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The accuracy of the multi-domain Chebyshev pseudospectral method is investigated for
wave propagation problems by examining the properties of the method in the wavenumber
space theoretically in terms of dispersion and dissipation errors. For a number of (N + 1)

points in the subdomains used in the literature, with N typically between 8 to 32,
significant errors can be obtained for waves discretized by more than π points per
wavelength. The dispersion and dissipation errors determined from the analysis in the
wavenumber space are found to be in good agreement with those obtained in test cases.
Accuracy limits based on arbitrary criteria are proposed, yielding minimum resolutions of
7.7, 5.2 and 4.0 points per wavelength for N = 8, 16 and 32 respectively. The numerical
efficiency of the method is estimated, showing that it is preferable to choose N between
16 and 32 in practice. The stability of the method is also assessed using the standard
fourth-order Runge–Kutta algorithm. Finally, 1-D and 2-D problems involving long-range
wave propagation are solved to illustrate the dissipation and dispersion errors for short
waves. The error anisotropy is studied in the 2-D case, in particular for a hybrid Fourier–
Chebyshev configuration.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Long-range wave propagation problems require accurate numerical differentiation schemes, which must generate very
low dispersion and dissipation errors. Among the available methods, pseudospectral (PS) methods are well-established ap-
proaches [1], and have been extensively used for wave propagation problems in time domain in several fields of physics
(see Refs. [2–7]). Using pseudospectral methods, contrary to finite-difference methods, the derivative of a variable at a single
point is computed from its values at all grid points [8]. Two types of pseudospectral methods are usually distinguished. For
periodic problems, Fourier PS methods are generally used, with equally spaced collocation points. The accuracy is however
poor for non-periodic problems, due to Gibbs oscillations [8]. In that case, PS methods based on the Chebyshev polynomials
or other orthogonal polynomials are preferred. For these methods, the collocation points, which are usually chosen as the
Gauss–Lobatto points, are unevenly spaced.

Despite their wide use, little is known about the properties of the pseudospectral methods in the wavenumber space.
They are particularly of interest when the number of grid points (N + 1) is small. Indeed, for PS methods, the differenti-
ation error for well-behaved functions [9] decreases exponentially with the number of points. For Fourier PS method, the
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parameter N takes large values in applications, typically greater than 128 (e.g. see [10,11]), ensuring a satisfactory accuracy
for waves down to two points per wavelength, which corresponds to the limitation of the Nyquist–Shannon sampling theo-
rem. For Chebyshev PS method, due to the non-uniform grid, accuracy is satisfactory for large N only for waves discretized
down to π points per wavelength (e.g. see [9]). Moreover, the distribution of the Gauss–Lobatto collocation points implies
that the minimum grid size decreases quadratically with increasing N , which can lead to severe restriction on the time step
when using explicit time-integration methods. For wave propagation applications, it is thus common to split the domain
into subdomains to relax the time step limitation [12–14]. The number of points (N + 1) in each subdomain can take low
values, with N typically between 8 and 32. For such values, the numerical error is expected to be significant for short
wavelengths.

The main objective of this paper is to study the numerical errors introduced by the multi-domain PS Chebyshev method
in the wavenumber space. The corollary is to provide accuracy limits, on which future work could rely. In the literature,
similar studies have been performed concerning the spectral element method by Hu et al. [15], Gassner and Kopriva [16]
and Melvin et al. [17]. This method differs from the multi-domain pseudospectral method by the use of the variational
principle [8]. Numerical errors have also been investigated for two other spectral methods, which are the spectral difference
method [18] and the spectral volume method [19]. However, few studies have been devoted to the multi-domain pseu-
dospectral approach. One can mention for instance the work of Kopriva [20], in which the convection of a 1-D wave has
been examined. It has been shown that the dispersion and dissipation errors, which are respectively the error on the phase
and on the amplitude of the computed wave, both decrease exponentially with the number of points. Besides, Wasberg and
Gottlieb [21] have carried out an analysis on the optimal decomposition for a multi-domain spectral method. However, that
work is based on the truncation error of the Chebyshev expansion of the sine function and does not take into account inter-
face treatment that plays a role on the accuracy of the method. All these studies show that significant errors are generated
for waves close to the limit of π points per wavelength, in particular for small values of N . For instance, Boyd [8] suggested
as a rule-of-thumb to use a resolution of 3.5 points per wavelength to reach a 5% accuracy. However, no systematic study
of the typical number of points per wavelength required to obtain accurate solutions at long range for wave propagation
problems has been proposed in the literature. This is one of the objectives in this paper.

For finite-difference methods, the dispersion and dissipation properties of the numerical schemes have been quantified
in a number of studies [22–24]. For that, the eigenfunctions of the first derivative finite-difference operator, which are
the Fourier modes u(x) = exp(ikx), are considered. The associated eigenvalues are denoted by ik∗ , where k∗ is referred
to as the effective wavenumber. A comparison can then be made with the exact eigenvalues ik of the derivative oper-
ator. In the present study, the eigenvalues of the multi-domain Chebyshev PS derivative operator for the 1-D advection
equation are investigated. A theoretical analysis is carried out to determine the dispersion and dissipation errors. The ob-
tained values are compared to those estimated in test cases. The paper is organized as follows. In Section 2, the effective
wavenumber obtained using the multi-domain Chebyshev PS method is introduced. The dispersion and dissipation errors
are discussed depending on the value of N , and accuracy limits are proposed. The stability of the method is assessed, using
the standard fourth-order Runge–Kutta algorithm. Several test cases are resolved to verify the theoretical analysis. In Sec-
tion 3, applications of the multi-domain Chebyshev PS methods are performed to illustrate the previous study. In particular,
a multi-dimensional problem is considered to examine the variations of the errors with the direction of wave propagation.

2. Analysis of the Chebyshev PS method in the wavenumber space

In the same way as in the studies performed by Hu et al. [15] and Gassner and Kopriva [16] for the discontinuous
Galerkin spectral element method, the 1-D advection equation for a variable p is considered:

1

c

∂ p

∂t
+ ∂ p

∂x
= 0 (1)

where c is the propagation speed. The equation is solved on a numerical domain divided into subdomains Il = [xl, xl+1] of
uniform length δ = xl+1 − xl . The spatial derivative is approximated using the Chebyshev pseudospectral derivative operator.
For a given subdomain, the coordinate transformation:

x(ξ) = (xl−1 + xl)

2
+ δ

2
ξ (2)

is introduced to scale the problem to the interval [−1,1]. On each subdomain, the solution is discretized on the (N + 1)

Gauss–Lobatto points located at ξi = − cos(iπ/N), for 0 � i � N . The average mesh size is � = δ/N . At the interfaces,
conditions are imposed to transfer information through the subdomains. Denoting by p− and p+ the respective values of p
at the left and right hand sides of an interface, the boundary conditions are written as a linear combination:

p± = (1 − γ )p+ + γ p− (3)

with γ a real number between 0 and 1. In particular, the case γ = 1 corresponds to the method of the characteristics. Using
matrix-vector notation leads to the following equation on the subdomain Il:

δ ∂ p|Il + Dp|Il + Ep|Il−1 + Fp|Il+1 = 0 (4)

2c ∂t
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where the matrix D contains the information of the subdomain Il and the matrices E and F provide the information from the
left and the right adjacent subdomains, respectively. The matrix D is closely related to the Chebyshev differentiation matrix C
with Cij = (l j)ξ (ξi) [9], where (l j)0� j�N denotes the Lagrange interpolating polynomials associated with the Gauss–Lobatto
points. For the interior points 0 � i � N and 1 � j � (N − 1), one obtains Dij = Cij . At the boundary points, based on (3),
the rows of the matrix are equal to Di0 = (1 − γ )Ci0 and DiN = γ CiN , for 0 � i � N . Concerning the matrices E and F, all
the rows are null except for the boundary points, yielding EiN = γ Ci0 and Fi0 = (1 − γ )CiN , for 0 � i � N .

A harmonic-wave type solution is now considered:

p(ξ, t)|Il = p̂(ξ)exp(iklδ − iωt) (5)

for a wavenumber k and an angular frequency ω. Time integration is here assumed to generate no error. Introducing
solution (5) into Eq. (4) provides:

−ik̃δ

2
p̂ + Dp̂ + exp(−ikδ)Ep̂ + exp(+ikδ)Fp̂ = 0 (6)

with k̃ = ω/c. In the following, the average mesh size � is used as the reference length scale instead of δ. The eigenvalue
problem A(k�)p̂ = k̃(k�)�p̂ is obtained, with the matrix:

A(k�) = −2iN
[
D + exp(−ik�N)E + exp(+ik�N)F

]
(7)

For a given value of N , the eigenvalues and the eigenmodes depend on the wavenumber k, as well as the conditions at the
interfaces, hence on γ . The first and last columns of matrix A are linearly dependent, because the same values are imposed
at both sides of the interfaces. Consequently, for a given value of k�, there is a maximum of N non-zero eigenvalues k̃,
corresponding to numerical wavenumbers associated with the N modes.

Some properties of the wavenumbers of the modes can be deduced from the expression of matrix A. First, if the complex
conjugate of matrix A is denoted by A, the relation A(k�) = −A(−k�) is found. This implies that the set of wavenumbers

obtained for −k� is related to that obtained for k� by k̃(−k�) = −k̃(k�). Secondly, since the matrix A depends only on
exp(±ik�N), the matrix is periodic as a function of k� of period 2π/N . As a result, the spectrum of the matrix A(k�) is
also periodic of period 2π/N , hence:

k̃

(
k� + 2π

N

)
= k̃(k�) (8)

In what follows, the method of the characteristics is used at the interfaces of the subdomains. As proposed by Hu et
al. [15], the physical mode is defined as the mode whose wavenumber best approximates the exact dispersion relation k̃ = k
over a non-trivial range of wavenumbers. The wavenumber associated with the physical mode is referred to as the effective
wavenumber and is denoted by k∗ . The other modes are considered as numerical modes.

An analytical expression for k∗ can be obtained for N = 1 and for N = 2. For N = 1, the effective wavenumber is:

k∗� = sin(k�) − i
(
1 − cos(k�)

)
(9)

which corresponds to the effective wavenumber of the first-order upwind finite-difference scheme. For N = 2, the expression
of the effective wavenumber for k� ∈ [0,π ] is:

k∗� =
√

7 − 22 exp(−2ik�) − exp(−4ik�)

4
− i

(
3 + exp(−2ik�)

4

)
(10)

Based on a Taylor expansion of k∗� around k� = 0, it can thus be shown that the multi-domain Chebyshev PS method
is third-order accurate for N = 2. It can also be noted that the expression for the effective wavenumber in (10) does not
correspond to that of any finite-difference scheme, which is written as a sum of sine and cosine functions. For N � 3, the
effective wavenumber is determined numerically. Fig. 1 shows the real and imaginary parts of the wavenumbers of the
modes obtained for N = 4 as functions of the exact wavenumber k�. The effective wavenumber is clearly distinct from the
wavenumbers associated with the numerical modes. In particular, for small values of |k�|, its real part is superimposed on
the line Re(k̃)� = k� and its imaginary part is very close to zero.

The effective wavenumber shows other particular properties. First, it satisfies k∗(−k�) = −k∗(k�) for all values of N .
The real part of k∗ is then antisymmetric, and its imaginary part is symmetric. This is seen for the case N = 4 in Fig. 1.
Moreover, for N � 51, it is observed that k∗(k�) is a periodic function with period 2π . For N = 52 to N = 256, k∗(k�) is still
periodic but with a smaller period, equal to 2π(N − 2)/N . As an example, the real and imaginary parts of the wavenumbers
of different modes are shown in Fig. 2 for N = 52 as functions of the exact wavenumber k�. As for N = 4, for small values
of |k�|, the real part of the effective wavenumber is superimposed on the line Re[k̃�] = k� and its imaginary part is very
close to zero. It appears also that the period of k∗� is smaller than 2π . In all cases, it is thus sufficient to consider the real
and imaginary parts of k∗� on the interval k� ∈ [0,π ].
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Fig. 1. (a) Real and (b) imaginary parts of the wavenumbers k̃� of the modes obtained for N = 4 as functions of the exact wavenumber k�: effective
wavenumber and wavenumbers associated with the numerical modes.

Fig. 2. (a) Real and (b) imaginary parts of the wavenumbers k̃� of different modes obtained for N = 52 as functions of the exact wavenumber k�:
effective wavenumber, 2π/N-periodic numerical wavenumbers and an example of numerical wavenumber corresponding to the effective

wavenumber shifted along the k�-axis.

Concerning the numerical modes, for N � 51, their wavenumbers correspond to the effective wavenumber shifted along
the k�-axis by multiples of 2π/N . This is the case in Fig. 1 for N = 4, where the shift is equal to π/2. From N = 52 to
N = 256, two modes are distinct from the other ones. Their wavenumbers are periodic with period 2π/N , and have the
largest real parts among all numerical wavenumbers. This is observed in Fig. 2 for N = 52. It is also found that one of
these two wavenumbers has positive real parts, whereas the second one has negative real parts. Their imaginary parts are
large, with Im[k̃�] < −2, over the whole range of wavenumbers. For the other modes, k̃(k�) corresponds to the effective
wavenumber k∗ shifted along the k�-axis by multiples of 2π/N . An example is displayed in Fig. 2 for N = 52 with a shift
equal to π/2.

2.1. Dispersion error

The error related to the phase, namely the dispersion error, is characterized by plotting the real part of the effective
wavenumber in Fig. 3(a) as a function of the exact wavenumber k� for different values of N , between N = 2 and N = 128.
For low wavenumbers, typically k� < π/4, all curves are superimposed on the line Re[k∗�] = k�. For higher wavenumbers,
the curves begin to deviate from this line at different values. As an example, the error |Re(k∗)� − k�| becomes larger than
1% for k� = 1.4 for N = 8, and for k� = 1.86 for N = 16. For N > 16, the relation Re[k∗�] = k� is nearly satisfied up to
k� = 2. For k� > 2, the errors are however large even with increasing N . This limit of k� = 2 corresponds to the classical
restriction of π points per wavelength for the Chebyshev PS method [9]. The variations of Re[k∗�] close to k� = π are
finally shown in Fig. 3(b). A large overshoot increasing with N is observed. This behavior has previously been found for
discontinuous Galerkin spectral element methods in [15] and [16].

Fig. 4 displays the dispersion error given by |Re(k∗�) − k�|/π . At low wavenumbers, the dispersion error is significant
for small values of N . For instance, for N = 4, it is higher than 10−5 for k� > π/10. Increasing N leads to a considerable
reduction of the dispersion error for small k�. Thus, for values of N larger than 32, it is lower than 10−5 up to k� = π/2.
Finally, the dispersion error is important for k� > 2 for all values of N .
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Fig. 3. (a) Real part of the effective wavenumber k∗� as a function of the exact wavenumber k� and (b) view on the overshoots for k� ∈ [2;π ], for
N = 4, N = 8, N = 16, N = 32, N = 64 and N = 128.

Fig. 4. Dispersion error |Re(k∗�) − k�|/π as a function of the exact wavenumber k�, obtained for N = 4, N = 8, N = 16, N = 32,
N = 64 and N = 128.

2.2. Dissipation error

The dissipation error, which is the error on the amplitude of the solution, results from the imaginary part of the effective
wavenumber. In Fig. 5(a), the imaginary part of k∗� is plotted as a function of the exact wavenumber for different values of
N . It is close to zero for small wavenumbers, and takes negative values decreasing when k� increases. It is significant for the
case N = 8 from k� = π/3. In addition, Im[k∗�] is close to zero over a broader range of wavenumbers with increasing N .
Fig. 5(b) shows the values of Im[k∗�] for k� between 2 and π . As observed for Re[k∗�] in Fig. 3(b), the imaginary part of
the effective wavenumber is large near k� = π for all values of N , and its minimum value decreases with increasing N .

Fig. 5. (a) Imaginary part of the effective wavenumber k∗� as a function of the exact wavenumber k�, and (b) view on the interval k� ∈ [2,π ], for
N = 4, N = 8, N = 16, N = 32, N = 64 and N = 128.

For N � 3, the imaginary part of Im[k∗�] is positive over a narrow range of wavenumbers, as is observed in Fig. 6. For
N = 4, for example, this is the case approximately over π/8 � k� � 3π/8. Waves whose wavenumbers lie in this range are
consequently amplified. The maximum values of Im[k∗�] are however small, typically lower than 5 × 10−3, yielding low
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Fig. 6. Close-up on the positive values of the imaginary part of the effective wavenumber k∗�, as a function of the exact wavenumber k�, for N = 4,
N = 8, N = 16, N = 32, N = 64 and N = 128.

amplification rates. Moreover, it is observed that the maximum value of Im[k∗�] decreases generally with increasing N . It
is equal to 2 × 10−4 for N = 32, 6 × 10−5 for N = 64 and 5 × 10−6 for N = 128. The amplification due to the positive value
of Im[k∗�] implies some stability issues which are discussed in Section 2.5.

Fig. 7 shows the dissipation error, given by the relation |1 − exp[Im(k∗�)]|, as a function of the exact wavenumber k�.
As expected, the dissipation error decreases with increasing N . For N < 8, it takes significant values for small wavenumbers.
For instance, for N = 4, the dissipation error is larger than 10−5 for k� > π/13. For values of N greater than 32, it is
smaller than 10−5 up to k� = π/2, which is comparable to values obtained for the dispersion error. Furthermore, as for
the dispersion errors, the dissipation errors are large for k� > 2 and do not decrease notably with increasing N in that
particular range of wavenumbers.

Fig. 7. Dissipation error |1 − exp(Im(k∗�))| as a function of the exact wavenumber k�, for N = 4, N = 8, N = 16, N = 32, N = 64
and N = 128.

2.3. Test cases

In this section, the 1-D advection equation (1) is solved using the multi-domain Chebyshev PS method. Results
are compared with those obtained theoretically above. An initial value problem is considered, with an initial solution
p(x, t = 0) = exp(ikx), which can be expanded, on a subdomain Il , as a sum of the eigenmodes Vm:

p(x, t = 0)|Il = exp(ikx)|Il =
N∑

m=1

λm Vm(k, x) (11)

where λm are expansion coefficients. Denoting by k̃m the wavenumber associated with the eigenmode Vm , the solution of
the problem reads [15]:

p(x, t)|Il =
N∑

m=1

λm Vm(k, x)exp(−ik̃mct) (12)

Thus, the solution corresponds to a sum of exponentially decaying or increasing functions with time. At long time, the
eigenmode whose wavenumber has the largest imaginary part is dominant.

In what follows, the propagation speed is equal to c = 1. The numerical solution is advanced to t = 120�, where �

denotes the average mesh size, using the six-stage fourth-order Runge–Kutta algorithm of Berland et al. [25] for time
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Fig. 8. Real part of the numerical solution for k� = π/4 and for N = 8 as a function of x/� (a) at t = 0 and (b) at t = 120�.

Fig. 9. Real part of the numerical solution for k� = 5π/8 and for N = 8 as a function of x/� (a) at t = 0 and (b) at t = 120�.

integration. The time step is chosen as 0.05� in order to generate negligible time-integration errors. The parameter N
related to the number of points in the subdomains (N + 1) is set to N = 8. The changes of the variable p between the initial
time and the final time depending on the value of k� are highlighted in Figs. 8 and 9 for initial waves with k� = π/4
and 5π/8, respectively. In the first case, for k� = π/4, the numerical solution at the final time shows little dissipation and
dispersion. This can be related to the theoretical values of the dispersion and dissipation errors which are small, lower than
10−4, as seen in Figs. 4 and 7. Here, the leading mode is the physical mode. In the second case, for k� = 5π/8, the solution
at the final time has a much smaller amplitude and a larger wavelength than the initial solution, suggesting that the leading
mode is not the physical mode. To support this claim, it can be noticed that, as visible in Fig. 5(a), the imaginary part of the
effective wavenumber has a large value for k� = 5π/8 and N = 8, i.e. Im[k∗�] = −0.12, which implies that the physical
mode is strongly attenuated at t = 120�. Therefore, the leading mode corresponds in this case to a numerical mode.

Calculations are now performed for wavenumbers over the range k� ∈ [0,π ]. From (12), assuming that there is a leading
mode at long time, the numerical solution can be expressed as p(x, t) = λV (k, x)exp(−ik̃ct). The real and imaginary parts
of the wavenumber of the leading mode can be deduced from the time variations of the phase and of the amplitude of the
solution with:

arg
[

p(x, t)
] ∝ −Re[k̃]t (13)

log
∣∣p(x, t)

∣∣ ∝ Im[k̃]t (14)

Thus, the solution is recorded at a single grid point in the numerical domain from t = 80� to t = 120�. Using a least
squares approach, the phase and the logarithm of the amplitude of the solution are fitted by lines. From (13) and (14),
the real and the imaginary parts of the wavenumber of the leading mode are then estimated from the slopes of the two
lines. As an example, the time variations of the phase of p and of the logarithm of |p| are displayed in Fig. 10 for an
initial wave with wavenumber k� = π/4, for which the solutions at the initial and final times are shown in Fig. 8. It is

Fig. 10. Time variations of (a) the phase of p and (b) of the logarithm of |p| for k� = π/4 and for N = 8: numerical solution and linear regression
line.
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observed that arg(p) and log |p| are well approximated by lines over the whole simulation period. The estimation of the
real part of the wavenumber from the slope of the linear regression line in Fig. 10(a) gives Re(k̃�) = π/4, which is equal
to the initial wavenumber. Indeed, for this small wavenumber, the dispersion error is very low, and is about 4 × 10−5, as
observed in Fig. 4 for N = 8 and k� = π/4. Concerning the dissipation error, the value Im(k̃�) = −6 × 10−5 is obtained
from the slope of the linear regression line in Fig. 10(b). It is equal to the theoretical value of Im(k∗�) which is found
from Fig. 7 for N = 8 and k� = π/4. In this case, the wavenumber obtained in the test case is the effective wavenumber,
and the leading mode is the physical mode. The time variations of arg(p) and log |p| are now represented in Fig. 11 for an
initial wave with wavenumber k� = 5π/8, for which the solutions at the initial and final times are displayed in Fig. 9. It is
seen that the phase of p is approximately a piecewise linear function of time. The logarithm of |p| has different short-time
and long-time behaviors. For t < 20�, the slopes of arg(p) and log |p| correspond to the real and imaginary parts of the
effective wavenumber. Therefore, the leading mode is the physical mode for t < 20�. However, it is strongly attenuated
and its amplitude is negligible at long time compared to that of the numerical modes. For t > 20�, different numerical
modes are dominant at various times. In addition, the estimated value of Re[k̃�] at long time from Fig. 11(a) is −0.4. This
is consistent with the solution at the final time displayed in Fig. 9(b) for k� = 5π/8, whose wavenumber is smaller than
that of the initial wave. The imaginary part of the wavenumber deduced from the linear regression line in Fig. 11(b) is equal
to Im[k̃�] = −2 × 10−3. This value is two order of magnitude smaller than Im[k̃∗�], as the amplitude of the leading mode
decays less rapidly than that of the physical mode.

Fig. 11. Time variation of (a) the phase of p and (b) of the logarithm of |p| for k� = 5π/8 and for N = 8: numerical solution, physical mode
p(t) ∝ exp(−ik∗t) and linear regression line at long time.

Fig. 12 shows the real and imaginary parts of the wavenumbers associated with the different modes obtained for N = 8
from the theoretical analysis conducted above as a function of the exact wavenumber k�. As discussed in the previous
section, for N = 8, the wavenumbers associated with the numerical modes correspond to the effective wavenumber shifted
along the k�-axis by multiples of 2π/N . The wavenumbers obtained numerically are also represented by dots. For low
wavenumbers, k� < π/2, the real and imaginary parts of the wavenumbers estimated in the test case are in good agreement
with those of the effective wavenumber, indicating that the leading mode is the physical mode. At higher wavenumbers, the
estimated wavenumber does not correspond to the effective wavenumber but is related to numerical modes, as observed
previously for k� = 5π/8. In particular, for k� close to π , the real and imaginary parts of the estimated wavenumber are
clearly superimposed on those of a wavenumber associated with a numerical mode.

Fig. 12. (a) Real and (b) imaginary parts for N = 8 of the effective wavenumber, of the wavenumbers associated with the numerical modes,
and • of the wavenumbers obtained in the test cases, as functions of the exact wavenumber k�. The values obtained for k� = π/4 and k� = 5π/8 are
represented by white dots.
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2.4. Accuracy limits and numerical cost

To further quantify and compare the dispersion and dissipation errors, limits of accuracy are evaluated using the arbitrary
criteria |(Re(k∗�) − k�)/π | � ε and |1 − exp[Im(k∗�)]| � ε , where the threshold value is set to ε = 10−4. The accuracy
limits for the dispersion and the dissipation errors are respectively expressed in terms of number of points per wavelength
by λφ/� and λA/�. They are displayed in Fig. 13, as functions of N . The curves follow a downward trend with increasing N ,
converging toward λ = π�. Values of the accuracy limits are given in Table 1. The accuracy limits are equal to 7.7 points
per wavelength for N = 8, 5.2 for N = 16 and 4.0 for N = 32. For large values of N > 64, 3.5 points per wavelength are
sufficient to obtain accurate results, in agreement with the suggestions of Boyd [8].

Fig. 13. Accuracy limits in term of λ/�, as functions of N , obtained for the dispersion error and the dissipation error.

Table 1
Accuracy limits in term of number of points per wavelength for the dispersion error λφ/� and for the dissipation error λA/� for different values of N .

N 4 8 16 32 64 128 256

λφ/� 10.1 5.8 4.6 3.8 3.4 3.3 3.2
λA/� 17.4 7.7 5.2 4.0 3.5 3.3 3.2

The computation of the spatial derivative using the Chebyshev PS method is usually done through a matrix multiplication
method for small N and through Fast Fourier Transform (FFT) for large N [8]. For the matrix multiplication method, the
computational cost is typically of the order of N2. The cost per point is then proportional to p = N . For the FFT method, the
computational cost for N points can be roughly estimated as N ln N . The computational cost per point is then proportional
to p = ln N . More complex formula for the computational cost for the FFT [26] can be used, but results lead to the same
conclusions. Moreover, the accuracy limits determined above correspond to the number of grid points required to obtain
a given accuracy. The numerical efficiency for both methods can thus be estimated by multiplying the accuracy limits by
the computational cost per point p. The lower the value of pλ/�, the more efficient the Chebyshev PS method. Note
that the efficiencies of the FFT method and the matrix multiplication method are not compared because, as shown by
Fornberg [1] and Boyd [8], they are highly hardware and software dependent. Fig. 14 shows the values of pλ/� with N . All
the curves first decrease, reach a minimum and then increase with N . For the matrix multiplication method, in Fig. 14(a),
the minimum is found between N = 4 and N = 8. For the FFT method, in Fig. 14(b), the maximum efficiency is obtained for

Fig. 14. Numerical efficiency pλ/�, as a function of N , (a) for the matrix multiplication method with p = N and (b) for the FFT method with p = ln N:
λ/� = λφ/� and λ/� = λA/�.
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larger values of N . The minimum of pλ/� is reached between N = 16 and N = 32. In all cases, it is worthwhile noting that
the maximum efficiency is not obtained for infinite N , but for moderate values of N . This means that it is more suitable in
term of computational cost to use subdomains than a single domain with a very large number of points. In addition, for the
same average mesh size, the time step �t decreases with increasing N [27,28], as shown in Section 2.5 for the fourth-order
Runge–Kutta algorithm, also lowering the total efficiency for large subdomains.

2.5. Stability

The stability of the multi-domain PS Chebyshev method is now studied using the standard fourth-order explicit Runge–
Kutta algorithm for the time integration. For that, the amplification factor, which is the rate of amplification of the solution
between two consecutive time steps, is considered. For the s-stage Runge–Kutta algorithm, it is given [25] by:

G(ω�t) = 1 +
s∑

j=1

γ j(−iω�t) j (15)

where �t is the time step and γ j are the algorithm coefficients. Taking into account the dispersion equation k̃ = ω/c for
the 1-D advection equation, one obtains ω�t = CFL k̃� with the CFL number defined by CFL = c�t/�, where � is the
average mesh size. Consequently, the amplification factor can be written as a function of the wavenumbers of the modes
and of the CFL number, namely G(CFL k̃�). The multi-domain PS Chebyshev method is stable if |G(CFL k̃�)| � 1 for all the
wavenumbers k̃ of the N modes. The maximal value of |G| for all wavenumbers is represented in Fig. 15(a) as a function
of the CFL number for different values of N between 4 and 32. At low CFL values, |G| is almost equal to 1. If the time step
exceeds a critical value, the amplification however increases rapidly. This critical value is a decreasing function of N , and
is equal to 1.02 for N = 4, 0.70 for N = 8, 0.47 for N = 16 and 0.29 for N = 32. Fig. 15(b) shows the variation of |G| − 1
in logarithmic scales. It is noted that, even for small CFL numbers, the amplification rate can be larger than 1. Thus, for
N = 4, this is the case for all CFL numbers. However, the amplification rate is very small, typically inferior to 2 × 10−3,
and the method is only weakly unstable. For large values of N , the maximum amplification rate for small CFL numbers is a
decreasing function of N . For example, it is equal to 6 × 10−5 for N = 16 and 5 × 10−5 for N = 32. This behavior is due to
the positive values of Im[k∗�] observed in Fig. 5(b) for a small range of wavenumbers. Finally, for some values of the CFL
number, the multi-domain Chebyshev PS method is unconditionally stable. This is the case, for instance, for N = 16 and for
CFL numbers between 0.32 and 0.45. For such values of CFL, the dissipation due to the time-integration scheme exceeds the
amplification due to the spatial differentiation method.

Fig. 15. Amplification rate per time step (a) in linear scale and (b) in logarithmic scale as a function of the CFL number using the standard fourth-order
Runge–Kutta method, obtained for the multi-domain Chebyshev PS method for N = 4, N = 8, N = 16 and N = 32 and for the
Fourier PS method.

For the comparison, the amount of amplification for the Fourier PS method is shown in Fig. 15, assuming that the
dispersion relation k̃ = k is verified for k� between 0 and π . As for the multi-domain Chebyshev PS method, |G| is close to
1 for small CFL numbers, and increases abruptly for CFL numbers above a critical value, which is here equal to CFL = 0.9. It
is observed that, the stability of the Fourier PS method is ensured for higher CFL numbers compared to the Chebyshev PS
method with N � 8.

The generation of instabilities for large CFL numbers is now illustrated for the multi-domain Chebyshev PS method. As
done previously, an initial harmonic wave with wavenumber k� = 3π/8 is computed. The parameter N , related to the
number of grid points (N + 1) in a subdomain, is set to 16. Two simulations are performed with CFL numbers just below
and above the maximum value ensuring stability, which is CFL = 0.47 for N = 16. The solution is advanced over 25 time
steps. The real part of the solution is plotted in Fig. 16(a) for CFL = 0.44 as a function of the normalized distance x/�.
The numerical solution is in very good agreement with the analytical solution. In Fig. 16(b), the CFL number is increased to
a value of 0.5. In this case, as expected, the numerical solution is strongly amplified at some points in the computational
domain.
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Fig. 16. Real part of the analytical solution and of the numerical solution after 25 time steps as a function of x/� for N = 16 with k� = 3π/8
(a) for CFL = 0.44 and (b) for CFL = 0.50.

The stability limit obtained for an amplification rate |G(CFL k̃�)| = 1.01 is displayed in Fig. 17 as a function of N . As
mentioned previously, the maximum CFL number ensuring the stability is a decreasing function with N . More precisely, it
can be written as Nα with −1 < α < −1/2. The parameter α is close to −1/2 for N < 8, but is close to −1 for N > 128.
Interestingly, the maximum time step ensuring the stability of the multi-domain Chebyshev PS method here decreases as
N−2 only for large N . For small N , it decreases less rapidly, typically as N−3/2.

Fig. 17. Stability limit of the multi-domain Chebyshev PS method in term of the CFL number, as a function of N , using the standard fourth-order Runge–Kutta
method.

3. Application to 1-D and 2-D problems

3.1. One-dimensional problem

A broadband one-dimensional wave propagation problem is first considered by solving the advection equation (1), with
a propagation speed c = 1. The initial disturbances are given by:

p(x, t = 0) = cos

(
2πx

a�

)
exp

[
− ln 2

(
x

b�

)2]
(16)

where a� is the dominant wavelength and b� is the Gaussian half-width. As in the previous section, the parameter �

denotes the average grid size. The computational domain is split into subdomains. The parameter N related to the number
of points (N + 1) in the subdomains is set to N = 8, N = 16 or N = 32. Two values for the dominant wavelength λ = a� are
considered. First, the dominant wavelength is chosen as a� = 6�. This value is below the accuracy limit given in Table 1
for N = 8, which is λ/� = 7.7, and above those for N = 16 and N = 32, which are respectively λ/� = 5.2 and λ/� = 4.0.
Numerical errors are thus expected to be significant for N = 8, but very small for N = 16 and N = 32. Second, the dominant
wavelength is set to a� = 4.5�. According to Table 1, an accurate numerical solution is expected only for N = 32 in
this case. In both cases, the Gaussian half-width is chosen as b� = 7�. The corresponding energy spectral densities are
represented as a function of k� in Fig. 18.

The six-stage fourth-order Runge–Kutta algorithm of Berland et al. [25] is used for time integration. The CFL number is
equal to 0.05, which is a very low value ensuring negligible time-integration error compared to spatial derivative errors.

The solutions obtained at t = 100� for a = 6 and b = 7 are plotted in Fig. 19 as a function of x/�. As expected,
dissipation errors appear clearly in Fig. 19(a) for N = 8, whereas a good agreement is obtained with the analytical solution
in Fig. 19(b) for N = 16. The solution obtained for N = 32 is not represented because it is very similar to the solution
obtained for N = 16. The error with respect to the analytical solution pana is displayed in Fig. 20 for the different values of
N as a function of x/�. The maximum error is in the order of 20% for N = 8, 1% for N = 16, and is lower than 0.01% over
the whole computational domain for N = 32.

The solutions obtained at t = 100� for a = 4.5 and b = 7 are represented in Fig. 21 as a function of x/�. Large dispersion
and dissipation errors are clearly seen in Fig. 21(a) for N = 8, whereas the agreement with the analytical solution is fair in
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Fig. 18. Normalized energy spectral density of the initial disturbances p as a function of the exact wavenumber k� for: a = 6 and b = 7, a = 4.5
and b = 7.

Fig. 19. Solutions obtained at t = 100� as functions of x/� for a = 6 and b = 7, (a) for N = 8 and (b) for N = 16: analytical solution and numer-
ical solution.

Fig. 20. Errors p − pana obtained at t = 100� as functions of x/� for a = 6 and b = 7, for N = 8, N = 16 and N = 32.

Fig. 21(b) for N = 16. In the latter case, however, the amplitude of the numerical solution is lower than that of the analytical
one due to dissipation error. Finally, the numerical solution is superimposed on the analytical solution in Fig. 21(c) for
N = 32. The error p − pana is shown in Fig. 22 for the three values of N as a function of x/�. The maximum error is very
large for N = 8, typically of 70%, is equal to 10% for N = 16 and is reduced to 0.1% for N = 32.

Fig. 21. Solutions obtained at t = 100� as a function of x/� for a = 4.5 and b = 7, (a) for N = 8, (b) for N = 16 and (c) for N = 32: analytical solution
and numerical solution.
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Fig. 22. Errors p − pana obtained at t = 100� as functions of x/� for a = 4.5 and b = 7, for N = 8, N = 16 and N = 32.

3.2. Two-dimensional problem and hybrid Fourier–Chebyshev PS method

The accuracy of numerical solutions for multi-dimensional problems can exhibit anisotropy, even if the considered
equations are isotropic. This has been demonstrated for instance for low-order finite-difference schemes for short wave-
lengths [29,30]. To explain the origin of anisotropy simply, a two-dimensional plane wave with an angular frequency ω and
a wavenumber k = (k cos θ,k sin θ) propagating at an angle θ is considered. In the system of coordinates r = (x, y), it is
written as:

exp(ik.r − iωt) = exp(ik cos θx)exp(ik sin θ y)exp(−iωt) (17)

The derivative operator in the x- and y-directions applies here to waves with wavenumbers equal to k cos θ and k sin θ

respectively. It was shown in the previous section that the error due to the spatial derivative operator generally reduces
with decreasing wavenumbers. Therefore, the global error is expected to be maximal for waves propagating along the grid
directions, where the corresponding wavenumbers are the highest. Conversely, the global error is expected to be minimal
for waves propagating in the diagonals of the grid, where the wavenumbers in the grid directions are minimal.

As shown, in Section 2, the numerical errors introduced by the Chebyshev PS method can be large for small wavelengths
and for moderate values of N . Therefore, the error anisotropy is also expected to be significant for the Chebyshev PS method.
Besides, various derivative operators can be implemented in the different spatial directions. This is the case for hybrid
Fourier–Chebyshev PS solvers [31–33]. The idea is to use a Fourier PS method in the periodic directions and a Chebyshev PS
method for the other directions. For short waves, the Fourier PS method is however more accurate than the Chebyshev PS
method using moderate values of N . One can then wonder if accurate results are still obtained in the grid direction using
the Fourier PS method or if the errors are important in all directions.

In this section, the propagation of cylindrical waves is considered to study the variations of the numerical error with the
propagation angle. The linearized Euler equations without mean flow are solved:

∂ p

∂t
+ ∇.v = 0 (18)

∂v

∂t
+ ∇p = 0 (19)

The initial disturbances are:

p(r, t = 0) = J0

(
2πr

a�

)
exp

[
− ln 2

(
r

b�

)2]
(20)

The analytical solution is given by [22]:

pana(r, t) = 1

2π

+∞∫
0

H(k)J0(kr) cos(kt)k dk (21)

where H(k) is the Hankel transform of the initial disturbances. Denoting b′ = b/
√

ln 2, it is written as:

H(k) = πb′ 2�2 exp

[
−

(
k� − 2π

a

)2 b′ 2

4

]
exp

(
−k�πb′ 2

a

)
I0

(
k�πb′ 2

a

)
(22)

where I0 is the modified Bessel function of the first kind of order 0. The above relation is obtained by using the Weber’s
second exponential integral [34]. For sufficiently large k� 	 a/(b′ 24π), the term H(k) can be expressed as:



44 D. Dragna et al. / Journal of Computational Physics 255 (2013) 31–47
H(k) ≈ b′�2

√
a

2k�
exp

[
−

(
k� − 2π

a

)2 b′ 2

4

]
(23)

As for the one-dimensional wave defined by (16), the parameters a and b provide the dominant wavelength and the pulse
bandwidth, respectively. The values a = 2π and b = 3π/2 are chosen to obtain a broadband signal with frequency contents
up to the wavenumber k� = 2, as shown in Fig. 23.

Fig. 23. Normalized Hankel transform H(k) of the initial pressure distribution for a = 2π and b = 3π/2, as a function of the exact wavenumber k�.

Three computations, referred to as FF, CCN and FCN , are performed. In the FF and CCN cases, Fourier and Chebyshev PS
methods are used in both x- and y-directions, respectively. In the first case, the number of points is N F = 800, whereas in
the second case the multi-domain Chebyshev PS method is used with N = 8, N = 16 or N = 32 in the subdomains. Finally,
in the FCN computation, Fourier PS method is used in the x-direction with N F = 800 points, and a multi-domain Chebyshev
PS method is implemented in the y-direction with N = 16. The mesh size in the directions using the Fourier PS method is
fixed to �F = π�/2, because waves are accurately computed down to 2 points per wavelength.

The time step is equal to �t = 0.05�. The six-stage fourth-order Runge–Kutta algorithm of Berland et al. [25] is employed
for the time integration. The perfectly matched layer [35] boundary conditions are used in the splitting form at the outer
boundaries to ensure minimum reflection. At the interfaces of the Chebyshev subdomains, the method of the characteristic
variables is applied, as done for instance by Carcione [36]. In order to evaluate the error anisotropy, a circle of receivers is
located at a distance Rc = 200� from the center of the initial disturbance. The simulation is run up to a final time t = 400�,
and the error is computed as a function of the wave propagation angle θ using the relation:

E2(θ) =
√√√√

∫ t
0 [p(Rc, θ, t′) − pana(Rc, t′)]2 dt′∫ t

0 pana(Rc, t′)2 dt′ (24)

where pana is the analytical solution.
The errors E2 computed from the simulations FF and CC32 are shown in Fig. 24 for angle θ ∈ [0,π/2] because of

the symmetries of the problem. The peak error values are approximately of 0.04% for FF, and of 0.3% for CC32, which is
small. This demonstrates that using N = 32 in the Chebyshev subdomains allows to obtain accurate results. Using Fourier
PS method in both x- and y-directions visibly leads to an isotropic error, suggesting that the error due to the spatial
differentiation is lower than that due to the time integration. To support this claim, an additional simulation is performed
using the Fourier PS method with a time step divided by two. As found in Fig. 24, the error obtained is still isotropic but

Fig. 24. Error E2 in logarithmic scale relative to the analytical solution evaluated at the distance RC = 200� as a function of the angle θ from CC32:
Chebyshev PS method used in both grid directions with N = 32, FF: Fourier PS method used in both grid directions and FF(�t/2): the same as
FF with a time step divided by two.
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its value is lowered to 0.015%. Concerning the simulation CC32, the error is observed to vary with θ , and to be maximum
in the grid directions, as expected. Note also that close to the direction x = y, where θ = π/4, the error is comparable to
that obtained in the FF simulation.

We now examine the angular variations of the errors for the computations CCN . The errors with respect to the analytical
solution E2 are represented in Fig. 25 in logarithmic scale for N = 8, N = 16 and N = 32 as a function of the angle θ . In
all cases, the peak error is observed along the grid directions. With respect to the CC32 simulation, the maximum error is
respectively two and one orders of magnitude larger for the simulations CC8 and CC16. More precisely, it is equal to 37.9%
for the CC8 case, to 4.4% for the CC16 case, and to 0.3% for the CC32 case. Numerical and analytical solutions obtained
at θ = 0 are represented in Fig. 26(a) as a function of the normalized time t/�. Compared to the analytical solution, the
amplitude of the wave is significantly lower in CC8. The solutions obtained for the simulations CC16 and CC32 are in good
agreement with the analytical solution. The time variations of the error p− pana obtained at θ = 0 are displayed in Fig. 26(b).
Maximum error values are equal to 9×10−3 for CC8, 7×10−4 for CC16 and 5×10−5 for CC32. In addition, oscillations with
periods smaller than 5� are observed for N = 8. For N = 16, some oscillations with a smaller amplitude and with a period
close to 4� are also noticed. It can be remarked that the wavelengths corresponding to the periods of these oscillations are
below the accuracy limits given in Table 1 in Section 2.4.

Fig. 25. Error E2 in logarithmic scale relative to the analytical solution evaluated at the distance RC = 200� as a function of the angle θ obtained for
simulations in which Chebyshev PS method is used in both directions CC8 with N = 8, CC16 with N = 16 and CC32 with N = 32 and for

simulation FF.

Fig. 26. (a) Solutions and (b) errors p − pana evaluated at the distance RC = 200� as functions of t/�: • analytical solution and numerical solutions for
θ = 0 obtained from CC8, CC16 and CC32.

The error anisotropy for the hybrid Fourier–Chebyshev PS solver is now examined. The variations of the errors obtained
in the simulation FC16 relative to the analytical solution are represented in Fig. 27 as functions of the angle θ . For the
comparison, the errors obtained in the simulations FF and CC16, in which the Fourier PS method and the Chebyshev PS
method with N = 16 are used in both directions, respectively, are also plotted. In the x-direction, for θ � 0, the errors
are close to those obtained in the simulation FF. Moreover, they do not depend significantly on the propagation angle for
θ � π/4. In the y-direction, for θ � π/2, the variations of the errors with θ are very similar to those obtained in CC16. The
solutions obtained in FC16 along the x-direction for θ = 0 and along the y-direction for θ = π/2 are shown in Fig. 28(a) as
a function of the normalized time t/�. A good agreement with the analytical solution is obtained in both directions. The
time variations of the error with respect to the analytical solution are represented in Fig. 28(b). Along the x-direction, it is
very small, and is lower than 2 × 10−5. Along the y-direction, the error is comparable to that obtained in Fig. 26(b) in CC16
and its peak value is 7 × 10−4. Thus, one can expect that, for hybrid Fourier–Chebyshev computations, waves propagating
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Fig. 27. Error E2 in logarithmic scale relative to the analytical solution evaluated at the distance RC = 200� as a function of the angle θ for simulations
CC16, FF and FC16: Fourier PS method used in the x-direction and Chebyshev PS method with N = 16 used in the y-direction.

Fig. 28. (a) Solutions and (b) errors p − pana evaluated at the distance RC = 200� as functions of t/�: • analytical solution and numerical solutions
obtained from FC16 along the x-direction for θ = 0 and along the y-direction for θ = π/2.

in the grid direction along which the Fourier PS method is implemented are accurately resolved down to the limit of two
points per wavelength. Only waves propagating in the grid directions along which the Chebyshev PS method is used suffer
from reduced accuracy for short wavelengths.

4. Conclusions

A detailed analysis on the numerical errors generated by the multi-domain Chebyshev pseudospectral method is carried
out. An eigenvalue problem is formulated by considering harmonic-wave type solutions of the 1-D advection equation.
Among the eigenmodes, one corresponds to the physical solution. The dispersion and dissipation errors associated to the
eigenvalue of the physical mode are investigated, depending on the number of points (N + 1) in the subdomains. For values
of N used in the literature for the multi-domain Chebyshev PS approach, typically N = 8 to N = 32, it is shown that accuracy
is poor for short wavelengths. The theoretical values of the dispersion and dissipation errors compare very well with those
obtained in numerical test cases. Accuracy limits, based on arbitrary criteria on the dispersion and dissipation errors, are
then proposed for long-range wave propagation problems. It is found that 7.7, 5.2 and 4.0 points per wavelength are at
least needed for N = 8, 16, 32 respectively to obtain a satisfactory accuracy at long range. For N larger than typically 64,
a resolution of 3.5 points per wavelength is sufficient. It is concluded that, from a numerical efficiency point of view, it is
preferable for common applications to use multi-domains with N between 16 to 32 rather than a single domain with a
large number of points.

Furthermore, the stability of the method is examined using the standard fourth-order Runge–Kutta algorithm. For large N ,
the maximum time step ensuring the stability decreases as N−2. The stability constraint is less restrictive for small N , as
the time step decreases as N−3/2. It is shown that the stability of the Fourier PS method is ensured at higher CFL numbers
compared to the multi-domain Chebyshev PS method for N � 6.

Finally, 1-D and 2-D problems are considered to emphasize the dispersion and dissipation errors for short waves. In a
2-D geometry, anisotropy of the solutions is exhibited, in particular for a hybrid Fourier–Chebyshev PS configuration. The
reduced accuracy of the Chebyshev PS method is observed only for waves propagating in the grid direction along which this
method is implemented. Close to the grid direction along which the Fourier PS method is applied, the error is comparable
with that obtained from a full Fourier PS configuration. Applications of the hybrid Fourier–Chebyshev PS configuration for
long-range sound propagation in the atmosphere will be reported in future publications.
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