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The current work aims at developing a linearized Euler equations solver in curvilinear coordinates to

account for the effects of topography on sound propagation. In applications for transportation noise,

the propagation environment as well as the description of acoustic sources is complex, and time-do-

main methods have proved their capability to deal with both atmospheric and ground effects. First,

equations in curvilinear coordinates are examined. Then time-domain boundary conditions initially

proposed for a Cartesian coordinate system are implemented in the curvilinear solver. Two test cases

dealing with acoustic scattering by an impedance cylinder in a two-dimensional geometry and by an

impedance sphere in a three-dimensional geometry are considered to validate the boundary condi-

tions. Accurate solutions are obtained for both rigid and impedance surfaces. Finally, the solver is

used to examine a typical outdoor sound propagation problem. It is shown that it is well-suited to

study coupled effects of topography, mixed impedance ground and meteorological conditions.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4803863]
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I. INTRODUCTION

Time-domain methods are attractive to study broadband

noise propagation in outdoor environments. Indeed, they

allow consideration of complex situations and especially re-

alistic meteorological conditions. They have been used

extensively for the past 10 years for this purpose (Blumrich

and Heimann, 2002; Van Renterghem and Botteldooren,

2003; Ostashev et al., 2005; Hornikx et al., 2010; Guillaume

et al., 2011). Modeling of ground interactions is more chal-

lenging because it is essentially a frequency-dependent phe-

nomenon. Thus time-domain counterparts must verify some

physical laws, such as causality (see e.g., Rienstra, 1988),

and can require time-demanding operations, such as compu-

tation of convolution (see, e.g., €Ozy€or€uk and Long, 1996).

Two main approaches are developed in the literature to

account for ground interactions, one that relies on the com-

putation of the acoustic waves propagation in the ground

layer (Salomons et al., 2002; Wilson et al., 2007), and one

that is based on the more or less direct translation of the im-

pedance boundary condition from the frequency domain to

the time domain (Ostashev et al., 2007). Following the latter,

Cott�e et al. (2009) have proposed a time-domain impedance

boundary condition for locally reacting surfaces, based on a

recursive convolution technique, and have shown that it was

numerically efficient. It has been implemented in a solver

using high-order finite-difference techniques and has been

used to study long range propagation over an impedance flat

ground (Dragna et al., 2011). In particular, acoustic surface

waves have been exhibited.

This paper aims to go a step further in modeling realistic

outdoor sound propagation problems by introducing effects

of topography. In the literature, many techniques have been

proposed to account for topography. Among wave-based

approaches, parabolic equation methods have been the object

of a lot of studies. In Sack and West (1995), a coordinate

transformation adapted for a given ground profile is per-

formed in the Helmoltz equation, and a one-way wave equa-

tion is derived from the obtained expression. To our

knowledge, this technique has not been applied to more

complex propagation equations, using parabolic equation

techniques, to accurately handle wind gradients. An other

approach, initially introduced by Collins (1990) in under-

water acoustics, and applied by Blairon et al. (2002) to out-

door sound propagation problems, allows to deal with

complex meterological conditions. The main idea of that

approach is to approximate the ground profile by line seg-

ments. At each slope break, a rotation of the numerical do-

main is performed, and the parabolic equation is then solved

on a Cartesian mesh. This technique has been validated

against acoustic pressure measurements done in Saint-

Berthevin in France in 2002 (Lihoreau et al., 2006). More

recently, Parakkal et al. (Parakkal et al., 2010; Parakkal

et al., 2012) have proposed two different techniques to treat

non-flat grounds by parabolic equation methods. In the paper

published in 2010, a generalized polar coordinate method

adapted to propagation over large-scale terrain features is

proposed, and model’s prediction compares favorably to ex-

perimental data. In their second paper, they introduced the

Beilis–Tappert parabolic equation method into the outdoor
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sound propagation community. This method has been suc-

cessfully used in electromagnetic propagation and under-

water acoustic (Jensen et al., 1994) but is limited for now to

surface slopes up to 20�. In time-domain methods, Heimann

and Karle (2006) have used a similar approach to that of

Sack and West. In their study, different terrain-following

coordinate transformations for the linearized Euler equations

are examined, and ground effect is accounted for by solving

propagation equations in the ground layer. Among other

popular methods, boundary element methods are probably

the best suited to treat propagation over non-flat ground

surfaces (see, e.g., Jean, 1998). These methods require

knowledge of the Green’s function. They can be applied to

acoustic propagation in an inhomogeneous medium with a

constant sound-speed gradient (Premat and Gabillet, 2000),

but complex meteorological effects, such as scattering by

atmospheric turbulence, can not be properly accounted for.

In this paper, following the ideas used for aeroacoustics

problems (see, e.g., Marsden et al., 2005), a time-domain

solver in curvilinear coordinates is developed to treat acous-

tic propagation over complex ground profiles. Curvilinear

transformation is a more general approach to that proposed

by Heimann and Karle (2006) because any continuous coor-

dinate transformation can be considered. The time-domain

impedance boundary condition of Cott�e et al. (2009) is

extended to this case. Possible applications are acoustic

propagation in a non-homogeneous atmosphere and over a

complex site with a realistic topography and with mixed im-

pedance ground.

The paper is organized as follows. In Sec. II, the propa-

gation solver is described. The time-domain boundary condi-

tion in curvilinear coordinates for a rigid ground and for an

impedance ground is then presented. In Sec. III, two test

cases for two- and three-dimensional (2-D and 3-D) geome-

tries including diffraction of acoustic waves are considered

to validate the proposed method. Last, in Sec. IV, propaga-

tion of acoustic waves over a 3-D embankment is studied

with different meteorological conditions to illustrate the pos-

sibilities of the solver.

II. SOLVER OF THE LINEARIZED EULER EQUATIONS
IN THE CURVILINEAR COORDINATES

In this study, sound propagation in the atmosphere is

described by a set of coupled equations for the acoustic pres-

sure p and the acoustic velocity v ¼ ðvx; vy; vzÞ, given in the

physical domain (x, y, z) by

@p

@t
þ ðV0 � rÞpþ q0c2r � v ¼ q0c2Q; (1)

q0

@v

@t
þ q0ðV0 � rÞvþ q0ðv � rÞV0 þrp ¼ R; (2)

where V0 ¼ ðV0x;V0y;V0zÞ is the mean flow, q0 is the mean

density of air, and c is the adiabatic sound speed in the air.

The preceding equations correspond to the linearized Euler

equations (LEEs) where terms of order ðjV0 j=cÞ2 are omit-

ted. Their derivation is presented in Ostashev et al. (2005).

In the examples presented in this study, the sound speed is

constant, c ¼ c0, where c0 is the reference sound speed. The

source terms Q and R represent, respectively, a mass source

and external forces. The linearized Euler equations are then

written in the following conservative form:

@U

@t
þ @E

@x
þ @F

@y
þ @G

@z
þH ¼ S; (3)

where U ¼ ½p; q0vx; q0vy; q0vz�T is the unknown vector, E, F,

G, and H are the Eulerian fluxes, and S is the source vector.

A. Curvilinear equations

Low-dissipation and low-dispersion techniques are

required to obtain accurate numerical solutions in long range

sound propagation problems. They are generally applied to a

Cartesian mesh. Thus a special treatment is needed to

account for non-flat boundaries. Extrapolation methods have

been proposed in the literature (Kurbatskii and Tam, 1997).

However, they can suffer from numerical instabilities, and

the implementation of boundary conditions remains com-

plex. These issues are overcome by using curvilinear coordi-

nates (Marsden et al., 2005). The idea is to define a mapping

from a Cartesian mesh to a curvilinear mesh that fits accu-

rately the boundary. Thus the numerical methods developed

for Cartesian meshes can still be used. The principle of the

method is illustrated in Fig. 1.

Let us consider that the Cartesian coordinates are func-

tions of the curvilinear coordinates (n, f, g), i.e.,

x ¼ xðn; f; gÞ, y ¼ yðn; f; gÞ, and z ¼ zðn; f; gÞ. To get the

LEEs in the transformed system, chain rule expansions are

used,

@

@x

@

@y

@

@z

� �T

¼ J
@

@n
@

@f
@

@g

� �T

; (4)

where J ¼ @ðn; f; gÞ=@ðx; y; zÞ is the Jacobian matrix of the

transformation. The equations are then written in the con-

servative form

@U�

@t
þ @E�

@n
þ @F�

@f
þ @G�

@g
þH� ¼ S�; (5)

where the fluxes are

U� ¼ U=J; (6)

E� ¼ ðnxEþ nyFþ nzFÞ=J; (7)

FIG. 1. Coordinate transformation from the physical domain (x, z) to the

computational domain (n, g).
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F� ¼ ðfxEþ fyFþ fzGÞ=J; (8)

G� ¼ ðgxEþ gyFþ gzGÞ=J; (9)

H� ¼ H=J; (10)

S� ¼ S=J: (11)

In the preceding equations, J ¼ j J j is the Jacobian of the

transformation. The notation ij ¼ @i=@j is employed to

express the partial derivatives of the coordinate functions.

B. Numerical aspects

The linearized Euler equations in curvilinear coordi-

nates in Eq. (5) are solved by using low-dispersive and

low-dissipative numerical schemes developed in the computa-

tional aeroacoustics community. Optimized finite-difference

schemes and selective filters over 11 points are used to com-

pute the spatial derivative and to remove grid-to-grid oscilla-

tions, respectively and allow accurate computation of

acoustic wavelengths down to five or six times the spatial

mesh size. For the interior points, the centered fourth-order

finite-difference scheme of Bogey and Bailly (2004) and the

sixth-order selective filter of Bogey et al. (2009) are chosen.

For the boundary points, the non-centered finite-difference

schemes and the non-centered selective filters of Berland

et al. (2007) are used. Applying a selective filter over

PþQþ 1 points to a variable U on a uniform mesh of size

Dx gives

Uf ðx0Þ ¼ Uðx0Þ � rf

XQ

m¼�P

dmUðx0 þ mDxÞ; (12)

where Uf is the filtered variable and dm are the stencil coeffi-

cients. The filtering coefficient rf is set to 0.2 for all filters

except at the end points at which the filtering coefficient is

0.01. The time integration is performed with the six-step

fourth-order Runge–Kutta algorithm of Berland et al. (2006)

called RK46-L.

The time-domain boundary conditions described in the

next subsection are applied at the ground. At the outer boun-

daries, the radiation boundary conditions developed by Tam

and Dong (1996) for 2-D cases and its extension proposed

by Bogey and Bailly (2002) for 3-D cases are used. They are

based on an asymptotic solution of the LEEs in free-field. A

reference point must be chosen to define the far-field formu-

lation. It must be close to the acoustic sources and suffi-

ciently far from the outer boundaries, so that the far-field

approximation is valid. Otherwise, as shown by Mesbah

et al. (2008), noticeable reflecting waves can be generated at

the nonreflecting boundaries. These radiation boundary con-

ditions have been used successfully in outdoor sound propa-

gation problems by Cott�e et al. (2009) and Dragna et al.
(2011).

A numerical study on the accuracy of the curvilinear

transformation using the finite-difference schemes presented

in the preceding text has been performed by Marsden

(2005). It has been shown that a single mesh cell can be dis-

torted up to 50� without leading to noticeable errors. This

gives a limit value for the slope angle, using a terrain-

following coordinate transformation. Moreover, errors

induced by the deformation of a computational molecule,

i.e., the entire points in the stencil of the finite-difference

scheme, remain negligible for deformation angle up to 100�.
This shows that curvilinear coordinates transformations

allow to consider larger slope angles than terrain-following

coordinate transformations.

Only the transformation ðxðn; f; gÞ; yðn; f; gÞ; zðn; f; gÞÞ
is known a priori. Therefore at the beginning of the compu-

tation, the coefficients of the Jacobian matrix that appear in

the expression of the Eulerian fluxes [see Eqs. (6) to (11)]

must be computed. These coefficients must verify the geo-

metric conservation laws (GCLs), that are given for a non-

moving grid by (see, e.g., Visbal and Gaitonde, 2002)

nx

J

� �
n

þ fx

J

� �
f

þ gx

J

� �
g
¼ 0; (13)

ny

J

� �
n

þ
fy

J

� �
f

þ
gy

J

� �
g
¼ 0; (14)

nz

J

� �
n

þ fz

J

� �
f

þ gz

J

� �
g
¼ 0: (15)

These laws have been implicitly invoked when going from

Eq. (3) to Eq. (5). The GCLs are formally satisfied but they

could be violated numerically for 3-D problems due to dis-

cretization, which can lead to severe errors (Visbal and

Gaitonde, 2002). To avoid these difficulties, the metric coef-

ficients are computed using the conservative form proposed

by Vinokur and Yee (2000). For instance, the first metric

coefficient is computed using

nx ¼
J

2
½ðyfz� zfyÞg � ðygz� zgyÞf�: (16)

Other equations follow from a cyclic permutation of (x, y, z)

and (n,f,g).

C. Time-domain boundary condition

Sound propagation over natural ground can be generally

reduced to that over impedance surfaces using the so-called

local reaction approximation (see, e.g., Attenborough, 2002).

The boundary impedance condition is classically written in

the frequency domain as PðxÞ þ ZðxÞVnðxÞ ¼ 0, where x
is the angular frequency, and P and Vn are the Fourier trans-

forms of the pressure p and of the acoustic velocity normal

to the ground vn. Note that the normal to the ground surface

points out of the ground. For a rigid ground, vn ¼ 0 and the

surface impedance is infinite. In the time domain, the imped-

ance boundary condition leads to a convolution

pðtÞ ¼ �
ðt

�1
zðt� t0Þvnðt0Þdt0; (17)

where z(t) is the inverse Fourier transform of the impedance.

Not all surface impedance models are physically possible.

As discussed by Rienstra (1988), z(t) must be causal and
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real. Moreover, because the ground absorbs energy, one

must have Re½ZðxÞ� > 0, for x > 0, where Re denotes the

real part. When solving Eq. (5), the components of the

acoustic velocity are computed in the Cartesian system

ðex; ey; ezÞ. It is then necessary to define a local coordinate

system to calculate the components of the acoustic velocity

normal and tangential to the ground surface. Without loss of

generality, the ground surface corresponds in this study to

the plane g ¼ 0. Therefore the unitary normal vector is the

third contravariant base vector

eg ¼ r g=j r g j; (18)

with rg ¼ gxex þ gyey þ gzez. The unitary vectors tangent

to the ground surface are chosen as the two first covariant

base vectors

en ¼ rn=j rn j and ef ¼ rf=j rf j; (19)

with rn ¼ xnex þ yney þ znez and rf ¼ xfex þ yfey þ zfez.

The vectors en and ef are directed along the n and f lines,

respectively. Note that the coordinate system (en, ef, eg) is

orthogonal only if the mesh is orthogonal at the ground sur-

face. A scheme representing the two coordinate systems is

depicted in Fig. 2.

The acoustic velocity can be expressed as

v ¼ vxex þ vyey þ vzez ¼ vnen þ vfef þ vneg. Thus the com-

ponents of v in the coordinate system ðen; ef; e
gÞ are calcu-

lated with

vn ¼
gxvx þ gyvy þ gzvz

j r g j ; (20)

vn ¼
xnvx þ ynvy þ znvz

j rn jð1� en � ef
2Þ � en � ef

xfvx þ yfvy þ zfvz

j rf jð1� en � ef
2Þ ;

(21)

vf ¼
xfvx þ yfvy þ zfvz

j rf jð1� en � ef
2Þ � en � ef

xnvx þ ynvy þ znvz

j rn jð1� en � ef
2Þ :

(22)

For an orthogonal system, the scalar product en � ef is null,

and the preceding equations are greatly simplified. Similarly,

the components of v in the Cartesian coordinates system are

retrieved with the relations

vx ¼
gx

j rg j vn þ
xn

j rn j
vn þ

xf

j rf j
vf; (23)

vy ¼
gy

j rg j vn þ
yn

j rn j
vn þ

yf

j rf j
vf; (24)

vz ¼
gz

j rg j vn þ
zn

j rn j
vn þ

zf

j rf j
vf: (25)

1. Rigid ground

At a rigid ground, the normal velocity vn is equal to

zero. Let us denote by pðmÞ and vðmÞ the values of pressure

and acoustic velocity at the discretized time mDt. The fol-

lowing time marching is applied:

1. Advance in time the pressure and the components of

acoustic velocity to get pðmÞ and vðmÞ over the computa-

tional domain,

2. Compute vn and vf at the ground [see Eqs. (21) and (22)],

3. Impose vx, vy, and vz at the ground by setting vn ¼ 0 in

Eqs. (23) to (25).

2. Impedance ground

To account for impedance ground surfaces, we use in

this study a time-domain boundary-condition (TDBC)

derived by Reymen et al. (2006) on the basis of work done

in electromagnetism (Luebbers and Hunsberger, 1992). This

TDBC has been introduced in outdoor sound propagation

community by Cott�e et al. (2009) and is general in that it is

not based on any impedance model. The TDBC requires the

approximation of the impedance in the frequency-domain by

a rational function

ZðxÞ � Z1 þ
XN

k¼1

Ak

kk � ix
; (26)

where Z1 is the limit value of ZðxÞ as x tends to infinite, kk

are the poles, N is the number of poles, and Ak are numerical

coefficients. The causality condition is verified for this type

of impedance model if and only if the real parts of kk are

positive (Reymen et al., 2006). The condition Re½ZðxÞ� > 0

for x > 0 must be checked for each set of coefficients

(Ak,kk). Because the inverse Fourier transform of the imped-

ance in Eq. (26),

zðtÞ ¼ Z1dðtÞ þ
XN

k¼1

Ake�kktHðtÞ; (27)

must be real (see, e.g., Rienstra, 1988), the poles kk are real

or complex conjugates. In the preceding equation, HðtÞ is the

Heaviside function. The derivation of the TDBC is detailed

in Reymen et al. (2006) for both real and complex conju-

gates poles. The impedance models used in this study are

appropriately approximated over the frequency bandwidth of

interest by rational functions with real poles. Therefore we

only present the TDBC for real poles. Different methods are

proposed in Cott�e et al. (2009) to determine the coefficientsFIG. 2. Ground surface and definition of the coordinate systems.
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kk and Ak. After inserting the formula for the impedance in

Eq. (27) into Eq. (17), a recursive convolution method can

be applied. Assuming that the normal velocity is constant

over a time step, the following relation between pðmÞ and vðmÞn

is obtained

pðmÞ ¼ �Z1vðmÞn þ
XN

k¼1

Ak/
ðmÞ
k ; (28)

where /ðmÞk are called the accumulators. They are computed

by the recursive expression

/ðmÞk ¼ �vðmÞn

1� e�kkDt

kk
þ /ðm�1Þ

k e�kkDt: (29)

The TDBC relates the acoustic pressure to the normal veloc-

ity at the ground surface. One can then impose either p or vn.

Because it is easier to consider a scalar quantity than a vector

quantity, we choose here to impose the pressure at the

boundary. However, note that the implementation based on

the acoustic velocity is feasible and does not lead to particu-

lar numerical problems. The following time-marching is

then proposed:

1. Advance in time the pressure and the components of

acoustic velocity to get pðmÞ and vðmÞ over the computa-

tional domain,

2. Compute vn at the ground with Eq. (20),

3. Advance in time the accumulators with Eq. (29),

4. Impose p at the ground with Eq. (28).

III. TEST CASES

Scattering problems are studied as test cases to demon-

strate the accuracy of the boundary conditions treatment

proposed in the previous section. The 2-D case, correspond-

ing to scattering by an impedance cylinder, is based on the

second problem in category 1 proposed in the Second

Computational Aeroacoustics Workshop on Benchmark

Problems (Tam and Hardin, 1997). In the initial bench-

mark, the cylinder is rigid. In this study, the test case is

extended to impedance cylinders. The 3-D case corre-

sponds to scattering by an impedance sphere and is a direct

extension of the 2-D case. The schematic of the problem is

depicted in Fig. 3. Dimensionless variables are used, with

the following scales:

Length scale: R,

Velocity scale: c0,

Time scale: R=c0,

Density scale: q0,

Pressure scale: q0c2
0,

Impedance scale: q0c0,

Air flow resistivity scale: q0c0=R,

where R is the radius of the cylinder (2-D case) or of the

sphere (3-D case).

In the test cases, the impedance model is chosen as the

Miki impedance model (Miki, 1990) of a rigidly backed

layer of thickness dL and of air flow resistivity r0, given by

the formula

ZLðxÞ ¼ ZMcothð�ikLdLÞ: (30)

In the preceding equation, ZM is the Miki impedance model

of a semi-infinite ground layer, written as (Cott�e et al.,
2009)

ZM ¼ 1þ l
r0

�ix

� �b
� �

; (31)

with l ¼ 0:459 and b¼ 0.632. The complex wave number in

the porous layer kL is similarly written in the form

kL ¼ x 1þ � r0

�ix

� �qh i
; (32)

with � ¼ 0:673 and q¼ 0.618.

Three boundary conditions are considered: (1) a rigid

ground, (2) a ground of finite impedance with r0 ¼ 120 and

dL ¼ 1, which is denoted afterward by M120, and (3) a

ground of finite impedance with r0 ¼ 12 and dL ¼ 0:2,

which is denoted afterward by M12L02.

A. 2-D test case: Acoustic scattering
by an impedance cylinder

First, scattering by an impedance cylinder is considered.

The coordinate transformation is defined by

x ¼ ð1þ gÞ sinn; (33)

z ¼ ð1þ gÞ cosn: (34)

Note that ðr ¼ 1þ g; nÞ correspond to the classical polar

coordinates. The acoustic pressure is initialized by a

Gaussian pulse centered at ðxS; 0Þ,

pðx; z; t ¼ 0Þ ¼ exp �lnð2Þ ðx� xSÞ2 þ z2

B2
x

" #
; (35)

where Bx is the Gaussian half-width set to Bx ¼ 0:4. The ab-

scissa of the source is set to xS ¼ 8 and three receivers

denoted as M1, M2, and M3 are placed in the computational

domain with r¼ 10 and with, respectively, n ¼ p=2,

n ¼ 3p=4, and n ¼ p.

FIG. 3. Diffraction of acoustic waves generated by the source S by an im-

pedance cylinder in 2-D or by an impedance sphere in 3-D. Three receivers

M1, M2, and M3 are located in the computational domain.
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The computational domain has 320 points in the n
direction with a mesh size Dn ¼ 0:02 and 201 points in

the g direction with Dg ¼ 0:1. Three thousand time

iterations are performed. In the dimensionless form and

with c¼ 1, the Courant–Friedrich–Lewy number reads

CFL¼Dt=Dmin where Dt is the time step and Dmin is the

minimal spatial step. It is set to CFL¼ 0.8. For the bounda-

ries, a periodic condition is imposed in the azimuthal direc-

tion and the radiation boundary condition of Tam and Dong

(1996) is used in the radial direction. The reference point

for the far-field formulation is chosen as the center of the

cylinder.

In linear acoustics, propagation of an axisymetric pres-

sure pulse in free-field is equivalent to the propagation of a

broadband point source (Dragna et al., 2011). The corre-

sponding source strength SðxÞ depends on the spatial distri-

bution of the pulse. For the Gaussian pulse, it is written

(Dragna et al., 2011)

SðxÞ ¼ ixpB2exp �x2B2

4

� �
; (36)

where B ¼ Bx=
ffiffiffiffiffiffiffi
ln2
p

. The source strength is the product of

the 2-D spatial Fourier transform of the initial pressure dis-

tribution times the factor ix. For this diffraction problem,

the analytical pressure in the time domain is then expressed

as the following Fourier transform

pðr; n; tÞ ¼ 1

2p

ðþ1
�1

SðxÞp̂ðr; n;xÞexpð�ixtÞdx; (37)

where p̂ðr; n;xÞ is the analytical solution of the problem for

a point source in the frequency domain. It is divided into two

terms p̂ ¼ p̂i þ p̂d . The incident pressure p̂i is the 2-D

Green’s function in free-field

p̂i ¼ �
i

4
H
ð1Þ
0 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x2

S � 2rxS cos n
q� �

: (38)

The scattered pressure p̂d is written as

p̂d ¼ �
i

4

Xþ1
p¼0

CpHð1Þp ðxxSÞHð1Þp ðxrÞcos pn; (39)

where the coefficients Cp are given by

Cp ¼ ��p
Jpþ1ðxÞ � ½p=xþ ib�JpðxÞ

H
ð1Þ
pþ1ðxÞ � ½p=xþ ib�Hð1Þp ðxÞ

: (40)

The term b ¼ 1=Z is the admittance and is null for a rigid

ground. The parameter �p is equal to 1 for p¼ 0 and is equal

to 2 otherwise. The derivation of the solution is detailed in

Appendix A.

Figure 4 shows the pressure waveforms obtained at the

receivers for the numerical and analytical solutions for the

three boundary conditions and for the three defined angles.

The first arrival for the cases n ¼ p=2 and n ¼ 3p=4 is the

direct wave between the source and the receivers. Therefore

it is identical for the three boundary conditions because it

does not depend on the boundary conditions. The other arriv-

als are the scattered waves. For the case n ¼ p, the different

contributions do strongly overlap. In all cases, a very good

agreement is found between the analytical and numerical

waveforms.

B. 3-D test case: Acoustic scattering
by an impedance sphere

To validate the proposed implementation for a 3-D ge-

ometry, a second test case dealing with diffraction of spheri-

cal waves by an impedance sphere is considered. It is a

direct extension of the previous test case.

The following coordinate transformation is used:

x ¼ ð1þ gÞ cosn; (41)

y ¼ ð1þ gÞ sinf sinn; (42)

z ¼ ð1þ gÞ cosf sinn: (43)

Similarly, ðr ¼ 1þ g; n; fÞ correspond to the spherical coor-

dinates, with the x axis as the polar axis. The acoustic source

is a Gaussian pulse, centered at (xS, 0, 0) with xS ¼ 3. The

Gaussian half width is Bx ¼ 0:4. Three receivers denoted

as M1, M2, and M3 are placed in the computational

domain with r¼ 10, f ¼ 0 and with, respectively, n ¼ p=2;
n ¼ 3p=4, and n ¼ p. Periodic boundary conditions are

imposed in the polar and azimuthal directions, i.e., in the n
and f directions. In the radial direction, i.e., in the g direc-

tion, the radiation boundary condition of Bogey and Bailly

(2002) is used. The reference point for the far-field formula-

tion is chosen as the center of the sphere. The Jacobian of

the transformation

J ¼ 1

ð1þ gÞsinn
; (44)

is singular at n ¼ 0 and at n ¼ p. To avoid these singular-

ities, as proposed by Mohseni and Colonius (2000) for the

polar case, the mesh is shifted by Dn=2 in the n direction.

The method used for the discretization in the n direction is

represented in Fig. 5.

There are 160� 320� 600 points used, respectively, in

the n, f, and g directions with mesh sizes Dn ¼ Df ¼ 0:02

and Dg ¼ 0:025. At the radial distance r and at the polar

angle n, the azimuthal mesh spacing is ðr sin nDfÞ. Thus

close to n ¼ 0 and n ¼ p, the mesh spacing is very small in

the azimuthal direction compared to that at n ¼ p=2.

Because an explicit time-marching scheme is employed, this

would result to a very small time step due to the CFL condi-

tion and, hence, to a large number of iterations. Following

Bogey et al. (2011), the azimuthal spacing is artificially

increased to avoid an important time step restriction near

n ¼ 0 and n ¼ p. Thus instead of computing the finite differ-

ences from the adjacent points, they are determined from

points separated by ðDfÞeff ¼ lDf, where l 	 1 is an integer.

The spatial derivative of the variable U in the f direction at

point f0 is then computed using the centered difference

scheme over 2 Pþ 1 points
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@U

@f
ðf0Þ ¼

1

lDf

XP

m¼�P

am Uðf0 þ lmDfÞ; (45)

where am are the stencil coefficients. Close to n ¼ 0 and

n ¼ p, optimized second-order finite difference schemes

over seven points proposed in Bogey et al. (2011) are

employed in the f-direction with l between 2 and 40. Far

from the poles, l¼ 1, and fourth-order optimized finite-

difference schemes over 11 points presented in Sec. II B are

used. The effective mesh grid sizes ðr sin nðDfÞeffÞ at radial

distance r¼ 1 are plotted versus n in Fig. 6. The CFL condi-

tion is the most restrictive at the first and last points in the n
direction. Thus at these points, l¼ 40, and the effective mesh

grid size in the f direction is 40 times larger than the actual

one. This allows to increase the time step by a factor 40.

Note also that, for a given r, the effective mesh spacing

remains below rDf for all values of n. Therefore it is

expected that the accuracy is not affected by the reduced dis-

cretization. A schematic of the methods used for the compu-

tation of derivatives near the singularity is depicted in Fig. 5.

Due to the azimuthal reduction, the finite-difference

operator in the f direction depends on n. This implies that

the finite-difference operator in the f direction does not

commute with the one in the n direction. The geometric con-

servation laws using formula proposed by Vinokur and Yee

(2000) are not assured in this case. To eliminate the spurious

waves, the strength of the selective filter is then increased to

unity [see Eq. (12)]. The CFL number is set to 0.7, and 4500

time iterations are performed.

The analytical solution is written as the Fourier

transform

pðr; n; tÞ ¼ 1

2p

ðþ1
�1

SðxÞp̂ðr; n;xÞexpð�ixtÞdx: (46)

Because the problem is invariant in the azimuthal direction,

the analytical solution does not depend on f. The source

strength

SðxÞ ¼ ixð
ffiffiffi
p
p

BÞ3exp �x2B2

4

� �
; (47)

is the product of the 3-D spatial Fourier transform of the ini-

tial pressure distribution times the factor ix. The formula for

the source strength can be easily deduced from the analytical

solution of propagation of a Gaussian pressure pulse in free-

field proposed by Bogey and Bailly (2002). The pressure in

FIG. 4. Waveforms of the pressure obtained for the receivers M1, M2 and M3 and for the three boundary conditions versus time: Numerical (—) and analytical

(�) solutions. The time and the pressure are made dimensionless by dividing them respectively by R=c0 and q0c2
0.
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the frequency-domain for a point-source is still split as

p̂ ¼ p̂i þ p̂d. The incident pressure is given by the 3-D

Green’s function

p̂i ¼ �
exp ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x2

S � 2rxScosn
q� �

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x2

S � 2rxScosn
q ; (48)

The scattered pressure p̂d is written as

p̂d ¼ �
ix
4

Xþ1
p¼0

Bphð1Þp ðxxSÞ hð1Þp ðxrÞ Ppðcos nÞ; (49)

where the coefficients Bp are given by

Bp ¼ �ð2pþ 1Þ
jpþ1ðxÞ � ½p=xþ ib�jpðxÞ

h
ð1Þ
pþ1ðxÞ � ½p=xþ ib�hð1Þp ðxÞ

: (50)

In the preceding equations, jp, hp, and Pp are, respectively,

the spherical Bessel function of the first kind and the

spherical Hankel function of order p and the Legendre poly-

nomial of degree p. The derivation of the solution is briefly

described in Appendix B.

In Fig. 7, the pressure waveforms obtained at the three

receivers for the three boundary conditions are represented.

In all cases, an almost perfect agreement is found between

the analytical and numerical solutions. Therefore it is shown

that the boundary conditions proposed in this study are well

adapted to time-domain methods.

IV. ILLUSTRATION: DIFFRACTION DUE TO
TOPOGRAPHY

In this last section, acoustic propagation above an

embankment with different meteorological conditions is

examined. This example aims at studying efficiency of a

noise embankment close to a highway. The topography of

the site is represented in Fig. 8. The embankment is 2 m high

and 9 m thick. The coordinate transformation is defined by

x ¼ n; (51)

y ¼ f; (52)

z ¼ gþ Hðn; fÞ; (53)

where H is the ground profile. In this case, the curvilinear

coordinate g corresponds to the height above the ground. In

the x direction, quadratic splines are used to fit the desired

ground profile. In the y direction, the profile is modulated by

a Gaussian profile the half width of which is equal to

By ¼ 15 m. The ground profile is then expressed as

Hðx; yÞ ¼ exp �lnð2Þ y2

B2
y

 !
ða2x2 þ a1xþ a0Þ; (54)

where numerical parameters are given in Table I.

As done in Sec. III B, the initial disturbances are a pres-

sure Gaussian pulse with a half width Bx ¼ 0:15 m. It is

centered at xS ¼ 0 m; yS ¼ 0 m, and zS ¼ 0:5 m. It must

be pointed out that this example aims at illustrating the pos-

sibilities of the solver. Thus this type of source is not realis-

tic for highway traffic noise. An incoherent line source (see,

e.g., Salomons, 2001) with typical spectrum and directivity

of transportation noise would be more representative. Three

different surface impedances are used. Up to x¼ 2 m, the

road is modeled by a rigid surface. From x¼ 2 m to x¼ 13 m

including the embankment, a grassy ground is considered

with the Miki impedance model of a semi-infinite ground

layer of air flow resistivity r0 ¼ 100 kPa s m�2. Then from

x¼ 13 m, the Miki impedance model of a rigidly backed

layer of air flow resistivity r0 ¼ 300 kPa s m�2 and of thick-

ness dL ¼ 0:02 m is used to model a typical field. At the

other boundaries, the radiation boundary condition of Bogey

and Bailly (2002) is employed. The reference point for the

far-field formulation is located on the ground and at the

source position, i.e., at (x¼ 0 m, y¼ 0 m, z¼ 0 m).

To study the influence of a velocity gradient on

the sound propagation, a logarithmic velocity profile is

considered
FIG. 6. Mesh grid size in the azimuthal direction as a function of n for the

3-D test case: Without (—) and with ( ) reduced azimuthal discretization.

FIG. 5. Discretization near the singularity in a plane where g is constant at

the grid point �. The derivative is obtained from points � in the n-direction

and from points in the f-direction with the reduced discretization method.
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V0ðzÞ ¼ acln
gþ z0

z0

ðcoshex þ sinheyÞ; (55)

where the roughness length is chosen as z0 ¼ 0:1 m. The

parameter ac is set to 0 m s� 1 for no wind condition and to

2 m s� 1 otherwise. Five configurations are considered. First,

influence of the embankment on the sound pressure level is

studied. In the first two computations, propagation of acoustic

waves over the site with and without the embankment is

examined in a homogeneous atmosphere. Then influence of

the meteorological effects on the efficiency of the embank-

ment are taken into account by investigating three wind direc-

tions: Downwind condition with h ¼ 0, upwind condition

with h ¼ p, and transverse wind condition with h ¼ p=2.

The numerical domain is [�5 m; 105 m] � [�6.25 m;

6.25 m] � [0 m; 13.5 m], with a uniform mesh size Dn

FIG. 7. Waveforms of the pressure obtained for the receivers M1, M2 and M3 and for the three boundary conditions versus time: Numerical (—) and analytical

(�) solutions. The time and the pressure are made dimensionless by dividing them respectively by R=c0 and q0c2
0.

FIG. 8. Schematic of the computational domain. Each color denotes a differ-

ent ground surface impedance. The source position is represented by the

white dot.

TABLE I. Numerical parameters used to define the ground profile in

Eq. (54).

x, m a2;m
�1 a1 a0;m

�5.0! 2.85 0.0 0.0 0.0

2.85! 3.15 1.111� 100 �6.333� 100 9.025� 100

3.15! 5.85 0.0 6.666� 10�1 �2.0

5.85! 6.15 �1.111� 100 1.366� 101 �4.003� 101

6.15! 7.85 0.0 0.0 2.0

7.85! 8.15 �8.333� 10�1 1.308� 101 �4.935� 101

8.15! 11.85 0.0 �0.5 6.0

11.85! 12.15 8.333� 10�1 �2.025� 101 1.230� 102

12.15! 105.0 0.0 0.0 0.0
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¼ Df ¼ Dg ¼ 0:05 m. There are about 15� 106 points. The

CFL number is set to 0.7, and 3200 time iterations are per-

formed so that the pulse leaves the computational domain.

Waveforms obtained at a receiver at x¼ 100 m, y¼ 0 m,

and z¼ 2 m for the five computations are represented in

Fig. 9. First, note that the arrival time obtained for the case

with the embankment in a homogeneous atmosphere is

slightly greater to that obtained without embankment, about

Dt ¼ 0:7 ms, because of the path difference due to the

embankment height. The total sound pressure level

Lp ¼ 10 log10

ðþ1
�1

p2ðtÞ
p2

ref

dt

� �
; (56)

where pref is a reference pressure is 7 dB lower. This shows

that for this particular source, the embankment is effective to

reduce the broadband sound pressure level. In downwind

condition, multiple arrivals can be distinguished on the

waveform. The arrival time is smaller than that in no wind

condition because the effective sound speed is greater. As

expected, downwind condition causes an increase of the total

sound pressure level by 5 dB. In the upwind condition, the

effective sound speed is smaller than the ambient sound

speed. Therefore the arrival time is larger. Furthermore, the

total sound pressure level is reduced by 8.6 dB. Finally, com-

parably to other computations performed by Salomons

(2001), transverse wind has no effect. Indeed the difference

on the total sound pressure level compared to no wind condi-

tion is only of 0.1 dB.

To evaluate the effect of the embankment in the fre-

quency domain, the insertion loss is introduced by the

relation

ILðf Þ ¼ 20 log10

				 p̂ðf Þ
p̂w=oðf Þ

				; (57)

where p̂ðf Þ is the Fourier transform of the pressure and

p̂w=oðf Þ is the corresponding value for the configuration

without embarkment in no wind condition. The insertion

loss at a receiver located at x¼ 100 m, y¼ 0 m, and z¼ 2 m

is plotted versus frequency in Fig. 10. The embankment ena-

bles to reduce the sound pressure level over all the frequency

range. In the upwind condition, high frequencies are signifi-

cantly attenuated, and the efficiency of the embankment is

dramatically increased for frequencies larger than 400 Hz.

The downwind condition causes an increase of the sound

pressure level for high frequencies. Around f¼ 800 Hz, the

insertion loss becomes positive, which means that the sound

FIG. 9. Waveforms at a receiver at x¼ 100 m, y¼ 0 m, and z¼ 2 m for no

wind condition (—), downwind condition (- - -), upwind condition (- � -),
transverse wind condition ( ), and no wind condition ( ) without

embankment.

FIG. 10. Insertion loss versus frequency at a receiver at x¼ 100 m, y¼ 0 m,

and z¼ 2 m for no wind condition (—), downwind condition (– –), upwind

condition (– � –), and transverse wind condition ( ).

FIG. 11. Insertion loss for receivers at y¼ 0 m and z¼ 2 m versus abcissa x
for 1/3-octave bands centered at (a) 400 Hz, (b) 800 Hz and (c) 1250 Hz and

for no wind condition (—), downwind condition (– –), and upwind condition

(– � –).
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pressure level is higher than without embankment in no-

wind conditions.

The evolution of the insertion loss with x is now investi-

gated. It is shown in Fig. 11 for a line of receivers located

behind the embankment at y¼ 0 m and z¼ 2 m and for differ-

ent 1/3-octave bands. The case of the transverse wind is not

represented because it is similar to the no-wind condition. For

receiver just behind the embankment, the insertion loss is

very large, i.e., around 20 dB. In the no-wind condition, the ef-

ficiency decreases with increasing x depending on the fre-

quency. At high frequencies f > 400 Hz, influence of the

meteorological conditions on the insertion loss is significant

from x¼ 20 m. At lower frequencies f < 400 Hz, it is visi-

ble at larger distance (5 dB difference from x¼ 40 m between

the insertion loss in downwind and no-wind conditions). In

downwind condition, acoustic energy is refracted to the

ground. Therefore the embankment efficiency decreases with

increasing x and also with increasing frequency. In upwind

condition, the insertion loss decreases rapidly once the re-

ceiver is in the shadow zone. Thus for f¼ 1250 Hz, more than

15 dB difference between the insertion loss in upwind and no-

wind conditions is obtained for x > 60 m.

V. CONCLUSION

In this paper, a time-domain numerical propagation

solver using optimized high-order finite-difference schemes

has been developed on the basis of the linearized Euler equa-

tions. Meteorological and ground effects have been both

taken into account. Topography has been accounted for by

using curvilinear coordinates. A time-domain impedance

boundary condition recently proposed has been extended for

non-flat terrain profiles. It has been validated against two dif-

fraction test-cases in 2-D and 3-D geometries. In both case,

an excellent agreement has been obtained between the ana-

lytical and numerical solutions. The capabilities of the solver

have been then illustrated with a typical outdoor sound prop-

agation problem dealing with propagation above an embank-

ment and above mixed ground impedance surfaces in a

heterogeneous medium. It can also be noted that curvilinear

transformation is applicable for any continuous coordinate

transformation. In particular, it is useful for coupling with

meteorological models (such as micro-meteorological mod-

els using large eddy simulations). Indeed, computation of the

acoustic propagation can be performed on the same grid

without requiring interpolation of the meteorological data to

the grid of the acoustic solver; this is something that can be

time-consuming especially for 3-D problems. Moreover, it

can be applied to terrains with large slope angle (>45�),
such as steep-sided valleys, for which terrain-following

coordinate transformations are not relevant.

Future work will focus on the modeling of realistic sour-

ces for transportation noise applications. In particular,

coupled effects of a moving source and of a complex site on

the acoustic pressure field will be studied.
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APPENDIX A: ANALYTICAL SOLUTION
FOR DIFFRACTION OF CYLINDRICAL WAVES
BY AN IMPEDANCE CYLINDER

This appendix details the derivation of the analytical so-

lution for propagation of acoustic waves from a point source

placed above an impedance cylinder in a 2-D geometry. The

cylinder radius is denoted as R¼ 1. The point source and

the receiver are located, respectively, at rS ¼ ðxS; 0Þ and

at r ¼ ðxR; zRÞ. Their respective polar coordinates are rS

¼ ðrS; 0Þ and r ¼ ðr; hÞ. The surface of the cylinder is char-

acterized by its admittance denoted as b. The acoustic pres-

sure p̂ðr; h;xÞ satisfies the Helmholtz equation in polar

coordinates

1

r

@

@r
r
@p̂

@r

� �
þ 1

r2

@2p̂

@h2
þ x2p̂ ¼ dðx� xSÞ dðzÞ; (A1)

with the Sommerfeld condition at infinity and the impedance

boundary condition on the cylinder

@p̂

@r

				
R

þ ixb p̂ðR; hÞ ¼ 0: (A2)

The pressure is split into two components p̂ðr; h;xÞ
¼ p̂iðr; h;xÞ þ p̂dðr; h;xÞ where p̂i is the incident pressure

on the cylinder and p̂d the scattered pressure due to the cylin-

der. The incident pressure p̂i is given by the 2-D Green’s

function in free-field

p̂iðr; hÞ ¼ �
i

4
H
ð1Þ
0 ðx j r� rS jÞ: (A3)

Using the addition theorem (Gradshteyn and Ryzhik, 1980),

the incident pressure is rewritten as

p̂iðr; hÞ ¼ �
i

4

Xþ1
p¼0

�pHð1Þp ðxr>ÞJpðxr<Þcosph; (A4)

with r> ¼ maxðrS; rÞ and r< ¼ minðrS; rÞ. The parameter �p

is equal to 1 for p¼ 0 and is equal to 2 otherwise.

Using the separation of variables method and account-

ing for the symmetry over x axis and the Sommerfeld condi-

tion, the scattered pressure is sought in the form

p̂dðr; hÞ ¼ �
i

4

Xþ1
p¼0

CpHð1Þp ðxxSÞHð1Þp ðxrÞcosph: (A5)

The coefficients Cp are obtained by using the impedance

boundary condition

@p̂d

@r

				
R

þ ixb pdðR; hÞ ¼ �
@p̂i

@r

				
R

� ixb piðR; hÞ: (A6)
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To do so, the normal derivative of the scattered pressure

on the cylinder is calculated with

@p̂d

@r

				
R

¼ �i
x
4

Xþ1
p¼0

CpHð1Þp ðxxSÞ

� cosph
H
ð1Þ
p�1ðxRÞ � H

ð1Þ
pþ1ðxRÞ

2
: (A7)

Using the following formula for the Hankel function:

H
ð1Þ
p�1ðzÞ þ H

ð1Þ
pþ1ðzÞ ¼

2p

z
Hð1Þp ðzÞ; (A8)

yields

@p̂d

@r

				
R

¼ � i

4
x
Xþ1
p¼0

CpHð1Þp ðxxSÞ

� cosph
p

xR
Hð1Þp ðxRÞ � H

ð1Þ
pþ1ðxRÞ

� �
: (A9)

If one adds ixb p̂d, one finally gets the equation

@p̂d

@r

				
R

þ ixb p̂dðR; hÞ ¼ �
i

4
x
Xþ1
p¼0

CpHð1Þp ðxxSÞ

� cos ph
p

xR
þ ib

h i
Hð1Þp ðxRÞ

�
� H

ð1Þ
pþ1ðxRÞ

�
: (A10)

The same procedure is applied for the incident pressure,

which yields

�@p̂i

@r

				
R

� ixb p̂iðR; hÞ ¼ �
i

4
x
Xþ1
p¼0

��pHð1Þp ðxxSÞcos ph

� p

xR
þ ib

h i
JpðxRÞ

�
� Jpþ1ðxRÞ

�
: (A11)

Finally, the expression for the coefficients Cp is obtained by

matching the series term in Eqs. (A10) and (A11):

Cp ¼ ��p
Jpþ1ðxRÞ � ½p=xRþ ib�JpðxRÞ

H
ð1Þ
pþ1ðxRÞ � ½p=xRþ ib�Hð1Þp ðxRÞ

: (A12)

To summarize, the pressure p̂ðr; h;xÞ is computed from Eqs.

(A3) and (A5). The coefficients Cp are given in the preceding

equation.

APPENDIX B: ANALYTICAL SOLUTION FOR
DIFFRACTION OF SPHERICAL WAVES BY AN
IMPEDANCE SPHERE

This appendix describes the derivation of the analytical

solution for diffraction of spherical waves by an impedance

sphere. The calculation is very close to that of diffraction

of cylindrical waves by an impedance cylinder, detailed in

Appendix A. The sphere radius is expressed as R¼ 1. The

point source and the receiver are located respectively at

rS ¼ ðxS; 0; 0Þ and at r ¼ ðxR; 0; zRÞ. The corresponding

spherical coordinates rS ¼ ðrS; 0; 0Þ and r ¼ ðr; h;/Þ are

also employed. Because the problem is invariant in the /
direction, the azimuthal angle is set to / ¼ 0 without loss

of generality. The surface of the sphere is characterized by

its admittance denoted as b. The acoustic pressure

p̂ðr; h;xÞ satisfies the Helmholtz equation in spherical

coordinates

1

r2

@

@r
r2 @p̂

@r

� �
þ 1

r2 sin h
@

@h
sinh

@p̂

@h

� �
þ x2p̂

¼ dðx� xSÞdðyÞdðzÞ; (B1)

with the Sommerfeld condition at infinity and with the im-

pedance boundary condition on the sphere surface.

As done in Appendix A, the pressure is split into the

incident pressure on the sphere p̂i and the scattered pressure

due to the sphere p̂d . The incident pressure p̂i is given by the

3-D Green’s function in free-field

p̂iðr; hÞ ¼ �
expðix j r� rS jÞ

4p j r� rS j
: (B2)

An other addition theorem (Gradshteyn and Ryzhik, 1980)

allows one to write

p̂iðr; hÞ ¼ �
ix
4p

Xþ1
p¼0

ð2pþ 1Þ hð1Þp ðxr>Þjpðxr<ÞPpðcoshÞ;

(B3)

with r> ¼ maxðrS; rÞ and r< ¼ minðrS; rÞ.
Due to the symmetry over x axis and to the Sommerfeld

condition, the scattered pressure is written as

p̂dðr; hÞ ¼ �
ix
4

Xþ1
p¼0

Bphð1Þp ðxxSÞ hð1Þp ðxrÞPpðcoshÞ:

(B4)

Using the impedance boundary condition on the sphere

surface and applying the formula for the spherical Bessel

and Hankel function

h
ð1Þ
p�1ðzÞ þ h

ð1Þ
pþ1ðzÞ ¼

2pþ 1

z
hð1Þp ðzÞ; (B5)

leads to the following expression for the coefficients Bp:

Bp ¼ �ð2pþ 1Þ
jpþ1ðxRÞ � ½p=xRþ ib�jpðxRÞ

h
ð1Þ
pþ1ðxRÞ � ½p=xRþ ib�hð1Þp ðxRÞ

:

(B6)

The acoustic pressure p̂ðr; h;xÞ is computed from Eqs. (B2)

and (B4). The coefficients Bp are given in the preceding

equation.
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