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Although semi-empirical one parameter models are used widely for representing outdoor ground

impedance, they are not physically admissible. Even when corrected to satisfy a passivity condi-

tion in respect of surface impedance they do not satisfy the condition that the real part of complex

density must be greater than zero. Comparison of predictions with frequency-domain data for

short range propagation have indicated that physically admissible models provide superior overall

agreement. A two parameter variable porosity model yields better agreement for many grassland

surfaces and a two parameter version of the slit pore microstructural impedance model yields bet-

ter agreement with data obtained over low flow resistivity surfaces such as forest floors and

gravel. Impedance models and conditions for physical admissibility are summarised. In addition

to those examined previously, the slit pore model is shown to be physically admissible. After pro-

viding further examples of the better agreement with short range data that can be achieved using

two parameter models, it is shown that differences between frequency domain predictions at

longer ranges using physically admissible models rather than one parameter models are signifi-

cantly greater than those resulting from short range spatial variability and comparable with

seasonal variability over grassland. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4931447]

[DKW] Pages: 2399–2413

I. INTRODUCTION

When predicting outdoor sound at long range including

effects of discontinuous ground, meteorology, diffraction by

natural and artificial barriers, and topography, it is tempting

to use the simplest possible descriptions of the acoustical

properties of porous ground surfaces. Consequently, single-

parameter semi-empirical models for the acoustical proper-

ties of (rigid-framed) porous materials due to Delany and

Bazley1 and Miki2 are widely used. The Delany and Bazley

model has been used in this way since the 1970s and use of

the Miki model, which was introduced to overcome non-

physical predictions of the Delany and Bazley model, in cal-

culations related to outdoor sound has become increasingly

popular in the last decade.

Standard methods for determining ground impedance

spectra [ANSI S1.18 2010,3 NTACOU 104 (Ref. 4)] include

the option of choosing parameter values for the Delany and

Bazley model that, when used with the classical theory for

propagation from a point source over an impedance plane,

enable best fit to measurements of spectra of the magnitude of

the difference in levels recorded by vertically separated

microphones at a short range from an omnidirectional source.

The Delany and Bazley model is also recommended as one of

the default impedance models in the HARMONOISE engi-

neering model,5 and is likely to feature as a default ground

impedance model when making the predictions required for

noise mapping in response to the European Noise Directive.6

There are many models for the acoustical properties of

rigid-framed porous materials, 14 of which were reviewed

for representing ground surface impedance elsewhere.7 The

more sophisticated models require knowledge of some pa-

rameter values that are not available routinely for outdoor

ground surfaces and their evaluation from short range propa-

gation data would be problematic. After using the relation-

ship between tortuosity and porosity for stacked spheres, a

shortlist of five models that need no more than two adjusta-

ble parameters and which could be used as convenient alter-

natives for representing the impedance of porous outdoor

ground surfaces, have been investigated further.7 With thea)Electronic mail: didier.dragna@ec-lyon.fr
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same input parameter values, three models, namely, those of

Wilson,8 Hamet,9 and a model that assumes a microstructure

of slit like pores,7 give more or less identical predictions of

surface impedance spectra. As will be considered later, the

slit pore model requires calculations of hyperbolic tangent

functions. However, these are required anyway when calcu-

lating the impedance of a hard-backed layer. Consequently

the slit pore model is considered further here. After compar-

ing predictions using four of the short-listed impedance

models with short range level difference magnitude data, it

has been shown that a two-parameter variable porosity im-

pedance model yields better fits than either single-parameter

(semi-infinite) or two-parameter (hard-backed layer) empiri-

cal models for grassland and that a two-parameter version of

the slit pore microstructural model leads to better fits than

the empirical models for low flow resistivity surfaces such as

forest floors and gravel.7 With respect to time-domain pre-

dictions of outdoor sound propagation, it has been shown

that the empirical single parameter models and hard-backed

layer versions of them do not meet the requirements for

physical admissibility.10

After reviewing the conditions for physical admissibil-

ity, Sec. II of this paper extends the analysis in Ref. 10 to

show that (a), even when modified to avoid predictions of

negative real parts of surface impedance, the Miki model2

can predict negative values of the real part of complex den-

sity and that (b) slit pore microstructural models for the im-

pedance of semi-infinite and hard-backed layers are

physically admissible.

Section III extends previously published fitting of short

range propagation data7 to include two formulations of the

Miki model.2,11 Section IV demonstrates that significant differ-

ences in longer range predictions in both time- and frequency-

domains result from using physically admissible (and better

short range fitting) impedance models rather than physically

inadmissible empirical impedance models. Moreover it is

pointed out that more or less identical fits to measurements of

level difference magnitude spectra such as involved in stand-

ards for measuring ground impedance can be obtained with

impedance spectra that differ significantly, particularly at the

lower frequencies. The resulting differences in predictions of

longer range propagation are compared with those predicted

from measured spatial and seasonal variations12 at two grass-

covered sites. Section V offers concluding remarks.

II. PHYSICALLY ADMISSIBLE IMPEDANCE MODELS

A. Conditions for physically admissibility

Impedance models are classically defined in the fre-

quency domain as the large majority of studies have been

performed in the frequency domain. During the past 15

years, time-domain methods are becoming increasingly pop-

ular in the outdoor sound propagation community. However,

some crucial issues for time-domain prediction, such as cau-

sality, were not thoroughly studied. Following Rienstra,13

three conditions for the physical admissibility of surface im-

pedance models were proposed in Ref. 10. First, the surface

impedance model has to satisfy the reality condition

Condition 1 : ZSðxÞ ¼ ZSð�xÞ;

where x is the angular frequency related to the frequency f
by x¼ 2pf and the overbar denotes the complex conjugate.

This condition guarantees that for a real-valued excitation,

the acoustic variables are real-valued. Second, it has to ver-

ify the passivity condition

Condition 2 : Re½ZSðxÞ� � 0; for x > 0;

which ensures that the ground absorbs acoustic energy and

does not produce it. Third, it has to be causal, which can be

checked using the causality condition 3,

Condition 3:a : ZSðxÞ is analytic in ImðxÞ � 0;

Condition 3:b : jZSðxÞj is square integrable over

the real x–axis;

Condition 3:c : there is a real t0 such that ZSðxÞe�ixt0

! 0 uniformly with regard to ArgðxÞ
for jxj ! 1 in ImðxÞ � 0:

These three conditions were investigated for two types

of surface impedances, being a semi-infinite ground with

surface impedance

ZS;1 ¼ Zc; (1)

where Zc is the characteristic impedance of the equivalent

fluid and a rigidly backed layer, with surface impedance

ZS;d ¼ Zccothð�ikcdÞ; (2)

with d the thickness of the layer and kc the propagation con-

stant and for two families of impedance models. The first

family, called the square-root type impedance model,

includes phenomenological (see, e.g., Ref. 14) and Hamet9

models, which have the general form

Zc ¼
q0c0

ffiffiffi
T
p

X
a

x1 � ixð Þ x2 � ixð Þ
�ix x3 � ixð Þ

� �1=2

; (3a)

kc ¼
x
ffiffiffi
T
p

c0

b
x1 � ixð Þ x3 � ixð Þ
�ix x2 � ixð Þ

� �1=2

; (3b)

where q0 is the air density, c0 the sound speed in air, T and X
are the tortuosity and the porosity of the porous medium,

respectively, and a, b, x1, x2, and x3 are positive coeffi-

cients which depend on the characteristics of the porous me-

dium. A closely related model is the variable porosity

model, which corresponds to a low frequency/high flow re-

sistivity approximation for the surface impedance of a rigid-

porous medium in which the porosity decreases exponen-

tially with depth at a rate ae/m,7

ZS ¼ q0c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r

�ixcq0

s
þ c0ae

�ix4c

0
@

1
A; (4)
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where r is the air flow resistivity of the medium and c is the

ratio of specific heats in air. Equation (4) has the same form

as a low frequency/high flow resistivity approximation of

the impedance of a thin non-hard-backed layer of thickness

4/ae.
7

The second family is composed of polynomial models

Zc ¼ q0c0 1þ a
r

q0x

� �b

þ ic
r

q0x

� �d
" #

; (5a)

kc ¼
x
c0

1þ p
r

q0x

� �q

þ ir
r

q0x

� �s
" #

; (5b)

where a, b, c, d, p, q, r, and s are constant coefficients. The

most well-known polynomial models are the Delany and

Bazley1 and Miki2 models, whose coefficients have been

deduced from fitting a large body of impedance tube data for

fibrous materials. The coefficients of these models are given

in Table I. After comparing his original model with low fre-

quency/high flow resistivity forms of the identical capillary

pore model for rigid porous media, Miki proposed a three-

parameter form of his model11 in which the right-hand side

of Eq. (5a) is multiplied by
ffiffiffi
T
p

=X and that of Eq. (5b) is

multiplied by
ffiffiffi
T
p

but the coefficients in Eq. (5) are the same

as in Miki’s original model.2 Miki11 has suggested that the

three-parameter version of his model could be used to repre-

sent outdoor ground impedance. Horoshenkov et al.15 have

found good agreement between absorption coefficient data

for soils and predictions of the three-parameter Miki

model.11

In Ref. 10, it was shown that all surface impedance mod-

els in the square-root type family, including the variable po-

rosity model, are physically admissible. It was also shown

that the Delany and Bazley model for a semi-infinite ground

can not satisfy both the reality and causality conditions and

was thus not physically admissible. In its usual form, the

Delany and Bazley model is used only on the basis that it

satisfies the reality condition and is therefore not causal. In

addition, for a rigidly backed layer, the real part of the

surface impedance is negative at low frequencies, which

violates the reality condition and is non physical. An example

of this behavior is given in Fig. 1(a) for a rigidly backed layer

of thickness d¼ 1 cm and of air flow resistivity

r¼ 100 kPa s m�2. The Miki model corrects the behavior of

the Delany and Bazley model for a semi-infinite ground and

is physically admissible. However, for a rigidly backed layer,

it gives also a negative real part of the surface impedance at

low frequencies, which shows that the Miki model is not

physically admissible in this case. A modified Miki model

was therefore proposed in Ref. 10 and was shown to be

physically admissible for both types of surface impedances.

Thus, it is observed in Fig. 1(a) that the real part of the sur-

face impedance remains positive at low frequencies for the

modified Miki model. The coefficients of the modified Miki

model, along with those of the Delany and Bazley and Miki

models, can be found in Table I.

At the same time, Kirby16 investigated the properties of

polynomial impedance models. He retrieved that the real

part of the surface impedance for a rigidly backed layer

using the Delany and Bazley and Miki models is negative at

low frequencies. In addition, he showed also that these two

models provide non-physical values for the density of the

equivalent fluid given by

TABLE I. Coefficients of the polynomial models in Eqs. (5), computed using an air density q0¼ 1.2 kg m�3.

a c b d p r q s

Delany and Bazley (Ref. 1) 0.232 0.336 0.75 0.73 0.353 0.576 0.70 0.59

Miki (Ref. 2) 0.251 0.384 0.632 0.380 0.557 0.618

Modified Miki (Ref. 10) 0.251 0.384 0.632 0.351 0.539 0.632

FIG. 1. (Color online) Real part (a) of the surface impedance and (b) of the

complex density as a function of the normalized angular frequency q0x/r
for a rigidly backed layer of thickness d¼ 1 cm and of air flow resistivity

r¼ 100 kPa s m�2 and for (solid line) Delany and Bazley, (broken line)

Miki, and (dashed-dotted line) modified Miki impedance models.
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q ¼ Zc
kc

x
; (6)

as its real part is also negative at low frequencies. This is

illustrated in Fig. 1(b) for the same set of coefficients used

above. In addition to the three conditions described in

(Conditions 1–3), a fourth condition for physical admissibil-

ity is therefore considered in this paper,

Condition 4 : Re½q� � 0; for x > 0:

This condition can be easily checked for the square-root

type impedance models. Indeed, the density has a simple

expression in this case,

q ¼ q0T

X
ab 1þ x1

�ix

� �
: (7)

Thus, the real part of the density is constant and positive for

these models and the fourth condition is satisfied. As indi-

cated above, the real part of the density can be negative at

low frequencies for the Delany and Bazley and Miki models.

This is also the case for the modified Miki model proposed

in Ref. 10, as shown in Fig. 1(b). Indeed, using Eqs. (5) and

the coefficients in Table I, the real part of the density for this

model is given at low frequencies by

Re q½ � �
x!0

q0 ap� crð Þ
r

q0x

� �2b

: (8)

As ap� cr< 0, this shows that the real part of the density is

negative at low frequencies. While surface impedances for a

semi-infinite ground and for a rigidly backed layer from the

modified Miki model are physically admissible, this result

indicates that the modified Miki model would give non-

physical values for extended-reacting surfaces. This also

tends to demonstrate that, while their use is simple as they

depend on only one-parameter, polynomial models should

not be used and more physically based impedance models

should be preferred. Indeed, even if a polynomial model can

be patched to give physically admissible results in particular

cases, it must not be expected to give accurate values in the

general case.

B. Tests for the slit-pore impedance model

In this section, the conditions for physical admissibility

are checked for the slit pore model. The characteristic im-

pedance Zc and the propagation constant for the slit pore

model are given by the equations (see, e.g., Ref. 7)

Zc ¼
ffiffiffiffiffiffiffiffiffiffi
T

X2

q0

C

r
; (9a)

kc ¼ x
ffiffiffiffiffiffiffiffiffiffi
Tq0C

p
; (9b)

where the complex density q0 and compressibility C are

q0 ¼ q0

G kð Þ
; (10)

C ¼ 1

cP0

c� c� 1ð ÞG k
ffiffiffiffiffi
Pr
p� �h i

; (11)

with P0 the mean pressure and Pr the Prandtl number. These

quantities depend on the function G defined by

G kð Þ ¼ 1� tanh k
ffiffiffiffiffiffi
�i
p� �

k
ffiffiffiffiffiffi
�i
p ; (12)

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q0xT

Xr

r
: (13)

Using the relation P0 ¼ q0c2
0=c, Eq. (9) can be rewritten as

Zc ¼ Z1 f1

ffiffiffiffiffiffiffiffiffi
�ix
x1

r !
f2

ffiffiffiffiffiffiffiffiffi
�ix
x2

r !" #�1=2

; (14a)

kc ¼
x
c0

ffiffiffi
T
p

f2

ffiffiffiffiffiffiffiffiffi
�ix
x2

r !	
f1

ffiffiffiffiffiffiffiffiffi
�ix
x1

r !" #1=2

; (14b)

where the functions f1 and f2 are defined by

f1 zð Þ ¼ 1� tanh z

z
; (15a)

f2 zð Þ ¼ 1þ c� 1ð Þ tanh z

z
; (15b)

and where the parameters of the model are given by

Z1¼q0c0

ffiffiffi
T
p

=X;x1¼Xr=ð3q0TÞ, and x2¼Xr=ð3q0TPrÞ
¼x1�

2, with �¼1=
ffiffiffiffiffi
Pr
p

. The branch cut of the complex square

root functions is chosen as the negative real axis.

For the slit pore model, Condition 4 is straightforwardly

checked as q ¼ q0T=X ¼ Tq0=ðXf1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ix=x1

p
�Þ. Indeed,

from Eq. (B2) in Appendix B, Re[f1]� for x> 0 which

implies that Re[q]� 0, for x> 0.

1. Semi-infinite ground

The slit-pore surface impedance model is first considered

for a semi-infinite ground. It is straightforwardly seen that

ZS,1 is a real model (Condition 1) as ZS;1ðxÞ ¼ ZS;1ð�xÞ.
It is also a passive model (Condition 2) as Re[ZS,1(x)]� 0 in

the whole complex plane due to the square root function.

The causality condition (Condition 3) is now investi-

gated. As ZS,1 is singular for x¼ 0 and as it is not square-

integrable on the real line (Conditions 3.a–3.c) are not

directly checked for ZS,1. Instead, one considers the function

A xð Þ ¼ ZS;1 � Z1

ffiffiffiffiffiffiffiffiffiffiffi
3x1

�ixc

s
x1

x1 � ix

� Z1 1þ
ffiffiffiffiffiffi
x1
p � c� 1ð Þ ffiffiffiffiffiffix2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � ix
p

� �
: (16)

The second and third terms aim at removing the singularity

due to ZS,1 at x¼ 0 and at obtaining a square-integrable

function, respectively. Indeed, for large jxj; jAðxÞj is
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behaving as 1=jxj, which shows that A(x) is square-

integrable on the real line (Condition 3.a).

Then, it must shown that the function A(x) is analytic in

Im(x> 0) (Condition 3.b). Note that this is straightforwardly

satisfied for all functions in A(x) except ZS,1. For ZS,1, the

function under the radical in Eq. (14a) must not cross the

branch cut of the square root function in Im(x> 0). It is

deduced from Eqs. (B4) in Appendix B that for �p=4

� ArgðzÞ � p=4, �p=2 � Arg½f1f2� � p=2, which shows

that f1f2 do not cross the branch cut of the square root func-

tion in Im(x> 0). In addition, as discussed in Appendix B,

the function f1 has only one zero at x¼ 0 and f2 has no

zeroes in Im(x> 0). Therefore, the only singularity of ZS,1
in Im(x> 0) is at x¼ 0 and A(x) is analytic in Im(x> 0).

It remains to show that A(x) is uniformly converging to

0 as jxj tends to infinity for 0�Arg(x)� p (Condition 3.c).

With this aim, the inequality

jA xð Þj � jZS;1 � Z1j þ Z1

ffiffiffiffiffiffiffiffiffi
3x1

cjxj

s
x1

jx1 � jxjj

þ Z1

ffiffiffiffiffiffi
x1
p � c� 1ð Þ ffiffiffiffiffiffix2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx1 � jxjj

p (17)

is first obtained. The second and third term in this equation are

converging uniformly to 0 in Im(x)> 0, as jxj ! 1. This

must then be shown for jZS;1 � Z1j. Using the inequality

jz� 1j2 � jz2 � 1j for Re(z)� 0 (see, e.g., Ref. 10) one gets

jZS;1 � Z1j2 � Z2
1





 c� 1ð ÞF �Kð Þ � F Kð Þ � c� 1ð ÞF �Kð ÞF Kð Þ
1� F Kð Þ½ � 1þ c� 1ð ÞF �Kð Þ

� � 




� Z2

1
c� 1ð ÞjF �Kð Þj þ jF Kð Þj þ c� 1ð ÞjF �Kð ÞjjF Kð Þj

j1� jF Kð Þjjj1� c� 1ð ÞjF �Kð Þjj
;

with FðKÞ ¼ tanhðKÞ=K and K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ix=x1

p
. It is demon-

strated from Eq. (A14) in Appendix A that F(K) tends uni-

formly to 0 as jKj ! 1 in �p/4�Arg(K)� p/4. Therefore,

it is concluded that ZS,1 – Z1 and thus A(x) tend uniformly

to 0 in Arg(x) 2 [0, p] as jxj ! 1. Finally, A(x) satisfy

(Condition 3) and is therefore a causal transform. As the

other terms in Eq. (16) are also causal transforms,17 it is

deduced that ZS,1 is a causal transform.

As a consequence, the slit pore model for a semi-infinite

ground is physically admissible.

2. Rigidly backed layer

The physical admissibility of the surface impedance of a

rigidly backed layer is now investigated. The reality condi-

tion (Condition 1) is straightforwardly checked, as ZS;dðxÞ
¼ ZS;dð�xÞ.

Concerning the passivity condition (Condition 2), it is

first verified that Re[kc]� 0 and Im[kc]� 0 in x> 0. Using

Eq. (B4a) in Appendix B, it is obtained that for x> 0, �p/2

�Arg[f1]� 0 and 0�Arg[f2]� p/2. This shows the

inequality

0 � Arg f2

ffiffiffiffiffiffiffiffiffi
�ix
x2

r !" #
� Arg f1

ffiffiffiffiffiffiffiffiffi
�ix
x1

r !" #
� p;

(18)

which implies that 0�Arg(kc)¼ (Arg[f2] – Arg[f1])/2�p/2

and, hence, Re[kc]� 0 and Im[kc]� 0 in x> 0. Therefore,

using the inequality

Arg½�iz� � Arg½cothð�izÞ� � �Arg½�iz�; (19)

which is valid for Re[z]> 0 and Im[z]> 0,10 one obtains

Arg½Zc� þ Arg½�ikcd� � Arg½ZS;d�
� Arg½Zc� � Arg½�ikcd�: (20)

This implies the inequality

�p
2
� Arg f1½ � � Arg ZS;d½ � �

p
2
� Arg f2½ �; (21)

which, from the preceding comments, yields �p/2

�Arg[ZS,d]�p/2. Therefore, the real part of ZS,d is positive,

which demonstrates that the model of a rigidly backed layer

is passive.

The causality condition (Condition 3) is now investi-

gated. First, one shows that Im[kc]> 0 in Im(x)> 0. For

that, writing x ¼ jxjeih, the argument of kc is given by

Arg kc½ � ¼ hþ 1

2
Arg f2½ � Kð Þ � Arg f1½ � �Kð Þ
� �

; (22)

with K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ix=x1

p
. For 0� h�p/2, one has �p/4

�Arg[K]� 0 which from Eq. (B4a) in Appendix B yields

0 � Arg½kc� � p. This shows that ImðkcÞ > 0 in

ArgðxÞ 2 ½0; p=2�. Similarly, for p=2 � h � p, from Eq.

(B4b) in Appendix B, one has 0 � Arg½kc� � p, which

finally shows that Im(kc)> 0 in ArgðxÞ 2 ½p=2; p� and,

hence, in ArgðxÞ 2 ½0; p�.
This property allows us to consider the function Z

ðnÞ
S;d

¼ ZS;1e2inkcd to demonstrate that the impedance model of a

rigidly backed layer is causal.10 However, Z
ðnÞ
S;d is not square-

integrable on the real-axis as it is singular at x¼ 0. As done

in Sec. II B 1, one considers instead the function BðxÞ
¼ B1ðxÞ � B2ðxÞ, with

B1ðxÞ ¼ Z
ðnÞ
S;de�ixtn � ZS;1e�

ffiffiffiffiffiffiffiffiffiffi
�ixx3

p
tn e�x4tn e�x3=2

5
=
ffiffiffiffiffiffi
�ix
p

tn ;

(23a)
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B2 xð Þ ¼ Z1

ffiffiffiffiffiffiffiffiffiffiffi
3x1

�ixc

s
x1

x1 � ix
1� e�x4tn½ �; (23b)

with tn ¼ 2nd
ffiffiffi
T
p

=c0;
ffiffiffiffiffiffi
x3
p ¼ ð ffiffiffiffiffiffix1

p þ ðc� 1Þ ffiffiffiffiffiffix2
p Þ=2; x4

¼ ffiffiffiffiffiffiffiffiffiffiffi
x1x3
p � x3=2, and x3=2

5 ¼ x1
ffiffiffiffiffiffi
x3
p � ffiffiffiffiffiffi

x1
p

x3 þ x3=2
3 =2.

As for a semi-infinite ground, B2 aims at removing the singu-

larity of Z
ðnÞ
S;d at x¼ 0. The function B is square-integrable

over the real axis, as B1 and B2 decay as e�
ffiffiffiffiffiffiffiffiffiffiffiffi
jxjx3=2
p

tn and

jxj�3=2
for large jxj, respectively. (Condition 3.b) is thus ful-

filled. In addition, B is analytic in Im½x� > 0 (Condition 3.a).

Indeed, in Im½x� > 0, the function under the radical in Eq.

(14b) do not cross the branch cut of the square root function

from Eqs. (B4) in Appendix B. In addition, the branch cuts of

the square root functions in B are located in the x-plane along

the line Re(x)¼ 0 and Im(x)< 0 and the pole in Im[x]< 0.

Finally, one must then show that B is uniformly converging to

0 as jxj ! 1 for Arg(x)2 [0; p] (Condition 3.c). Note that it

is the case for B2 as discussed in Sec. II B 1. Therefore, it

remains to show this property for B1. First, B1 is rewritten as

B1ðxÞ¼ZS;1e�
ffiffiffiffiffiffiffiffiffiffi
�ixx3

p
tn e�x4tn e�x3=2

5
=
ffiffiffiffiffiffi
�ix
p

tn ½eixðx�yÞtn�1�;
(24)

with

x ¼ f2

ffiffiffiffiffiffiffiffiffi
�ix
x2

r !	
f1

ffiffiffiffiffiffiffiffiffi
�ix
x1

r !" #1=2

; (25)

y ¼ 1þ
ffiffiffiffiffiffiffiffiffi
x3

�ix

r
þ x4

�ix
þ x5

�ix

� �3=2

: (26)

A first upper bound is obtained with

jB1ðxÞj � ZS;1e�
ffiffiffiffiffiffiffiffiffiffiffiffi
jxjx3=2
p

tn e�x4tn

� e�x3=2

5
=
ffiffiffiffiffiffi
2jxj
p

tn jeixðx�yÞtn � 1j: (27)

Simplifying and using the relation jez � 1j � jzjejzj,17 one

gets

jB1ðxÞj � ZS;1e�
ffiffiffiffiffiffiffiffiffiffiffiffi
jxjx3=2
p

tn jxjjx� yjtnejxjjx�yjtn : (28)

As e�
ffiffiffiffiffiffiffiffiffiffiffiffi
jxjx3=2
p

tn is uniformly converging to 0, it remains to

show that jxjjx� yj is uniformly bounded as jxj ! 1 for

ArgðxÞ 2 ½0; p�. First, note that Re½x=y� � 0 for sufficiently

large jxj in Im[x]� 0. Indeed, from comments given in

Appendix B, Re(x)� 0 and Im(x)� 0 for ArgðxÞ 2 ½0; p=2�
and Re(x)� 0 and Im(x)� 0 for ArgðxÞ 2 ½p=2; p�. In

addition, the terms in y have the same properties except

the term ðx5=ð�ixÞÞ3=2
which has a negative real part for

Arg(x) close to 0 and to p. This shows that ReðxÞReðyÞ
þ ImðxÞImðyÞ � 0 for sufficiently large jxj, which leads to

Re[x/y]� 0. Using the relation jz� 1j2 � jz2 � 1j for

Re(z)� 0, as in Sec. I, yields

jx� yj � jx2 � y2j1=2: (29)

In addition, one has

jx2 � y2j � 1

j1� jtanh �Kð Þ= �Kð Þk
c� 1

j�Kj jtanh �Kð Þ � 1j þ 1

jKj jtanh Kð Þ � 1jþ 1þ c� 1ð Þ�
jKj2

jtanh Kð Þ � 1j
"

þ 1þ c� 1ð Þ�
jKj3

jtanh Kð Þ � 1j þ 1

jKj4
g4 �ð Þjtanh Kð Þj þ h4 �ð Þ
� �

þ 1

jKj5
g5 �ð Þjtanh Kð Þj þ h5 �ð Þ
� �

þ 1

jKj6
g6 �ð Þjtanh Kð Þj þ h6 �ð Þ
� �

þ g7 �ð Þ
jKj7

jtanh Kð Þj
#
; (30)

where g4, g5, g6, g7, h4, h5, and h6 are functions of �. The

function tanhðzÞ=z is uniformly converging to 0, and the

function tanhðzÞ is uniformly and exponentially converging

to 1, as indicated in Eqs. (A14) and (A17). This shows that

jxjjx� yj � jxjjx2 � y2j1=2 � GðKÞ, where G(K) is a func-

tion uniformly converging to ðg4ð�Þ þ h4ð�ÞÞx1 as

jKj ! 1. Therefore, jxjjx� yj is uniformly bounded in

Im[x]� 0 as jxj ! 1, and, hence, B1 is uniformly con-

verging to 0 in Im[x]� 0 as jxj ! 1. It is concluded that

B is a causal transform. B2 is a causal transform as discussed

in Sec. II B 1. The term ZS;1e�
ffiffiffiffiffiffiffiffiffiffi
�ixx3

p
tn e�x4tn e�x3=2

5
=
ffiffiffiffiffiffi
�ix
p

tn in

B1 is also causal as it is the product of three causal trans-

forms, the first one being ZS,1, as shown in Sec. II B 1, the

second one e�
ffiffiffiffiffiffiffiffiffiffi
�ixx3

p
tn (see Ref. 17), and the third one

e�x3=2

5
=
ffiffiffiffiffiffi
�ix
p

tn . Indeed, the last transform is causal as it can be

rewritten as

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0= �ixð Þ
p

¼
X1
k¼0

�1ð Þk

k!

�ix
x0

� ��k=2

; (31)

with x0 ¼ x3
5t2n. As, the inverse Fourier transform of (�ix)�p

for p> 0 is causal,17 the inverse Fourier transform of

e�x3=2

5
=
ffiffiffiffiffiffi
�ix
p

tn is also causal. Therefore, Z
ðnÞ
S;de�ixtn is a causal

transform. As its inverse Fourier transform is z
ðnÞ
S;dðtþ tnÞ, it is

deduced that z
ðnÞ
S;dðtÞ is null for t< tn and hence is causal.

Finally, ZS,d is also a causal transform by linearity.10

As a consequence, the slit pore model for a rigidly

backed layer satisfies (Conditions 1–3) and is thus physically

admissible.

III. COMPARISONS WITH SHORT RANGE DATA

NT ACOU 104 Ground surfaces: Determination of the

Acoustic Impedance4 describes the fitting of predictions
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based on the Delany and Bazley impedance model to third-

octave data for the difference in levels recorded between ver-

tically separated microphones at a short distance from a

point source (source height 0.5 m, receiver heights at 0.5 and

0.2 m, separation 1.75 m). The fits are used to categorise a

given ground surface in terms of twelve impedance classes

based on values of effective flow resistivity. Figures 2(a) and

2(b) show data obtained in connection with NT ACOU 104

(Ref. 18) and best-fit predictions of the Delany and Bazley,

modified Miki and variable porosity7 impedance models for

two grass covered ground surfaces.

In a similar way to the procedure used in NT ACOU

104,4 the fitting errors (E) of the predictions have been deter-

mined from

E ¼
X

f

½LDMðf Þ � LDCðf Þ�; (32a)

LDC ¼ EAð1Þ � EAð2Þ; (32b)

EA 1ð Þ ¼ 20 lg





1þ QR1

R2

eik R2�R1ð Þ




; (32c)

EA 2ð Þ ¼ 20 lg





1þ QR3

R4

eik R4�R3ð Þ




: (32d)

In Eqs. (32a) and (32b), LDM and LDC are, respectively, the

measured and predicted level difference magnitudes between

microphones at distances R1 and R3 from the source and to

which the corresponding ground-reflected ray path lengths

are R2 and R4. In Eqs. (32c) and (32d), EA(1) and EA(2) are

the predicted excess attenuation magnitudes and Q is the

spherical wave reflection coefficient which depends on the

surface impedance and the source-receiver geometry accord-

ing to Eqs. (33a)–(33d),

Q ¼ Rp þ ð1� RpÞFðwÞ; (33a)

Rp ¼
cos h� b
cos hþ b

; (33b)

FðwÞ ¼ 1þ i
ffiffiffi
p
p

w expð�w2Þerfcð�iwÞ; (33c)

w ¼
ffiffiffiffiffiffiffiffiffi
ikR2

p
ðcos hþ bÞ or w ¼

ffiffiffiffiffiffiffiffiffi
ikR4

p
ðcos hþ bÞ;

(33d)

where h is the (specular) angle of incidence, b is the surface

admittance, and erfc(� � �) is the complementary error

function.

Strictly, the level difference magnitude is not exactly

the same as the difference in two excess attenuation magni-

tudes since the direct path lengths to the two receivers (R1

and R3) are not the same. However, since only the magnitude

of the level difference is used in the comparisons with data,

the approximation in Eq. (32b) is unimportant. Another fac-

tor with respect to the comparisons between data and predic-

tions in Figs. 2 and 3 is that the data are in third octave

bands whereas the predictions are at more closely spaced fre-

quencies. The fitting errors listed in Table II represent the

arithmetic sum of the spectral differences between predicted

and measured spectra at the third octave band centre fre-

quencies between 100 Hz and 2.5 kHz. Although affecting

the absolute error values, this simplification does not affect

the indication they give of the relative goodness of fit. For

example, the fitting errors to NORDTEST long grass site

#20 short range data for the variable porosity and Delany

and Bazley layer models obtained after correcting the narrow

band predictions to third octave predictions are 7.0 and

11.5 dB, respectively.7 While use of either the Delany and

Bazley or the Miki impedance models enables reasonably

good fits to these grassland data, as is the case for many

other examples7 use of the two-parameter variable porosity

impedance model yields better fits.

Figures 3(a) and 3(b) show short range level difference

data for a beech forest floor and gravel in a pit, respectively,

and best-fit predictions using the Delany and Bazley, modi-

fied Miki, three parameter Miki, and slit pore7 hard-backed

FIG. 2. (Color online) NORDTEST third octave band level difference data

(•) [error bars indicate 90% confidence limits (61.65 standard deviation

(SD))] and best fit predictions (a) for long grass (site #20) (Ref. 18) using

the variable porosity model (Ref. 7) (solid line, effective flow resistivity

20 kPa s m�2 and porosity rate 50/m); the Delany and Bazley layer model

(broken line, effective flow resistivity 110 kPa s m�2 and effective layer

depth 0.019 m); and the modified Miki layer model (dashed-dotted line,

effective flow resistivity 100 kPa s m�2 and effective layer depth 0.025 m)

and (b) for lawn (site #30) (Ref. 18) using the variable porosity model (Ref.

7) (solid line, effective flow resistivity 366.5 kPa s m�2 and porosity rate

�79.5/m); the Delany and Bazley model (broken line, effective flow resis-

tivity 746 kPa s m�2); and the modified Miki model (dashed-dotted line,

effective flow resistivity 565 kPa s m�2).
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layer impedance models. The corresponding fitting errors are

listed also in Table II. Comparable third octave band cor-

rected errors for the gravel in a pit site #38 data are 3.7 and

22.3 dB using the slit pore layer and Delany and Bazley layer

models, respectively.7 The structure of the measured spectra

in Fig. 3 is found in the data for four of the sites considered

in Ref. 7 which are intended as representative of deciduous

forest floor and gravel sites. According to Ref. 19, the

Delany and Bazley model (semi-infinite or hard back layer)

fails to enable qualifying fits to short range data for 18 of 44

sites. The majority of these sites are forest floors and gravel

with relatively low flow resistivities. For calculations involv-

ing the three-parameter form of the Miki model and the slit

pore impedance model, the relationship T ¼ 1=
ffiffiffiffi
X
p

is

assumed.7 This means that both the slit pore and three-

parameter Miki models require only two parameters

(effective flow resistivity and porosity) for semi-infinite

layers and the layer depth as a third parameter if the hard-

backed layer versions are used [through Eq. (2)].

Nevertheless the description “three-parameter” is retained to

describe the relevant version of the Miki model. In fitting

predictions using the hard-backed layer versions of the slit

pore model and the three-parameter form of the Miki model,

the flow resistivity, porosity and layer depth were varied

independently.

It was shown in Ref. 7 that the variable porosity model,

despite providing superior fits for grassland, does not fit

these short range forest floor and gravel data as well as the

one parameter models so the fits using the variable porosity

model are not shown in Figs. 3(a) and 3(b). Use of the three-

parameter form of the Miki model to represent the ground

impedance enables significantly better fits to short range data

for lower flow resistivity surfaces (such as forest floors and

gravel) than obtained with the Delany and Bazley and modi-

fied Miki models. However, using the semi-infinite and

hard-backed slit pore layer models it is possible to obtain

even better fits.

IV. COMPARISONS OF PREDICTIONS OVER
GRASSLAND AT LONGER RANGE

A. Frequency-domain predictions

Although the fits to short range level difference magni-

tude data for grassland sites #20 and #30 shown in Figs. 2(a)

and 2(b) are comparably good and would qualify for site

classification according to the NORDTEST criteria, they are

associated with the rather different impedance spectra shown

in Figs. 4(a) and 4(b). Incidentally, it should be noted that

the Delany and Bazley layer model predicts a negative real

part of surface impedance below 150 Hz when using the best

fit parameters for long grass.

Figure 5 illustrates the resulting differences in excess

attenuation (EA) spectra predicted for a source height of 1 m

a receiver height of 1.5 m and a range of 100 m that result

from using three impedance models and the parameter val-

ues giving the best fits to short range data shown in Figs.

2(a) and 2(b). The predictions use Eqs. (34a)–(34f) which

assume Gaussian turbulence20

Lp ¼ 10 log10½hp2i�; (34a)

hp2i ¼ 1

R2
1

þ jQj
2

R2
2

þ 2jQj
R1R2

cos k R2 � R1ð Þ þ h½ �T; (34b)

T ¼ e�r2ð1�qÞ; (34c)

r2 ¼ A
ffiffiffi
p
p
hl2ik2RL0; (34d)

A ¼ 0:5 R > kL2
0; (34e)

or A ¼ 1:0 R < kL2
0; (34f)

where h is the phase of the spherical wave reflection coeffi-

cient, (Q ¼ jQjeih), T is the coherence factor determined by

the turbulence effect, r2 is the variance of the phase fluctua-

tion along a path, q is the phase covariance between adjacent

FIG. 3. (Color online) NORDTEST third octave band level difference data

(•) (a) for a beech forest floor (site #36) and (b) for gravel in a pit (site #38)

(Ref. 18) [error bars indicate 90% confidence limits (61.65 SD)]. Also

shown are best fit predictions using the slit pore layer model [solid lines:

effective flow resistivity (a) 31.9 kPa s m�2, (b) 33.6 kPa s m�2; porosity (a)

0.35, (b) 0.33; effective layer depth (a) 0.07 m, (b) 0.068 m]; the Delany and

Bazley layer model [broken lines: effective flow resistivity (a) 61.4 kPa s

m�2, (b) 55 kPa s m�2; effective layer depth 0.04 m for (a) and (b)]; modi-

fied Miki layer model [dashed-dotted lines: effective flow resistivity (a)

90 kPa s m�2, (b) 50 kPa s m�2; effective layer depth 0.04 m for (a) and (b)];

and the three-parameter Miki layer model [dotted lines, effective flow resis-

tivity (a) 18 kPa s m�2, (b) 13.8 kPa s m�2; porosity (a) 0.46, (b) 0.462;

effective layer depth (a) 0.056 m, (b) 0.057 m].
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paths (e.g., direct and reflected), hl2i is the variance of the

index of refraction, R is the horizontal range, and L0 is the

outer scale of turbulence. The predictions assume moderate

turbulence (refractive index variance hl2i ¼ 10�6 and outer

length scale L0¼ 1 m).

Use of the (physically inadmissible) Delany and

Bazley and modified Miki impedance models with parame-

ter values that yield best fits at short range for the

NORDTEST long grass and lawn sites leads to substantial

differences in predictions at 100 m range, particularly at

and below 500 Hz, to those obtained using physically ad-

missible models that enable better fits at short range.

Predictions of signal waveforms at 100 m range allowing

for refraction rather than turbulence and based on parameter

values corresponding to the short range data fits in Figs.

2(a) and 2(b) are considered in Sec. IV B.

Spatial and seasonal variations of ground impedance for

three types of ground: an artificial grass football (soccer)

pitch, a grass lawn and a “natural” grass-covered ground

have been reported by Guillaume et al.12 At each site meas-

urements were made at a series of locations of spectra of the

level difference between vertically separated microphones at

heights of 0.6 and 0 m at a distance of 4 m from an omnidir-

ectional source at height of 0.6 m. Measurement campaigns

were carried out in summer and winter when the grounds

were dry and moist, respectively. The resulting level differ-

ence data were fitted using hard-backed layer versions of

two semi-empirical impedance models (Delany and Bazley

and Miki), the fitted parameters are effective flow resistivity

and effective layer thickness. The Delany and Bazley model

predictions for both the artificial grass and the grass lawn

were found to include negative real parts of the fitted imped-

ance at frequencies below 100 Hz. Although the Miki model

was found to predict positive values for the real part of fitted

impedance of these surfaces, the original Miki model coeffi-

cients and exponents were used. As discussed elsewhere,10,15

despite its intention, the original Miki model leads to

physically-inadmissible predictions at low frequencies.

Nevertheless the parameter values resulting from fits using

the Miki model with the original coefficients and exponents

are reported in the analysis here.

The variable porosity model has been shown to be

physically admissible10 and to give good fits to many short

range measurements over grassland [Figs. 2(a) and 2(b) and

Ref. 7]. For easier comparison between the equivalent vari-

able porosity parameter values and the best fit Miki layer

model parameters, the second of the two parameters in the

variable porosity model is interpreted as effective layer

thickness de rather than porosity rate ae (de¼ 4/ae).
7

Table III lists mean, maximum, and minimum (original)

Miki hard-backed layer model parameter values fitted to the

measured level difference spectra.12 The level difference

spectra predicted for the short range measurement geometry

using the Miki layer model have been fitted using the vari-

able porosity model. The resulting parameter values are

listed in Table III also.

Figure 6(a) shows an example of the short range level

difference magnitude spectra predicted by the Miki model

TABLE II. Errors in fitting short range propagation NORDTEST level dif-

ference spectra for five types of porous ground (Ref. 18) calculated using

Eqs. (32) and (33) and various impedance models.

Ground type Impedance model Error (dB)

Long grass (site #20) (Ref. 18) Variable porosity (Ref. 7) 9.7

Delany and Bazley layer 12.1

Modified Miki layer 13.6

Lawn (site #30) (Ref. 18) Variable porosity (Ref. 7) 10.2

Delany and Bazley 13.9

Modified Miki 15.2

Pine forest floor (site #5) (Ref. 18) Slit pore 4.9

Delany and Bazley 19.8

Modified Miki 21.5

Three-parameter Miki 8.6

Beech forest floor (site #36) (Ref. 18) Slit pore layer 8.7

Delany and Bazley layer 26.7

Modified Miki layer 27.6

Three-parameter Miki layer 16.8

Gravel in a pit (site #38) (Ref. 18) Slit pore layer 6.8

Delany and Bazley layer 26.6

Modified Miki layer 26.6

Three-parameter Miki layer 14.4

FIG. 4. (Color online) Impedance spectra corresponding to the best fits to

short range level difference for (a) long grass, NORDTEST site #20 [Fig.

2(a)] and (b) lawn, NORDTEST site #30 [Fig. 2(b)] in Fig. 2. The line types

correspond to the impedance models in the same way as those in Figs. 2(a)

and 2(b).
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FIG. 5. (Color online) Comparisons of excess attenuation spectra in a turbu-

lent atmosphere (hl2i ¼ 10�6; L0 ¼ 1 m) for source height 1 m, receiver

height 1.5 m, and range 100 m using impedance models and parameter val-

ues (see Table II) giving best fits to short range data obtained over (a) long

grass, NORDTEST site #20 [Fig. 2(a)] and (b) lawn, NORDTEST site #30

[Fig. 2(b)]. The line types correspond to those in Figs. 2(a) and 2(b).

TABLE III. Mean, maximum, and minimum Miki parameter values that give best fits to the level difference spectra measurements over a grass lawn and

“natural” grassland (Ref. 12) and the equivalent variable porosity impedance model parameters that yield nearly identical level difference magnitude predic-

tions for the short range measurement geometry.

Miki model parameters value Variable porosity model parameters value

Summer Winter Summer Winter

Season/ Ground

Effective flow

resistivity

(kPa s m�2)

Effective

thickness (m)

Effective flow

resistivity

(kPa s m�2)

Effective

thickness (m)

Effective flow

resistivity

(kPa s m�2)

Effective

thickness (m)

Effective flow

resistivity

(kPa s m�2)

Effective

thickness (m)

Grass lawn

Mean 354 0.0157 732 0.0058 80 0.035 200 0.011

Maximum 510 0.0116 990a 0.0042 105 0.023 285 0.008

Minimum 246 0.0138 409 0.0082 60 0.035 115 0.018

Natural ground

Mean 173 0.0183 243 0.0158 40 0.042 55 0.037

Maximum 355 0.0148 460 0.0127 60 0.035 110 0.028

Minimum 73 0.025 75 0.026 19.3 0.055 20 0.062

aThe value of 990 kPa s m�2 is the maximum permitted for effective flow resistivity in the fitting process (Ref. 12). It is stated as the “best fit” value for six of

the winter measurements over the grass lawn.

FIG. 6. (a) Level difference spectra predicted for the short range geometry

used by Guillaume et al. (Ref. 12) using the Miki (solid line) and variable

porosity (broken line) models with the parameter values for the mean winter

grass lawn listed in Table III and (b) the corresponding predicted impedance

spectra [line types as for (a)].
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with the mean winter grass lawn parameters listed in Table

III and the best fit predictions obtained using the variable po-

rosity model using the relevant parameter values in Table

III. Figure 6(b) shows the predictions of the corresponding

impedance spectra. Again it should be noted that, while the

predicted level difference magnitude spectra are nearly iden-

tical, the predicted impedance spectra are significantly

different.

Since fewer measurements were made over the artificial

grass and, in any case it is less representative of typical

grassland of interest to outdoor sound predictions, only pre-

dictions using the best fit grass lawn and “natural” ground

parameters are considered further.

The overall seasonal change in the short range level dif-

ference spectra between summer and winter conditions was

found to be greater than the spatial variability at both sites

and this is reflected in the parameter values listed in Table

III. The parameters corresponding to the grass lawn show

more seasonal variation than those for the “natural” ground.

The ranges of mean effective flow resistivity for the grass

lawn and grass-covered natural ground, according to the

variable porosity model (60 to 200 kPa s m�2 and 19.3 to

110 kPa s m�2, respectively), are at the lower end of the

range for 26 grass-covered grounds (21.7 to 1296 kPa s m�2)

reported elsewhere.7

Figures 7 and 8 show that, at a long range, use of the

variable porosity model with parameters that give rise to

short range level difference spectra more or less identical to

those predicted using the Miki model best fits result in pre-

dictions of larger ground effect maxima at lower frequencies

than predicted using the Miki model. The predictions of

excess attenuation spectra in Figs. 7 and 8 allow only for

very weak turbulence (Gaussian: mean variance 10�10, outer

scale length 1 m)20 since the comparable plots of predictions

based on the original Miki model in Ref. 12 do not include

turbulence effects. The differences between 500 m range

excess attenuation predictions caused by use of the different

impedance models are greater than those due to the observed

spatial variations at either grassland site and comparable

with those observed due to seasonal differences.

FIG. 7. (Color online) Predictions of the excess attenuation between a point

source and a receiver, both at heights of 2 m and separated by a distance of

500 m, above a grass lawn in (a) summer and (b) winter, using the Miki im-

pedance model (thin lines) and the variable porosity impedance model (thick

lines) and the corresponding mean (solid lines), maximum (broken lines)

and minimum (dashed-dotted lines) parameter values listed in Table III.

FIG. 8. (Color online) Predictions of the excess attenuation between a

point source and a receiver, both at heights of 2 m and separated by a dis-

tance of 500 m, above a natural ground in (a) summer and (b) winter, using

the Miki impedance model (thin lines) and the variable porosity imped-

ance model (thick lines), with the respective mean (solid lines), maximum

(broken lines), and minimum (dashed-dotted lines) parameter values listed

in Table III.
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B. Time-domain predictions

In this section, time-domain predictions of the sound

propagation in an inhomogeneous atmosphere over imped-

ance planes are performed, using the impedance models

obtained from the short range data in Sec. III. For that, a

time-domain solver of the linearized Euler equations pre-

sented in Refs. 21 and 22 is employed. A three-

dimensional geometry (x, y, z) is considered with a domain

size of [�5 m; 105 m]� [�13.8 m; 13.8 m]� [0 m; 20 m].

The spatial derivatives are evaluated using the Fourier

pseudospectral method in the horizontal directions, i.e., in

the x- and y-direction, with constant spatial steps Dx¼Dy
¼ 0.14 m and optimized finite-difference schemes23 in the

vertical direction, i.e., in the z-direction, with constant spa-

tial step Dz¼ 0.048 m. The time step is set to 7� 10�5 s

and 4500 time iterations are performed. A time-domain

impedance boundary condition is implemented at the

ground.21,24

A logarithmic sound speed profile is considered:

c zð Þ ¼ c0 þ ac log
zþ z0

z0

; (35)

with z0¼ 0.1 m and ac is set to �2 m s�1 for an upward-

refracting atmosphere and to 2 m s�1 for a downward-

refracting atmosphere. The acoustic pressure p and velocity

v are initialized by setting

p r; t ¼ 0ð Þ ¼ q0c2
0 exp

jr� rSj2

B2

� �
; (36a)

vðr; t ¼ 0Þ ¼ 0; (36b)

where the source is centered at rS ¼ ð0; 0; zSÞ, with zS¼ 1 m

and with B¼ 0.25 m.

Figures 9 and 10 show the time series of the acoustic

pressure at a receiver located at x¼ 100 m, y¼ 0 m, and

z¼ 2 m obtained using the impedance models and parameters

values giving best fits over long grass, NORDTEST site #20,

and lawn, NORDTEST site #30, respectively. Note that the

Delany and Bazley model has been disregarded in these time-

domain predictions as it is a non-causal model. For long grass,

the time series obtained with the modified Miki model signifi-

cantly differ from those obtained using the variable porosity

models giving better fit. Thus, for a downward refracting

atmosphere in Fig. 9(a), while the predicted first arrivals for t
between 0.287 and 0.291 s present similar shapes, the peak

FIG. 9. (Color online) Time series at the acoustic pressure obtained at a re-

ceiver at x¼ 100 m, y¼ 0 m, and z¼ 2 m (a) for a downward-refracting and

(b) an upward-refracting atmosphere using impedance models and parame-

ters values (see Table II) giving best fits to short range data obtained over

long grass, NORDTEST #20: (solid line) variable porosity and (dashed-dot-

ted line) modified Miki impedance models.

FIG. 10. (Color online) Time series at the acoustic pressure obtained at a re-

ceiver at x¼ 100 m, y¼ 0 m, and z¼ 2 m (a) for a downward-refracting and

(b) an upward-refracting atmosphere using impedance models and parame-

ters values (see Table II) giving best fits to short range data obtained over

lawn, NORDTEST #30: (solid line) variable porosity and (dashed-dotted

line) modified Miki impedance models.
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value of the pressure is predicted to be somewhat less (about

67 instead of 82 Pa) when using the variable porosity model

rather than the modified Miki model. In addition, the pre-

dicted low-frequency tails observable for t> 0.291 s are

remarkably different. For an upward refracting atmosphere in

Fig. 9(b), the signal has mainly a low-frequency content and,

in accordance with the previous statements, the times series

of the pressure are seen to significantly differ. For lawn, the

time-domain predictions using the variable porosity and the

modified Miki model are in a closer agreement. In particular,

this is observed in Fig. 10(b) for an upward-refracting atmos-

phere. However, for a downward-refracting atmosphere in

Fig. 10(a), the peak values of the acoustic pressure are again

noticeably different, as the predicted maximum amplitude is

80 Pa using the variable porosity model but is only 60 Pa

using the modified Miki model.

V. CONCLUDING REMARKS

It has been demonstrated that, in common with the

single-parameter semi-empirical Delany and Bazley model on

which they are based, three-parameter and modified Miki

models result in predictions of negative values of the real part

of complex effective density for small values of frequency di-

vided by flow resistivity when considering ranges of fre-

quency and flow resistivity of interest to outdoor sound

predictions. This means that they are unsuitable for represent-

ing outdoor ground surfaces particularly if they are externally

reacting. On the other hand, square root models (including

phenomenological and Hamet models)10 and a two-parameter

slit pore impedance model do not lead to non-physical predic-

tions. Also it has been shown that the slit pore impedance

model for semi-infinite or finite hard-backed layer impedance

satisfies all requirements for physical admissibility.

In addition it has been further demonstrated that use of

the Miki-based models does not enable as good fits of data

for short range propagation as do (a) the two-parameter

variable porosity model over grassland and (b) the two-

parameter slit pore model and its three-parameter hard-

backed layer version over forest floors and gravel.

Use of semi-empirical impedance models such as those

of Delany and Bazley and Miki for representing outdoor

ground impedance has been popular since (i) either only a sin-

gle parameter is required or two if hard-backed layer versions

are used and (ii) they give tolerable agreement with data

obtained over grassland and soils. However, there are three

considerations that make the use of these semi-empirical mod-

els inadvisable when making outdoor sound predictions. First,

these models are physically inadmissible. Second, they do not

yield as good fits to short range ground characterisation data

as alternative physically admissible models even when such

models use only two parameters. For grassland the variable

porosity model enables better fits. For low flow resistivity

surfaces such as forest floors and gravel, slit pore layer models

yield better fits. The three-parameter form of the Miki model

enables similar agreement over low flow resistivity surfaces

to that obtained by using physically admissible models such

as the slit pore model. However, it should be noted that, in a

study of the acoustical properties of green roofs (vegetation

plus soil substrates), data fitting using the three-parameter

Miki model was found to require non-physical values of the

parameters (porosity greater than 1 and tortuosity less

than 1).25 Third, the fact that short range level difference mag-

nitude data can be fitted by using significantly difference

impedance spectra means that use of the semi-empirical

single-parameter impedance models leads to substantial dif-

ferences in frequency- and time-domain predictions at 100

and 500 m range compared with those obtained by using

physically admissible ground impedance models. The differ-

ences between excess attenuation predictions at 500 m range

associated with use of physically admissible impedance mod-

els instead semi-empirical physically inadmissible models are

greater than those predicted due to the observed spatial varia-

tions at two grassland sites and comparable with those pre-

dicted at these sites due to observed seasonal differences.

The widespread use of semi-empirical impedance model

with parameter values deduced from short range level differ-

ence magnitude fits rather than fits to the same data using al-

ternative physically admissible two-parameter models to

represent ground impedance adds an avoidable uncertainty to

long range outdoor sound predictions. The standards and pre-

diction schemes mentioned in the Introduction that recom-

mend the Delany and Bazley model as a default choice should

include a cautionary acknowledgement of the drawbacks of

this model for representing outdoor ground impedance and

should encourage either use of complex level difference spec-

tra for direct model-independent deduction of ground imped-

ance or other, preferably physically admissible, models

including the two-parameter version of the slit pore model

which has hitherto not featured in any standard or prediction

scheme.

As a final comment we note that in specifying twelve

and seven, respectively, effective flow resistivity classes

NORDTEST ACOU 104 (Ref. 4) and the HARMONOISE

report5 imply that the Delany and Bazley model can be used

for all ground surfaces. While it is acknowledged in the

HARMONOISE report5 that a different model (the Hamet

model9) should be used for layered surfaces including porous

asphalt, the results obtained in Ref. 7 and in this paper

emphasize the fact that single impedance model should not

expected to provide adequate representation of the acoustical

properties of all ground surfaces.
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APPENDIX A: PROPERTIES OF THE FUNCTIONS
tanh (z) AND F (z) 5 tanh (z)/z

Some properties of the function FðzÞ ¼ tanhðzÞ=z are

demonstrated in this appendix. First, it is shown that
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for Arg zð Þ 2 0;
p
4

� �
; Im

tanh zð Þ
z

� �
� 0; (A1a)

for Arg zð Þ 2 � p
4

; 0

� �
; Im

tanh zð Þ
z

� �
� 0: (A1b)

With this aim, by noting that the function tanh can be written

for a complex number z¼ xþ iy as17

tanh zð Þ ¼ sinh 2xð Þ þ i sin 2yð Þ
cosh 2xð Þ þ cos 2yð Þ

; (A2)

one has

tanh zð Þ
z
¼ 1

xþ iy

sinh 2xð Þ þ i sin 2yð Þ
cosh 2xð Þ þ cos 2yð Þ

: (A3)

The imaginary part of the function tanhðzÞ=z is thus given by

Im
tanh zð Þ

z

� �
¼ 1

jzj2
x sin 2yð Þ � y sinh 2xð Þ
cosh 2xð Þ þ cos 2yð Þ

: (A4)

In the first quadrant of the complex plane (x� 0 and y� 0),

sinðyÞ � y and x � sinhðxÞ, which yields Eq. (A1a).

Similarly, in the fourth quadrant (x� 0 and �y� 0),

sinð�yÞ � �y and x � sinhðxÞ, which yields Eq. (A1b).

Then, it is shown that

for Arg zð Þ 2 �
p
4

;
p
4

� �
; Re

tanh zð Þ
z

� �
� 0: (A5)

For that, the real part of the function tanhðzÞ=z is given from

Eq. (A3) by

Re
tanh zð Þ

z

� �
¼ 1

jzj2
x sinh 2xð Þ þ y sin 2yð Þ
cosh 2xð Þ þ cos 2yð Þ

: (A6)

Introducing z ¼ Reih, this yields

Re
tanh zð Þ

z

� �
¼ 1

R

coshsinh 2Rcoshð Þþsinhsin 2Rsinhð Þ
cosh 2Rcoshð Þþcos 2Rsinhð Þ :

(A7)

For h 2 [0;p/4], one has sinð2R sin hÞ � �2R sin h and

sinhð2R cos hÞ � 2R cos h. As cos h and sin h are positive,

one obtains the inequality

cos h sinhð2R cos hÞ þ sin h sinð2R sin hÞ

� 2Rð cos2h� sin2hÞ � 0; (A8)

which shows that Re½tanhðzÞ=z� � 0. A similar inequality is

also obtained for h 2 [�p/4;0], which demonstrate Eq. (A5).

In addition, one has also the property

for Arg zð Þ 2 � p
4

;
p
4

� �
;





 tanh zð Þ
z





 � 1: (A9)

Using the relation17

jtanh xþ iyð Þj ¼ cosh 2xð Þ � cos 2yð Þ
cosh 2xð Þ þ cos 2yð Þ

 !1=2

; (A10)

the modulus of tanh can be obtained through

jtanh Reihð Þj ¼ cosh 2R cos hð Þ � cos 2R sin hð Þ
cosh 2R cos hð Þ þ cos 2R sin hð Þ

 !1=2

:

(A11)

The inequality in Eq. (A9) is therefore equivalent to

cosh 2R cos hð Þ � cos 2R sin hð Þ
R2

� cosh 2R cos hð Þ þ cos 2R sin hð Þ; (A12)

which can be demonstrated by checking the coefficients of

each term in the Maclaurin series of both functions. In

details, by noting f ðRÞ ¼ ðcoshð2R cos hÞ � cosð2R sin hÞÞ=
R2 and gðRÞ ¼ coshð2R cos hÞ þ cosð2R sin hÞ, one has

f Rð Þ ¼
X1
n¼0

anR2n;with

an ¼ 22nþ2 cos2nþ2hþ �1ð Þn sin2nþ2h
2nþ 2ð Þ! ; (A13a)

g Rð Þ ¼
X1
n¼0

bnR2n;with bn ¼ 22n cos2nhþ �1ð Þn sin2nh

2nð Þ!
:

(A13b)

For h 2 [�p/4, p/4], it is straightforwardly checked that

0� an� bn, which yields that f(R)� g(R) and gives finally

Eq. (A9).

It is also shown that

F zð Þ tends uniformly to 0 as jzj ! 1 in

� p
4
� Arg zð Þ �

p
4
: (A14)

For that, a first upper bound of F(z) is obtained using Eq.

(A11),

jF zð Þj �
1

R

cosh 2R cos hð Þ þ 1

cosh 2R cos hð Þ � 1

 !1=2

: (A15)

The function in this inequality is decreasing with cos h and,

hence, its maximum is obtained for h¼6p/4. This leads to

jF zð Þj � 1

R

cosh
ffiffiffi
2
p

R
� �

þ 1

cosh
ffiffiffi
2
p

R
� �

� 1

 !1=2

; (A16)

which shows that F(z) tends uniformly to 0 in ArgðzÞ
2 ½�p=4; p=4� as R!1.
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Finally, it is demonstrated that

tanh zð Þ tends uniformly to 1 as jzj ! 1 in

� p
4
� Arg zð Þ � p

4
: (A17)

Indeed, from Eq. (A2), one has

jtanh zð Þ � 1j2

¼ e�2R cos h � cos 2R sin hð Þ
� �2 þ sin2 2R sin hð Þ

cosh 2R cos hð Þ þ cos 2R sin hð Þð Þ2

� 3

cosh 2R cos hð Þ � 1ð Þ2

� 3

cosh
ffiffiffi
2
p

R
� �

� 1
� �2

;

which shows that tanhðzÞ is converging exponentially and

uniformly to 1 in ArgðzÞ 2 ½�p=4; p=4� as R!1.

APPENDIX B: APPLICATION TO F1 AND F2

In this appendix, the relations obtained in Appendix A

are used to obtain some properties of the functions f1(z) and

f2(z) defined in Eqs. (15) in Arg(z) 2 [�p/4, p/4].

First, the zeros of these functions are investigated. As

Eq. (A5) implies Re[f2]� 1, it is concluded that f2 has no

zeroes in this region of the complex plane. Note that

f1(z¼ 0)¼ 0. For z¼ xþ iy 6¼ 0, f1(z)¼ 0 implies that

Im½tanhz=z� ¼ 0, which yields from Eq. (A4),

sinh 2xð Þ
2x










 ¼ sin 2yð Þ

2y










: (B1)

As jsinhð2xÞj � j2xj and j sinð2yÞj � j2yj, this equality is

possible only when jsinhð2xÞj ¼ j2xj and j sinð2yÞj ¼ j2yj,
which implies x¼ 0 and j sinð2yÞj ¼ j2yj. Therefore, in

Arg(z) 2 [�p/4; p/4], the only zero of f1 is 0.

From Eqs. (A5) and (A9), it is deduced that

For Arg zð Þ 2 � p
4

;
p
4

� �
; Re f1½ � zð Þ � 0 and Re f2½ � zð Þ � 0:

(B2)

Moreover, Eqs. (A1) lead to

For Arg zð Þ 2 �
p
4

; 0

� �
; Im f1½ � � 0 and Im f2½ � � 0;

(B3a)

For Arg zð Þ 2 0;
p
4

� �
; Im f1½ � � 0 and Im f2½ � � 0:

(B3b)

Finally, it is concluded that

For Arg zð Þ 2 �p
4

;0

� �
; �p

2
�Arg f1½ � � 0and

0�Arg f2½ � �
p
2
; (B4a)

For Arg zð Þ 2 0;
p
4

� �
; 0 � Arg f1½ � �

p
2

and

� p
2
� Arg f2½ � � 0: (B4b)
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