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Sound propagation over the ground with a random spatially-varying surface admittance is investi-

gated. Starting from the Green’s theorem, a Dyson equation is derived for the coherent acoustic

pressure. Under the Bourret approximation, an explicit expression is deduced and an effective

admittance that depends on the correlation function of the admittance fluctuations is exhibited. An

asymptotic expression at long range is then obtained. Influence of the randomness on the amplitude

of the reflection coefficient and on the wavenumbers of the surface wave component is analyzed.

Afterwards, numerical simulations of the linearized Euler equations are carried out and the coherent

pressure obtained by an ensemble-averaging over 200 realizations of the admittance is found to be

in good agreement with the analytical solution. In the considered examples of grounds, the mean

intensity is shown to be similar to the intensity in the non-random case, except near interferences

that are smoothened out due to randomness. It is however exemplified that the intensity fluctuations

can be large, especially near destructive interferences. VC 2017 Acoustical Society of America.
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I. INTRODUCTION

Predicting outdoor sound propagation at long range

remains a tough challenge. Recent developments in numerical

methods have allowed to consider more and more complex

wave effects (see, e.g., Refs. 1–4). Numerical solutions of the

parabolic or linearized Euler equations have proved to com-

pare favorably with measured acoustical fields in realistic envi-

ronments with mixed grounds, non-flat terrain and

inhomogeneous atmosphere, e.g., Refs. 5 and 6. Nevertheless,

the input parameters of these high-fidelity simulations are

required to be sufficiently accurate in order to obtain reliable

output data, which is not always possible. For instance, a pre-

cise knowledge of the state of the atmosphere is impracticable,

due to the inherent randomness of turbulence, among other

reasons. This leads therefore to uncertainties in the sound pres-

sure level (SPL), as discussed, e.g., in Refs. 4 and 7.

Sources of uncertainties in the acoustic properties of

ground surfaces are also numerous. First, these are related to

the current measurements methods, which are based in a

large majority on the two-microphone or transfer function

method.8–11 A possible mismatch in gain or phase between

the microphones or uncertainties in the exact position of the

source or the microphones would lead to uncertainties in the

transfer function and hence the surface impedance.9

Moreover, the parameters of an impedance model, instead of

the impedance itself, are often deduced from the measure-

ments of the transfer function. Depending on the choice of

the model, predicted SPL at long range can be significantly

different.10 Second, the impedance measurements are local

in time and space. However, the surface ground properties

vary according to the time-of-the-day, as they depend for

instance on the soil moisture.12 The monthly or seasonal var-

iations are also important, which has be shown for instance

in the measurements reported by Gauvreau.13 The time var-

iations of surface impedance must therefore be accounted for

in predictions of long-term SPLs. Besides, even if a ground

surface is apparently uniform, its acoustic properties can

have large spatial variations. This was recently highlighted

by Guillaume et al.11 who have determined the parameters

of a surface impedance model along 50 m lines at measure-

ment points spaced by 3 m and for several ground types. The

spatial variations were significant as the normalized standard

deviations were between 5% and 30%. The corresponding

variation for the admittance and impedance was about 10%

for synthetic surfaces and between 10% and 40% for natural

grounds.

Consequence of the uncertainties in the ground properties

on the SPL predictions has been partly investigated. Ostashev

et al.14 have treated the case of a homogeneous admittance

plane with random properties. After prescribing probability

density functions for the flow resistivity, tortuosity, and poros-

ity of the ground surface, the statistics of the sound pressure at

long range were computed using the analytical solution for a

homogeneous plane. The main results of their study are first

that the mean intensity, which corresponds to the mean SPL,

is almost identical to the intensity obtained for the mean value

of the ground characteristics, and second that the standard

deviation of the intensity fluctuations increases with the dis-

tance, meaning that for a particular realization of the ground

parameters, larger deviations of the SPL from the mean value

can be obtained as the range increases. The influence of ran-

dom spatial variations of the ground properties was first

treated by Watson and Keller.15,16 The authors consider foura)Electronic mail: didier.dragna@ec-lyon.fr
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types of boundaries, and among them a spatially-varying

admittance plane. In Ref. 15, they obtain analytical expressions

for the first two statistical moments, based on the regular per-

turbation method. In particular, a mean reflection coefficient

was determined and an effective admittance, which depends on

the admittance spatial correlation function, was obtained. In

Ref. 16, they investigate the same problems using another per-

turbation method; namely, the smoothing method. In both

papers, the unperturbed solution is that for a zero-mean admit-

tance plane, which is a crude approximation for ground surfa-

ces. More recently, Guillaume et al.11 have also examined the

influence of spatial variations of the surface impedance. Based

on their measurements, they have compared SPL predictions

for a homogeneous ground using measured mean values of the

grounds parameters to those using these mean values plus or

minus the measured standard deviations. At middle and long

ranges, SPLs were almost the same for the synthetic surface,

while for natural grounds, the variability was significant for fre-

quencies below 600 Hz with deviations that can reach 10 dB.

The objectives of the paper are twofold: (1) to extend

the analytical solution for the mean pressure for a ground

with a spatially-varying admittance obtained by Watson and

Keller, and (2) to investigate the intensity fluctuations and

compare them to those obtained for a ground with a homoge-

neous random admittance.

The paper is organized as follows. In Sec. II, an analytical

solution for the mean acoustic pressure over the ground with a

random spatially-varying admittance is derived and an asymp-

totic expression is obtained in the far field. An effective

admittance is deduced and its variation with the correlation

length and standard deviation of the admittance fluctuations is

discussed. In Sec. III, numerical simulations, based on the res-

olution of the linearized Euler equations in the time domain,

are carried out. The mean pressure computed from ensemble-

averaging over 200 realizations of the random admittance is

compared to the analytical solution. Finally, the mean inten-

sity and intensity fluctuations are investigated.

II. MEAN ACOUSTIC FIELD AND EFFECTIVE
ADMITTANCE

A. Integral formulation for the Green’s function

The study is concerned with the propagation of acoustic

waves over the ground with a random spatially-varying

admittance. This implies that the spatial variations of the

admittance are not known, but that some statistical proper-

ties of these variations are available. The solution for a reali-

zation of the spatially-varying admittance is therefore not of

interest hereafter, but the statistical properties of the sound

pressure field are investigated.

The scheme of the problem is depicted in Fig. 1. For the

sake of simplicity, we consider a two-dimensional (2D)

problem and we denote by r¼ (x, z) the Cartesian coordi-

nates. The acoustic field is generated by a point source of

angular frequency x. The acoustic wave number is k0¼x/

c0, where c0¼ 340 m s–1 is the sound speed. The source and

the receiver are located, respectively, at r0¼ (x0, z0) and

r¼ (x, z). The ground is characterized by its normalized

spatially-varying admittance b(x). We denote by h…i the

average operator over an ensemble of realizations of b(x)

and we assume that the average admittance hbi is constant.

The admittance is split into bðxÞ ¼ hbi þ b0ðxÞ, where b0ðxÞ
is the fluctuating admittance. By definition, hb0ðxÞi ¼ 0.

One introduces the Green’s function G of the perturbed

problem, which is the scattering of acoustic waves by an

inhomogeneous ground of admittance b(x). It satisfies the

Hemholtz equation:

ðDþ k2
0ÞGðr; r0Þ ¼ dðr� r0Þ; (1)

where d is the Dirac delta function and D is the Laplace opera-

tor, along with the boundary condition at the plane z¼ 0,

@

@z
þ ik0bðxÞ

� �
Gðx; z ¼ 0; r0Þ ¼ 0: (2)

In addition, one introduces the Green’s function G0 of the

unperturbed problem, which is the scattering of acoustic

waves by a homogeneous ground of admittance hbi. It also

satisfies the Helmholtz equation

ðDþ k2
0ÞG0ðr; r0Þ ¼ dðr� r0Þ; (3)

but with the boundary condition at the ground z¼ 0

@

@z
þ ik0hbi

� �
G0 x; z ¼ 0; r0ð Þ ¼ 0: (4)

Applying the Green’s theorem:ð
V

GDG0 � G0DG½ �dV ¼
ð

S

G
@G0

@n
� G0

@G

@n

� �
dS (5)

over the half-space z� 0, one gets the integral equation

Gðr; r0Þ ¼ G0ðr; r0Þ þ
ð1
�1

G0ðr; r1ÞVðx1ÞGðr1; r0Þdx1;

(6)

with the random surface potential Vðx1Þ ¼ �ik0b
0ðx1Þ. This

equation has been obtained previously by Chandler-Wilde

and Hothersall [Eq. (6) of Ref. 17].

B. Analytical solution in the Fourier space

In this section, an analytical expression is sought for the

average or coherent Green’s function, denoted thereafter by

FIG. 1. (Color online) Propagation of acoustic waves over the ground with a

spatially-varying surface admittance.
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hGi. With this purpose, a standard method to treat wave

propagation in random media or above random boundaries,

namely, the diagram technique (see, e.g., Refs. 18–20), is

employed. In acoustics, it has been used formerly to derive

the average sound field or effective media quantities for mul-

tiple scattering problems, such as the propagation through a

turbulent medium4 or through a layer of scatterers.21

Recently, based on this approach, Faure et al.22 have pro-

posed an effective admittance to represent the reflection over

rough surfaces.

Following Ishimaru et al.,23 it can be shown from Eq.

(6) that hGi satisfies the Dyson equation,

hGðr; r0Þi ¼ G0ðr; r0Þ þ
ð ð1
�1

G0ðr; r1ÞMðr1; r2Þ

� hGðr2; r0Þidx1dx2; (7)

where r1¼ (x1, z1¼ 0) and r2¼ (x2, z2¼ 0) are two points at

the ground surface and the operator M is referred to as the

mass or self-energy operator in the literature. It corresponds

to the summation of all possible connected diagrams contrib-

uting to hGi.18 The mass operator is generally not explicitly

known, and it must be approximated in order to get an ana-

lytical expression for the mean field. The usual approxima-

tion, called the Bourret approximation, is to keep only the

first term of the mass operator,

Mðr1; r2Þ � hVðx1ÞG0ðr1; r2ÞVðx2Þi
¼ �k2

0hb0ðx1Þb0ðx2ÞiG0ðr1; r2Þ: (8)

The diagrammatic form of the Dyson equation with the exact

mass operator and with the Bourret approximation is shown

in Fig. 2. The range of validity of the Bourret approximation

is discussed in Appendix B. Denoting, respectively, by rb

¼
ffiffiffiffiffiffiffiffiffiffi
hb02i

p
and by L the standard deviation (std) and the cor-

relation length of the admittance fluctuations, a necessary

condition in the long-wavelength limit (k0L� 1) is jrbj2k0L
� 1. In the short-wavelength limit (k0L � 1), it is required

that jrbj2 � Re½hbi�2 if Im½hbi� 	 0 and jrbj2 � jhbij2 if

Im½hbi� � 0.

Under the Bourret approximation, the Dyson equation is

written as

hGðr; r0Þi ¼ G0ðr; r0Þ � k2
0

ð ð1
�1

G0ðr; r1Þhb0ðx1Þb0ðx2Þi

� G0ðr1; r2ÞhGðr2; r0Þidx1dx2: (9)

Thereafter, the admittance distribution is assumed to be

statistically homogeneous, so that the correlation function

hb0ðx1Þb0ðx2Þi depends only on the spatial distance x1 – x2.

As a consequence, the statistics of the acoustic field are

invariant under arbitrary horizontal translation of the source-

receiver pair. In particular, the average Green’s function sat-

isfies the property hGðr; r0Þi ¼ hGðx� x0; z; z0Þi. The

Fourier transform along the x-direction of the average

Green’s function can therefore be expressed asð1
�1
hGðr; r0Þie�ijxdx ¼ hĜðj; z; z0Þie�ijx0 : (10)

After some calculations detailed in Appendix A, applying

the Fourier transform to Eq. (9) gives

hĜ j; z; z0ð Þi ¼ Ĝ0 j; z; z0ð Þ �
k2

0

2p
Ĝ0 j; z; z1ð ÞhĜ j; z2; z0ð Þi

�
ð1
�1

W j0ð ÞĜ0 j� j0; z1; z2ð Þdj0;

(11)

where Ĝ0 is the Fourier transform of the Green’s function

for the unperturbed problem

Ĝ0 j; z; z0ð Þ ¼
1

2ia
eiajz�z0j þ R0 jð Þeia zþz0ð Þ
h i

; (12)

with the vertical wavenumber a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � j2
p

and the reflec-

tion coefficient

R0 jð Þ ¼ a� k0hbi
aþ k0hbi

; (13)

and W is the Fourier transform of the correlation function

WðjÞ ¼
ð1
�1
hb0ðxÞb0ðxþ rÞie�ijrdr: (14)

In order to compare the solution for a ground with a ran-

dom admittance to the solution for a ground with a constant

admittance, the average Green’s function hĜðj; z; z0Þi is

rewritten under the form

hĜ j; z; z0ð Þi ¼
1

2ia
eiajz�z0j þ Reff jð Þeia zþz0ð Þ
h i

; (15)

where Reff can be interpreted as an effective reflection coeffi-

cient of the random surface. Inserting Eq. (15) in Eq. (11)

leads to

ReffðjÞ ¼ R0ðjÞ �
k2

0

2p
1

2ia
1þ R0ðjÞ½ � 1þ ReffðjÞ½ �

�
ð1
�1

W j0ð Þ
2ia j� j0ð Þ 1þ R0 j� j0ð Þ

� �
dj0;

FIG. 2. (Color online) Diagrammatic form of the Dyson equation (a) using the

exact mass operator [Eq. (7)], (b) the Bourret approximation [Eq. (9)], and (c)

the next approximation of the mass operator. The latter is used in Appendix B

to investigate the range of applicability of the Bourret approximation.
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which can be written as

ReffðjÞ ¼ R0ðjÞ þ
k2

0

2p
1

aþ k0hbi
½1þ ReffðjÞ�

�
ð1
�1

W j0ð Þ
a j� j0ð Þ þ k0hbi

dj0:

Introducing the classical form for the reflection coefficient

for a ground with a constant admittance

ReffðjÞ ¼
a� k0beffðjÞ
aþ k0beffðjÞ

; (16)

the effective admittance beff (j) is given by

beffðjÞ ¼ hbi �
k0

2p

ð1
�1

W j� j0ð Þ
a j0ð Þ þ k0hbi

dj0: (17)

It should be noticed, that for hbi ¼ 0, we retrieve the

expressions of the effective admittance obtained by Watson

and Keller [Eq. (43) of Ref. 15 and Eq. (23c) of Ref. 16].

For hbi 6¼ 0, they however differ because we do not consider

the same unperturbed problem. In the papers of Watson and

Keller, it corresponds to the propagation above a homoge-

neous ground with zero mean admittance while we consider

the more general case of a homogeneous ground with non-

zero mean admittance.

C. Far-field asymptotic analysis

The mean acoustic pressure can then be obtained by the

inverse Fourier transform

hG r; r0ð Þi ¼
1

2p

ð1
�1
hĜ j; z; z0ð Þieij x�x0ð Þdj: (18)

However, its computation can be cumbersome, as it requires the

evaluation of an integral whose integrand is oscillatory. Usually,

for long-range applications, asymptotic expression of such inte-

gral is sought using the method of steepest descent.24–26

The acoustic pressure in Eq. (15) is first split into a direct

wave hĜðj; z; z0ÞiD and a reflected wave hĜðj; z; z0ÞiR, with

hĜ j; z; z0ð ÞiD ¼
1

2ia
eiajz�z0j;

hĜ j; z; z0ð ÞiR ¼
1

2ia
ReffðjÞeia zþz0ð Þ:

The direct wave contribution is well-known and corresponds

to the Green’s function in free-space

hG r; r0ð ÞiD ¼
1

2p

ð1
�1
hĜ j; z; z0ð ÞiDeij x�x0ð Þdj

¼ � i

4
H 1ð Þ

0 k0jr� r0jð Þ;

where H
ð1Þ
0 is the Hankel function of the first kind. Its

asymptotic expression at long range k0d1 � 1, with d1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
is given by

hG r; r0ð ÞiD �
1

4i

ffiffiffi
2

p

r
1ffiffiffiffiffiffiffiffiffiffi

ik0d1

p eik0d1 : (19)

The reflected wave is written in the physical space as

hG r; r0ð ÞiR ¼
1

2p

ð1
�1
hĜ j; z; z0ð ÞiReij x�x0ð Þdj

¼ 1

2p

ð1
�1

1

2ia
ReffðjÞeij x�x0ð Þþia zþz0ð Þdj:

(20)

In order to apply the method of steepest descent, the inte-

grand must be first extended in the complex plane. Special

attention must be paid to the function a(j), as it is multival-

ued, and so is beff (j). The usual choice for this problem is to

define aðjÞ ¼ ipv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iðjþ k0Þ

p
pv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðj� k0Þ

p
, where pv

ffiffiffiffiffiffi
 
 
p

is the principal value of the square root function, which is

generally implemented in numerical computing applications

such as MATLAB. The saddle points of the phase function

QðjÞ ¼ ijðx� x0Þþ iaðzþ z0Þ, which are the points for

which dQ/dj¼0, can then be determined in the complex j-

plane. In this case, there is only one saddle point located at

(js ¼ k0 cosh; as ¼ k0 sinh), with cosh¼ ðx� x0Þ=d2; sinh

¼ ðzþ z0Þ=d2 and d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2þ ðzþ z0Þ2

q
and Q(js)

¼ ik0d2. The steepest descent path is given by the equation

Q(j)¼Q(js) – k0d2q2, with �1<q<1. The values of the

horizontal and vertical wavenumbers along the steepest

descent path are obtained by inverting the preceding equa-

tion, yielding

jsdðqÞ ¼ k0 cos hð1þ iq2Þ � iqk0 sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� q2

p
;

asdðqÞ ¼ k0 sin hð1þ iq2Þ þ iqk0 cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� q2

p
:

The integration contour is then deformed onto the steepest

descent path, as illustrated in Fig. 3. Applying the Cauchy

theorem, one should be careful at the integrand singularities.

With the chosen definition of a(j), the steepest decent path

does not cross the branch cuts of a(j). Therefore, additional

contributions can only come from singularities of the reflec-

tion coefficient. It is assumed thereafter that W(j) can be

extended analytically in the complex plane (this is the case,

for instance, for the Gaussian correlation function) so that

beff (j) given by Eq. (17) is regular. Finally, the only singu-

larities of the integrand are possible poles jp of the reflection

coefficient, which satisfy the equation

DðjpÞ ¼ aðjpÞ þ k0beffðjpÞ ¼ 0: (21)

This is an integral equation, that cannot be solved explicitly

in the general case.

In the following, the study is limited to the long-

wavelength limit (k0L� 1). The short-wavelength case (k0L
� 1) is treated in Appendix D. In accordance with the range

of application of the Bourret approximation, one assumes

that jrbj is not too large. Therefore, it is expected that there

is still one pole, which lies close to the pole of the reflection

coefficient for a ground with a homogeneous admittance
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hbi ðj0
p ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hbi2

q
Þ or at least, that the other poles are

located far from the real axis so that their contributions are

negligible. Under this assumption, the reflected wave is thus

given by

hGðr; r0ÞiR ¼ hGðr; r0ÞiR;sd þ hGðr; r0ÞiS:

The first term hGðr; r0ÞiR;sd denotes the steepest descent path

contribution

hGðr; r0ÞiR;sd ¼
ð1
�1

FðqÞ eik0d2�k0d2q2

dq; (22)

with

F ¼ 1

2p
1

2iasd

Reff jsdð Þ
djsd

dq

¼ 1

2p
1

2iasd

Reff jsdð Þ
2asdffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� q2

p
¼ 1

2pi
Reff jsdð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� q2

p :

The second term hGðr; r0ÞiS is the surface wave contribu-

tion, given by

hGðr; r0ÞiS ¼ 2pi ResðjpÞH �ImðqpÞ
� �

; (23)

where H is the Heaviside function, Res(jp) is the residue at

the pole jp

Res jpð Þ¼ lim
j!jp

j�jpð Þ
1

2p
1

2ia
ReffðjÞeij x�x0ð Þþia zþz0ð Þ

� �

¼ 1

2p
1

2iap
lim
j!jp

j�jpð ÞReffðjÞ
� �

eijp x�x0ð Þþiap zþz0ð Þ

with ap¼ a(jp) and qp is the numerical distance

qp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� ijp=k0 cos h� iap=k0 sin h

q
:

The residue at the pole is given by

ResðjpÞ ¼ aeijpðx�x0Þþiapðzþz0Þ; (24)

with

a ¼ 1

2pi

k0beff jpð Þ
jp þ k2

0b
0
eff jpð Þbeff jpð Þ

; (25)

and b0effðjpÞ ¼ dbeff=djðjpÞ. For a ground with a homoge-

neous admittance for which b0 ¼ 0, the equation above

yields the classical formula for the residue at the pole.

To obtain an explicit asymptotic expression, the next

step is to expand the function F in the integrand of Eq.

(22) around q¼ 0. However, due to the pole of the reflec-

tion coefficient, F is singular at q¼ qp. If qp is close to 0,

corresponding to the pole located close to the saddle point

in the j-plane, the radius of convergence of the series

would be dramatically limited. A uniform asymptotic

expression can however be obtained using the method of

pole subtraction. The principle of the method is to remove

explicitly the singularity from the integrand. For that, one

considers

hG r; r0ð ÞiR;sd ¼
ð1
�1

F1ðqÞ e�k0d2q2

dq eik0d2

þ
ð1
�1

a

q� qp
e�k0d2q2

dq eik0d2 ; (26)

with

F1ðqÞ ¼ FðqÞ � a

q� qp
:

The last integral in Eq. (26) can be written as25

ð1
�1

a

q� qp
e�k0d2q2

dq ¼ aipe�n2

� erfc �inð Þ � 2H �Im qpð Þ
� �

;
h

where n ¼
ffiffiffiffiffiffiffiffiffi
k0d2

p
qp is referred to as the numerical distance.

The asymptotic expression of the first integral term in Eq.

(26) can now be obtained. For k0d2 � 1, only small values

of q will contribute to this integral. Therefore, the first inte-

gral in Eq. (26) is made explicit by approximating F1(q) at

the zeroth order

F1 q ¼ 0ð Þ ¼ 1

2ip
Reff jsð Þ

1ffiffiffiffi
2i
p þ a

qp
;

with the value of the reflection coefficient at the saddle point

Reff jsð Þ ¼
sin h� beff k0 cos hð Þ
sin hþ beff k0 cos hð Þ : (27)

Finally, the reflected wave in the physical space for large k0r
is given by

hG r; r0ð ÞiR ¼
1

2ip
Reff jsð Þ

1ffiffiffiffi
2i
p

ffiffiffiffiffiffiffiffiffi
p

k0d2

r"

þ a
ffiffiffi
p
p

n
þ aipe�n2

erfc �inð Þ
�

eik0d2 ;

which can be rewritten in the form

FIG. 3. (Color online) Deformation of the initial integration path for

hGðr; r0ÞiR onto the steepest descent path in the complex j-plane.
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hG r; r0ð ÞiR ¼
1

4i
Reff jsð Þ

ffiffiffi
2

p

r
1ffiffiffiffiffiffiffiffiffiffi

ik0d2

p þ a
ffiffiffi
p
p

n
B nð Þ

" #
eik0d2 ;

(28)

where BðnÞ ¼ 1þ in
ffiffiffi
p
p

expð�n2Þerfcð�inÞ is the boundary

loss factor.

In grazing incidence (h� 1) and for a mean admittance

representing a hard ground (jhbij � 1), the expression of the

reflected wave can be simplified and be written as a

Weyl–Van der Pol formula27

hG r; r0ð ÞiR ¼
1

4i

ffiffiffi
2

p

r
eik0d2ffiffiffiffiffiffiffiffiffiffi
ik0d2

p Reff jsð Þ
	

þ 1� Reff jsð Þ
� �

B nð ÞÞ; (29)

in which the numerical distance is approximated by

n ¼
ffiffiffiffiffiffiffiffiffiffi
ik0d2

2

r
sin hþ beff jsð Þ
� �

: (30)

Details on the derivation of Eq. (29) are given in Appendix C.

D. Effective admittance and reflection coefficient

The modification of the reflection coefficient due to the

random admittance fluctuations is now exemplified. The

average surface admittance is that of a hard-backed porous

layer of thickness e,

hbi ¼ bctanhð�ikceÞ: (31)

The characteristic admittance bc and the propagation con-

stant kc of the porous layer are prescribed using the Hamet

and B�erengier model29

bc ¼
X
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ix x3 � ixð Þ

x1 � ixð Þ x2 � ixð Þ

s
;

kc ¼
xq

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � ixð Þ x3 � ixð Þ
�ix x2 � ixð Þ

s
; (32)

where the angular frequencies x1, x2, and x3 depend on the

ground characteristics through x1¼r0X/(q0q2), x2¼r0/

(q0Pr) and x3¼ cr0/(q0Pr). The air density q0 is 1.21 kg m�3

and the ratio of specific heats c is 1.4. The Prandtl number Pr

is equal to 0.7. The Hamet and B�erengier model is preferred

to semi-empirical one-parameter models, as it is physically

admissible.10,28 However, in order to imitate one-parameter

models and not to introduce additional parameters, the

porosity X and tortuosity q are set to 1. We consider two

types of ground, which usually represent grassy grounds: in

the first one, the air flow resistivity r0 is 100 kPa s m�2 and

e¼1, corresponding to a semi-infinite ground, and in the

second one, r0¼ 100 kPa s m�2 and e¼ 0.01 m.

The spectrum of the admittance spatial fluctuations must

be specified. However, such spectrum is not available yet

from the literature due to the lack of studies reporting meas-

urements of the spatial variations of the acoustic ground

properties. For the sake of simplicity, one considers a

Gaussian correlation function

hb0ðxÞb0 xþ rð Þi ¼ r2
b exp � r2

L2

� �
; (33)

where L is the admittance correlation length. From Eq. (14),

the spectrum of the admittance fluctuations is therefore given

by

WðjÞ ¼
ffiffiffi
p
p

Lr2
b exp �j2L2

4

� �
(34)

and the effective admittance is obtained with

beffðjÞ ¼ hbi � r2
b

k0L

2
ffiffiffi
p
p
ð1
�1

exp � j� j0ð Þ2L2=4

h i
a j0ð Þ þ k0hbi

dj0:

(35)

Figure 4(a) shows the variation of the effective admit-

tance beff ½k0 cos h� for grazing angles between 0 and p/2 and

for three stds of the admittance fluctuations. The mean

admittance is 0.0116 – 0.1154i, corresponding to that for the

hard backed porous layer with r0¼ 100 kPa s m–2 and

e¼ 0.01 m for f¼ 450 Hz. The correlation length is set to

L¼ 5 m. It is observed that as the grazing angle approaches

zero, the real part of the effective admittance increases while

the imaginary part is almost constant. In addition, for the

same grazing angle, increasing jrbj leads to an increase in

Re(beff). The corresponding effective reflection coefficients

Reff ½k0 cos h� are represented in the complex plane in Fig.

4(b). For a given grazing angle, the amplitude of the reflec-

tion coefficient decreases with jrbj. This implies that, for the

mean pressure, the ground surface becomes more and more

absorbing, as the std of the admittance fluctuations increases.

In Fig. 5(a), the variations of the effective impedance

are represented for three different correlation lengths.

Interestingly, the value of the effective admittance for h¼p/

2, corresponding to normal incidence is almost independent

of the correlation length. For grazing angles close to zero,

the real part of the admittance increases with the correlation

length and its imaginary part is almost constant. As observed

previously, this leads to a decrease in the amplitude of the

reflection coefficient in Fig. 5(b). The amplitude of the

coherent reflected wave will therefore be reduced as the dis-

tance increases and as the correction length or the standard

deviation of the admittance increases. This behavior is usu-

ally observed in multiple scattering problems for which the

coherent field decreases with the distance, the correlation

length, and the standard deviation of the fluctuating parame-

ter. This is for instance the case for propagation through an

isotropic homogeneous random medium.4

E. Surface wave pole

The influence of the admittance randomness on the sur-

face wave component is now investigated. The relation

D(jp)¼ 0 in Eq. (21) relates the horizontal and vertical

wavenumbers of the surface waves. It can be solved
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numerically using the Newton–Raphson algorithm, using as

the initial guess the solution of D(jp)¼ 0 for rb¼ 0, which

has been denoted by j0
p in Sec. II C.

If additionally k0L and jrbj are small compared to one,

the effective admittance is close to the average admittance.

One can then obtain the pole of the reflection coefficient

with the equations

jp ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

effðj0
pÞ

q
;

ap ¼ �k0beffðj0
pÞ:

(36)

An example of the variation of the surface wave pole

location in the complex plane as the std of the admittance

fluctuations jrbj increases is shown in Fig. 6 for three values

of L. The mean admittance and the frequency are the same

as in Figs. 4 and 5. Typically, for small values of k0L, the

imaginary part of the vertical and horizontal wavenumbers

of the surface wave increases with jrbj. As for the reflected

wave, the amplitude of the coherent surface wave will tend

to be smaller than that for a ground with a homogeneous

admittance hbi. It is seen also that up to L¼ 5 m the approxi-

mate solution obtained with Eq. (36) is close to the exact

one, obtained by solving D(jp)¼ 0. For L¼ 10 m, deviations

are however observed. In particular, the imaginary part of ap

is overestimated, which implies that the decrease of the sur-

face wave component with height would be amplified using

Eq. (36).

III. NUMERICAL STUDY

A. Numerical specification

Numerical simulations are now performed to study the

acoustic field above the ground with a random spatially-

varying admittance. The objectives are to compare and vali-

date the analytical expression for the coherent field obtained

in Sec. II C and to investigate the variability of the SPLs due

to the admittance randomness.

The numerical simulations are carried out using a solver

of the two-dimensional linearized Euler equations,30 based

on finite-difference time-domain techniques.31 The source is

located at (x0¼ 0, z0¼ 1 m). The domain [�5 m;

205 m]� [0; 20 m] is discretized using a uniform spatial step

Dx¼Dz¼ 0.05 m in the x- and z-directions. The time step Dt
is chosen so that the Courant–Friedrichs–Lewy number

defined by CFL¼ c0Dt/Dx is equal to 0.25. A total of 19 200

time iterations are computed. Concerning the parameters of

FIG. 4. (a) Effective admittance and (b) corresponding reflection coefficient

in the complex plane for grazing angles h between 0 and p/2 for L¼ 5 m,

f¼ 450 Hz, and several stds of the admittance fluctuations: (solid gray)

rb ¼ 0:1hbi, (dash gray) rb ¼ 0:2hbi and (dashed-dotted gray)

rb ¼ 0:3hbi. The black solid line in (b) corresponds to the reflection coeffi-

cient for the average admittance hbi ¼ 0:0116� 0:1154i.

FIG. 5. (a) Effective admittance and (b) corresponding reflection coefficient

in the complex plane for grazing angles h between 0 and p/2 for

rb ¼ 0:3hbi, f¼ 450 Hz and several correlation lengths: (solid gray)

L¼ 0.5 m, (dash gray) L¼ 5 m and (dashed-dotted gray) L¼ 10 m. The black

solid line in (b) corresponds to the reflection coefficient for the average

admittance hbi ¼ 0:0116� 0:1154 i.
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the admittance fluctuations, there is currently no available

data in the literature. From the measurements reported in

Ref. 11, the normalized std of the admittance fluctuations

jrb=hbij are between 0.1 and 0.4 for natural grounds and

characteristic length scales of variations seem to be in the

order of 1 to 10 m. Therefore, we choose correlation lengths

of L¼ 0.5, 1, and 5 m and a standard deviation rb ¼ 0:3hbi.
The admittance spectrum is Gaussian [see Eq. (34)]. For

each configuration, 200 realizations of the spatially-varying

admittance b(x) are performed. In details, the surface

admittance is prescribed with bðxÞ ¼ hbið1þ 0:3�ðxÞÞ,
where �(x) is a Gaussian random function of zero mean

and unit std and with the desired correlation length.

Convergence tests have been done, showing that with this

number of realizations, the mean value and the standard

deviation of the acoustic pressure and intensity are cor-

rectly estimated. High-order moments or even the probabil-

ity density functions, as obtained by Ehrhardt et al.32 for

plane wave propagation through a turbulent medium, are

not investigated as it would require to have a much higher

number of realizations. Finally, the implementation of the

time-domain admittance boundary condition is based on a

generalized recursive convolution method, described in

Troian et al.33

Numerical simulations have been performed for the two

ground types presented in Sec. II D. For the parameters of

the admittance fluctuations chosen here, the randomness has

only a small influence for the semi-infinite ground: typically,

the SPL for a particular realization deviates from the unper-

turbed SPL by at maximum 2 dB over the frequency band-

width of interest. Results obtained for the hard-backed

porous layer of flow resistivity r¼ 100 kPa s m�2 and of

thickness e¼ 0.01 m are more noticeable and are considered

hereafter.

B. Acoustic mean pressure

Figure 7 shows the average pressure relative to the free-

field, along with the unperturbed pressure obtained for a

ground with a homogeneous admittance hbi as a function of

the frequency for receivers at a distance x¼ 200 m and at

heights z¼ 2 and 5 m. For both source-receiver geometries,

the influence of admittance randomness is only significant

for frequencies between 300 and 600 Hz. At low and high

frequencies, the average pressure is thus close to the unper-

turbed pressure. A noticeable effect of admittance random-

ness is to shift the first ground dip toward lower frequencies,

as if the ground was more absorbing. Thus, the first ground

dip is located at a frequency of 500 Hz for the unperturbed

FIG. 6. Variation of the (a) horizontal and (b) vertical wavenumbers of the

surface wave as the normalized std of the admittance fluctuations rb=hbi
increases from 0 to 0.5 for a Gaussian spectrum and for: (black) L¼ 0.5 m,

(dark gray) L¼ 5 m and (light gray) L¼ 10 m. The mean admittance is

hbi ¼ 0:0116� 0:1154 i and f¼ 450 Hz. The solid and dashed lines corre-

spond, respectively, to the numerical solution of the equation D(jp)¼ 0 and

to the approximate solution in Eq. (36).

FIG. 7. Sound pressure relative to the free field as a function of the fre-

quency for a receiver located at x¼ 200 m and (a) z¼ 2 m and (b) z¼ 5 m:

(thin dashed-dotted) unperturbed pressure obtained for a homogeneous

ground of admittance hbi and average pressure computed (thick solid) from

the numerical simulations by an ensemble-averaging over 200 realizations

and (dashed) from the analytical solution under the Bourret approximation

[Eq. (28)]: (black) L¼ 0.5 m and (gray) L¼ 5 m.
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problem, but in the random case it is at 495 Hz for L¼ 0.5 m

and 490 Hz for L¼ 5 m. This effect was also noticed for ran-

dom roughness.22 Besides, the agreement between the mean

pressure computed with the Bourret approximation and by

an ensemble-averaging over 200 realizations is satisfactory.

In particular, for L¼ 0.5 m, the curves depicting these two

solutions are almost superimposed for both receiver heights.

For L¼ 5 m, some discrepancies can be observed for fre-

quencies corresponding to the spectrum minima. Indeed, the

SPL near destructive interferences is very sensitive to the

admittance, and the number of realizations in the averaging

process might be insufficient to correctly compute the mean

pressure in this particular frequency range.

The variations of the mean pressure with range are

shown in Fig. 8 for a line of receivers at a height z¼ 2 m and

for two frequencies. Results for f¼ 400 Hz in Fig. 8(a) exem-

plify the typical variations of the mean pressure. Indeed, it

decreases more rapidly with range than the unperturbed pres-

sure due to the loss of coherence of the reflected wave. In

addition, greater the correlation length, more rapid the

decrease with the distance. This is in accordance with Sec.

II D, in which it was observed that the amplitude of the

effective reflection coefficient for the random admittance is

smaller than that for the mean admittance and that it

decreases with the increase of the correlation length. For

f¼ 500 Hz, similar trends are observed. A particular behav-

ior is observed close to the destructive interference pattern at

x¼ 190 m. While the interference dip is enhanced for

L¼ 0.5 and 1 m, it is reduced for the largest correlation

length, i.e., L¼ 5 m, implying that the amplitude of the mean

pressure for the random case is larger than that for the deter-

ministic case. Indeed, due to randomness, the phase and

amplitude of the reflected wave is modified, and the direct

and reflected waves do not cancel each other anymore. In

addition, as noticed previously for the spectra in Fig. 7, the

mean pressure computed by an ensemble-averaging over

200 realizations and with the Bourret approximation are in

close agreement for all cases shown in Fig. 8. Finally,

although not plotted in Figs. 7 and 8, the Weyl–Van der Pol

formula in Eq. (29) yields similar results than the asymptotic

expression in Eq. (28): the largest deviation from the pre-

dicted SPL is only about 0.1 dB.

C. Mean intensity and variability

Figure 9 depicts the variations of the sound intensity

I¼ pp* with the frequency at two receivers at x¼ 200 m and

at z¼ 2 and 5 m, already considered in Fig. 7, for the 200

realizations of the admittance and for the correlation length

L¼ 0.5 m. In accordance with the fact that the coherent pres-

sure is close to the unperturbed pressure, it is observed that

FIG. 8. Sound pressure relative to the free field as a function of the distance

for (a) f¼ 400 Hz and (b) f¼ 500 Hz for a line of receivers whose height is

z¼ 2 m: (thin dashed-dotted) unperturbed pressure obtained for a homoge-

neous ground of admittance hbi and average pressure computed (thick solid)

from the numerical simulations by an ensemble-averaging over 200 realiza-

tions and (dashed) from the analytical solution under the Bourret approxima-

tion [Eq. (28)]: (black) L¼ 0.5 m, (dark gray) L¼ 1 m and (light gray)

L¼ 5 m.

FIG. 9. Intensity relative to the free field as a function of the frequency for a

receiver located at x¼ 200 m and (a) z¼ 2 m and (b) z¼ 5 m: (black solid)

unperturbed intensity obtained for a homogeneous ground of admittance

hbi, (gray solid) intensity obtained for the 200 realizations of the admittance

and (black dashed) mean intensity. The correlation length of the admittance

fluctuations is L¼ 0.5 m.
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the variability for frequencies below 300 Hz and above

600 Hz is quite small for both source-receiver geometries.

The intensity for a particular realization of the admittance

may deviate from the mean value by at most 3 dB. In the

interference region between 300 and 600 Hz, the variability

is large, especially at the first ground dip, for which the devi-

ation in the SPL from the mean value can reach 30 dB. In

addition, it is observed that at z¼ 2 m, the mean intensity is

very close to the unperturbed intensity. For z¼ 5 m, the same

behavior is seen, except for frequencies between 300 and

600 Hz, for which the interference minima obtained for the

unperturbed intensity are filled. This effect is largely known

in the literature for sound propagation through turbulence

near a reflective surface.4,34,35 The close correspondence

between the mean intensity and the intensity computed in

the non-random case has already been noticed by Ostashev

et al.14 for the case of a homogeneous random absorbing

plane. The corresponding normalized standard deviations of

intensity fluctuations rI=hIi, with rI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðI � hIiÞ2i

q
, are

shown in Fig. 10 for the receiver height z¼ 2 m and for the

three correlation lengths. In accordance with Fig. 9(a), it is

small at low and high frequencies and has a peak for

f¼ 500 Hz corresponding to the ground dip. As the correla-

tion length increases, the std of intensity fluctuations

increases over the whole spectrum.

Figure 11 shows the variation of the intensity with the

distance for a line of receivers at a height z¼ 2 m and for the

200 realizations of the admittance. The correlation length is

L¼ 0.5 m and the frequency is 400 Hz. In the near field, the

intensity obtained for all realizations is similar. Variability

increases with distance and is particularly high at the inter-

ference minima, here at x¼ 15 m. In addition, as observed in

Fig. 9, the mean intensity is close to the unperturbed inten-

sity for all distances. The normalized standard deviation of

the intensity fluctuations at the same line of receivers and for

the same frequency is depicted in Fig. 12. Following the pre-

vious comments, it presents two peaks at the two interfer-

ence mimima. For x> 30 m, it reaches a plateau for L¼ 0.5,

1, and 5 m, but increases with the distance starting from

x¼ 160 m for L¼ 5 m. As observed in Fig. 10, the increase

of the correlation length leads to an increase of the standard

deviation of the intensity fluctuations. In addition, rI=hIi is

also plotted in Fig. 12 for a ground with a homogeneous but

random admittance, corresponding to an infinite correlation

length. It has been computed using the analytical solution for

the propagation above a ground with a homogeneous admit-

tance and by considering the admittance as a random vari-

able whose normalized fluctuations b0=hbi follow a normal

distribution with a zero mean value and a standard deviation

equal to 0.3. It is observed that the std of the intensity fluctu-

ations is maximum in this case. As noticed in Ref. 14, it

monotonically increases with the distance at long range,

meaning that for a particular realization of the admittance,

the intensity is expected to deviate more and more from the

mean intensity as the range increases.

IV. CONCLUSION

This study aimed at estimating the influence of the spa-

tial variations of the ground surface admittance on the acous-

tical field, in the context of outdoor sound propagation. For

this purpose, the spatially-varying admittance was treated as

a random variable. Starting from an integral equation

obtained with the Green’s theorem, the Dyson equation for

the coherent Green’s function was formulated. Using the

FIG. 10. Normalized standard deviation of intensity fluctuations as a func-

tion of the frequency for a receiver located at x¼ 200 m and z¼ 2 m and for

three correlation lengths: (black) L¼ 0.5 m, (dark gray) L¼ 1 m, and (light

gray) L¼ 5 m.

FIG. 11. Intensity relative to the free field as a function of the distance for

f¼ 400 Hz for a line of receivers whose height is z¼ 2 m: (black solid)

unperturbed intensity obtained for a homogeneous ground of admittance,

(gray solid) intensity obtained for the 200 realizations of the admittance, and

(black dashed) mean intensity.

FIG. 12. Normalized standard deviation of intensity fluctuations as a func-

tion of the distance for f¼ 400 Hz and for four correlation lengths: (black

solid) L¼ 0.5 m, (dark gray solid) L¼ 1 m, (light gray solid) L¼ 5 m, and

(black dashed) L¼1.
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Bourret approximation, an explicit expression was obtained,

which extends previous results obtained in the literature.15,16

The range of applicability of the Bourret approximation was

investigated. The coherent Green’s function was then recast

in a similar form as the Green’s function for a ground with a

homogeneous admittance, with an effective admittance that

depends on the correlation function of the random admit-

tance fluctuations. An asymptotic expression was obtained at

long range and it was exemplified that the randomness tends

to reduce the amplitude of the reflection coefficient.

Numerical simulations were then performed using a

solver of the linearized Euler equations for two ground types.

Ensemble-averaged pressure field over 200 realizations of

the spatially-varying admittance was in close agreement

with the analytical solution under the Bourret approximation.

In addition, the mean intensity does not differ much from the

intensity for the nonrandom case, except near destructive

interferences. Intensity fluctuations were then investigated.

For the considered examples, they were negligible for the

semi-infinite ground but were noticeable for the hard-backed

porous layer. In particular, the intensity for a specific realiza-

tion of the spatially-varying admittance can be significantly

different from the mean value for the latter case. Finally, the

standard deviation of intensity fluctuations obtained for a

ground with a random spatially-varying admittance was

found to be smaller than that for a random homogeneous

admittance plane.

There are several ways to pursue this work. First, this

study was limited to a 2D configuration. While we do not

expect the underlying physics to be much different, it would

be worthwhile to investigate the three-dimensional equiva-

lent problem. There is also a need to have further experimen-

tal studies, reporting space and time variations of the surface

admittance or corresponding acoustical parameters of natural

grounds. It would be interesting to have a database reporting,

for outdoor surfaces, along with typical values of the param-

eters of impedance model, standard deviations and character-

istic length scales of variations, as partly done by Martens

et al.36 and Guillaume et al.11 It could be used to quantify

the uncertainty in the SPL prediction related to the ground

properties. Besides, physical insight can still be gained from

analytical studies. In particular, the two-point correlation

function of the acoustic pressure can be obtained through the

Bethe–Salpether equation, which can be solved under

approximations similar to those employed in this paper. The

mean intensity and the scattering cross section could thus be

examined. In addition, numerical simulations could be used

to study higher order moments, such as the standard devia-

tion of the intensity fluctuations, that cannot be obtained in

closed forms analytically.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ADMITTANCE

Details on the derivation of the effective admittance in

Sec. II B are given in this appendix. Starting from Eq. (9),

the Fourier transform of the average Green’s function is split

into

hĜðj; z; z0Þi ¼ Ĝ0ðj; z; z0Þ þ hĜ
0ðj; z; z0Þi; (A1)

where Ĝ0 is the Fourier transform of the Green’s function

for the unperturbed problem and hĜ0i is the sound pressure

perturbation induced by the admittance randomness given by

the integral equation

Ĝ
0ðj; z; z0Þ

D E
¼ �k2

0Ĝ0ðj; z; z1Þ
ð ð1
�1

e�ijðx1�x0Þ

� hb0ðx1Þb0ðx2ÞiG0ðr1; r2Þ
� hGðr2; r0Þidx1dx2:

Introducing the Fourier transform of the correlation function

W given in Eq. (14) leads to

Ĝ
0
j; z; z0ð Þ

D E
¼ � k2

0

2p
Ĝ0 j; z; z1ð Þ

ð ð1
�1

e�ij x1�x0ð Þ

�
ð1
�1

W j0ð Þe�ij0 x2�x1ð Þdj0G0 r1; r2ð Þ

� hG r2; r0ð Þidx1dx2;

which can be rewritten as

Ĝ
0
j; z; z0ð Þ

D E
¼ � k2

0

2p
Ĝ0 j; z; z1ð Þeijx0

ð ð1
�1

W j0ð Þ

�
ð1
�1

G0 r1; r2ð Þe�i j�j0ð Þx1 dx1

� hG r2; r0ð Þie�ij0x2 dj0dx2:

Taking the Fourier transform along the x1-direction in the

preceding equation yields

Ĝ
0
j; z; z0ð Þ

D E
¼ � k2

0

2p
Ĝ0 j; z; z1ð Þ

�
ð1
�1

W j0ð ÞĜ0 j� j0; z1; z2ð Þ

�
ð1
�1
hG r2; r0ð Þie�ij x2�x0ð Þdx2dj0;

which after a Fourier transform along the x2-direction gives

Ĝ
0
j;z;z0ð Þ

D E
¼� k2

0

2p
Ĝ0 j;z;z1ð ÞhĜ j;z2;z0ð Þi

�
ð1
�1

W j0ð ÞĜ0 j�j0;z1;z2ð Þdj0: (A2)

Combining Eqs. (A1) and (A2) leads to Eq. (11).
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APPENDIX B: RANGE OF APPLICABILITY OF THE
BOURRET APPROXIMATION

Necessary conditions for the applicability of the Bourret

approximation are derived. For this purpose, following Rytov

et al.,20 we consider the next approximation of the mass oper-

ator, which appears in the Dyson equation in Eq. (7),

Mðr1; r2Þ � Vðx1ÞhGið1Þðr1; r2ÞVðx2Þ
D E

¼ �k2
0hb0ðx1Þb0ðx2ÞihGið1Þðr1; r2Þ;

where hGið1Þ is the average Green’s function in the Bourret

approximation. The diagrammatic form of the Dyson equa-

tion with this approximation is depicted in Fig. 2. Using the

procedure detailed in Sec. II B, the average Green’s function

can also be determined in this approximation. The effective

admittance is now written as

b 2ð Þ
eff ðjÞ ¼ hbi �

k0

2p

ð1
�1

W j� j0ð Þ
a j0ð Þ þ k0b

1ð Þ
eff j0ð Þ

dj0; (B1)

where bð1Þeff is the effective admittance in the Bourret approxi-

mation, given in Eq. (17). It is therefore required so that the

Bourret approximation is valid that the modulus of the cor-

rection jbð2Þeff ðjÞ � bð1Þeff ðjÞj is small compared to the differ-

ence between the effective admittance and the mean

admittance, which yields

jbð2Þeff ðjÞ � bð1Þeff ðjÞj � jb
ð1Þ
eff ðjÞ � hbij: (B2)

The correction bð2Þeff ðjÞ � bð1Þeff ðjÞ can be explicitly written as

b 2ð Þ
eff ðjÞ � b 1ð Þ

eff ðjÞ

¼ k2
0

2p

ð1
�1

W j� j0ð Þ

� b 1ð Þ
eff j0ð Þ � hbi

a j0ð Þ þ k0hbi
	 


a j0ð Þ þ k0b
1ð Þ

eff j0ð Þ
� � dj0:

At the first order, we can approximate bð1Þeff ðj0Þ � hbi in the

denominator of the integrand to get

b 2ð Þ
eff ðjÞ � b 1ð Þ

eff ðjÞ ¼
k2

0

2p

ð1
�1

W j� j0ð Þ

� b 1ð Þ
eff j0ð Þ � hbi

a j0ð Þ þ k0hbi
	 
2

dj0: (B3)

The condition in Eq. (B2) must be a priori verified for all

wavenumbers because the reflected wave in the physical

space in Eq. (20) is obtained by integration over the real j-

axis. However, due to the term eiaz, the contributions for j/k0

� 1 are negligible and the condition in Eq. (B2) can be

checked for small and moderate values of j/k0.

For k0L� 1, as indicated in Appendix D, the correlation

function can be approximated by WðjÞ � 2pr2
bdðjÞ. The

integrals appearing in Eqs. (17) and (B3) can be evaluated,

and Eq. (B2) reduces to

k2
0jrbj2

jaðjÞ þ k0hbij2
� 1:

It can be shown that the minimum of jaðjÞ þ k0hbij over the

real axis is obtained at j ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Im½hbi�2

q
and is equal to

k0Re½hbi� if Im½hbi� 	 0 and is obtained at j¼ k0 and is

equal to k0jhbij if Im½hbi� � 0. Therefore, the condition of

applicability of the Bourret approximation is jrbj2=Re½hbi�2

� 1, if Im½hbi� 	 0 and jrbj2=½hbij2 � 1, if Im½hbi� � 0.

For k0L� 1, the calculation is more complex, because the

integrals in Eqs. (17) and (B3) have no closed-form expres-

sions. We can however get approximate values by assuming

that the correlation function W(j) acts as an ideal low-pass fil-

ter that eliminates wavenumbers with jjj > 1=L, which yields

WðjÞ ¼ r2
bLpH½1=L� jjj�. With this assumption and intro-

ducing the change of variables u ¼ j0=k0, we obtain

b 1ð Þ
eff ðjÞ � hbi � �

k0Lr2
b

2

ðuþ

�u�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

þ hbi
du;

where the limits of integration are u� ¼ ðjL� 1Þ=k0L and

uþ¼ (jLþ 1)/k0L. For jL� 1, we can approximate u– and

uþ by �1/k0L and 1/k0L, so that bð1Þeff � hbi does not depend

on j. In addition, as k0L� 1, the main contributions to the

integral are obtained for juj � 1, so that we can use the

approximation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

� ijuj. We therefore get

b 1ð Þ
eff ðjÞ � hbi � �

k0Lr2
b

2

ð1=k0L

�1=k0L

1

ijuj þ hbi du;

which at the leading order in 1/k0L gives

bð1Þeff ðjÞ � hbi � �ik0Lr2
b logðk0LÞ: (B4)

Concerning bð2Þeff � bð1Þeff , one gets similarly

b 2ð Þ
eff ðjÞ � b 1ð Þ

eff ðjÞ �
k0Lr2

b

2

ðuþ

�u�

b 1ð Þ
eff k0uð Þ � hbiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

þ hbi
� �2

du:

As the denominator in the integrand behaves as u2 for u
� 1, the contributions for u � 1 are negligible. Therefore,

we can approximate bð1Þeff ðk0uÞ � hbi using Eq. (B4) and

extend the limits of integration to infinity to get

b 2ð Þ
eff ðjÞ � b 1ð Þ

eff ðjÞ � �
ik2

0L2r4
b

2
log k0Lð Þ

�
ð1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

þ hbi
� �2

du:

(B5)

As usually jbj � 1 for natural grounds, the integral in the

preceding equation is approximately equal to its value for

hbi ¼ 0, which is ip. Finally, inserting Eqs. (B4) and (B5)

into Eq. (B2) gives the condition of applicability of the

Bourret approximation for k0L� 1, which is jrbj2k0L� 1.
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APPENDIX C: WEYL–VAN DER POL FORMULA

In this appendix, we show that the expression of the

reflected wave in Eq. (28) can be expressed as a Weyl–Van

der Pol formula in grazing incidence (h� 1), for a mean

admittance representing a hard ground (jhbij � 1) and for

weak fluctuations (jrbj2 � 1 and k0L� 1).

Indeed, as jrbj2 � 1 and k0L� 1, we can use the sim-

plified expressions of the surface wave wavenumbers given

in Eq. (36). Moreover, as jhbij � 1, one has jp � k0ð1
�b2

effðj0
pÞ=2Þ. The numerical distance n can therefore be

approximated by

n �
ffiffiffiffiffiffiffiffiffiffi
ik0d2

p
1� 1�

b2
eff j0

p

� �
2

 !
cos h

"

þbeff j0
p

� �
sin h

#1=2

:

In addition, at the first order in h and hbi; j0
p

¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hbi2

q
� k0 cos h, so that beffðj0

pÞ � beffðjsÞ and,

similarly, beffðjpÞ � beffðjsÞ. Approximating cos h �
1� h2=2 and sin h � h, at the first order, one has

n �
ffiffiffiffiffiffiffiffiffiffi
ik0d2

2

r
sin hþ beff jsð Þ
	 


:

The parameter a in Eq. (25) can also be simplified. Indeed,

at the first order, one has

a �
k0beff jsð Þ

2pijp
�

beff jsð Þ
2pi

:

Finally, introducing the approximations of n and a in Eq.

(28) leads to the Weyl–Van der Pol formula in Eq. (29).

APPENDIX D: MEAN ACOUSTIC PRESSURE FOR A
RANDOM ADMITTANCE HOMOGENEOUS PLANE AND
FAR-FIELD ASYMPTOTIC EXPRESSION

In this appendix, one considers a homogeneous absorb-

ing plane with a random admittance b ¼ hbi þ b0, which can

also be interpreted as a high-frequency or small-wavelength

limit (k0L � 1) of the problem considered in Sec. II. As

shown in Appendix B, a necessary condition for the validity

of the Bourret approximation is that jrbj2 � Re½hbi�2, if

Im½hbi� 	 0 and jrbj2 � ½hbij2, if Im½hbi� � 0.

In this case, one has b0ðxþ rÞb0ðxÞ ¼ b02 yielding a corre-

lation function hb0ðxþ rÞb0ðxÞi ¼ r2
b. The admittance spectrum

is thus given by WðjÞ ¼ 2pr2
bdðjÞ. In the Bourret approxima-

tion, the effective admittance is obtained using Eq. (17),

beffðjÞ ¼ hbi �
k0r2

b

aðjÞ þ k0hbi
: (D1)

Inserting this relation in Eq. (16), the effective reflection

coefficient is thus given by

ReffðjÞ ¼
a2 � k2

0 hbi
2 � r2

b

� �
aþ k0hbið Þ2 � k2

0r
2
b

;

which can be decomposed into

ReffðjÞ ¼
1

2

a� k0 hbi � rb
	 


aþ k0 hbi � rb
	 
þ a� k0 hbi þ rb

	 

aþ k0 hbi þ rb

	 

 !

:

(D2)

The effective reflection coefficient is therefore equal to the

average of the reflection coefficients obtained for homoge-

neous grounds of admittances hbi þ rb and hbi � rb. Note

also that, for k0L � 1, the effective reflection coefficient

has two poles, located at a6
p ¼ �k0ðhbi6rbÞ and j6

p

¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðhbi6rbÞ2

q
.

From Eq. (D2), the reflected wave can thus be written as

hG r; r0ð ÞiR ¼
1

2
G0 r; r0; hbi þ rb
	 


R

h
þG0 r; r0; hbi � rb

	 

R

i
; (D3)

where

G0 r;r0;bð ÞR¼
1

4i
R0 jsð Þ

ffiffiffi
2

p

r
1ffiffiffiffiffiffiffiffiffiffi

ik0d2

p þa0

ffiffiffi
p
p

n0

B n0ð Þ

" #
eik0d2

is the reflected wave for sound propagation over a homoge-

neous ground of admittance b. In this equation, the reflection

coefficient is

R0 js ¼ k0 cos hð Þ ¼ sin h� b
sin hþ b

:

The parameter a0 and the numerical distance n0 are given by

a0 ¼
1

2pi

bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p ;

n0 ¼
ffiffiffiffiffiffiffiffiffiffi
ik0d2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
cos hþ b sin h

� �1=2

:

For grazing incidence and for jhbi � rbj � 1 and jhbi þ rbj
� 1, the Weyl–Van der Pol formula can also be employed

G0 r; r0; bð ÞR ¼
1

4i

ffiffiffi
2

p

r
eik0d2ffiffiffiffiffiffiffiffiffiffi
ik0d2

p

� R0 jsð Þ þ 1� R0 jsð Þ
� �

B n0ð Þ
	 


;

with the numerical distance approximated by

n0 ¼
ffiffiffiffiffiffiffiffiffiffi
ik0d2

2

r
sin hþ bð Þ:

From Eq. (D1), an effective admittance can also be

obtained in this case and is given by

beff k0 cos hð Þ ¼ hbi �
r2

b

sin hþ hbi : (D4)
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Note that it can be retrieved in a similar way as done in Sec.

II B of Ref. 14. In addition, the effective admittance is not

equal to the inverse of the effective impedance given in Eq.

(12) of Ref. 14.

Figure 13 shows the mean pressure for a line of

receivers located between x¼ 0 and 200 m at a height

z¼ 2 m and for the two grounds presented in Sec. II D. The

source height is 1 m and the frequency is 500 Hz. The

admittance fluctuations follow a normal distribution and

two standard deviations, which are rb ¼ 0:25 Re½hbi� and

rb ¼ 0:25hbi, are considered. For the semi-infinite ground

in Fig. 13(a), as indicated in Sec. III A, the mean pressure is

very close to the unperturbed pressure in both cases.

Deviations from the unperturbed pressure are more notice-

able for the hard backed porous layer in Fig. 13(b). For the

std of rb ¼ 0:25 Re½hbi�, the mean pressure obtained in the

Bourret approximation is close to that computed by ensem-

ble averaging over 1000 realizations. On the contrary, for

the std rb ¼ 0:25hbi, a large error is obtained with the

Bourret approximation starting from x¼ 40 m. This behav-

ior can be explained as because hbi ¼ 0:0144� 0:128 i, the

necessary condition for applying the Bourret approximation

jrbj2 � Re ½hbi�2 is not satisfied in this case.
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