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Although time-domain solutions of the linearized Euler equations are well adapted to study the acoustic

propagation in an outdoor environment, the modeling of sources in motion in time-domain solvers has not been

investigated in the literature yet. This is done here by considering distributed volume sources. First, the influence of

the spatial distribution of the source on the acoustic field is analyzed. Results obtained for a nonmoving source are

summarized, and the example of a Gaussian spatial distribution is presented. The case of a harmonic volume source

moving at a constant speed is then investigated in the geometrical far field. The directivity of a noncompact source is

shown to be dramatically different from that of a point source. Numerical simulations are performed in a three-

dimensional geometry in free-field configurations, and waveforms of the acoustic pressure exhibit Doppler shift and

convective amplification. Finally, simulations of a broadbandmoving source above an impedance ground surface are

presented. For a rigid ground, strongdestructive and constructive interferences are observed.The numerical solution

is in a very good agreement with an analytical solution. For finite-impedance surfaces, interferences are smoothed,

and the acoustic pressure strongly depends on the impedance model. A low-frequency contribution is observed close

to the ground in accordance with the ground characteristics.

Nomenclature

B = characteristic length scale of the spatial
distribution of the source, m

c0 = sound speed, m · s−1

f = frequency, Hz
f0 = frequency of a harmonic source, Hz
k = wave number, m−1

M0 = Mach number
M0 = Mach number vector
p = acoustic pressure, Pa
Q = spatial distribution of the source, s−1

Q̂ = Fourier transform of the spatial distribution
of the source, m3 · s−1

R = vector between the observation point and the
position of the source, m

S = source term, s−1

S0 = normalization factor for the source term, m3 · s−1

s = source signal
t = time, s
V0 = source speed, m · s−1

V0 = source speed vector, m · s−1

v = acoustic velocity vector, m · s−1

δ = Dirac delta function

θ = angle between vectors R and V0, rad
λ = wavelength, m
ρ0 = mean density of the medium, kg · m−3

σ = airflow resistivity, Pa · s · m−2

ϕ = acoustic potential, m2 · s−1

ω = angular frequency, rad · s−1

ω0 = angular frequency of a harmonic source, rad · s−1

Subscript

e = quantity evaluated at the emission time

I. Introduction

I N TRANSPORTATION noise applications, many complex
phenomena impacting sound propagation must be taken into

account. Time-domain methods are well suited to deal with these
aspects and have become a reference tool for more than 10 years.
Many studies have been conducted to account for meteorological
conditions [1], effects of surface impedances [2,3], and topography
[4,5]. Among the remaining issues is themodeling of realistic sources
and in particular of moving sources. In current applications, acoustic
sources are often described as a sum of simpler equivalent sources.
For instance, in the context of railway noise, the train is described in
most of the existing prediction tools by a line source or by a set of
point sources. The use of Green’s functions is limited to very simple
configurations and is unpractical for realistic scenarios inwhichwind
profiles and topography must be accounted for. Engineering models
based on analytical calculations [6] or simplified numerical models,
such as ray tracing or two-dimensional (2-D) parabolic equation
computations, have then been proposed to treat long-range sound
propagation [7]. These approaches can be validated using reference
time-domain methods.
Although implementation of moving sources in time-domain

solvers has been discussed previously [8], this has not been done yet
in the literature, as far as we know. One of the main reasons is that
simple acoustic sources as point sources are generally spatial
singularities, which is problematic for their implementation in time-
domain solvers. Indeed, because they are spatial singularities, the
source must be set on a grid node at each iteration. Thus, for a given
trajectory, the grid must be generated with that constraint in mind.
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Moreover, even in the simplest case of a source moving at a constant
speed V0, it is not straightforward to account for a point source.
Indeed, in explicit time-marching methods, the Courant–Friedrichs–
Lewy (CFL) number, defined by CFL � c0Δt∕ΔxwhereΔx andΔt
are, respectively, the spatial and time steps and where c0 is the sound
speed,must remain small to avoid numerical instabilities. During one
time step, the source moves at least to one spatial step. Thus, the
sourceMach numberM � V0∕c0 satisfies the relationM � 1∕CFL,
which shows that the Mach number must not be too small to ensure
stability. This leads to a severe restriction on the source speed for
practical applications. This problem can be handled using
interpolation of the acoustic field at each time step so that the point
source can be located on a grid node. This would, however, require a
large computational effort.
In this paper, distributed volume sources are used to avoid these

issues. For a nonmoving source, it is known [9,10] that the spatial
distribution modifies the acoustic field obtained for a point source by
modulating the amplitude by the Fourier transform of the volume
source distribution. For a moving source, it is also expected that the
Fourier transform plays a role. Note that in this study we consider
only distributed volume sources and not the case of rigid bodies in
motion as done for instance in [11]. Themain objective of the paper is
to show that time-domain solvers are well suited to deal with moving
sources. In particular, they allow one to consider acoustic radiation of
moving sources above impedance surfaces, which remains an open
and complex problem, as analytical solutions have been obtained
only in the case of a frequency-independent surface impedance [12].
The paper is organized as follows. In Sec. II, the effects of a volume

source distribution on the acoustic field are studied. First, the
analytical solution for a harmonic source obtainedwith a geometrical
far-field approximation is summarized. The example of a Gaussian
spatial distribution is developed to examine the validity of the
approximation. Then, the case of a harmonic source moving at a
constant speed is considered and a geometrical far-field approxi-
mation is performed to highlight the influence of the spatial
distribution. Results obtained with a solver of the linearized Euler
equations for a three-dimensional (3-D) geometry are compared with
those obtained with the derived analytical solution for a spherical
source and for a finite-length line source. In Sec. III, numerical simu-
lations of a broadband source moving above an impedance ground
surface are presented. Sound pressure levels (SPLs) obtained in the
case of a rigid ground are compared with those obtained for a ground
surface of finite impedance.

II. Effects of the Source Distribution on the Acoustic
Field in Simple Cases

Effects of the source distribution on the acoustic field are studied in
the free field in the absence of mean flow in the cases of a nonmoving
source and of a source moving at a constant speed. To do so, we
consider the acoustic potential ϕ such as p � −ρ0∂ϕ∕∂t and
v � ∇ϕ, wherep and v denote the acoustic pressure and the acoustic
velocity, respectively. The term ρ0 is the mean air density. This
potential satisfies the inhomogeneous Helmholtz equation:

1

c20

∂2ϕ
∂t2

− Δϕ � S�x�t�; t� (1)

where t denotes the time and S is the source term. The origin of the
coordinates system is the center of the source. The general solution of
Eq. (1) is (see, e.g., [13])

ϕ�x; t� � 1

4π

Z �∞
−∞

Z
V
S�y�t 0�; t 0�δ

�
t 0 − t� r

c0

�
dy dt 0

r
(2)

where V denotes the entire space and with r � jx − yj.

A. Nonmoving Sources

1. Analytical Expression for a Harmonic Source in the Geometrical
Far Field

In this section, a harmonic nonmoving source is considered, with a
source term:

S�x; t� � Q�x� exp�−iω0t� (3)

where Q is the spatial distribution and ω0 � 2πf0 is the angular
frequency associated to the source frequencyf0. The schematic of the
problem is depicted in Fig. 1. Using the properties of the Dirac delta
function, the acoustic potential in Eq. (2) is written as

ϕ�x; t� � 1

4π

Z
V
Q�y� exp�−iω0te�y��

dy

r
(4)

with the emission time te�y� � t − r�y�∕c0. The preceding formula
shows that the acoustic field at time t is the sum of acoustic waves
emitted from all source elements at time te�y� with corresponding
strengthQ�y�. A closed analytical form is obtained by assuming that
differences in emission times are small compared with propagation
time x∕c0, or equivalently that the source-receiver distance is large
compared with a characteristic length scale of the source denoted by
B, i.e., x≫ B. Expanding r around x,

r � x − x · y

x
� o�y� (5)

at the first order in y in the phase of the integrand in Eq. (4) and at the
zeroth order in y in its amplitude yields

ϕ�x; t� � exp�−iω0t�
exp�ikx�

4π

Z
V
Q�y� exp

�
−ik

x · y

x

�
dy

x
(6)

The approximations used previously are referred to as the
Fraunhofer approximations [13] in the literature. The acoustic
potential is then given in the geometrical far field by [9,10]

ϕ�x; t� � exp�−iω0t�
exp�ikx�
4πx

Q̂

�
k
x

x

�
(7)

where Q̂ is the spatial Fourier transform of Q, defined by

Q̂�u� �
Z
V
Q�y� exp�−iu · y� dy (8)

In the free field and in the geometrical far field, the analytical solution
is the product of two terms: one is the analytical solution for a point
source, and the other is the Fourier transform of the spatial dis-
tribution evaluated at the wave number of modulus k � ω0∕c0
pointing in the propagation direction.§

For a spherical source, as Q�r� � Q�r�, the Fourier transform
depends only on the modulus of the Fourier variable, which leads to
Q̂�u� � Q̂�u�. Consequently, the acoustic potential is

ϕ�x; t� � exp�−iω0t�
exp�ikx�
4πx

Q̂�k� (9)

In addition, Q̂�k� is a real-valued function of wave number k, which
implies that the phase of the solution is not modified by the source

O

k

x
Source

Receiver

Fig. 1 Nonmoving volume source in the free field.

§In Crighton [9] and in Dowling and Ffowcs Williams [10], the sign of the
wave number kx∕x is reversed because of the convention for the spatial
Fourier transform.
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distribution. Michalke [14] has studied the case of a noncompact
monopole with constant source strength within a sphere. It can be
shown that, outside the source sphere, the sound field is given exactly
by Eq. (9). Indeed, the so-called shape factor is the Fourier transform
of the spatial distribution of the source.

2. Case of a Gaussian Spatial Distribution

As an example, the case of a Gaussian spatial distribution is
examined:

Q�x� � S0
� ���

π
p

B�3 exp
�
−
x2

B2

�
(10)

where S0 is a normalization parameter set to 1 m3 · s−1. When B
tends to zero,Q�x� tends to the Dirac delta function, and the volume
source tends to a point source. The spatial Fourier transform ofQ�x�
is given by

Q̂�k� � S0 exp

�
−
k2B2

4

�
(11)

The Gaussian spatial distribution acts as a low-pass filter, as no
acoustic energy is transmitted into the geometrical far field for
wavelength λ � 2π∕k≪ B.
In this simple case, the calculation of the integral in Eq. (4) can be

performed. The derivation of the analytical solution is detailed in the
Appendix. The acoustic potential is written as a sum of an outgoing
and an incoming spherical wave:

ϕ�x; t� � exp�−iω0t�
�
K�

exp�ikx�
4πx

− K−
exp�−ikx�

4πx

�
(12)

with the coefficients

K� � S0 exp

�
−
k2B2

4

�
1

2
erfc

�
−
ikB

2
∓
x

B

�
(13)

where erfc is the complementary error function. In the geometrical far
field, i.e., x≫ B andK− andK� tend to zero and Q̂�k�, respectively.
As expected, the analytical expression obtained in Eq. (9) is retrieved.
The acoustic potential is plotted in Fig. 2 as a function of x∕B for
differents values of the ratio λ∕B. For x∕B > 2, the solution under
the far-field approximation is in perfect agreement with the exact
solution for all cases. In addition, the acoustic field is similar to that of
a point source for a large value of λ∕B. Note also that the acoustic
potential due to a volume source has no singularity at x∕B � 0.

B. Sources Moving at a Constant Speed

This section is concerned with the radiation of harmonic sources
moving at constant speed V0. The Mach number vector and the
Mach number are, respectively, defined byM0 � V0∕c0 andM0 �

jM0j � V0∕c0. At the initial time t � 0 s, the center of the source is
located at the origin of the coordinates system. The schematic of the
problem is represented in Fig. 3.
A harmonic source is considered, and the source term is

S�x; t� � Q�x − V0t� exp�−iω0t� (14)

From Eq. (2), the solution is given by

ϕ�x; t� � 1

4π

Z �∞
−∞

Z
V
Q�y − V0t

0�

× exp�−iω0t
0�δ
�
t 0 − t� r

c0

�
dy dt 0

r
(15)

Introducing z � y − V0t
0 leads to

ϕ�x; t� � 1

4π

Z �∞
−∞

Z
V
Q�z�

× exp�−iω0t
0�δ
�
t 0 − t� R�z; t

0�
c0

�
dz dt 0

R�z; t 0� (16)

where R�z; t 0� � jx − z − V0t
0j is the distance between a source

element and the receiver. The analytical solution is then written as a
convolution:

ϕ�x; t� �
Z
V
Q�z�ϕ0�x − z; t�dz (17)

where ϕ0�x; t� is the solution of the problem for a point source
located at the center of the volume source distribution:

ϕ0�x; t� �
1

4π

Z �∞
−∞

exp�−iω0t
0�δ
�
t 0 − t� R�t

0�
c0

�
1

R�t 0� dt
0 (18)

In the preceding equation, R�t 0� � R�0; t 0� � jx − V0t
0j is the

distance between the point source and the receiver. For the subsonic
case (M0 < 1), the acoustic potential is given by (see, e.g., [15])

0

a) b)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0

0.02

0.04

0.06

Fig. 2 a) Coefficients of the outgoing waveK� (solid lines) and the incomingwaveK− (dashed lines) and b) acoustic potential for the exact solution (solid
lines) and for the solution under the far-field approximation (dashed lines) as a function of x∕B for different values of λ∕B: λ∕B � 100 (black), λ∕B � 5
(dark gray), and λ∕B � 3 (light gray).

x
O

V

θ
e

e
k

R (t)

R (t)

D (t)

0

Source

Receiver

θ

Fig. 3 Volume source moving at a constant speed V0 in the free field.
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ϕ0�x; t� �
exp�−iω0te�

4πRe�1 −M0 cos θe�
(19)

where te is the retarded time, which corresponds to the emission
time of awavepacket received at the receiver at the time t. DistanceRe
is the source-receiver distance at the emission time such as Re �
x − V0te and Re � c0�t − te�. Finally, angles θ and θe are the angles
between vectors V0 and R and Re, respectively.
The retarded time variables are related to those in the current time

system by the relations [16]

8<
:Re �

R
β2

�
M0 cos θ�

�������������������������������
M2

0 cos
2 θ� β2

p �
;

cos θe � M0 � R
Re
cos θ

(20)

with β2 � 1 −M2.
As done in the previous section, a geometrical far-field approxi-

mation is performed. Therefore, it is assumed that the distance
between the source center and the receiver at the emission time is
large compared with the characteristic length scale of the source,
i.e., Re � jx − V0tej≫ B. The phase of the acoustic potential is
expanded to the first order in z, and its amplitude is assumed to be that
at the source center. To do so, the following formulas are used:8>>>>><
>>>>>:

d
dzR�z�jz�0 � − R

R ;
d
dzM0 cos θ�z�jz�0 � 1

R

�
M0 cos θ RR −M0

�
;

d
dz

��������������������������������������
M2

0 cos
2 θ�z� � β2

p ����
z�0
� 1

R
M0 cos θ���������������������
M2

0
cos2 θ�β2

p
�
M0 cos θ RR −M0

�
(21)

Retaining only terms of the first order in z yields

exp�−iω0te�z�� � exp�−iω0t� exp�ikRe� exp�−ikD · z� (22)

where wave number kD is given by

kD �
k�������������������������������

M2
0 cos

2 θ� β2
p �

R

R
� Re
R
M0

�
(23)

Using Eq. (20), thewave number is expressed in terms of the retarded
time coordinates by

kD �
k

1 −M0 cos θe

Re
Re

(24)

Wave number kD points from the source at the emission time to the
receiver. Its modulus is the ratio of themodulus of thewave number k
to the Doppler factor (1 −M0 cos θe) and, consequently, depends on
the time.
The convolution in Eq. (17) can now be written as

ϕ�x; t� � ϕ0�x; t�
Z
V
Q�z� exp�−ikDz� dz (25)

Finally, the acoustic potential in the geometrical far field is given by

ϕ�x; t� � exp�−iω0t�
exp�ikRe�

4πRe�1 −M0 cos θe�
Q̂�kD� (26)

which shows that for a harmonic source moving at a constant speed
the spatial distribution of the source induces an additional
amplification factor due to its spatial Fourier transform.
In the case of a spherical source, the acoustic potential is given by

ϕ�x; t� � exp�−iω0t�
exp�ikRe�

4πRe�1 −M0 cos θe�
Q̂

�
k

1 −M0 cos θe

�
(27)

where Re and cos θe are implicit functions of the time. Keeping only
the leading term in 1∕Re the acoustic pressure p � −ρ0∂ϕ∕∂t is then
expressed in the geometrical far field as

p�x; t� � ρ0iω0 exp�−iω0t�
exp�ikRe�

4πRe�1 −M0 cos θe�2

× Q̂
�

k

1 −M0 cos θe

�
(28)

For a spherical source, Q̂�k� is a real-valued function of wave number
k. Thus, as it can be seen in Eq. (28), the acoustic pressure phase
obtained for a spherical volume source is the same as that obtained for
a point source in the geometrical far field. However, the amplitude
and, hence, the directivity are modified. Indeed, the directivity
pattern is directly related to the Fourier transform of the spatial
distribution of the source. To illustrate this point, let us consider again
a source with a Gaussian spatial distribution. The directivity is
calculated with the expression

D�θe� �
�

4π

ω0ρ0

�
2 jp�θe�j2R2

e

Q̂2�k�
(29)

where the pressurep�θe� is given in Eq. (28). In Fig. 4, the directivity
is plotted for different values of the ratio λ∕B and for Mach numbers
equal to 0.15 and 0.3. When λ ≫ B∕�1 −M0�, the differences in
emission times for all elementary sources are small compared with
the time variation of the source. In that case, the source is called
“compact” [16], and it behaves like a point source. Therefore, the
directivity pattern obtained for the case λ∕B � 100 is similar to that
of a point source, as shown in Fig. 4a. For small values of λ∕B,
differences in emission times are significant, and discrepancies
from the compact source become visible. Thus, for λ∕B � 5, the
amplification in the forward direction is reduced. For λ close toB, the
effects of the spatial distribution are dramatically important. Thus, for
λ∕B � 3, the directivity pattern is reversed in comparison to that of a
point source, and amplification occurs in the backward direction.
This behavior is amplifiedwhen theMach number increases, as it can
be seen in Fig. 4b.

C. Comparison with Results of a Numerical Simulation in a 3-D
Geometry

1. Numerical Specification

Results obtained with the analytical solution are now compared
with those obtained with a numerical solver of the linearized Euler
equations. High-order finite difference time-domain techniques,
developed initially in the computational aeroacoustics community,
are employed. Optimized finite difference schemes and selective
filters over 11 points are used to compute the spatial derivative and
to remove grid-to-grid oscillations, respectively, and allow accurate
computation of acoustic wavelengths down to five or six times the

a) M0 = 0.15 b) M0 = 0.30

  0.5

  1
  1.5

30

210

60

240

90

270

120

300

150

330

180 0

θe

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

θe

Fig. 4 Directivity diagrams for a volume source with a Gaussian spatial
distribution moving at Mach numbers a)M0 � 0.15 and b) M0 � 0.30
for different values of λ∕B: λ∕B � 100 (light gray solid), λ∕B � 5 (dark
gray solid), λ∕B � 3 (black dash–dotted), and for a point source (black
dashed).
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spatial mesh size. For the interior points, the centered fourth-order
finite difference scheme of Bogey and Bailly [17] and the sixth-order
selective filter of Bogey et al. [18] are chosen. For the boundary points,
the noncentered finite difference schemes and the noncentered
selective filters of Berland et al. [19] are used. The filtering coefficient
is set to 0.2 for all filters except at the end points, at which the filtering
coefficient is 0.01. The time integration is performed with the six-step
fourth-orderRunge–Kutta algorithmofBerland et al. [20].At the outer
boundaries, perfectlymatched layers [21] are employed in the splitting
form, as done by Hornikx et al. [22]. Simulations presented in this
section are performed in a 3-D geometry. The size of the numerical
domain is �−100 m; 100 m� × �−5 m; 30 m� × �−5 m; 5 m�. The
mesh is uniform, and the mesh size isΔx � Δy � Δz � 0.1 m. The
CFL number defined by CFL � c0Δt∕Δx is set to one. Around 6000
time iterations are performed. The source is implemented through the
mass source term.At time t � 0 s, the center of the source is located at
x � 0 m, y � 0 m, and z � 0 m.
As depicted in Fig. 5, the source is moving in the free field along

the x axis at speed V0 � 100 m · s−1. The Mach number is equal to
0.3. The receiver is located at xR � 0 m, yR � 25 m, and zR � 0 m.
As indicated in Sec. II.B, there are two amplification factors
compared with the case of a nonmoving source. The first one is
related to the spatial distribution of the source and is defined by

FS�t� �
���� Q̂�kD�
Q̂�k�

���� (30)

The second one, called the convective amplification factor,

FC�t� �
1

�1 −M0 cos θe�2
(31)

is due to the source motion and is related to the Doppler factor. It is
plotted as a function of the time in Fig. 6. Typically, it is larger than
one as the source approaches the receiver and smaller than one as the
source recedes from the receiver.

2. Spherical Source

This section is concerned with a spherical source. The spatial dis-
tribution of the source is Gaussian [see Eq. (10)] with B � 0.36 m.
Two frequencies f0 � 50 and 300 Hz are considered. The spatial
Fourier transform of the source distribution is represented as a
function of the frequency in Fig. 7a. The variations of Q̂�kD� during
the source motion are also shown for both frequencies in bold lines.
The corresponding source amplification factor given in Eq. (30)
is plotted as a function of the time in Fig. 7b. For f0 � 50 Hz,
the maximum of kDB is 0.47. Consequently, the source can be
considered as compact. In this case, the term Q̂�kD�∕S0 remains close
to one, and the amplification factor due to the source is also close to
one, as seen in Fig. 7b. Thus, the spatial distribution does not play an
important role and the source is expected to behave like a point
source. The source frequency is now increased to f0 � 300 Hz. The
maximum of kDB is 2.8, and the source is not compact anymore. In
this case, the Fourier transform Q̂�kD� varies over a wide range, and
the source amplification factor has large values. Note that, for the
Gaussian distribution, unlike the convective amplification factor, FS
is lower than unity as the source approaches the receiver and is greater
than unity as the source recedes from the receiver.
A total amplification factor F � FSFC is calculated and is shown

as a function of the time in Fig. 8 for both frequencies. For

0V

x
Source

Receiver

y

Fig. 5 Source moving along the x axis at a constant speed V0 in a 3-D
geometry.
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Fig. 6 Convective amplification factor as a function of the time.
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Fig. 7 a) spatial Fourier transform Q̂∕S0 (thin line) as a function of the frequency and values taken by Q̂�kD�∕S0 during the source motion (thick lines)
and b) amplification factor due to the source as a function of the time for f0 � 50 Hz (dark gray solid) and f0 � 300 Hz (light gray dashed).
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Fig. 8 Total amplification factor as a function of the time for f0 �
50 Hz (dark gray solid) and f0 � 300 Hz (light gray dashed).
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f0 � 50 Hz, the total amplification factor is close to the convective
amplification factor, as the source amplification factor is close to one.
For f0 � 300 Hz, because the time variations of the source amplifi-
cation factor are larger than those of the convective amplification
factor,F has larger values when the source recedes from the receiver,
unlike the case of a point source.
The amplitudes of the acoustic pressure obtained with the

numerical simulation and calculated with the analytical solution for a
volume source under the geometrical far-field approximation given
in Eq. (28) and for a point source with the directivity obtained in
nonmoving conditions,

p0�x; t� � ρ0iω0 exp�−iω0t�
exp�ikRe�

4πRe�1 −M0 cos θe�2
Q̂�k� (32)

are represented in Fig. 9 as a function of the time. Figure 9a shows
that for f0 � 50 Hz the point-source solution is in a good agreement
with the numerical solution. The solution for a volume source under
the geometrical far-field approximation gives similar results. For
f0 � 300 Hz, it can be observed in Fig. 9b that the pressure
amplitude determinedwith the analytical solution for a point source is
not consistent with that of the numerical solution.On the contrary, the
analytical solution obtained for a volume source in the geometrical
far field allows one to retrieve the time variations of the pressure
amplitude.
As noticed in Sec. II.B, the volume source distribution for a

spherical source induces only an amplitude modulation of the
acoustic pressure compared with a point source, because Q̂�k� is a
real-valued function of k. The phase of the acoustic pressure is the
same, and the Doppler shift must be obtained in particular. To
highlight this point, a time-frequency analysis is performed. The
time-domain pressure signal, whose amplitude is plotted in Fig. 9 as
a function of the time, is divided into segments of 0.075 s, on each
of which a Fourier transform is performed. Figure 10 shows the

instantaneous frequency of the pressure signal as a function of the
time for f0 � 50 Hz. The Doppler frequency fD � f0∕�1 −
M0 cos θe� (see, e.g., [15]) is also represented. As expected, the
Doppler frequency shift is retrieved in the simulations. The case
f0 � 300 Hz has not been shown, because the results are exactly
the same.
To reproduce a point source, the characteristic length scale of the

volume source must be chosen to be as small as possible. The spatial
discretization of the source region must be, however, sufficiently fine
to capture the variations of the source distribution. One can then
wonder about the minimal number of grid points required to
discretize the source region in order to obtain an accurate solution. A
test case is now considered to evaluate the variations of the error as a
function of the ratio of the characteristic length of the source to the
mesh size. The frequency of the source is set to f0 � 340 Hz, and the
corresponding wavelength is λ � 1 m. The numerical domain is
�−50 m; 50 m� × �−5 m; 10 m� × �−5 m; 5 m�. Themesh is uniform,
and several simulations are performed with a mesh size ranging from
Δx � 0.05 to 0.125 m, corresponding to waves discretized between
20 and 8 points per wavelength. The CFL number is reduced to 0.7 to
ensure negligible time-integration errors. The source ismoving along
the x axis at the constant speed V0 � 100 m · s−1. A receiver is
located at (0 m, 5 m, 0 m).
The error at the receiver is evaluated using the criterion

L2

�
B

λ
;
Δx
λ

�
�

����������������������������������������������
1

2tp

Z
tp

−tp

���� jpj − jpanaj
jpanaj

����2
s

(33)

with tp � 0.3 s and where pana is the analytical solution given in
Eq. (17). The error is represented in Fig. 11 as a function ofB∕Δx for
four values of the number of points per wavelength λ∕Δx, which are
λ∕Δx � 8, 10, 15, and 20. All the curves have a similar behavior.
The error is large for BΔx < 0.5 and decreases as B∕Δx increases
up to B∕Δx � 1, approximately. For B∕Δx > 1, the error is nearly
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Fig. 9 Pressure amplitude jpj at the receiver as a function of the time a) for f0 � 50 Hz andb) for f0 � 300 Hz: numerical solution (black solid line) and
analytical solutions for a point-source (light gray dashed line with closed circles) and for a volume source using the geometrical far-field approximation
(dark gray dashed line with open circles). A spherical source is considered.
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Fig. 11 ErrorL2 as a function ofB∕Δx for four values of the number of
points per wavelength: λ∕Δx � 8 (black dashed), λ∕Δx � 10 (black
dash-dotted), λ∕Δx � 15 (gray solid), and λ∕Δx � 20 (black solid).
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Fig. 10 Instantaneous frequency of the pressure signal as a function of
the time for f0 � 50 Hz: numerical solution (black solid line) and

analytical solutions for a point-source (light gray dashed line with closed
circles) and for a volume source using the geometrical far-field
approximation (dark gray dashed line with open circles).
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constant and depends only on the number of points per wavelength
λ∕Δx. This shows that as long as B ≥ Δx the spatial discretization of
the source does not play a role in the accuracy of the results.

3. Finite-Length Line Source

Finite-length line sources are commonly used in transportation
noise applications, for instance tomodel the entire train [23]. It is then
interesting to demonstrate that they can be taken into account in time-
domain simulations using a linearized Euler equations solver. A
finite-length line source directed along the x axis is introduced using
the source term:

Q�x; y; z� � S0
πB2

exp

�
−
y2 � z2
B2

�
q�x� (34)

with the function

q�x� �

8<
:

1
2A ; if jxj ≤ A
1
2A exp

�
− �jxj−A�

2

B2

�
; if jxj ≥ A (35)

To avoid any singularity, the volume source distribution in the
transverse directions y and z is Gaussian. For the same reason, the
decrease of the volume distribution along the x direction is ensured to
be continuous using a Gaussian function. The parameters of the
finite-length line source are set to A � 0.5 m and B � 0.12 m.
The Fourier transform of the source term is written

Q̂�kx;kt� � S0 exp

�
−
k2t B

2

4

�
q̂�kx� (36)

where kt � �ky; kz� is the transverse wave number. The quantity
q̂�kx� is given by

q̂�kx� �
�
sin�kxA�
kxA

�
���
π
p

B

2A
exp

�
−
k2xB

2

4

�

×
�
cos�kxA� − sin�kxA�f

�
kxB

2

���
(37)

with f�x� � �erfi�x� − erfi�−x��∕2, where erfi is the imaginary error
function. When B tends to zero, Q�x� tends to the classical finite-
length line source and

Q̂�kx;kt� �
B→0

S0
sin�kxA�
kxA

(38)

which is the expected result for the directivity of such a finite-length
line source [24].
As for the spherical source in the previous section, the

frequencies f0 � 50 and 300 Hz are considered. The pressure

amplitudes obtained in both cases from the numerical solution and
from the analytical solutions for a point source with the directivity
obtained in the nonmoving configuration given in Eq. (32) and for
the volume source in the geometrical far field given in Eq. (28) are
represented in Fig. 12 as a function of the time. For the first
frequency f0 � 50 Hz, the source can be considered as compact
because the maximum of kDA is 0.65. As a consequence, the
source behaves like a point source, and its directivity is not
modified by its motion. This is clearly seen in Fig. 12a, where the
pressure amplitude obtained in the numerical simulation is very
close to that obtained in Fig. 9a for the spherical source. In
addition, the analytical solution for a volume source in geometrical
far field is in a very good agreement with the numerical solution.
Some discrepancies are seen between the numerical solution and
the analytical solution for a point source for t < 0. For the
frequency f0 � 340 Hz, as the maximum of kDA is 3.9, the source
is not compact. As shown in Fig. 12b, there is a clear effect of
the directivity of the finite-length line source on the acoustic
pressure. In particular, due to the term sin�kxA�∕�kxA�, the acoustic
pressure is zero at t � −0.2, −0.05, and 0.3 s. The pressure
amplitude obtained with the numerical solution is in a very good
agreemement with that obtained with the analytical solution for a
volume source in the geometrical far field, which shows that the
modeling of such a source in time-domain solvers is possible.
Moreover, the source motion plays an important role on the
directivity of the source, as the differences between the analytical
solutions for a point source and for a volume source in the
geometrical far field are large.

III. Broadband Moving Source Above a Ground
Surface in a 3-D Geometry

This section deals with numerical simulations of a broadband
sourcemoving above a flat impedance ground. Few studies have been
published investigating moving sources above a ground surface of
finite impedance. Among them, Norum and Liu [25] have developed
an analytical solution for a harmonic point source moving at a
constant speed and at a constant height in the acoustic far field, based
on a Lorentz transformation. A correction for the reflected wave has
been done by Li et al. [26]. For other configurations, analytical
solutions based on a heuristic approach [27] have been proposed. As
noticed by Ochmann [12], all these studies assume that the surface
impedance is frequency independent, which is a crude approximation
for natural grounds. Recently, an analytical solution has also been
proposed [12] for an impedance plane whose surface impedance
varies linearly with the frequency. Numerical solutions using time-
domain solvers can account for any frequency variations of the
impedance and are then well suited for the study of sound radiation
from moving sources above an impedance ground. In this section,
SPLs obtained for a rigid ground and for a ground surface of finite
impedance are compared. A schematic of the problem is depicted
in Fig. 13.
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Fig. 12 Pressure amplitude jpj at the receiver as a function of the time a) for f0 � 50 Hz and b) for f0 � 300 Hz: numerical solution (black solid line)
andanalytical solutions for apoint-source (light graydashed linewith closed circles) and for a volume sourceusing the geometrical far-field approximation
(dark gray dashed line with open circles). A finite-length line source is considered.
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A. Numerical Specification

A Cartesian grid of 2001 × 351 × 72 points is used for the
simulations. Themesh grid is uniform andΔx � Δy � Δz � 0.1 m.
The domain size is then �−100 m; 100 m� × �−5 m; 30 m�×
�0 m; 7.1 m�. The CFL number is set to unity, and 12,000 time
iterations are performed. At the ground surface, the time-domain
impedance boundary conditions proposed by Cotté et al. [2] are
implemented. They are based on a recursive convolution technique,
introduced in acoustics by Reymen et al. [28] for sound propagation
in a duct.
The source is moving along the x axis at a constant height z �

2.1 m and at a constant speedV0 � 50 m · s−1. TheMach number is
then equal toM0 � 0.15. At the initial simulation time, the source is
located at x � −95 m. The source term

S�x; t� � Q�x − V0t�s�t� (39)

is implemented in the numerical solver. The source signal s�t� is a
random signal constructed so that its one-sided power spectral
density (PSD) is a Gaussian function:

Sss � s0 exp

�
−2
�f − fc�2
f2b

�
(40)

where s0 is a normalization parameter set to 1 × 10−4. The central
frequency fc is chosen as 300 Hz. The parameter fb controls the
decrease of theGaussian and is set to 100Hz. The time-domain signal
s�t� is obtained bymultiplying the Fourier transform of a synthetized
white noise signal by the desired spectrum [see Eq. (40)] in the
frequency domain and by doing an inverse Fourier transform of the
result. The PSD of the signal is plotted as a function of the frequency
in Fig. 14. It is observed that the frequency content of the source is
significant for frequencies between 200 and 400 Hz. As s�t� is
random, the mean value of the PSD of the pressure is evaluated by
averaging the PSD of the pressure over the number of realizations of
the source signal. A tradeoff has then to be found between a satis-
factory convergence of the results and the computational cost, which
is important for 3-D simulations. Ten realizations of the random

source signal are performed here for each surface impedance case,
and the time-frequency decompositions presented in the next sections
are obtained by averaging the results.
The spatial distribution of the source Q is Gaussian, with B �

0.12 m [see Eq. (10)]. As discussed in Sec. II.C.2, the coarse
discretization of the source distribution is not expected to reduce the
accuracy of the results. As the parameter kDB � k0B∕�1 −
M0 cos θe� has a maximum of one reached for the maximum
frequency of interest f � 400 Hz, the source can be considered as
compact and is expected to behave like a point source.

B. Rigid Ground Surface

1. Numerical Results

First, a rigid ground surface is investigated. Two receivers denoted
as R1 and R2 and located, respectively, at x � 0 m, y � 4.9 m, and
z � 3 m and at x � 0 m, y � 24.9 m, and z � 3.5 m are con-
sidered. The instantaneous PSDs obtained at these receivers are
plotted as a function of the time and the frequency in Fig. 15. The
reference pressure is set to pref � 2 × 10−5 Pa. The Doppler shift is
clear, as the acoustic pressure has a higher frequency content when
the source approaches the receiver than when the source recedes
from the receiver. As for a nonmoving source, the ground effects are
important. As an illustration, strong destructive and constructive
interferences are clearly visible.
Reflection from the rigid ground can be interpreted as an additional

contribution from an image source located symmetrically to the
sourcewith respect to the ground plane. Therefore, fromEq. (28), the
acoustic pressure for a harmonic point source moving at a constant
speed above a rigid ground is given by

p0�x; t� � ρ0iω0 exp�−iω0t�
�

exp�ikRe;1�
4πRe;1�1 −M0 cos θe;1�2

� exp�ikRe;2�
4πRe;2�1 −M0 cos θe;2�2

�
(41)

In the preceding equation, �Re;1; cos θe;1� and �Re;2; cos θe;2� are the
retarded time coordinates whose origin is, respectively, the source
and the image source. Minima of the acoustic pressure modulus
occur when k�Re;2 − Re;1� � �1� 2n�π or equivalently whenRe;2 −
Re;1 � �1∕2� n�λ for n positive integer. The destructive inter-
ference is directly linked to the wave number k � ω0∕c0. However,
from the observer’s point of view, it appears at a different frequency
due to the Doppler shift. Because the source is close to the ground,
one has cos θe;2 ≈ cos θe;1, and the frequency at the observer is
assumed to be fD � f0∕�1 −M0 cos θe;1�. The curve correspond-
ing to the casen � 0 for the two receivers is plotted in a dashed line in
Fig. 15. A good agreement is found for the destructive interference
location. A second interference, related to n � 1, is distinguished in
Fig. 15a. For other values of n, interference patterns cannot be clearly
seen and the corresponding curves are not plotted.

2. Comparison with an Analytical Solution

The numerical solution is now compared with an analytical
solution. From Eq. (41), the instantaneous PSD for a broadband
moving source with a spherical volume distribution above a rigid
ground is given by

Spp�x; f; t� � Sss�f�jQ̂�kD�j2ρ20ω2

×

���� exp�ikRe;1�
4πRe;1�1 −M0 cos θe;1�2

� exp�ikRe;2�
4πRe;2�1 −M0 cos θe;2�2

����2 (42)
It is represented as a function of the time and the frequency at the
observer fD in Fig. 16 at the same receivers as in Fig. 15. Note that,
unlike the analytical solution, the time-frequency decompositions
obtained with the numerical solution are a function of the frequency
at the observer, without any assumption. The numerical solution
compares favorably to the analytical solution. Of course, the time-
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Fig. 13 Source moving above a flat surface of impedanceZS along the x
axis at a constant speedV0 in a 3-D geometry. Three receiversR1,R2, and
R3 are considered.
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Fig. 14 PSD of the source signal as a function of the frequency.
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frequency decompositions in Fig. 15 appear more fuzzy than in
Fig. 16 because of the initial random signals.
A more quantitative comparison is now done by considering the

instantaneous SPL, which is obtained by integrating the one-sided
PSDs over frequencies:

SPL�x; t� �
Z �∞
0

Spp�x; f; t� df (43)

Figure 17 shows the instantaneous SPL determined from the
analytical and numerical solutions as a function of the time. For the
receiver R1, due to the constructive interference pattern, there is
almost 20 dB difference in the SPL when the source is in front of the
receiver and when the source is far from the receiver. For the receiver
R2, the amplitude of the variations of the SPL is reduced. For both
cases, a very good agreement is obtained between the SPL computed
from the analytical and numerical solutions, as the maximum
difference is about 0.5 dB. Because the calculation of the SPL is done
by integrating the PSD of the pressure over frequencies, there is an

averaging effect, and the comparisons of the SPL appear more
favorably than the comparisons of the time-frequency decomposi-
tions represented in Figs. 15 and 16.

C. Impedance Ground Surfaces

Two types of ground surface impedances are now investigated: a
grassy ground modeled by the Miki one-parameter model [29] of a
semi-infinite ground layer of airflow resistivity σ � 100 kPa · s ·
m−2 and a snowy ground modeled by the Miki one-parameter model
of a rigidly backed layer of thickness d � 10 cm and of airflow
resistivity σ � 10 kPa · s · m−2. The values of σ used here are typical
for these kinds of natural grounds [30]. These surface impedance
models have already been used in Dragna et al. [3] to study long-
range sound propagation in a stratified atmosphere. Accurate
modeling of natural grounds would require more elaborate models,
such as the Attenborough fourth-parameter model [31], which
includes also the porosity and the tortuosity of themedium.However,
as remarked in [32], it is generally difficult from outdoor measure-
ments to deducemore than two impedancemodel parameters. That is
the main reason why one-parameter impedance models continue to
be used for outdoor surfaces.
The instantaneous PSD obtained at the receiver R1 is represented

as a function of the time and the frequency for the two impedance
models in Fig. 18. In comparison with the rigid boundary case (see
Fig. 15a), it is dramatically modified. In particular, the pressure levels
are lower when the source approaches and recedes from the receiver.
Note also that the strong destructive interference pattern is sup-
pressed. However, one can distinguish on the time-frequency decom-
positions an interference pattern around t � 0 s. The differences on
the PSD computed for the two impedancemodels are also significant.
Indeed, the PSD obtained in the case of a snowy ground is globally
larger than that obtained in the case of a grassy ground. However, the
global shape is similar.
Figure 19 shows the PSDs in the far field at the receiverR3, located

at x � 0 m, y � 24.9 m, and z � 0.5 m for the two impedance
models. The receiver R3 is chosen closer to the ground surface than
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Fig. 15 Instantaneous PSD of the acoustic pressure in decibels (ref p2ref∕Hz) as a function of the time and the frequency obtained from the numerical
solution at the receiver a) R1 and b) R2. The dashed lines represent the destructive interference location. A rigid ground is considered.
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Fig. 17 Instantaneous SPL in decibels as a function of the time obtained
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from the numerical solution at R1 (•) and R2 (Δ). A rigid ground is
considered.
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R2 to highlight the ground effect. For the grassy ground, the time-
frequency decomposition is typical of a moving source, and the
Doppler shift is clearly seen. For the snowy ground, it is more
complex. Indeed, a low-frequency contribution is significant when
the source recedes from the receiver, i.e., when the frequency content
of the source is in the low-frequency range. This can be related to a
surface wave, which has already been exhibited for this impedance
model in a previous study [3].
Finally, the instantaneous SPLs obtained for the different

boundary conditions are compared at the receivers R1 and R3 in
Fig. 20. For R1, far from the receiver, the SPL is greater for the rigid
case by almost 10 dB.Close to the receiver, for t � −0.5 and 0.5 s, the
SPL becomes larger for the finite-impedance ground surfaces
because of the strong destructive interferences observed in Fig. 15. In
addition, as noticed earlier, the pressure levels are smaller for the
grassy ground than for the snowy ground. For R3, the SPL obtained
for the rigid ground is remarkably large compared with that obtained
for the finite-impedance ground surfaces, of about 20 dB. It can also
be noted that the SPL for the grassy ground is larger in the backward

direction than in the forward direction unlike the rigid case. Indeed,
transmission of acoustic waves into the ground is essentially a
frequency-dependent phenomenon. Therefore, more or less energy
can be transmitted into the ground according to the frequency content
of the signal. Moreover, the values of the SPL are close for the finite-
impedance cases in which the source approaches the receiver,
whereas when the source recedes from the receiver the SPL for the
grassy ground is 10 dB larger than that for the snowy ground.

IV. Conclusions

Themodeling of moving sources in a time-domain solver has been
examined using distributed volume sources. The effect of the volume
source distribution on the acoustic field has been studied in the
geometrical far field. For a nonmoving source, the source distribution
acts as a filter, as the Fourier transform of the spatial distribution
modulates the pressure. For a moving source, the behavior is more
complex as the Fourier transform is evaluated at a wave number that
depends on the time and on the source speed. In addition, the
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directivity of a compact source is similar to that of a point source.
When the emitted wavelength is in the order of the characteristic
source length, the directivity is, however, strongly modified and, in
the case of a spherical source, more energy can be radiated in the
backward direction than in the forward direction. This behavior has
been reproduced in the results of numerical simulations performed
with a solver of the linearized Euler equations. TheDoppler effect has
also been exhibited in the simulated waveforms. Finally, simulations
of a broadband source moving at a constant speed above an
impedance ground surface in a 3-D geometry have been performed
for a rigid ground, a grassy ground, and a snowy ground. It has been
shown that the instantaneous SPLs were dramatically different,
depending on the boundary conditions. In particular, as for a
nonmoving source, strong destructive interferences have been
observed for a rigid ground. For ground surfaces of finite impedance,
these strong interferences do not appear anymore in the considered
frequency bandwidth. Moreover, complex patterns have been ex-
hibited close to the ground. In particular, a low-frequency contribu-
tion has been observed for the snowy ground case.
The feasibility of numerical time-domain simulations of moving

sources in a 3-D geometry has been demonstrated. This work has
been concerned with monopole acoustic sources and finite-length
line sources but can be extended to dipoles and quadrupoles, which
are relevant for aerodynamic noise. Another extension of the study
would be to consider incoherent sources, as only coherent sources
have been here investigated. For transportation noise applications,
engineering models can then be validated against results obtained
with reference time-domain solvers. These solvers can also be used to
consider complex scenarios, such as a train pass-by in a realistic
railway site, with a topography and a mixed impedance ground.
Moreover, to account for more realistic sources, coupling with
other computational models can be done. For instance, large-eddy
simulations of pantographlike sources can be performed to provide
input data to the solver of the linearized Euler equations to compute
long-range sound propagation in a complex environment. This
approach will be followed in future work.

Appendix:Acoustic Potential for a Sourcewith aGaussian
Spatial Distribution

The calculation of the acoustic potential for a harmonic sourcewith
a Gaussian spatial distribution is performed. The time dependence
exp�−iω0t� and the normalization factor S0 are omitted for clarity.
First, the acoustic potential is written in this case as [see Eq. (4)]

ϕ�x� � 1

4π5∕2B3

Z
V

exp�ikjx − yj�
jx − yj exp

�
−
jyj2
B2

�
dy (A1)

Making use of the change of variables r � y − x yields

ϕ�x� � 1

4π5∕2B3

Z
V

exp�ikjrj�
jrj exp

�
−
jx� rj2
B2

�
dr (A2)

To calculate the integral, spherical coordinates r �
�r cos θ sin ϕ; r sin θ sin ϕ; r cos ϕ� are introduced. Because of
the spherical symmetry of the problem, the acoustic potential
depends only on the distance to the source center. Without loss of
generality, we choose x � �0; 0; x�. Equation (A2) becomes

ϕ�x� � 1

4π5∕2B3

Z
∞

0

Z
2π

0

Z
π

0

exp�ikr�

× exp

�
−
r2 � x2 � 2xr cos ϕ

B2

�
r sin ϕ dr dθ dϕ (A3)

Integrating over θ gives

ϕ�x� � 1

2π3∕2B3
exp

�
−
x2

B2

�Z
∞

0

r exp�ikr� exp
�
−
r2

B2

�

×
Z

π

0

sin ϕ exp

�
−
2xr cos ϕ

B2

�
dϕ dr (A4)

Then, the expression for the acoustic potential can be reduced to a
single integral:

ϕ�x� � 1

4π3∕2Bx
exp

�
−
x2

B2

�Z
∞

0

exp�ikr�

× exp

�
−
r2

B2

��
exp

�
−
2xr cosϕ

B2

��
π

0

dr (A5)

The acoustic field is now split into incoming and outgoing waves
ϕ�x� � ϕ��x� − ϕ−�x�, with

ϕ��x� �
1

4π3∕2Bx
exp

�
−
x2

B2

�Z
∞

0

exp

�
ikr −

r2∓2xr
B2

�
dr (A6)

A closed analytical form for the terms ϕ��x� results from the change
of variables u � r∕B� x∕B� ikB∕2:

ϕ��x� �
1

4π

exp��ikx�
2x

exp

�
−
k2B2

4

�
erfc

�
−
ikB

2
∓
x

B

�
(A7)

Finally, the acoustic potential is expressed under the form

ϕ�x� � exp

�
−
k2B2

4

�
1

2

�
exp�ikx�
4πx

erfc

�
−
ikB

2
−
x

B

�

−
exp�−ikx�

4πx
erfc

�
−
ikB

2
� x

B

��
(A8)

which corresponds to Eq. (12).
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