vn(t) are real quanti-
ties, zS (t) must be real. Therefore, the surface impedance
ZS (ω) must be an Hermitian function of ω. The sec-
ond condition implies that the acoustic intensity into the

ground is positive, as the ground is a passive medium. The
third condition is a sufficient condition for an impedance
model to be causal [22, 17] implying that zS (t) vanishes
for t < t0. Rienstra has also proposed an other causality
condition, requiring only that ZS (ω) must be analytic in
Im(ω) > 0. This is a necessary but not sufficient condition
as, for instance, the Gaussian function ZS (ω) = e−ω

2/ω2
0 ,

with ω0 a real parameter, is analytic in Im(ω) > 0, but its
inverse Fourier transform zS (t) ∝ e−t

2ω2
0/4 is not causal.

Moreover, as expected the Gaussian function does not sat-
isfy the sufficient causality condition, as its modulus does
not converge to 0 in Im(ω) ≥ 0.

A causal model has also other properties. If |Z(ω)|
is square-integrable over the real ω-axis, the causality of
zS (t) is equivalent to the well-known Kramers-Krönig re-
lations [23], which relate the real and imaginary parts of
ZS (ω) through Hilbert transforms. Berthelot [18] has in-
vestigated these relations for various impedance models
by evaluating numerically the Hilbert transforms.

Additionally, impedance models which satisfy the re-
ality, the passivity and the causality conditions are called
positive real functions in electrical network analysis [22].

Two types of surface impedances, which are typically
used in outdoor sound propagation studies, are investi-
gated hereafter,
• a semi-infinite ground:

ZS,∞ = Zc, (3)

with the characteristic impedance of the medium Zc.
• a rigidly backed layer [24]:

ZS,d = Zc coth − ikcd , (4)

with the wavenumber in the medium kc and the layer
thickness d.

More complex models are possible by considering for
instance a finite-impedance backed layer or a multilay-
ered porous medium. However, characterization of natu-
ral grounds is often limited, because in-situ measurements
are complex and costly. Therefore, the two types of surface
impedances presented in equations (3) and (4) are used in
the large majority of the studies.

2.2. Additional remarks for a rigidly backed layer
model

For a rigidly backed layer, because the causality condition
requires that ZS,d is analytic in Im(ω) ≥ 0, coth(−ikcd)
must be analytic in Im(ω) ≥ 0. Because the complex func-
tion coth(−ix) has poles for x = nπ, with n integer, one
must have Im(kc) > 0 in Im(ω) ≥ 0, so that no poles
are crossed. In that case, the function coth(−ikcd) can be
expanded as an infinite sum [17],

coth(−ikcd) = 1 + 2
+∞

n=1

e2inkcd. (5)
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Table I. Parameters α, β, ω1, ω2 and ω3 for several square-root type impedance models as a function of the ground properties. The
parameter λ is defined in equation (10).

Impedance model α β ω1 ω2 ω3

Zwikker and Kosten [25] 1 1 σ0Ω/(ρ0q
2) 0 0

Modified Zwikker and Kosten [11] 1 – σ0Ω/(ρ0q
2γ) 0 0

Taraldsen and Jonasson [27] γ−1/2 γ1/2 σ0Ω/(ρ0q
2) 0 0

Four-parameter Attenborough [29] 4(λγ)−1/2/3 (λγ)1/2 3s2
fσ0Ω/(4ρ0q

2) ω1 s2
fσ0Ω/(ρ0λq

2)
Hamet and Bérengier [31] 1 1 σ0Ω/(ρ0q

2γ) γσ0/(ρ0Pr) σ0/(ρ0Pr)

The model of a rigidly backed layer can then be written as

ZS,d = ZS,∞ + 2
+∞

n=1

Z
(n)
S,d, (6)

with Z
(n)
S,d = ZS,∞e2inkcd. Therefore, if Im(kc) > 0 in

Im(ω) ≥ 0, the causality condition for the rigidly backed
layer model is equivalently ensured if ZS,∞ and Z

(n)
S,d sat-

isfy the causality condition for n > 1.
In what follows, the relation for a complex number z

with positive real and imaginary parts,

Arg − iz < Arg coth(−iz) < −Arg − iz , (7)

is used. In the preceding inequality, Arg denotes the ar-
gument of a complex number, which takes its values in
] − π, π]. The inequality (7) is demonstrated in the Ap-
pendix.

3. Square-root type impedance models

A lot of impedance models can be written as a square-root
of rational functions of the angular frequency ω,

Zc =
ρ0c0q

Ω
α

(ω1 − iω)(ω2 − iω)
−iω(ω3 − iω)

1/2

, (8)

kc =
ω

c0
qβ

(ω1 − iω)(ω3 − iω)
−iω(ω2 − iω)

1/2

, (9)

where α, β, ω1, ω2 and ω3 are all positive real numbers.
These parameters are given in Table I and depend on the
properties of the ground, which are the tortuosity q, the
porosity Ω, the air flow resistivity σ0 and the pore shape
factor ratio sf and on the ratio of specific heats in air
γ. Among the models whose analytical expressions are
given by equations (8) and (9), one can cite the Zwikker
and Kosten (ZK) model, which can be derived from the
acoustic equations in the porous media layer proposed by
Zwikker and Kosten [25, 26]. This model, as ω2 = ω3 = 0,
has only one parameter ω1 which is a function of q, Ω and
σ0. As the semi-infinite medium model depends only on
the ratios Ω/q and σ0Ω/q2, different sets of parameters
can lead to the same values of the impedance. A modifica-
tion of the pulsation ω1 has been proposed by Ostashev et
al. [11] to improve the prediction of the ZK model at high
frequencies. More recently, Taraldsen and Jonasson [27]
have developed a similar model, based on the Darcy’s law.

Im[ ω]
Re[ ω] Re[ ω]

Im[ ω]

min(a,b) c

0

−max(a,b)

R=[u(c+u)]
1/2

0

−min(a,b)

−max(a,b,c)

−c

−min(max(a,b),c)

min(a,b) c

−min(a,b)
u = ab/(c−a−b)

Figure 1. Branch cuts in the ω-plane of the function [(a− iω)(b−
iω)/(−iω(c − iω))]1/2, where a, b and c are all real positive co-
efficients.

They provide also a semi-empirical relation relating Ω, q
and σ0. The model proposed by Heutschi [28] for ballast
surfaces, which is based on an electrical network analysis,
is also of the same type. Moreover, the four-parameter At-
tenborough model [29] can be written using the analytical
expressions in equations (8) and (9), with ω1 = ω2. It has
been obtained from a low frequency and/or a high flow
resistivity approximation of a more complex model, ac-
counting for porous media with random orientation, non-
aligned and non-circular cross shape pores [29, 30], which
is used in the study of Ostashev et al. [11]. It has an addi-
tional parameter which is the pore shape factor ratio sf .
It depends also on the Prandtl number, denoted by Pr,
through the parameter λ defined by

λ =
4
3
− γ − 1

γ
Pr. (10)

Finally, the Hamet and Bérengier model [31] is a phe-
nomenological model which has been proposed initially
for porous road pavement. Recently, it has also been used
to characterize ballast surfaces [16].

The branch cut of the complex square root function is
chosen as the negative real axis. Corresponding branch
cuts in the ω-plane lie in Im(ω) < 0 as shown in Figure 1.

3.1. Semi-infinite ground layer

Rienstra’s conditions are now checked for the semi-infinite
ground layer model. It is first noted that the impulse re-
sponse can be calculated for the Zwikker and Kosten type
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model [5], yielding

zZK
S,∞(t) =

ρ0c0q

Ω
α δ(t) (11)

+
ω1

2
e−ω1t/2 I0

ω1t

2
+ I1

ω1t

2
H(t) ,

which shows that the model is real and causal. The pas-
sivity, as for the other models, comes from the choice
of the branch cut for the complex square root function,
which provides Re[ZS,∞] ≥ 0 in the whole complex
ω-plane. For the other models, the reality condition is
fulfilled, since ZS,∞(ω) = ZS,∞(−ω). Concerning the
causality condition, it can be noticed that |ZS,∞| is not
square-integrable over the real-axis, because |ZS,∞| tends
to Z∞ = ρ0c0qα/Ω for large |ω|, and Z2

S,∞ has a pole at
ω = 0. Therefore, the function

A(ω) = ZS,∞ −Z∞ 1 +
ω1

ω1 − iω
ω1ω2

−iωω3
(12)

is considered instead. The second and last term in equation
(12) aim to have A(ω) → 0 for |ω| → ∞ and to remove
the singularity atω = 0, respectively. The functionA(ω) is
analytic in Im(ω) ≥ 0 and |A(ω)| is square-integrable over
the real-axis as |A(ω)|2 decreases as ω−2 for large |ω|. It is
also uniformly converging to zero in Im[ω] ≥ 0 for large
|ω|. To demonstrate this point, introducing ω = Reiθ with
R > 0 and θ ∈ [0, π], the inequality

A(R, θ) ≤ ZS,∞ −Z∞ +
Z∞ω1

|R − ω1|
ω1ω2

Rω3
(13)

is obtained. The second term in the preceding equation
tends to zero for large |ω| independently of θ in the up-
per half-plane. For the first term, the inequality |z − 1|2 ≤
|z2−1|, which is true for a complex number with a positive
real part, is used. It can be readily demonstrated using the
relations (z2 − 1) = (z− 1)(z+ 1) and |z− 1| ≤ |z+ 1| for
Re(z) ≥ 0. This leads to

ZS,∞ −Z∞ ≤ Z∞
−iω(ω1+ω2−ω3) + ω1ω2

−iω(ω3 − iω)

1/2

. (14)

Introducing the polar form ω = Reiθ yields

ZS,∞ −Z∞ ≤ Z∞
R1/2

(ω1+ω2−ω3)R + ω1ω2

|R − ω3|
1/2

. (15)

From equations (13) and (15), it is shown that A(ω) → 0
uniformly with regard to Arg(ω) for |ω| → ∞ in Im(ω) ≥
0. Therefore, A(ω) is a causal transform. As the inverse
Fourier transform of a constant is a Dirac delta function
and as the inverse Fourier transform of the last term in
equation (12) is causal [32], ZS,∞ is also a causal trans-
form. Note, that in the study of Berthelot [18], it is con-
cluded that the Attenborough model is not causal at high
frequencies, which is in contradiction with the present re-
sults. Finally, all models for a semi-infinite medium satisfy
the three conditions proposed by Rienstra and, hence, are
physically admissible.

3.2. Rigidly backed layer

The model for a rigidly backed layer is now investigated.
It is easily verified that the model is real. Concerning the
passivity condition, the argument of the wavenumber kc,

Arg(kc) =
1
2

Arg(ω1 − iω) +
π

2
(16)

− Arg(ω2 − iω) + Arg(ω3 − iω)

is first considered for ω > 0 in order to use equation (7).
For the Zwikker and Kosten model, as ω2 = ω3 = 0, one
obtains 0 < Arg(kc) ≤ π/2. The same inequality is satis-
fied for the Attenborough model, as ω2 = ω1. Finally, for
the Hamet and Bérengier [31] model, ω3 = γω2 and hence
ω3 > ω2, which implies

0 ≤ −Arg ω2 − iω + Arg ω3 − iω ≤ π

2
, (17)

and consequently 0 < Arg(kc) ≤ π/2 for ω > 0.
For all models, the wavenumber kc has positive real
and imaginary parts, which allows one to use equation
(7). Along with the relation Arg[ZS,d] = Arg[Zc] +
Arg[coth(−ikcd)], this leads to

Arg ZS,d ≤ Arg Zc − Arg − ikcd , (18)

which shows that

Arg ZS,d ≤ π

2
+ Arg ω2 − iω − Arg ω3 − iω

≤ π

2
. (19)

Similarly, one has

Arg ZS,d ≥ Arg Zc + Arg − ikcd , (20)

which leads to

Arg ZS,d ≥ Arg ω1 − iω ≥ −π

2
. (21)

Then, for all cases considered, as Re[ZS,d] ≥ 0, the pas-
sivity condition is fulfilled for rigidly backed layer models.

The causality condition is now considered. First, it must
be shown that Im(kc) > 0 in Im(ω) > 0. For that, using
the polar form ω = Reiθ with R > 0 and θ ∈ [0, π], the
argument of kc is written as

Arg(kc) =
1
2

θ + Arg ω1 − iReiθ

+
π

2
− Arg ω2 − iReiθ (22)

+ Arg ω3 − iRe iθ .

For the Zwikker and Kosten type model, the relation ω2 =
ω3 = 0 implies that

Arg(kc) =
1
2

θ + Arg ω1 − Re iθ +
π

2
. (23)
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As ω1 > 0, one obtains the inequalities

−π

2
< Arg ω1 − iRe iθ ≤ 0 for θ ∈ 0,

π

2
, (24)

0 ≤ Arg ω1 − iRe iθ <
π

2
for θ ∈ π

2
, π , (25)

which lead to 0 < Arg(kc) < π for θ ∈ [0, π]. The imag-
inary part of kc is then positive in Im(ω) ≥ 0. For the
Attenborough model, because ω1 = ω2, the same conclu-
sions are straightforwardly deduced. For the Hamet and
Bérengier model, as ω3 > ω2, the inequality

0 ≤ Arg ω3 − iR e iθ − Arg ω2 − iR e iθ ≤ π

2
, (26)

is obtained for θ ∈ [0, π/2], yielding

0 < Arg(kc) ≤
θ

2
+

π

2
< π. (27)

Similarly for θ ∈ [π/2, π], the inequality

−π

2
≤ Arg ω3 − iR e iθ − Arg ω2 − iR e iθ ≤ 0, (28)

implies that

0 <
θ

2
< Arg(kc) <

θ

2
+

π

2
< π. (29)

Therefore, it has been shown that Im(kc) > 0 for Im(ω) ≥
0 for all impedance models considered in this section. As
discussed in section II.B, the causality condition can then
be equivalently checked for Z (n)

S,d = ZS,∞e2inkcd. However,

|Z (n)
S,d| is not square-integrable on the real axis as it is sin-

gular at ω = 0 and as its limit is Z∞e−ω
+tn for large ω, with

tn = 2ndqβ/c0 and ω+ = (ω1+ω3−ω2)/2. Therefore, the
function B(ω) = B1(ω) − B2(ω) with

B1(ω) = Z
(n)
S,de

−iωtn −ZS,∞e−ω
+tn , (30)

B2(ω) = Z∞
ω1

ω1 − iω
ω1ω2

−iωω3
1 − e−ω

+tn , (31)

is considered instead. B(ω) is analytic in Im(ω) > 0 and
|B(ω)| is square-integrable over the real-axis as |B(ω)|2
decays as 1/ω2 for large ω. It remains to show that B(ω)
is uniformly converging to zero in the upper half-plane.
First, note that this is the case for the function B2(ω), as
shown in equation (13). In addition, the function B1(ω)
can be rewritten as a simpler form

B1(ω) = ZS,∞eω
+tn e iωxtn − 1 , (32)

with

x =
(ω1 − iω)(ω3 − iω)

−iω(ω2 − ω)

1/2

− 1 − ω+

−iω
. (33)

Using the inequality |ez − 1| ≤ |z|e|z| [32] leads to the
estimate

B1(ω) ≤ eω
+tn ZS,∞ R|x|tneR|x|tn . (34)

As shown in the preceding section, ZS,∞ tends uniformly
to Z∞ as R → ∞. It is then sufficient to show that R|x|
tends uniformly to zero as R → ∞. For that, x is rewritten
as

x(z) =
(1 + ω1z)(1 + ω3z)

1 + ω2z

1/2

− 1 − ω+z, (35)

with z = 1/(−iω). As the function x(z) is analytic for
|z| < A, where A is the radius of convergence which is
at least the distance to the nearest singularity. it can be
written as a power series which is absolutely convergent
[33, 34]. Thus, for large |ω| and hence for small |z|, x(z)
can be expanded as

x(z) =
∞

m=2

amz
m, (36)

as the relations a0 = a1 = 0 are obtained from a Taylor
expansion of x around z = 0. Introducing ω = Reiθ leads
to

|x| ≤ 1
R2

∞

m=2

|am||R|2−m, (37)

which shows that R|x| tends uniformly to zero as R → ∞.
Consequently, B(ω) is a causal transform. This is also the
case for Z

(n)
S,de

−iωtn , because ZS,∞ and B2(ω) are causal
transforms, as shown in the preceding section. As its in-
verse Fourier transform is z

(n)
S,d(t + tn), it is deduced that

z
(n)
S,d(t) is null for t < tn and hence is causal. Finally, ZS,d

is also a causal transform by linearity. As a consequence,
the impedance models considered in this section are phys-
ically admissible.

3.3. Variable porosity impedance model

Similar to the square-root type, the variable porosity mo-
del is used in the American National Standard [35] for
ground impedance measurements. It is based on a low fre-
quency/high flow resistivity limit of the surface impedance
of a semi-infinite ground with an exponentially decreasing
porosity. The surface impedance is

ZS = ρ0c0
ω0

−iω
+

ω1

−iω
, (38)

with ω0 = 4σ0/(γρ0) and ω1 = 4γ/(c0α0), where α0 is the
effective rate of change of porosity. The inverse Fourier
transform of ZS is straightforwardly calculated, and is
given by [32],

zS (t) = ρ0c0
ω0

πt
+ ω1 H(t). (39)

This surface impedance model is then real and causal. It
is also passive, because the real part of equation (38) is
positive for ω > 0. It is then well suited for time-domain
computations.
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Table II. Coefficients of the polynomial models in equations (40-41) and (57-58) computed using an air density ρ0 = 1.2 kg m-3.

a c b d µ p r q s ν

Delany and Bazley 0.232 0.336 0.75 0.73 – 0.353 0.576 0.70 0.59 –
Miki

0.251 0.384 0.632 0.459
0.380 0.557 0.618 0.673

modified Miki 0.351 0.539 0.632 0.643

4. Polynomial type impedance model

The other important family of impedance models is the
polynomial type. They were initially proposed by Delany
and Bazley [36], who measured the characteristic impe-
dance and the wave number of a large set of fibrous and
highly porous materials. Use of polynomial models is then
restricted to medium whose porosity and tortuosity are
close to 1, and hence Ω = q = 1 thereafter. As they are
simple models, it is not expected that predictions are ac-
curate over a very wide frequency band. Thus, Delany and
Bazley have suggested that their model is valid only for
frequencies f satisfying 0.01 < f/σ0 < 1. Moreover, At-
tenborough et al. [21] have compared a lot of impedance
models for in situ determination of ground impedance. It
was shown that the Delany and Bazley model results in
poorer fitting to short range data over many ground sur-
faces than alternative 2 (or 3 for rigid backed layer) pa-
rameter models. Polynomial models are however exten-
sively used in the literature, mainly because they allow us
to characterize the behaviour of porous media with only
one parameter, which is the air flow resistivity. This is par-
ticularly of interest for outdoor sound propagation studies,
because direct measurements of the acoustical properties
of natural grounds are difficult to carry out. The model is
given by the formula

Zc(ω > 0) = ρ0c0 1 + a
ω0

ω

b
+ ic

ω0

ω

d
, (40)

kc(ω > 0) =
ω

c0
1 + p

ω0

ω

q
+ ir

ω0

ω

s
, (41)

with the angular frequency ω0 = σ0/ρ0 and where the pa-
rameters a, b, c, d, p, q, r and s are all real positive num-
bers. For medium whose porosity is lower than 1, it has
been proposed in the literature [37, 30, 38] to use an ef-
fective flow resistivity equal to σe = Ωσ0. Similarly, if
the tortuosity of the medium is larger than one, the effec-
tive flow resistivity can be written as σe = Ωσ0/q

2 [39].
In that case, the parameter ω0 corresponds to ω1 in the
Zwikker and Kosten, Taraldsen and Jonasson and Hamet
and Bérengier models. Miki [39] has also proposed an ex-
pression for the effective flow resistivity including the pore
shape factor ratio.

4.1. Delany and Bazley model

4.1.1. Semi-infinite ground layer

The coefficients in equation (40) proposed by Delany and
Bazley [36] are given in Table II for ρ0 = 1.2 kg m-3.
The passivity condition is satisfied as Re[ZS,∞] ≥ 0 for

ω > 0. The Delany and Bazley model is an interesting
case, because it has been obtained by fitting experimental
results for positive frequencies. It fulfills different condi-
tions depending on its extension in the complex ω-plane.
Following Miki, the reality condition can be imposed by
using the following extension of the polynomial model:

Z
[1]
c = ρ0c0 1 +

a

2 cos(bπ/2)
ω0

−iω

b

+
ω0

iω

b

(42)

+
c

2 sin(dπ/2)
ω0

−iω

d

− ω0

iω

d

,

k
[1]
c =

ω

c0
1 +

p

2 cos(qπ/2)
ω0

−iω
q

+
ω0

iω

q

(43)

+
r

2 sin(sπ/2)
ω0

−iω

s

− ω0

iω

s

,

where the branch cut of the power functions is chosen as
the negative real axis. For ω real, the preceding formula
reduce to

Z
[1]
c (ω real) = ρ0c0 1 + a

ω0

ω

b

+ i
ω

|ω| c
ω0

ω

d

,(44)

k
[1]
c (ω real) =

ω

c0
1 + p

ω0

ω

q

+ i
ω

|ω| r
ω0

ω

s

. (45)

Using the Fourier transforms [40]

+∞

−∞

1
π
Γ(1 − ν)|t|ν−1 sin

νπ

2
eiωt dt = |ω|−ν, (46)

+∞

−∞

1
π
Γ(1 − ν)|t|ν−1 cos

νπ

2
sign(t)e iωt dt

= i|ω|−νsign(ω), (47)

valid for 0 < ν < 1, the impulse response obtained from
equation (42) is then given by

z
[1]
S,∞(t) = ρ0c0 δ(t) +

aω0

π
sin

bπ

2
Γ(1 − b)
|ω0t|1−b

(48)

+
cω0

π
cos

dπ

2
Γ(1 − d)
|ω0t|1−d

sign(t) ,

where sign(t < 0) = −1, sign(t = 0) = 0 and sign(t >
0) = 1. It is represented as a function of the normalized
time ω0t for the set of coefficients proposed by Delany and
Bazley in Figure 2. It is seen that the impulse response
is non-zero for t < 0, which shows that the Delany and
Bazley model is not causal for the first extension.

However, extension of the polynomial model in the
complex plane can be carried out in other ways. Thus,
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without imposing the reality condition, a second extension
of the polynomial model into the complex plane,

Z
[2]
c = ρ0c0 1 + a

ω0

ω

b
+ ic

ω0

ω

d
, (49)

k
[2]
c =

ω

c0
1 + p

ω0

ω

q
+ ir

ω0

ω

s
, (50)

where the branch cut of the power functions is chosen as
the negative imaginary axis, can be proposed. Using the
Fourier transform, [40]

+∞

−∞
tν−1H(t)e iωt dt = Γ(ν)(−iω)−ν, (51)

valid for ν > 0, leads to the impulse response

z
[2]
S,∞(t) = ρ0c0 δ(t) + (−i)b

a

Γ(b)
ω0

(ω0t)1−b
H(t) (52)

− (−i)d+1 c

Γ(d)
ω0

(ω0t)1−d
H(t) .

It is also plotted as a function of the normalized time ω0t
for the set of coefficients proposed by Delany and Bazley
in Figure 2. It is observed that this extension is causal but
is not real.

In conclusion, the impulse response related to the De-
lany and Bazley model for a semi-infinite ground can not
be causal and real at the same time. Therefore, the Delany
and Bazley model is not suited for time-domain computa-
tions.

4.1.2. Rigidly backed layer
It is well known that the Delany and Bazley model for a
rigidly backed layer does not satisfy the passivity condi-
tion [41, 12]. As an example, the real and imaginary parts
of the Delany and Bazley model are plotted in Figure 3
as a function of frequency for σ0 = 100 kPa s m-2 and
d = 0.01 m. It is clearly seen that Re[ZS,d] < 0 for fre-
quencies below 300 Hz. Moreover, as for the semi-infinite
ground case, the Delany and Bazley model does not fulfill
both reality and causality conditions. To check the causal-
ity condition for the second extension in the complex ω-
plane proposed in the preceding paragraph, it is first shown
that Im(k[2]

c ) > 0 in Im(ω) ≥ 0. For that, using the polar
notation ω = Reiθ with R > 0 and θ ∈ [0, π], it is straight-
forwardly obtained that

Im(k[2]
c ) = R sin θ + p sin (1 − q)θ R1−q

+ r cos (1 − s)θ R1−s, (53)

which shows that Im(k[2]
c ) > 0 because all terms in the

preceding equation are positive for θ ∈ [0, π]. As shown in
section II.B, the function Z

(n)
S,d = Z

[2]
S,∞e2ink[2]

c d can then be
considered to show that the extension of the Delany and
Bazley model of a rigidly backed layer is causal. As Z (n)

S,d

is singular at ω = 0, we consider the function

C(ω) = Z
(n)
S,d − ρ0c0 a

ω0

ω

b

+ ic
ω0

ω

d

, (54)
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Figure 2. Continuous part of the normalized impulse response
[zS,∞(t)/ρ0c0 − δ(t)]/ω0 as a function of the normalized time
ω0t: (solid line) real and (dashed line) imaginary parts of the
first extension (in black) in equation (48) and second extension
(in grey) in equation (52) of the Delany and Bazley impedance
model of a semi-infinite ground.
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Figure 3. Real and imaginary parts of a rigidly backed layer
of thickness d = 0.01 m and of air flow resistivity σ0 = 100
kPa s m-2 as a function of the frequency f : (dashed line) Delany
and Bazley model, (solid line) Miki model and (dash-dotted line)
modified Miki model.

whose modulus is square-integrable over the real-axis as
|Z (n)

S,d| decreases exponentially for large ω as Im(k[2]
c ) > 0.

It is also uniformly converging to 0 in Im(ω) ≥ 0, because,
as 2nd |Im(k(2)

c )| ≥ g = 2ndr cos[(1 − s)π]R1−s in θ ∈
[0, π], the following estimate:

C(ω) ≤ ρ0c0 1 + a
ω0

R

b

+ c
ω0

R

d

e−g

+ a
ω0

R

b

+ c
ω0

R

d

, (55)

is obtained. Therefore, C(ω) is a causal transform. As the
two last terms in equation (54) are also causal transforms
(see equation 47), the second extension of the Delany and
Bazley model for a rigidly backed layer satisfies also the
causality condition.
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4.2. Miki model

4.2.1. Semi-infinite ground layer

Miki [41] has shown that the polynomial model for a semi-
infinite-ground is physically admissible if the relations b =
d and a sin[(dπ)/2] = c cos[(bπ)/2] are satisfied. In that
case, using the relation Γ(1 − ν)Γ(ν) = π/ sin(πν) for ν
real [40], it is easily verified that the impulse responses for
the two extensions of the polynomial model in the complex
plane in equations (48) and (52) are the same and are given
by [12]

zS,∞(t) = ρ0c0 δ(t) +
µω0

Γ(b)(ω0t)1−b
H(t) , (56)

with µ = a/ cos[(bπ)/2]. As expected, the impulse re-
sponse is real and null for t < 0.

4.2.2. Rigidly backed layer

Corrections have been also proposed by Miki for the
wavenumber in the ground medium, yielding q = s and
p sin[(sπ)/2] = r cos[(qπ)/2]. With these relations be-
tween the parameters, the polynomial model in equations
(42)-(43) and (49)-(50) can be written in a simpler form
[12, 42],

Zc = ρ0c0 1 + µ
ω0

−iω
b

, (57)

kc =
ω

c0
1 + ν

ω0

−iω
q

, (58)

with ν = p/ cos[(qπ)/2].
The Miki model for a rigidly backed layer satisfies the

reality condition, as it can be easily verified from equations
(57) and (58). For the same reasons as those developed for
the second extension of the Delany and Bazley model for
a rigidly backed layer, it is a causal model. However, the
Miki model of a rigidly backed layer is not passive at low
frequencies. Indeed, the low-frequency limit of this model
is

ZS,d(ω → 0) =
ρ0 c

2
0µ

d ν ω
−b+q
0

(−iω)−b+q−1. (59)

With the parameters proposed by Miki, the real part of the
impedance,

Re ZS,d(ω → 0) = −0.150
ρ0 c

2
0

dω
−b+q
0

ω−b+q−1, (60)

is then negative at low frequencies. This behaviour is illus-
trated in Figure 3 by using the same set of coefficients than
in section 4.1.2. It is observed that the real part of the sur-
face impedance is negative for frequencies below 30 Hz.
Note that, contrary to the Delany and Bazley model, the
passivity condition is violated only for very low frequen-
cies, which are not of interest in practice. In addition, it
can be noted that the Miki impedance model depends at
low frequencies on the parameter ω0 and, hence, on the
air flow resistivity. However, this should not be the case,

because as Zc = [ρgKg]1/2 and kc = ω[ρg/Kg]1/2, where
ρg (ω) and Kg (ω) are the dynamic density and the dynamic
bulk modulus of the ground medium, respectively, the re-
lation

ZS,d(ω → 0) =
K0

−iωd
, (61)

where K0 = Kg (ω = 0) is the static bulk modulus, must
be satisfied. As the propagation process in the pores of the
medium is usually assumed to be isothermal at low fre-
quencies, one has K0 = ρ0c

2
0/(γΩ). This is the case for

all models presented in section III except for the Zwikker
and Kosten model, for which adiabatic conditions are as-
sumed [26, 21], yielding K0 = ρ0c

2
0/Ω.

4.3. Modified Miki model

A modified Miki model is now proposed to have a physi-
cally admissible impedance model. To fulfill the passivity
condition at low frequencies, one chooses q = b = 0.632.
Moreover, the low-frequency behaviour in equation (61)
can be retrieved by setting ν = γµ. Interestingly, in the
Miki model, one finds ν/µ = 1.47 which is close to the
value of γ. The real and imaginary parts of the modified
Miki model are represented in Figure 3 as functions of the
frequency f for the set of coefficients previously used in
Secs. IV.A.2 and IV.B.2. It is observed that Re[ZS,d] ≥ 0
for all frequencies contrary to the Delany and Bazley and
Miki models.

The semi-infinite ground layer model is the same than
that proposed by Miki and thus is physically admissible.
For a rigidly backed layer, the modified Miki model is also
real and causal for the same reasons indicated previously.
It remains to show that it fulfills the passivity condition.
For that, the argument of the wavenumber is written as

Arg(kc) = Arg 1 + ν
ω0

−iω
b

, (62)

which leads to the inequality 0 ≤ Arg(kc) ≤ π/2 for ω >
0. This allows one to write, using equation (7), that

Arg Zc + Arg − ikc ≤ Arg ZS,d

≤ Arg Zc − Arg − ikc . (63)

The left term in the preceding inequality can be expressed
as

Arg Zc + Arg − ikc = (64)

− π

2
+ Arg 1 + ν

ω0

−iω
b

+ Arg 1 + µ
ω0

−iω
b

.

The two right terms have positive real and imaginary parts.
Consequently, their argument is between 0 and π/2, which
leads to the inequality

−π

2
≤ Arg Zc + Arg − ikc ≤ Arg ZS,d . (65)

Similarly, the right term in the inequality (63) can be writ-
ten as

Arg Zc − Arg − ikc = (66)
π

2
+ Arg 1 + µ

ω0

−iω
b − Arg 1 + ν

ω0

−iω
b

.
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Table III. Conditions satisfied by the impedance models.

Impedance model Semi-infinite ground Rigidly backed layer
Reality Causality Passivity Reality Causality Passivity

Delany and Bazley yes/no yes yes/no no
Miki yes yes yes yes yes no
Modified Miki yes yes yes yes yes yes
Zwikker and Kosten yes yes yes yes yes yes
Taraldsen and Jonasson yes yes yes yes yes yes
Attenborough yes yes yes yes yes yes
Hamet and Bérengier yes yes yes yes yes yes
Variable porosity yes yes yes

Because ν > µ > 0 and the real and imaginary parts of
eibπ/2 are positive, it is deduced that

Arg 1 + ν
ω0

−iω
b − Arg 1 + µ

ω0

−iω
b ≥ 0. (67)

Therefore, the inequality

Arg ZS,d ≤ Arg Zc − Arg − ikc ≤ π

2
(68)

is obtained. Inequalities (65) and (68) show that the real
part of ZS,d is positive. Thus, the modified Miki model of
a rigidly backed layer is passive and is hence physically
admissible.

5. Conclusion

Translation of impedance models defined in the frequency
domain into the time domain is not straightforward. In-
deed, the impedance model must be first extended into the
complex plane and must obey some conditions to be phys-
ically admissible, as the time-domain counterpart must be
real, passive and causal. These conditions were checked
for popular models in the outdoor sound propagation com-
munity. Models that are written as the square-root of a ra-
tional function, such as the Zwikker and Kosten model, the
four-parameter Attenborough model and the Hamet and
Bérengier model, were first investigated. All these mod-
els were shown to be physically admissible for a semi-
infinite ground medium and for a rigidly backed layer. The
polynomial-type models were then studied. Depending on
the extension of the model in the complex plane, the De-
lany and Bazley model fulfills different conditions.

However, the reality and causality conditions can not
be simultaneously satisfied and consequently the Delany
and Bazley model is not adapted for time-domain compu-
tations. In addition, the Miki model was shown to be phys-
ically admissible for a semi-infinite medium, but it was
demonstrated that the corresponding model for a rigidly
backed layer does not satisfy the passivity condition for
very low frequencies. A new polynomial model was then
proposed on the basis of the Miki model and was shown
to be physically admissible. The results of the study are
summarized in Table III.

Appendix

In this section, the inequality (7) is demonstrated. For that,
the complex function coth is first written as

coth(x+iy) =
1

tanh2 x + tan2 y

tanh x
cos2 y

− i
tan y

cosh2 x
,(A1)

where x and y are real numbers. For x > 0, the argument
of coth(x + iy) is then given by

Arg coth(x + iy) = arctan
sin(−2y)
sinh(2x)

. (A2)

As for x > 0 and y < 0, one has sin(−2y) < −2y and
sinh(2x) > 2x > 0, the inequality

Arg coth(x + iy) < arctan
−y
x

= −Arg x + iy , (A3)

is deduced. Similarly, as for x > 0 and y < 0, one has
sin(2y) < −2y and sinh(−2x) < −2x < 0, one obtains

Arg coth(x + iy) > arctan
y

x
= Arg[x + iy]. (A4)

Thus, the inequality (7) is retrieved.
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