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Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly per-

turbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior,

e.g., the intensity variance progressively saturates. The present study evaluates the ability of a nu-

merical propagation model based on the finite-difference time-domain solving of the linearized

Euler equations in quantitatively reproducing the wave statistics under strong and saturated inten-

sity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were

considered. The numerical propagation model is presented and tested with two-dimensional har-

monic sound propagation over long paths and strong atmospheric perturbations. The results are

compared to quantitative theoretical or numerical predictions available on the wave statistics,

including the log-amplitude variance and the probability density functions of the complex acoustic

pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations

strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects

on sound propagation. Finally, the model results for the intensity probability density function are

compared with a standard fit by a generalized gamma function.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4792150]
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I. INTRODUCTION

The propagation of harmonic waves through media with

random inhomogeneities is a subject of interest in many

applications. Analytical results are available in the weak
fluctuations regime, for which the log-amplitude variance of

the wave is weak (e.g., Tatarski, 1961). However, as the

wave propagates and the turbulent effects are added up, the

fluctuations of the wave increase (strong fluctuations regime)

and tend to reach an asymptotic value (saturated fluctuations
regime or, concisely, saturation regime). Acoustic scenarii

reaching the saturation regime are frequently met in experi-

mental studies (see, e.g., Daigle et al., 1983; Blanc-Benon

and Juv�e, 1993; Norris et al., 2001). Some parameters, espe-

cially atmospheric ones, are difficult to measure, making the

results hard to interpret (Coles et al., 1995). Analytical

efforts have also been carried out to understand sound propa-

gation beyond the weak fluctuations regime (e.g., Tatarski,

1971; Jakeman, 1986; Rytov et al., 1989). Significant results

have been proposed, e.g., with Dashen’s (1979) path inte-

grals. However, no general analytical solution is available at

present (Knepp, 1983).

In that perspective, numerical simulation is a convenient

alternative for analyzing sound propagation through turbu-

lence. Many approaches have been used to simulate the

propagation of acoustic waves through random media. One

may numerically solve the propagation equations for the sta-

tistical moments, e.g., the fourth order moment (e.g., Yeh

et al., 1975; Tur, 1982; Gozani, 1985; Spivack and Uscinski,

1988). Another approach consists of simulating sound propa-

gation through multiple realizations of “frozen” turbulence.

The sound statistics are then obtained from the sound fields

realizations. Widely used propagation models for such

Monte Carlo applications are the parabolic equations (PE)

based models (e.g., Martin and Flatt�e, 1988, 1990; Gilbert

et al., 1990; Juv�e et al., 1992; Chevret et al., 1996). In the

absence of mean refraction, the PE may be efficiently imple-

mented in the form of the multiple phase screen model

(MPS; e.g., Knepp, 1983; Macaskill and Ewart, 1984; Spi-

vack and Uscinski, 1989; Coles et al., 1995).

Non-line-of-sight scattering effects are most important

at low source frequencies (Cheinet et al., 2012). The PE

models are mostly adapted to near-axis propagation of har-

monic waves, so they are limited to high frequency sources.

Other modeling approaches are needed for lower frequency

sources. There is a recent propagation model that naturally

includes non-line-of-sight scattering effects, but requires

higher computing time and memory resources. This is the

finite-difference time-domain (FDTD) solving of the general

linearized Euler equations (LEE) (Blumrich and Heimann,

2002; Salomons et al., 2002; Van Renterghem, 2003; Van

Renterghem and Botteldooren, 2003; Wilson and Liu, 2004;

Ostashev et al., 2005). Cheinet et al. (2012) have recently

shown that this model reproduces the theoretical solutions of

Tatarski (1961) for low as well as high source frequencies,
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thereby providing a unified approach for the simulation of

sound propagation through turbulence. Their analysis was

focused on weak fluctuations. It thus remains to demonstrate

that FDTD solving of the LEE reproduces the main features

of strong turbulence effects.

The present paper addresses this issue. The objective is

to propagate acoustic waves up to the saturation regime with

a Monte Carlo approach using FDTD solving of the LEE as

propagation model, and compare the simulated fields to

available theoretical or numerical results. The quantitative

evaluation of the numerical model is provided through statis-

tical aspects. The reasons for focusing on sound wave statis-

tics, rather than on individual instantaneous fields, are

twofold; first, the sound wave statistics are well-

documented, and second, they are the quantities of interest

to many applications.

The paper is composed as follows. Section II presents

some theoretical results on the statistics of waves propagat-

ing through turbulence. The FDTD model and the evaluation

scenarii are given in Sec. III. In Sec. IV, comparisons are

performed for various wave statistics: pressure mean, log-

amplitude variances, transverse coherence, probability den-

sity functions (PDFs), and joint probability density (JPD). In

Sec. V, the numerical propagation model is used to evaluate

a standard fit of the intensity PDF by a generalized gamma

distribution. Section VI summarizes the results and

concludes.

II. STATISTICAL BEHAVIOR

The considered scenario is as follows: let a harmonic

plane wave of frequency f , wave length k, and wave number

k propagate in the positive direction of the x-axis in a two-

dimensional (2D) turbulent homogeneous medium. Turbu-

lence is considered to have a finite outer scale. The 2D and

plane wave assumptions are not necessary for the theory but

make the computation time acceptable and equations sim-

pler. Although this scenario seems restrictive, a plane wave

is not rare in outdoor sound propagation scenarii because of

the long propagation ranges involved. Finite outer scale tur-

bulence is realistic for typical outdoor atmospheric turbu-

lence. Also, the theoretical results used for comparisons

have both 2D and three-dimensional (3D) formulations.

The parameters of the 2D (see above) medium are the

density q, sound speed c, and wind velocity u ¼ ðux; uzÞ
(bold notations for vectors are used). The sound speed and

density are related to the atmospheric pressure P, the temper-

ature T, and the specific humidity qt by (Ostashev, 1997)

q ¼ P

RTð1þ 0:61qtÞ
;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRTð1þ 0:51qtÞ

p
; (1)

where the dry air characteristics are R, the gas constant, and

c ¼ Cp=Cv, where Cp and Cv are the specific heat capacity at,

respectively, constant pressure and volume. Let r ¼ ðx; zÞ be

any point in the medium. The medium is described by the cor-

relation functions of its parameters, the correlation function,

Rs, of any physical parameter of complex value, s, being

Rsðr; dÞ ¼ hs0ðrÞs0�ðr þ dÞi: (2)

Here the brackets denote ensemble averaging and the star

stands for complex conjugate. The mean of the parameter is

denoted s0 and its fluctuating value is s0, so that s ¼ s0 þ s0.
The medium is constant for x � 0 and turbulent for x > 0.

The acoustic parameters are the complex acoustic pressure ~p
and the time-independent part p, i.e., ~p ¼ pe2ipft, where t is

the time. This scenario is summarized in Fig. 1.

A. The K2U diagram

As sound propagates through turbulence, its statistical

fluctuations, initially weak (weak fluctuations regime),

increase (strong fluctuations regime), and tend to an asymp-

totic value (saturation regime). In order to give criteria for

the occurrence of these regimes, Flatt�e (1979) introduces the

K� U diagram for analyzing the fluctuations regimes (see

also Dashen, 1979 or De Wolf, 1975).

In this diagram, two parameters are introduced. The first

one is the diffraction parameter, K, by definition equal to

L=ð6L2kÞ, where L is the propagation range and L is the cor-

relation length of the turbulent atmospheric field. The defini-

tion used here for the parameter L is the one of Flatt�e (1979,

p. 89); that is, L is obtained from the fit hlð0ÞlðDx; 0; 0Þi=
hl2ð0Þi ¼ 1� jDx=Ljq�1

, where l is the normalized sound

speed fluctuation and q is a fit parameter, typically equal to

5/3 for atmospheric turbulence (Flatt�e, 1979). The second

parameter is the strength parameter, U. By definition

U2 ¼ hðk
Ð L

0
lðxÞ dxÞ2i ’ k2Lhl2iLi. The integral length

scale Li and l are given in the case of wind-only turbulence

and propagation along the x-axis by
Ðþ1
�1 Rux

ðrx; 0Þ drx=
Rux
ð0; 0Þ and u0x=c0, respectively.

According to Flatt�e (1979), the weak fluctuations regime

occurs when fU < 1 or KUa=2 < 1g, where a is a constant

related to the turbulence characteristics. A common value

for the atmosphere is a ¼ 12=5. The saturation regime

occurs when fU > 1;KUa > 1g. Last, the domain defined

by fKUa=2 < 1;KUa > 1g is often referred as partial satura-
tion domain and corresponds to the strong fluctuations

regime. Thus, strong fluctuations appear as a transition

FIG. 1. Sketch of the considered acoustic scenario. A plane wave propagates

in the positive direction of the x-axis (arrow direction) through atmospheric

turbulence for positive x values. The turbulent volume (shaded) is consid-

ered infinite along the z-axis and positive x-axis.
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between weak and saturated fluctuations regimes. These con-

ditions lead to distinct domains in the K� U space. Those

domains do not have sharp boundaries.

Flatt�e (1979, Fig. 8.6) also introduces the range-

frequency diagram, equivalent to the K� U diagram, but

more adapted to the sensitivities to the source frequency and

propagation range for given turbulence statistics. An exam-

ple of range-frequency diagram is given in Fig. 2. For any

sound frequency, the diagram gives an estimate of the ranges

at which the fluctuation regimes change.

Whatever the regime, the mean pressure decays expo-

nentially with range, i.e.,

hpðLÞi ¼ p0e�cL; (3)

with the exponential decay factor, c, given by an integration

over the scattering angle, h (Cheinet et al., 2012)

c ¼ 2pk3

ðp

0

cos2hUz
n 0; 2k sin

h
2

� �
dh: (4)

Here, the generalized index of fluctuations n is approximated

to (Candel, 1979)

n ¼ � T0

2T0

þ u0x
c0

� �
: (5)

Also, Uz
sðx; jzÞ is the transverse spectrum of s at plane x, i.e.,

the Fourier transform of Rsðx; ð0; dzÞÞ

Uz
sðx; jzÞ ¼

ðþ1
�1

Rsðx; ð0; dzÞÞe�ijzdz ddz; (6)

and is equal to Usððx; 0Þ; ð0; jzÞÞ if Us is the spectrum of s

Usðr; ðjx; jzÞÞ ¼
ðþ1
�1

ddx

ðþ1
�1

Rsðr; ðdx; dzÞÞ

� e�iðjxdxþjzdzÞ ddz:

(7)

Note that a widely used expression for c can be derived

under the parabolic approximation

c ¼ 2pk2

ðþ1
0

Uz
nð0; jzÞ djz: (8)

B. Weak fluctuations regime

At short propagation ranges, the wave fluctuations are

weak (Fig. 2). The weak fluctuations regime has already

been extensively studied. In particular, Tatarski (1961) has

given analytical expressions for the log-amplitude variance

r2
v ¼ hv2i � hvi2, where v ¼ logðjpjÞ, and the transverse

coherence CðL; dÞ ¼ hpðL; zÞp�ðL; zþ dÞi. In 2D, the equa-

tions are

r2
vðLÞ ¼ 4pk2

ðL

0

dx

ðþ1
0

sin2 j2
z ðL� xÞ

2k

� �
Uz

nðx; jzÞ djz;

(9)

CðL; dÞ ¼ p0p�0e
�4pk2L

Ð þ1
0
ð1�cosðdjzÞÞUz

nð0;jzÞ djz : (10)

Moreover, according to Tatarski (1961) the log-amplitude

and phase (of the complex pressure) are normally distrib-

uted. [Note that an error is present in Cheinet et al. (2012).

The constant factor in the right-hand side term of their Eqs.

(30) and (31) should be p instead of p=2.]

C. Strong fluctuations regime

Strong wave fluctuations occur while the partial satura-

tion domain or the boundary fU ¼ 1;K > 1g are crossed.

Despite many theoretical considerations (e.g., Tatarski,

1971; Jakeman, 1986; Rytov et al., 1989; Dashen, 1979), the

analytical expressions in this regime are limited to specific

configurations such as high frequency or weak atmospheric

fluctuations.

At low frequencies, a simple model derived by Brown-

lee (1973) can be applied. According to Brownlee (1973),

when
ffiffiffiffiffiffi
kL
p

� L (i.e., when K� 1), the JPD of p at range L
is the non-centered complex Gaussian distribution

NCðp0e�cL; r2
psÞ, so that hpi ¼ p0e�cL; that is, the real part

of p is Gaussian distributed with mean Reðp0e�cLÞ and var-

iance r2
ps dependent on L, and the imaginary part is also

Gaussian distributed with mean Imðp0e�cLÞ and has the same

variance, r2
ps. The value of r2

ps can be deduced from the con-

servation of energy and is jp2
0j=2ð1� e�2cLÞ. The PDF of the

amplitude is then the Rice distribution, R, also sometimes

called Rice-Nakagami, given by

RðAÞ ¼ A

r2
ps

exp �A2 þ jhpij2

2r2
ps

 !
I0

Ajhpij
r2

ps

 !
; (11)

where In is the modified Bessel function of order n. The

mean and variance of A can be analytically deduced

FIG. 2. Range-frequency diagram. The dashed lines and equations show the

boundaries between the various fluctuations regimes. The solid lines repre-

sent the simulation sets considered in this study.
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hAiB ¼ rps

ffiffiffi
p
2

r
e�jhpij

2=ð4r2
psÞ 1þ jhpij

2

2r2
ps

 !
I0

jhpij2

2r2
ps

 !
þ jhpij

2

2r2
ps

I1

jhpij2

2r2
ps

 !" #
;

r2
A B ¼ hA2iB � hAi

2
B ¼ ðjhpij

2 þ 2r2
psÞ � hAi

2
B;

8>><
>>: (12)

where the subscript B stands for the values under the theory

of Brownlee (1973). To our knowledge, there is no direct an-

alytical method for deriving the mean and variance of v and

intensity, I, from this PDF. Solutions can be obtained by a

change of variable in the Rice distribution of A and numeri-

cal integration

hvniB ¼
ðþ1
�1

vnevRðevÞ dv;

hIniB ¼
ðþ1

0

In

2
ffiffi
I
p Rð

ffiffi
I
p
Þ dI:

8>><
>>: (13)

D. Saturated fluctuations regime

The wave fluctuations increase with range and eventu-

ally saturate (Tatarski, 1971; Dashen, 1979; Jakeman, 1986;

Rytov et al., 1989). The complex sound pressure at the re-

ceiver in this saturation regime is the sum of many uncorre-

lated contributions, each of which has the same probability

distribution. The complex sound pressure follows complex

centered Gaussian statistics by virtue of the central limit the-

orem. As a result, the amplitude is Rayleigh distributed, the

log-amplitude is “log-Rayleigh” as defined in Rivet et al.
(2007), the phase is uniform in ½–p; p�, and the intensity has

an exponential distribution. The only free parameter of these

PDFs is given by conservation of energy (total energy given

by jp2
0j). The mean and variances of the main parameters are

given in Table I.

III. THE NUMERICAL SIMULATIONS

This section describes the numerical procedure used to

estimate the wave statistics by a Monte Carlo approach using

FDTD solving of the LEE as propagation model.

A. Atmospheric turbulence

Turbulence is described by the correlation functions of

its parameters, or, equivalently, by their spectrum, U. To

generate a turbulent atmospheric field from the given spec-

trum, the random fluctuations generation (RFG) algorithm

described by Frehlich et al. (2001) and implemented in Chei-

net et al. (2012) is used. The main idea is to sample the fluc-

tuation spectrum, apply a random phase, and Fourier-

transform to obtain the fluctuations in the physical space.

The RFG algorithm generates turbulent fields from a

given spectrum. In the considered simulations there is no

temperature or humidity turbulence, only wind turbulence

with zero mean. The reason for this choice is discussed in

Sec. III C. There are three spectra as input: U11, U12, and U22

denoting, respectively, the correlation of ux, the correlation

of uz, or the cross-correlation between ux and uz. In order to

create a statistically homogeneous, non-divergent 2D wind

field, the following relation must be verified:

UijðjÞ ¼
EðjÞ
pj3
ðdijj

2 � jijjÞ: (14)

As 2D turbulence is less common than the 3D turbulence,

additional details on the derivation of Eq. (14) are given in

Appendix A. The energy spectrum EðjÞ depends only on the

norm of j (isotropy). Here, the von Karman spectrum is cho-

sen [Wilson, 1998, Eq. (96); Cheinet, 2012]

EvKðjÞ ¼ 2
4Cð17=6Þ

3
ffiffiffi
p
p

Cð1=3Þ
r2j4L5

0

ð1þ j2L2
0Þ

17=6
: (15)

The decay for large j is in j�5=3, which is consistent with

the inertial convective range theory. There are predominant

eddies (which size is related to L0), and the spectrum tends

to zero for small j, removing the very large eddies (finite

outer scale). Two parameters are needed for the von Karman

energy spectrum: the characteristic eddy size, L0, and

the total variance of each component of the field,

r2 ¼ hu02x i ¼ hu0
2

z i. There are alternative expressions for this

spectrum, e.g., with the structure parameter C2
n.

The spectrum of Eq. (15) shows non-zero wind fluctua-

tions at very small spatial scales. On the other hand, the

sound propagation model introduced hereafter has a finite

spatial resolution h (Secs. III B and III C). In the absence of

specific parameterization, it is unable to account for the

impact of eddies of the order of (and a fortiori, smaller than)

the spatial resolution. In order to avoid an implicit numerical

truncation, we explicitly filter all eddies smaller than 6h by

incorporating a spectral cutoff in the energy spectrum [Eq.

(15)] at wavenumbers larger than 2p=ð6hÞ. Due to the sharp

decrease of the spectrum at high wavenumbers, the wind var-

iance is only slightly reduced by this cutoff (less than 3%),

and the predicted acoustic field is virtually unchanged (less

than 1%) with truncations at 4h and 8h.

An example of realization of wind turbulence generated

from this algorithm and spectrum with r ¼ 4 m=s and

L0 ¼ 5:0643 m is given in Fig. 3.

TABLE I. Mean and variances of the main acoustic parameters in the satu-

rated fluctuations regime. cE is the Euler constant.

Parameter Mean Variance

v log ðjp0j=
ffiffiffi
2
p
Þ þ ðlog 2� cEÞ=2 p2=24

A jp0j
ffiffiffi
p
p

=2 jp2
0jð4� pÞ=4

A=hAi 1 ð4� pÞ=p
I jp2

0j jp4
0j

I=hIi 1 1

J. Acoust. Soc. Am., Vol. 133, No. 4, April 2013 Ehrhardt et al.: Eulerian modeling of strong turbulence effect 1925

Downloaded 07 Apr 2013 to 132.206.27.25. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



B. The FDTD model

The FDTD model used in this study has been described

in Cheinet and Naz (2006), Ehrhardt and Cheinet (2010),

and Cheinet et al. (2012). Details are given here for com-

pleteness. The prognostic equations solved by the FDTD

method (i.e., the LEE) are (Blumrich and Heimann, 2002;

Salomons et al., 2002; Van Renterghem, 2003; Van Renter-

ghem and Botteldooren, 2003; Wilson and Liu, 2004; Osta-

shev et al., 2005)

@pa

@t
¼ �ðu � $Þpa � qc2$ � wa þ qc2Q;

@wa

@t
¼ �ðu � $Þwa � ðwa � $Þu�

$pa

q
þ F

q
:

8><
>: (16)

Here, pa and wa are the acoustic pressure and particle veloc-

ity, respectively, of real value [pa ¼ Reð~pÞ], and the parame-

ters Q and F are the mass and force sources, respectively.

The simulated acoustic fields are obtained by the integrating

of Eq. (16) over time. The fields are stored on an equidistant

half-staggered mesh. The spatial derivatives are approxi-

mated by the means of 4th order central finite differences. A

4th order Runge-Kutta time integration is used. Typically for

such numerical integration methods the time step, dt, is

required to be less than Ch=c, where C ’ 0:74 < 1 is the

Courant number, and the spatial step h is required to be less

than 1/16 of the acoustic source wavelength. Absorbing

boundary conditions, used to simulate free field propagation,

are modeled by specific porous media where there is no

jump of impedance at the interface, and the sound resistivity

is constantly increasing (see Wilson and Liu, 2004).

Compared to the model detailed in Cheinet et al. (2012), the

numerical code has been adapted for massive parallel proc-

essing on a computational cluster with the MPI and OpenMP

standards. These are the only differences with the model

used in Cheinet et al. (2012). The motivations for these

changes are that a 4th order scheme requires a lower k=h ra-

tio for identical accuracy, allowing a decrease in the number

of nodes for identical physical domain and hence faster com-

putation. This, with the parallel implementation of the

FDTD model on a cluster, made the FDTD simulation of

sound propagation in the saturation regime feasible. After

the FDTD computation, phase and amplitude (that is, com-

plex pressure) of the propagated wave are obtained by

Fourier-transforming on the source frequency the time-

dependent FDTD results, pa,

pðrÞ ¼ 2

N

XN

g¼1

paðr; t0 þ g dtÞe2ipfgdt; (17)

where t0 is a time at which sound amplitude is quasi-

stationary and Ndt is a time duration that must be greater

than a period of the source, i.e., Ndt > 1=f . Hereafter,

N ¼ 100 is chosen.

An example of propagation with the FDTD model of

300 Hz plane wave through the above realization of wind

turbulence is given in Fig. 3. The amplitude of the propa-

gated wave features some typical sound paths in the direc-

tion of propagation (Blanc-Benon et al., 1992; Hugon-

Jeannin, 1992).

C. Scenarii and numerical details

The choice of the acoustic propagation scenario is lim-

ited by the strong computational needs of FDTD simulations

in general. The chosen scenario allows the simulation of

strong and saturated sound fluctuations by a Monte Carlo

approach using a FDTD solving of the LEE for audible or

near-audible frequencies and for realistic atmosphere. The

scenario is described below with numerical details.

Typical temperature fluctuations in the atmosphere

hardly reach a few degrees, leading to hl2i of the order of

10�5 whereas wind fluctuations can reach some m/s, leading

to hl2i of the order of 10�4. Sound is thus more influenced

by wind fluctuations than by temperature fluctuations (Osta-

shev and Wilson, 2000; Cheinet, 2012). Wind fluctuations

are therefore considered here in order to reach the saturation

regime. Here we use

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hju0xj2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hju0zj2i

q
¼ 4 m=s and

L0 ¼ 5:0643 m. The corresponding range-frequency diagram

is plotted in Fig. 2.

A harmonic plane wave is propagating through such tur-

bulence. Three sets of simulations are computed for source

FIG. 3. (Top) Wind amplitude

(color plot in m/s) and direction

(arrows) generated from the RFG

model, and (bottom) amplitude (nor-

malized at 1 for X¼ 0 m) of a

300 Hz plane wave propagated with

the FDTD model in positive x direc-

tion through this realization of wind

turbulence.
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frequencies 50 Hz, 300 Hz, and 600 Hz and propagation

lengths of, respectively, 1800 m, 300 m, and 300 m. As can

be seen in the range-frequency plot, all fluctuations regimes

are covered with these sets of simulations.

We now give the numerical details for the 50 Hz set.

Table II summarizes these aspects for all the sets. The com-

putational domain used in the FDTD model is 2100� 420

m2 wide and the grid spacing is 42 cm; thus there are 5000

� 1000 nodes. Turbulent wind fluctuations are bound to

nodes 201–5000� 1–1000. There is no wind at the other

nodes. Absorbing layers are implemented on the left and

right sides of the domain. They are 200 nodes (84 m) thick.

The harmonic acoustic plane wave is set at the right side of

the left absorbing layer and, to assume perfect planarity, the

domain is periodic on the top and bottom boundaries, which

is in concordance with the RFG-generated turbulent fields.

The wave is thus generated at x ¼ 0 (right side of left

absorbing boundary condition), propagates through turbu-

lence (longest path of the propagation), and is finally

absorbed by the right boundary condition. The turbulent field

generated is 2016 � 420 m2 wide and the grid spacing is the

same as above, i.e., 4800 � 1000 nodes are used. The trans-

verse size of the domain is much greater than L0, allowing a

satisfactory description of the larger eddies. In the first 100

nodes after the source, the wind fluctuations are reduced by

a Tukey window such that the turbulence begins gradually.

The results are taken over the nodes 201–4600 � 1–1000

(propagation length of 1848 m). The time step is 0.9 ms and

12 000 time iterations were performed.

The number of nodes required for efficient absorption

could be reduced by using the efficient and popular perfectly

matched layers (PML) absorbing conditions (B�erenger,

1994, 1996). Still, only a weak proportion of nodes are used

for absorption (8%) so no significant change in the computa-

tional time is expected by the implementation of PMLs.

Last, a large number of simulations per set are required

if one wishes to obtain reasonable convergence of the statis-

tical moments and PDFs. There were 1024 simulations com-

puted for the 50 Hz and 300 Hz sets. Only 200 simulations

were computed for the 600 Hz set due to the higher computa-

tional cost, which appears to be sufficient; see Sec. IV.

For each frequency set, a single simulation without tur-

bulence was also conducted in order to get p0 from the

FDTD model, and also to check the numerical accuracy of

the model (efficient absorption, no issues arising from the

choice of boundaries, numerical steps, etc.).

IV. RESULTS

The following statistics of the wave are now presented

and compared to available theoretical or numerical results:

amplitude of the mean pressure jhpij, log-amplitude variance

r2
v ¼ hv2i � hvi2, transverse correlation of the pressure, JPD

of the complex pressure, and PDFs of phase and amplitude.

Because of the Tukey smoothing in the computations, for all

theories considered, the origin of turbulence is taken as the

middle of the Tukey window (in the 50 Hz set for example,

21 m after the sound origin).

TABLE II. Numerical details for each set of simulations.

Scenario

Source frequency 50 Hz 300 Hz 600 Hz

Propagation range 1800 m 300 m 300 m

Turbulence

r 4 m/s 4 m/s 4 m/s

L0 5.0643 m 5.0643 m 5.0643 m

RFG

Generated turbulence domain 4800 � 1000 nodes 4800 � 1000 nodes 9600 � 2000 nodes

2016 � 420 m2 336 � 70 m2 336 � 70 m2

Grid step 42 cm 7 cm 3.5 cm

Turbulence Tukey smoothing width 100 nodes 100 nodes 200 nodes

42 m 7 m 7 m

Small eddies cutoff 6 nodes 6 nodes 6 nodes

2.52 m 0.42 m 0.21 m

FDTD

Total computational domain 5000 � 1000 nodes 5000 � 1000 nodes 10000 � 2000 nodes

2100 � 420 m2 350 � 70 m2 350 � 70 m2

Grid step 42 cm 7 cm 3.5 cm

Nodes bounded to turbulent fields 201–5000 � 1–1000 201–5000 � 1–1000 401–10000 � 1–2000

Left and right absorbing layers width 200 nodes 200 nodes 400 nodes

84 m 14 m 14 m

Time step 0.9 ms 0.15 ms 0.075 ms

Total simulation duration 10.8 s 1.8 s 1.8 s

12 000 time iterations 12 000 time iterations 24 000 time iterations

Results

Nodes extracted for postprocessing 201–4600 � 1–1000 201–4600 � 1–1000 401–9200 � 1–2000
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A. First and second moments

The mean pressure decays exponentially [see Eq. (3)]

over the full propagation range (Cheinet et al., 2012). The

FDTD model is consistent with these results, as can be seen

in Fig. 4. In the 300 Hz and 600 Hz sets, the c factor can be

taken under the parabolic approximation [Eq. (8)]. The

results compare well and in this sense, the FDTD model

reproduces well the theoretical exponential decay. For the

50 Hz set, turbulence locally scatters sound not only in the

line-of-sight (Cheinet et al., 2012); hence, the parabolic

approximation is not valid. The c factor, which is used for

evaluating the exponential decay, is calculated from Eq. (4).

The match with theory is excellent. At the longest consid-

ered propagation range, the mean pressure amplitude has

lost about 40% of its initial value for the 50 Hz set. The satu-

ration regime is not fully reached yet. The loss is 96% for

the 300 Hz set and nearly 100% for the 600 Hz set, which

suggests that the constant part of the wave is removed, mak-

ing it fully random at those ranges.

Figure 5 shows the variance of log-amplitude with

range. The statistics obtained with the FDTD models are

compared to some analytically derived counterparts. The

first one is from Tatarski’s (1961) theory in the weak fluctua-

tions regime. As expected, the FDTD model follows exactly

Tatarski (1961) as long as r2
v remains weak. As expected

from above, the FDTD result does not reach saturation in the

50 Hz set. The value of r2
v at which the FDTD-simulated

log-amplitude variance saturates in the other sets fully agrees

with the theoretical value of p2=24 (see Table I). It has

also been checked that both r2
A ¼ ðhA2i � hAi2Þ=hAi2 and

r2
I ¼ ðhI2i � hIi2Þ=hIi2 tend to their theoretical limiting

values of ð4� pÞ=p and 1, respectively.

In order to evaluate the FDTD results beyond the weak

or saturated fluctuations regimes, MPS simulations have

been realized for the same configurations. The MPS tech-
nique used in this study is detailed in Appendix B. The phase

screens considered are directly the RFG-generated turbulent

fields used in the FDTD computations. There are thus 4800

phase screens for each realization. As for the FDTD model,

the statistics are obtained from multiple realizations. The

log-amplitude variance given from the MPS model is plotted

for the three frequency sets (Fig. 5). The match between the

two numerical models is excellent over the full propagation

range for the 300 Hz and 600 Hz sets. The strong fluctuations

regime is thus well reproduced by FDTD solving of the LEE

in these sets. In the 50 Hz set, the match is good but a slight

difference is visible between the FDTD and MPS results. As

discussed above, the parabolic approximation is not valid for

low frequencies, so the MPS model is not applicable. The

theory of Brownlee (1973) is limited to configurations where

K� 1. For the 300 Hz and 600 Hz sets, K is always smaller

than 0.4 (since for the considered turbulence, L ¼ 5 m) so

this theory is not applicable. In the 50 Hz set, however, K > 2

above 300 m. The theory is then applicable and is plotted for

this simulation set using the general expression for c, Eq. (4).

The FDTD result matches this model. This validates both the

FDTD modeling of the LEE and Brownlee’s (1973) theory in

the strong fluctuations regime when K� 1, i.e., at low fre-

quencies. In summary, the log-amplitude variance is reliably

FIG. 4. Normalized amplitude of the mean pressure as function of range for

a harmonic source of 50 Hz (left), 300 Hz (middle), and 600 Hz (right). The

solid line represents the results obtained from the FDTD model and the

dashed line represents the theoretical exponential decay. In the 50 Hz set, c
is calculated from Eq. (4), whereas in the 300 Hz and 600 Hz sets, it is calcu-

lated from Eq. (8).

FIG. 5. Log-amplitude variance with range for a harmonic source of 50 Hz

(top), 300 Hz (middle), and 600 Hz (bottom). The solid line represents the

results obtained from the FDTD model. The dashed lines are the limiting

values for the saturation regime (horizontal line) and Tatarski’s (1961)

expression in the weak fluctuations regime. Triangles are the MPS simula-

tion results, circles in the 50 Hz set are Brownlee’s (1973) theoretical

results.
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reproduced by a Monte Carlo approach using FDTD solving

of the LEE as propagation model over all the considered fre-

quencies and fluctuations regimes.

Figure 6 shows C for the 600 Hz set at various propaga-

tion ranges. Like jhpij, the FDTD and analytical expression

[Eq. (10)] match at all ranges. The match is similar for the

300 Hz set, but in the 50 Hz set, the theory is no longer com-

parable to simulations. As discussed above, this can be

explained by the inapplicability of the parabolic approxima-

tion at low frequencies.

B. Joint probability density and probability density
function

A useful analytical and visual parameter for illustrating

the effects of turbulence on sound propagation is the JPD of

p, that is, the probability for p to have a certain complex

value. The integration over all arguments (angles) gives the

log-amplitude/amplitude/intensity PDF. When integrated

over the module, it gives the phase PDF. Also, it shows the

possible correlation between log-amplitude and phase, or

between ReðpÞ and ImðpÞ, through its general shape. The

JPDs calculated from the sets of simulations are given in

Fig. 7.

In the 50 Hz set, the JPDs are as described in Brown-

lee’s (1973) theory, that is, non-centered Gaussian distribu-

tion. This provides an additional qualitative validation of

both this theory and the FDTD model in this low frequency

case. The JPD at maximum propagation range is not cen-

tered, since the saturation regime is not fully reached (Fig.

4). At 300 Hz, the fluctuations mainly occur on phase in the

first propagation ranges, which is consistent with theory

(Tatarski, 1961; Flatt�e, 1979) and leads to a croissant-shaped

JPD. When the saturated regime is reached, the shape is cir-

cular and centered matching the complex centered Gaussian

statistics. An eye-catching effect here is the non-symmetry

toward the real axis, meaning significant correlation between

v and /. Because of the chosen conventions, a counterclock-

wise shift stands for phase lateness, which means that the

wave slows down, resulting in refocusing and higher ampli-

tude. This explains the general trend of larger amplitudes at

negative arguments (angles). The opposite deduction can be

made for clockwise shift. This non-negligible dependence is

described by the cross-correlation given by Tatarski (1961).

At 600 Hz, the general shapes of the JPDs are similar to the

300 Hz, with more pronounced evolution with range, as

expected.

The PDFs of the normalized statistics, /� argðp0Þ
and A=hAi, obtained in the 300 Hz set are given in Fig. 8

along the propagation range. The initial PDFs spread as

the wave propagates from normal to uniform for /, and

from log-normal to Rayleigh for A. The simulated PDFs

compare well with the theoretical asymptotic PDFs. It has

also been checked that the other PDFs follow theory—nor-

mal to log-Rayleigh for v and log-normal to exponential

for I. The comparison results are the same for the 600 Hz

set. There is no available theoretical distribution in the

transitional regime for these sets. However for the 50 Hz

set, Brownlee’s (1973) theory provides the JPD at ranges

larger than 300 m, where K > 2, and thus also the PDFs.

In Fig. 9, the FDTD-predicted PDFs of A=hAi are com-

pared to the theoretical Rician distributions. The match is

excellent when K > 4.

V. DISCUSSION

In Sec. IV, the FDTD model has been shown to accu-

rately reproduce the turbulence-induced statistical effects on

wave propagation. In this section, it is used as a tool to eval-

uate a common fit for the intensity PDF.

This fit was first proposed in the late 1980s (Ewart and

Percival, 1986; Ewart, 1989). The conjecture is that the in-

tensity probability distributions are described by the general-

ized gamma (GC) distribution first introduced by Stacy

(1962). This seems to be consistent with the first simulations

of the authors of the conjecture and also with experimenta-

tion (Blanc-Benon and Juv�e, 1993). The GC distribution

generally needs three parameters, but one is imposed by the

assumption that hIi is constant (and taken equal to 1 here).

The distribution is thus the following:

GCk;bðIÞ ¼
blk

CðkÞ I
bk�1e�lIb

: (18)

Here l ¼ ½Cðk þ 1=bÞ=CðkÞ�b and the two parameters are k
and b. This distribution provides a smooth transition from

the log-normal distribution (in the weak fluctuations regime,

when k !1) to the exponential distribution (in the satura-

tion regime, when k ¼ b ¼ 1). Prescribing the evolution of

the parameters as the sound propagates remains an open

problem.

The GC distribution is not the only distribution pro-

posed for the PDF of the intensity. Among the plethora of

models proposed in the literature there are, for instance, the

K-distribution (Jakeman and Pusey, 1976), the I-K distribu-

tion, the Furutsu distribution (Flatt�e et al., 1994), or

FIG. 6. Transverse coherence as a function of transverse separation for dif-

ferent propagation ranges for a harmonic source of 600 Hz. The solid lines

represent the results obtained from the FDTD model and the dashed lines

give Tatarski’s (1961) theoretical expression in the weak fluctuations re-

gime. The propagation ranges are, from top to bottom, 30 m, 60 m, 100 m,

and 300 m.

J. Acoust. Soc. Am., Vol. 133, No. 4, April 2013 Ehrhardt et al.: Eulerian modeling of strong turbulence effect 1929

Downloaded 07 Apr 2013 to 132.206.27.25. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



Beckman distribution (Hill and Frehlich, 1997). Some

authors propose convolutions between different distribu-

tions, such as the modulated K- and I-K distributions (Flatt�e
et al., 1994), or log-normally modulated exponential and

Rician distributions (Churnside and Hill, 1987; Churnside

and Frehlich, 1989). Most of these distributions can repro-

duce the known asymptotical distributions in the weak fluc-

tuations regime (log-normal) and saturation regime

(exponential). In this study only the GC distribution is eval-

uated because of its simple analytical expression (McLaren

et al., 2012) and as the objective is to show the potential of

the FDTD model in addressing this problem.

Assuming that the intensity PDF is described by the GC
distribution, it is possible to determine the evolution of the

ðk; bÞ parameters with range from the FDTD simulations.

The 300 Hz set is chosen for this analysis. The simplest

FIG. 7. Joint probability density of the complex pressure for various propagation ranges and sets (given in brackets in top-right corner on each plot) obtained

from the FDTD model. Colormap is linear between zero (in white) and the maximum value (in black). The dashed circle is the unit circle and the solid lines

are contours of iso-probability: 90% of the sample lie within the outer border and 50% within the inner border.

FIG. 8. Probability density functions of the normalized amplitude (top) and

phase (bottom) for the 300 Hz set at different propagation ranges (7 m, 21 m,

49 m, 105 m, and 301 m) obtained from the FDTD model. The PDFs for the

shorter propagation range overflow the figure. The theoretical PDF in the

saturation regime is shown with squares.

FIG. 9. Probability density functions of the normalized amplitude for the

50 Hz set at five propagation ranges (126 m, 294 m, 360 m, 966 m, and

1302 m). The solid lines are from the FDTD model and the dashed lines

from Brownlee’s (1973) theory. At these propagation ranges, K is, respec-

tively, 0.92, 2.15, 4.60, 7.05, and 9.50.
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method, consisting of solving the conjugated non-linear

equations

hI2i
hIi2
¼ CðkÞCðk þ 2=bÞ

C2ðk þ 1=bÞ
;

hI3i
hIi3
¼ C2ðkÞCðk þ 3=bÞ

C3ðk þ 1=bÞ
;

8>>>><
>>>>:

(19)

where hIi, hI2i, and hI3i are computed from the FDTD-

simulated samples, does not provide accurate results as two

different distributions may have very close first three

moments (Ewart and Percival, 1986; Ewart, 1989). The

method used here is a determination of the couple of param-

eters ð1=k; bÞ minimizing the Cramer von Mises criterion—

least squares on the cumulative density function at each

propagation range. The obtained parameters are shown with

range on Fig. 10. At small ranges, k is infinite (log-normal

distribution) and at long ranges k and b both tend to 1 (expo-

nential distribution). It has been qualitatively checked that

the obtained generalized gamma distribution fits the simu-

lated one. All the previously presented amplitude-related sta-

tistics can be deduced from this fit.

After the range 80 m, the fit gives kb ¼ 1. This suggests

that a one-parameter law is sufficient for strong enough

wave fluctuations, which is consistent with studies showing

good agreement between a one-parameter PDF and experi-

mental data (Churnside and Hill, 1987).

VI. CONCLUSION

Sound is influenced by atmospheric turbulence. Even in

an a priori simple configuration, that is, 2D harmonic plane

wave propagation through homogeneous wind-only turbu-

lence, the wave behavior is complex and not fully under-

stood. Yet, such scenarii are of practical interest, therefore

many analytical, experimental, and numerical efforts have

been made to increase knowledge in this field. One major

issue is the lack of solutions, be they analytical, experimen-

tal, or numerical, valid for all realistic scenarii. Most often

there are limitations on the source frequency (as in Brown-

lee, 1973), the intensity of sound fluctuations (as in Tatarski,

1961) or the geometry of the configuration (as in parabolic

equations simulations). Also, most of the quantitative results

are only available for some particular statistical parameters

of the wave.

FDTD solving of the LEE is a more computationally in-

tensive model which overcomes these limitations. It has al-

ready been shown to capture the physics of sound

propagation through turbulence at high and low frequencies

for weak sound fluctuations (Cheinet et al., 2012). The pres-

ent study is intended to assess stronger wave fluctuations.

The case of 2D harmonic plane wave propagation through

homogeneous wind turbulence is considered. FDTD simula-

tions are performed for multiple realizations of turbulence

and the obtained wave statistics are compared to various the-

oretical or numerical results. For low acoustic source fre-

quencies, the model of Brownlee (1973) is used. For higher

frequencies, MPS simulations are used for evaluation. Also,

for weak fluctuations regime, Tatarski’s (1961) theory is

used and for the saturation regime, Gaussian statistics are

considered (see, e.g., Dashen, 1979 or Flatt�e, 1979).

The amplitude of the mean complex pressure, the log-

amplitude variance, and the transverse coherence are consist-

ent between the FDTD model and the compared theoretical

or numerical results. The joint probability density (JPD)

function of the complex pressure also gives valuable results.

In the low frequency case, the FDTD result matches the the-

oretical expectation (non-centered complex Gaussian distri-

bution). For higher frequencies, the behavior is also

consistent—the phase fluctuations are greater than log-

amplitude fluctuations and there is notable cross-correlation

between these two parameters. In the saturation regime, the

JPD is a centered Gaussian as predicted by theory. Last, the

probability density functions (PDF) of the phase and ampli-

tude match theoretical PDFs in the saturation regime. For

low frequencies, the available theoretical PDFs are in agree-

ment with the FDTD model. These overall comparisons lead

to the conclusion that a Monte Carlo approach using a

FDTD solving of the LEE as propagation model reproduces

the known statistical behavior for harmonic plane wave

propagation through turbulence for all fluctuation regimes.

Finally, the FDTD model is used as a tool to evaluate the fit-

ting of the intensity PDF by a generalized gamma function.

The FDTD simulations give the evolution of the parameters

of this distribution with range for one of the simulated source

frequencies.

In the future, it could be valuable to further investigate

the instantaneous pressure fields (Fig. 3) which contain addi-

tional physics from statistical quantities.
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FIG. 10. The two parameters of the GC distribution fitting the simulated

PDF of the intensity for the 300 Hz set. The white squares give 1=k and the

black circles give b.
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APPENDIX A: TWO-DIMENSIONAL SPECTRA OF
WIND TURBULENCE

The aim of this appendix is to provide more details con-

cerning the derivation of Eq. (14). The 3D case as described

in Batchelor (1953) is first recalled and the differences with

the 2D equivalent are given.

According to Batchelor (1953, Eqs. 3.4.10, 3.3.5, and

2.4.7), the 3D spatial spectra Uij of a non-divergent vector

field are given by

UijðkÞ ¼ AðkÞðkikj � dijk
2Þ; (A1)

where k is a 3D vector field, ki denotes its ith component and

k its norm, dij is the Kronecker symbol, and AðkÞ any func-

tion. The energy spectrum E can be obtained from Uij

(Batchelor 1953, Eqs. 3.1.5 and 3.1.2)

EðkÞ ¼ 1

2

ð ð
ðU11 þ U22 þ U33ÞðkÞ dSðkÞ; (A2)

where the integration is calculated on the surface of a sphere

of radius k. Equation (A2) simplifies to

EðkÞ ¼ 1

2
ð�2k2AðkÞÞð4pk2Þ ¼ �4pk4AðkÞ: (A3)

The spatial spectra can therefore be written as function of

energy spectrum only, leading to the well-known [see, e.g.,

Wilson, 1998, Eq. (16)] relation

UijðkÞ ¼
EðkÞ
4pk4

ðdijk
2 � kikjÞ: (A4)

The 2D case presents only one difference. Equation (A1)

remains valid, but the integration on Eq. (A2) is calculated

on the perimeter of a circle of radius k. Thus

EðkÞ ¼ 1

2

ð
ðU11 þ U22ÞðkÞ dlðkÞ

¼ 1

2
ð�k2AðkÞÞð2pkÞ ¼ �pk3AðkÞ: (A5)

And finally

UijðkÞ ¼
EðkÞ
pk3
ðdijk

2 � kikjÞ : (A6)

APPENDIX B: THE MULTIPLE PHASE SCREEN
NUMERICAL MODEL

In this appendix, the MPS numerical model is described.

This model is an efficient implementation of the PE model

in case of absence of mean refraction, and therefore also

comes with a high-frequency limitation. MPS simulations

have been widely used for studying sound propagation

through random media (Knepp, 1983; Macaskill and Ewart,

1984; Spivack and Uscinski, 1989; Coles et al., 1995). The

acoustic fields given by MPS simulations have been com-

pared to other theories, other models, and experimental data

in many cases with good agreement. It is therefore a well-

established model.

This model allows the calculation of sound pressure by

step-by-step iteration over the propagation range. The propa-

gation through turbulence is separated into two independent

physical processes. First, the turbulent atmosphere is mod-

eled by multiple screens separated by a given distance dx.

As the atmospheric fluctuations are assumed to be small, the

effect of those screens on sound crossing them is a simple

phase change—leading to the names of phase screens. If one

considers a phase screen located at x, the complex sound

pressure just after the screen pðxþÞ is related to the complex

sound pressure just before the screen pðx�Þ by

pðxþ; zÞ ¼ pðx�; zÞe�iknðx;zÞdx; (B1)

where n is the generalized index of fluctuations given in Eq.

(5). The second physical process is the propagation between

two adjacent phase screens. Free field propagation is consid-

ered (no turbulence). The complex sound pressure just

before the next phase screen pðxþ dxÞ is obtained by appli-

cation of the free-field propagation factor expðiK2dx=ð2kÞÞ
in the transverse spectral space and of a factor expð�ikdxÞ in

the physical space (Knepp, 1983; Coles et al., 1995)

pðxþdx;zÞ¼F�1 exp
iK2dx

2k

� �
F½pðxþ;zÞ�ðKÞ

� �
ðzÞ

� e�ikdx;

(B2)

where F½pðx; zÞ�ðKÞ is the spatial transverse Fourier trans-

form of pðx; zÞ and F�1½pðx;KÞ�ðzÞ is the inverse spatial

transverse Fourier transform of pðx;KÞ. This second physical

process causes the sound amplitude fluctuations arising from

phase fluctuations. The MPS method thus consists in succes-

sively applying Eq. (B1) for a phase screen and Eq. (B2) to

reach the next phase screen. It is unconditionally stable, con-

sistent, and convergent (Jenu and Bebbington, 1994).
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