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IntrodutionFlows generate noise, and noise often interats with �ows through a feedbak loop. These omplexmehanisms raise many questions of fundamental, tehnial and industrial interests. Sine the 50's andthe development of turbojet engines for ommerial airrafts, the need to deal with these problems hasspread to other industrial �elds: ground transportation, energy prodution, ...Aeroaoustis is onsidered as a branh of �uid mehanis. But the nature of aoustis �utuationsthat are ompressible, propagative and of small amplitude takes a speial plae in the �eld of �uidmehanis that usually deals with inompressible, onvetive, turbulent �utuations draining a signif-iant perentage of the main �ow energy. Here lies the di�ulty of aeroaoustis whih is devoted to�ow indued noise and more generally to �ow aoustis phenomena.Industrial bakgroundIn the industrial �eld of interest for EDF, strong aeroaousti phenomena are often generated whenpipe �ows are disturbed by �ow ontrol devies. That is the ase, for example, downstream ontrolvalve at small aperture suh as shown in Figure 1 (a). The pressure ratio is very high and the �ow isthen transoni. In suh shoked on�gurations, �ow patterns are very sensitive to instabilities and thisan lead to strong pressure osillations when they are in resonane with aousti modes [95, 6℄. Otherexamples are given by di�user �ows where osillations are generated due to the interation of a normalshok with a separating shear or boundary layer [24, 23℄. Self-sustained osillations of the shok wavean ouple with longitudinal aousti dut modes [143℄ and an lead to high amplitude osillations.That is also the ase in subsoni �ow when shear layers or jets impinge on downstream obstales.It is well know that in suh situations, self-sustained osillations an appear. The �ow above a shallowavity is a typial illustration of this phenomenon. An industrial example is given in Figure 1 (b)showing a gate valve with a avity loated at the bottom of the valve. Due to on�nement, ouplingan our with transverse dut modes when the frequeny of avity osillations mathes the resonantfrequeny of the dut. This leads to high amplitude pressure �utuations even at low Mah numberswhereas for open avities, no onsiderable noise generation is observed. The same phenomenon aneven be found in nearly inompressible �ow suh as high pressure water �ow through ori�es [129℄. Theonsequene of these phenomena is the generation of large amplitude aousti tones that are undesirableas regards vibrations of pipe strutures and protetion of nearby workers from high aousti levels.All these aeroaousti phenomena exhibit the same physial behavior: they our when a self-



6 (a) (b)
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Figure 1: Examples of �ow ontrol devies: (a) Striosopy of the �ow in a ontrol valve; (a) gate valve.sustained osillation due to a �ow instability (shok, jet, shear layer) is oupled with an aoustiresonator. They also learly emphasize feedbak loops from the aoustis to the aerodynamis.Computational issuesSine the beginning of the 50's and the birth of aeroaoustis as a new sienti� �eld through thepubliation by Lighthill of its founding papers, the problem is mainly how to use the information omingfrom the aerodynamis and espeially how to link aerodynamis and aeroaoustis in a modeling pointof view. Although aoustis and aerodynamis are two branhes of �uid mehanis, lassial methodsused in Computational Fluid Dynamis (CFD) an not be applied easily. This is due to the disparityof sales and dynamis between the aerodynami �eld and the aousti �eld. For example, for a freejet at Mah M = 0.9, the pressure �utuations of the aousti �eld is about 100 times smaller thanthe pressure �utuations of the aerodynami �eld. The disparity is even greater between the veloity�utuations of the aousti �eld and the aerodynami �eld. An error of 1% in the omputation ofthe aerodynami �eld therefore produes an error of 100% for the aousti �eld. As a result, twoapproahes have been developed in the past.The �rst approah is based on the so-alled hybrid methods that onsist of a two-step proedure.First, the inompressible mean �ow �eld is alulated, then a soure term is de�ned and at last anaousti solver gives the propagation �eld generated by the soure. That is the priniple of Lighthill'sor Ffows-Williams's analogies that use integral methods as the aousti solver but that is also thepriniple of the methods based on the omputation of Linearized Euler Equations (LEE). In this�rst approah, the �ow is obtained from lassial inompressible low-order �ow solvers giving steady(Reynolds Averaged Navier-Stokes (RANS) models) or unsteady (Unsteady RANS (URANS), Large-Eddy Simulation (LES)) results. The soure term expression an be either statistial [17, 10℄, stohasti[16, 12, 91, 11, 52℄ or temporal [14, 41℄.



7 It has been shown above that in many issues, the aousti �eld interats with the �ow �eld.Partiularly in duted on�gurations, strong aousti feedbak mehanisms are involved. For thoseproblems, the hybrid approahes are no longer valid and it is neessary to use the seond modelingapproah whih implies to solve �ow and aousti �elds at one [54, 29℄ . This approah is alledDiret Noise Computation (DNC). In this ase, standard low-order CFD tehniques are di�ult to usebeause they are too dissipative and too dispersive so they an not preserve the amplitude and thephase of the aousti �utuations. Large e�orts have been arried out to develop numerial tehniquessuitable to Computational AeroAoustis (CAA) [123, 40℄. An important step was made with theDispersion Relation Preserving shemes introdued by Tam and Webb [128℄. These shemes are basedon high-order aurate �nite di�erenes, optimized in order to minimize the dispersion error. Althoughthey are restrited to strutured omputational grids and despite of the impressive rise in omputingpower, their omputational e�ieny ompared to �nite volume methods suh as spetral volume ordisontinuous Galerkin methods made them very popular. Following this priniple, Bogey and Bailly[30℄ proposed improved shemes whih have proved their e�ieny on jet noise omputations [29℄. Inorder to treat more ompliated geometries, Marsden [92℄ applied these shemes on urvilinear meshesaround bodies suh as ylinders or a NACA0012 pro�le. The present work is on the same path andaims to be able to deal with on�gurations lose to industrial appliations.Objetives of the thesisThe objetives of the thesis are to develop a high-order �nite-di�erene algorithm for Euler and Navier-Stokes equations for the simulation of aeroaousti phenomena in omplex geometries and to applyit on �ow on�gurations that are typial of industrial appliations. The �ows to be addressed aresubsoni, transoni and supersoni.In order to apply high-order �nite-di�erene shemes in omplex geometries, an overset-grid ap-proah is hosen. Classially used for aousti propagation problems, this approah [43℄ has reentlybeen adapted for the Diret Noise Computation approah and LES [116, 92, 45, 134℄. In order toavoid algorithmi developments that are not in the sope of this work, it is neessary to use availabletools dealing with overset grids. For example, the freely available Overture library developed by theLawrene Livermore National Laboratory seems to be a good andidate for the reation of overset gridsin omplex geometries. In this work the appliability of suh tools will be studied. In partiular, theruial problem of the ommuniation between grids through interpolation will be examined beauseinterpolation must be of high-order to preserve the auray given by the numerial shemes.Another disadvantage of �nite-di�erene shemes is that they exhibit stability problems due totheir minimized dissipation. In general, high-order �nite-di�erene shemes fail to simulate �ows withstrong shoks. Shok-apturing �lters have therefore been developed in the literature for high-orderaurate omputation of transoni and supersoni shok-ontaining �ows. In this work, we will verifythat they are suitable to model aeroaousti phenomena and will adapt them if neessary.After having validated the algorithm on lassial test ases for CAA, its appliation on two omplex



8on�gurations that are typial of the industrial problems of EDF will be tested: �rst the ase of asubsoni on�ned avity and seond the ase of an abruptly expanded transoni �ow. The simulationsan be validated with available experimental data. In partiular, the aousti oupling of self-sustainedosillation and dut resonane modes is to be onsidered in this work.Organization of thesisThe thesis is organized as follows. First, the numerial algorithm is explained in detail and the hosennumerial shemes are detailed. The implemented shok-apturing �lter is disussed. The overset-gridapproah is explained and some performane aspets of the parallelized solver are given.In the seond hapter, lassial validation test ases are presented. Those test ases, involvingthe di�ration of a monopolar pressure soure by a ylinder, the onvetion of an invisid vortex, the1-D shok/sound interation problem in a onvergent divergent nozzle, the 1-D shok/entropy waveinteration problem, a 2-D ompressible plane Couette �ow, a low-Reynolds number �ow and theomputation of a 3-D shok tube, are reported.In the third hapter, a �rst industrial appliation is presented. The on�guration onsists in alow Mah number �ow over a duted avity. The �ow at high Reynolds number is omputed in 3-D and ompared to available experimental data. In order to demonstrate the numerial evidene ofthe oupling mehanism, a series of omputations with di�erent Mah numbers are arried out. Forpartiular values of the inoming veloity, the ampli�ation of the pressure is maximum, showing theoupling of the avity modes and the dut modes.In hapter four, the sudden expansion of a transoni �ow is omputed for di�erent pressure ratios.The study onsists �rst in a omputation of a pressure ratio where the �ow is entirely supersoni andfeatures a system of rossing oblique shoks. Then, the in�uene of the pressure ratio on the �ow isexamined. Finally, a on�guration is presented where the osillations of the shok are oupled withlongitudinal dut modes.



Chapter 1Governing equations and numerialalgorithm
1.1 Governing equationsThe governing equations used in this work are the urvilinear Euler and Navier-Stokes equations,written in onservative form. In this setion, the derivation is �rst established for the Euler equations.The derivation of the urvilinear Navier-Stokes equations is given in setion 1.7.The system of equations an be derived starting from the Euler equations written in Cartesianoordinates

∂U

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0. (1.1)The unknown vetor U ontains the onservative variables

U =




ρ

ρu

ρv

ρw

ρet




,where ρ is the density, u, v and w are the veloity omponents in x, y and z-diretion and ρet is thespei� total energy. For a perfet gas, ρet is de�ned suh as
ρet =

p

γ − 1
+

1

2
ρ(u2 + v2 + w2),where γ is the ratio of spei� heats and p designates the pressure. The vetors E, F, G ontain theEulerian �ux terms

E =




ρu

ρu2 + p

ρuv

ρuw

(ρet + p)u




,F =




ρv

ρvu

ρv2 + p

ρvw

(ρet + p)v




,G =




ρw

ρwu

ρwv

ρw2 + p

(ρet + p)w




. (1.2)



10In the following, the oordinate transformation of the Euler equations (1.1) from Cartesian oordinates
(x, y, z) to urvilinear oordinates (ξ, η, ζ) is skethed. Only time-invariant grids are onsidered in thiswork resulting in urvilinear oordinates whih are only funtions of (x, y, z):

τ ≡ t, ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z). (1.3)Further details an be found in the work of Vinokur [136℄ and Pulliam and Steger [102℄.Chain rule expansions are used to represent the Cartesian derivatives in terms of the urvilinearderivatives 


∂x

∂y

∂z


 =




ξx ηx ζx

ξy ηy ζy

ξz ηz ζz







∂ξ

∂η

∂ζ


 . (1.4)Solving the metri equations leads to the following expressions:

ξ̂x = yηzζ − yζzη , η̂x = yζzξ − yξzζ , ζ̂x = yξzη − yηzξ,

ξ̂y = zηxζ − zζxη, η̂y = zζxξ − zξxζ , ζ̂y = zξxη − zηxξ,

ξ̂z = xηyζ − xζyη, η̂z = xζyξ − xξyζ , ζ̂z = xξyη − xηyξ,

(1.5)where ξ̂x = ξx/J , ξ̂y = ξy/J , ... and J stands for the determinant of the transformation Jaobianmatrix that is determined using
1

J
= xξyηzζ + xζyξzη + xηyζzξ − xξyζzη − xηyξzζ − xζyηzξ.Applying the transformation (1.4) to the governing equations (1.1), the weak onservation form of theurvilinear equations is obtained:

Ut + ξxEξ + ηxEη + ζxEζ + ξyFξ + ηyFη + ζyFζ + ξzGξ + ηzGη + ζzGζ = 0.The strong onservation form is reovered by dividing by the Jaobian J and by using the produtrule. For example we have:
ξ̂xEξ = (ξ̂xE)ξ − (ξ̂x)ξE.Thus the Euler equations beome for urvilinear oordinates

1

J
Ut + (ξ̂xE + ξ̂yF + ξ̂zG)ξ + (η̂xE + η̂yF + η̂zG)η + (ζ̂xE + ζ̂yF + ζ̂zG)ζ (1.6)

+E
[
(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ

]
+ F

[
(ξ̂y)ξ + (η̂y)η + (ζ̂y)ζ

]
+ G

[
(ξ̂z)ξ + (η̂z)η + (ζ̂z)ζ

]
= 0.The terms in brakets are known as the metri invariants of the transformation. If the equations forthe metri relations (1.5) are introdued, they vanish and the strong onservation form of the governingequations is �nally derived:

∂Û

∂t
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
= 0, (1.7)
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x

y η

ξFigure 1.1: 2-D transformation from Cartesian oordinates (x, y) in the physial domain to urvilinear oordi-nates (ξ, η) in the omputational domain.The unknown vetor Û = U/J ontains the onservative variables weighted by the inverse of theJaobian, proportional to the volume of a grid ell in 3-D. The new �ux vetors Ê, F̂, Ĝ ontain theEulerian �ux terms
Ê =

1

J




ρU

ρUu + pξx

ρUv + pξy

ρUw + pξz

(ρet + p)U




, F̂ =
1

J




ρV

ρV u + pηx

ρV v + pηy

ρV w + pηz

(ρet + p)V




, Ĝ =
1

J




ρW

ρWu + pζx

ρWv + pζy

ρWw + pζz

(ρet + p)W




.The quantities U, V,W are the ontravariant omponents of the veloity, de�ned by
U = ξxu + ξyv + ξzw, V = ηxu + ηyv + ηzw and W = ζxu + ζyv + ζzw.The resolution of the Euler equations on a urvilinear grid is then similar to the resolution of theequations on Cartesian mesh. The omputation of the �ux terms is more omputationally demanding,as the ontravariant veloities have to be omputed �rst. The grid spaing in the omputational domainis taken uniform with ∆ξ = 1, ∆η = 1 and ∆ζ = 1.1.2 Spatial Di�erentiationThe invisid non-linear �ux terms govern the propagation of aousti waves and their interation withthe aerodynami �eld. In aeroaoustis, aousti waves are propagated over long distanes that requireslow dispersion and low dissipation errors of the numerial sheme. This makes the use of high-orderaurate shemes neessary.Many high-order aurate shemes have been proposed in the literature for the purpose of CAA andLES. An overview on high-order aurate shemes an be found in the review artile of Ekaterinaris[50℄. Either based on the integral form or on the di�erential form of the Euler equations, two approahesan be found in the literature: the �nite-volume and the �nite-di�erene approahes.



12 The �nite-volume approah is based on the integral form of the Euler equations and the �ow�eld is omputed via surfae integrals of the �uxes through a ontrol volume. Finite-volume methodsare used in ommerial CFD odes beause they an be applied to unstrutured grids and are byonstrution onservative. Traditionally �nite-volume methods are low-order aurate. In the lastdeade, high-order aurate �nite volume-approahes have been developed. For example Barth etal. [13℄ pioneered the use of an arbitrary high-order reonstrution method to ompute the �ux atthe ontrol volume boundary. Other methods like the Disontinuous Galerkin (DG) methods thathave been developed by Cokburn et al. [36℄ shows promise for high-resolution simulations on fullyunstrutured meshes. Another method based on the �nite-element framework are spetral elementmethods developed reently by Wang [141℄. ADER (Arbitrary high-order shemes using DERivatives)�nite-volume methods developed by Shwartzkop� et al. [115℄ and DG methods have been proposedin the literature [49℄. Although these methods allows a maximum �exibility in grid generation, high-order �nite volume methods on unstrutured grids remain omputationally intensive and very few 3-Dappliations, in general at low Reynolds numbers, an be found in the literature [50℄.The �nite-di�erene approah is based on the di�erential form of the Euler equations. Thosemethods do not require a reonstrution of the �ux around a ontrol volume and the derivatives areapproximated by �nite-di�erenes. High-order auray an be obtained very easily by enlarging the�nite-di�erene stenil and by eliminating low-order terms by a ertain hoie of the stenil oe�ients.As large stenils of grid points are needed to reonstrut the derivatives with high auray, the �nite-di�erene approah is in general restrited to strutured grids with redued grid �exibility. For non-linear problems the �nite-di�erene approah allows to aess to high Reynolds number appliationsand are often used for DNS and LES. In ombination with high-order overset-grid approah, omplexgeometries an be taken into aount and the �nite-di�erene method has been used in this work.Several �nite-di�erene based shemes exist in the literature. Among those the ompat shemesof Lele [86℄, the Dispersion Relation Preserving (DRP) sheme of Tam and Webb [128℄, high-orderimpliit ompat MaCormak-type sheme suh as developed by Hixon et al. [70℄ and the expliit11-point optimized expliit �nite-di�erene sheme of Bogey and Bailly [30℄ an be mentioned at thispoint.In order to simplify the domain deomposition in a parallel approah, the expliit entered 11-point�nite-di�erene sheme developed by Bogey and Bailly [30℄ has been implemented in this work. Thissheme is optimized in wave number spae and is able to resolve aurately perturbations with onlyfour points per wavelength. For example, the derivative of Ê in ξ-diretion at (i, j, k) is omputedusing the expression
∂Ê

∂ξ

∣∣∣∣∣
i,j,k

=

5∑

r=1

ar(Ê|i+r,j,k − Ê|i−r,j,k).The oe�ients ar of the sheme are given in Table 1.1.
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a0 = 0.

a1 = 0.872756993962667

a2 = −0.286511173973333

a3 = 9.032000128000002 × 10−2

a4 = −2.077940582400000 × 10−2

a5 = 2.484594688000000 × 10−3Table 1.1: Coe�ients of the interior entered spatial di�erening sheme [30℄.1.3 Time integration shemeA low-storage expliit Runge-Kutta sheme has been implemented in the solver to update the �owvariables at the new time instane Ûn+1. The algorithm an be summarized as follows:
Û(0) = Ûn,

Û(l) = Ûn − αl ∆t F(Û(l−1)) for l = 1, ..., p,

Ûn+1 = Û(p),where Û(l) ontains the �ow variables omputed at the sub stage l, αl are the oe�ients of the RungeKutta sheme given in Table 1.3, ∆t is the time step and F is given by
∂Û

∂t
+ F(Û) = 0.RK(p=4) RKo(p=6)

α1 1/4 0.11797990162882

α2 1/3 0.18464696649448

α3 1/2 0.24662360430959

α4 1 0.33183954273562

α5 − 1/2

α6 − 1Table 1.2: Coe�ients αl of standard (RK) and optimized Runge Kutta (RKo) sheme [30℄.In this work, either four-stage or an optimized six-stage Runge-Kutta sheme suh as proposed byBogey and Bailly [30℄ are used. The six-stage sheme has been optimized in the frequeny domainin order to redue the dispersion and dissipation errors. Both shemes are fourth-order aurate forlinear problems and are seond-order for non-linear problems.1.4 Seletive �lteringCentered �nite-di�erene shemes have no built-in dissipation suh as upwind shemes. Non physialgrid-to-grid osillations that are generated at boundary onditions, geometrial singularities, non-linearenergy asade and strong gradients suh as shoks an aumulate in the omputational domain,



14ending up with a divergene of the solution. In order to ensure numerial stability, an expliit 11-pointlow-pass �lter has been implemented. The �lter, optimized in the wave-number spae [30℄, removesall high frequeny waves resolved with less then 4 points per wavelength. Thus the ut-o� frequenymathes with the maximum resolution of the �nite-di�erene shemes. The �lter is separately appliedone after every time iteration in eah oordinate diretion. The algorithm for �ltering in ξ-diretionan be written suh as
Wp

d
i,j,k = Wpi,j,k − σ(Dξ + Dη + Dζ)where

Dξ =

5∑

r=−5

drWpi+r,j,k, Dη =

5∑

r=−5

drWpi,j+r,k, Dζ =

5∑

r=−5

drWpi,j,k+r.The �ltering oe�ient σ has to be hosen between 0 and 1. If not otherwise indiated a oe�ientof σ = 0.2 is used. The �lter is applied to the primitive variables W = (ρ, u, v, w, p)T . The steniloe�ients dr = d−r are given in Table 1.3.
d0 = 0.2150448841109084

d1 = −0.1877728835894673

d2 = 0.1237559487873421

d3 = −5.922757557574387 × 10−2

d4 = 1.872160915720372 × 10−2

d5 = −2.999540834788787 × 10−3Table 1.3: Coe�ients of the entered �ltering [30℄ for interior points.In order to preserve auray near the wall boundaries, the optimized 11-point non-entered �nite-di�erene shemes suh as developed by Berland et al. [21℄ are used. The assoiated non-entered�lters exhibit stability problems, when the mesh is strethed, ontains disontinuities or for stronglyompressible �ows. Centered �lters with redued order an be therefore optionally applied at boundaryonditions.1.5 Computation of the metrisThe solution of the transformed Navier-Stokes equations require the evaluation of the Jaobian matrix
J:

J =
∂(ξ, η, ζ)

∂(x, y, z)
=




ξx ηx ζx

ξy ηy ζy

ξz ηz ζz


 ,and its determinant J. Only the mapping funtion x = (x,y, z)T = x(ξ, η, ζ) is a priori knownand therefore only its inverse J−1 an be determined diretly from x. The Jaobian matrix J anbe omputed from equation (1.5). When solving the transformed Navier-Stokes equations grid with�nite-di�erene shemes, Pulliam and Steger [101℄ and Thomas and Lombard [130℄ highlighted then



15the following relations,
(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ = 0,

(ξ̂y)ξ + (η̂y)η + (ζ̂y)ζ = 0,

(ξ̂z)ξ + (η̂z)η + (ζ̂z)ζ = 0,

(1.8)must be veri�ed numerially to ensure an e�etive onservative form. The metri relations are the�rst part of the Geometri Conservation Law (GCL). An additional equation omes into play whenthe mesh is time-variant. The equation writes [130℄
Jt + (ξ̂t)ξ + (η̂t)ζ + (ζ̂t)ζ = 0.However being evaluated with �nite-di�erenes, the �rst metri relation beomes for example:

(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ = (yηzζ)ξ − (yζzη)ξ + (yζzξ)η − (yξzζ)η + (yξzη)ζ − (yηzξ)ζ 6= 0due to the numerial failure of the produt rule as notied by Hixon [69℄. Therefore Thomas andLombard [130℄ proposed to ompute the metri oe�ients in a onservative form suh as:
ξ̂x = (yηz)ζ − (yζz)η, η̂x = (yζz)ξ − (yξz)ζ , ζ̂x = (yξz)η − (yηz)ξ,

ξ̂y = (zηx)ζ − (zζx)η , η̂y = (zζx)ξ − (zξx)ζ , ζ̂y = (zξx)η − (zηx)ξ,

ξ̂z = (xηy)ζ − (xζy)η, η̂z = (xζy)ξ − (xξy)ζ , ζ̂z = (xξy)η − (xηy)ξ.

(1.9)This form is analytially idential to the metri terms in equations (1.5). Substituting this in the �rstmetri invariant gives
(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ = (yηz)ζξ − (yζz)ηξ + (yζz)ξη − (yξz)ζη + (yξz)ηζ − (yηz)ξζ = 0beause the order of di�erentiation an be interhanged numerially as also explained by Hixon [69℄.This is demonstrated by using a ξ-derivative and η-derivative de�ned by

(xi,j)ξ =

ke∑

k=ks

akxi+k,j, (xi,j)η =

le∑

l=ls

blxi,j+l,where ks, ls and ke, le denote the number points on the left and right side of the stenil respetivelyand ak and bl the stenil oe�ients. Note that the index for the third diretion is omitted. Thequantity xξη is omputed as:
[(xξ)η]i,j =

le∑

l=ls

bl




ke∑

k=ks

akxi+k,j+l


 (1.10)

=

le∑

l=ls

ke∑

k=ks

blakxi+k,j+l (1.11)
=

ke∑

k=ks

le∑

l=ls

akblxi+k,j+l (1.12)
= [(xη)ξ]i,j (1.13)



16This holds as long as the ξ derivative stenil has no η dependene and vie-versa. Near boundariesalong η = onst., for instane, the η derivative stenils vary in η-diretion but not in ξ-diretion andthe anellation of the metri relations are onserved.For 2-D problems the anellation of the metri invariants is always ensured numerially. For 3-Dproblems, all metri derivatives must be omputed using the same di�erening stenils. For examplewhen working with Ma Cormak shemes using a forward based and bakward based stenil, the met-ris have to be omputed twie using a forward and a bakward based stenil respetively. The methodfails also for �nite-di�erene shemes based on a Weighted Essentially Non-Osillatory (WENO) reon-strution. As WENO shemes adapt the omputational stenil for the derivative approximation loallyto the �ow �eld, a numerial anellation of the metri invariants an not be ensured. Implementationsof the WENO shemes in a more omputationally expensive �nite-volume approah are therefore moreommon and reommended.1.6 Shok-apturing �lteringIn regions with strong shoks, additional numerial dissipation is introdued in order to avoid thedivergene of the numerial solution and to redue the overshoots that ours around the shok. Severalshok-apturing shemes have been developed for that purpose. Among those the Jameson sheme [73℄,the Total Variation Diminishing (TVD) [65℄, Monotone Upstream-Centered Sheme for ConservationLaws (MUSCL) [135℄ and (Weighted) Essentially Non-Osillatory ((W)ENO) [74℄ shemes are oftenused for aeronautial appliations.However for aeroaousti problems lassial shok-apturing shemes are less suitable due to anexessive dissipation and dispersion error. Also for Large-Eddy Simulations, those shemes written inthe lassial form are too dissipative and mask the di�usion provided by the subgrid sale model [55℄.In the last deade, muh work has been done to adapt shok-apturing shemes for the purpose ofLES and CAA of transoni �ows. Most of the approahes are based on a loal inrease of dissipationprovided by the shok-apturing sheme, whereas dissipation is minimized in smooth regions. Thismakes the detetion of the shok loation to be a very important point for LES and CAA of transoniand supersoni �ows.In this setion, �rst some reent developments of shok-apturing shemes towards CAA and LESfound in the literature are summarized. Seond, the implementation of the shok-apturing shemeused in the present work is explained. Third, the shok detetion proedure is desribed.1.6.1 Shok-apturing for LES and CAAOriginally Jameson et al. [73℄ proposed to disretize the Euler equations using a seond-order �nite-volume sheme. Seond- and fourth-order dissipation terms with oe�ients that depend on the loalpressure gradient are added on the right hand side of the equations. The sheme writes in 1-D as
∂U

∂t

∣∣∣∣
i

+ F(U)|i = −
(Di+ 1

2
− Di− 1

2
)

∆x
,



17where F(U)|i is the disretized �ux term and the terms on the right have the form:
Di+ 1

2
=

[
ǫ
(2)

i+ 1
2

(Ui+1 −Ui) − ǫ
(4)

i+ 1
2

(Ui+2 − 3Ui+1 + 3Ui − Ui−1)

]The weights ǫ
(2)

i+ 1
2

, ǫ
(4)

i+ 1
2

of the smoothing terms are funtions of the onsidered equations and aredetermined using a smoothness detetor applied to the pressure �eld:
Φi =

|pi+1 − 2pi + pi−1|
|pi+1 + 2pi + pi−1|

. (1.14)The weighting funtions are de�ned as
ǫ
(2)

i+ 1
2

= κ(2)max(Φi,Φi+1)and
ǫ
(4)

i+ 1
2

= max [0,(κ(4) − ǫ
(2)

i+ 1
2

)]
,where κ(4) and κ(2) are adjustable problem dependent values. In smooth regions of the �ow, thesmoothness detetor is of seond-order and the low-order dissipation is swithed o� thanks to ǫ

(2)

i+ 1
2

. Inregions of strong pressure gradients, the smoothness detetor redues to �rst-order and the low-orderdissipation dominates.It has been observed by Jameson [73℄ that the low-order dissipation terms do not avoid some smallhigh-frequeny osillations, whih prevent the omplete onvergene of the solution to steady state.The fourth-order dissipation term is therefore introdued, whih is swithed on through the wholeomputational domain where the solution is smooth. In regions with strong gradients, the fourth-orderdissipation term has shown to generate overshoots that are assoiated to the Gibbs phenomenon andare typial for high-order �nite-di�erene shemes. This term is therefore swithed o� in shok regionsthanks to ǫ
(4)

i+ 1
2

.Following the idea of a loally introdued dissipation, Yee et al. [142℄ proposed to isolate thedissipative part of lassial shok-apturing shemes and to apply it like a �ltering operator in regionswith strong non-linearities. They used those harateristi based �lters in ombination with high-orderentered �nite-di�erene shemes. Thus, in smooth regions where no non-linear �ltering is applied, theauray of the high-order shemes an be maintained. Yee et al. [142℄ developed those �lters for theTVD, MUSCL and ENO shemes. Garnier et al. [56, 57℄ applied harateristi based �lter based onWENO shemes suessfully for shok/turbulene and shok/boundary layer interations.Visbal and Gaitonde [137℄ developed a hybrid ompat-Roe method, where a ompat �nite-di�erene sheme is used in smooth regions. In shok regions, the ompat sheme is replaed bya third-order MUSCL based upwind-biased Roe sheme. The sheme performs very well in various testases and has been used for a LES of a supersoni �ow over a ompression ramp [106℄.Tam and Shen [125℄ proposed to use the DRP sheme [128℄ for the simulation of a non-linearaousti pulse and to use a variable damping algorithm whih introdues more numerial visosityin regions with strong gradients. The shok regions are deteted using ustenil = |umax − umin|; thedi�erene between the maximum veloity, umax, and the minimum veloity, umin, in the stenil. The



18numerial visosity is provided by a 7 point entered �lter weighted by ustenil/Rstenil/∆x, where theonstant stenil Reynolds number Rstenil ≈ 0.06 has been introdued.Kim and Lee [78℄ have shown that this formulation does not ful�ll onservativity and explain whythe shok propagation veloity is not well predited. Basing on the leture notes of Leveque [88℄, theyreasted the entered seletive �lter into a onservative form similar to the Jameson �lter. Detailsabout this an be found in appendix A. Additionally, Kim and Lee [78℄ ombined this �lter with thelow-order shok-apturing term of the Jameson sheme. Furthermore, they proposed a self-adaptingproedure determining automatially the problem depending parameters ǫ(2) and ǫ(4) of the originalJameson sheme. The sheme has been validated for 1-D and multi-dimensional CAA benhmark testases.Exept the Jameson sheme, shok-apturing shemes exploit the hyperboli nature of the Eulerequations, making them more suitable for �ows at very high Mah numbers. On the other hand,it is di�ult to quantify the error as a funtion of the wave-number suh as it is often done withshemes dediated to LES and CAA. The error made by the Jameson sheme, that adds expliitseletive smoothness terms to the governing equations, an be quanti�ed using a linear error analysis.Furthermore, the Jameson type shemes are very simple in implementation and are omputationallyvery e�ient. The method used here follows the Jameson-type dissipation model and is similar to thedissipation model proposed by Kim and Lee [78℄.1.6.2 Implementation of the shok-apturing �lterA shok-apturing �lter based on the adaptive non-linear arti�ial dissipation model of Kim and Lee[78℄ has been implemented in the solver as follows. Only the low-order shok-apturing �lter is appliedto the onservative variables, that have already been �ltered using the seletive �lter presented insetion 1.4. The �ltering operator writes in onservative form:
Ûi,j,k = Ûi,j,k − ∆t(D̂i+ 1

2
,j,k − D̂i− 1

2
,j,k),where

D̂i+ 1
2
,j,k =

∆|λ|stenil
i+ 1

2
,j,k

1
2(Ji+1,j,k + Ji,j,k)

ǫ
(2)

i+ 1
2
,j,k

∆t (Ui+1,j,k − Ui,j,k) .Similar to Swanson and Turkel [121℄, Kim and Lee uses the stenil eigenvalue ∆|λ|stenili+1/2,j,k that denotesthe di�erene between the maximum and the minimum eigenvalue
|λ|i,j,k =

(
|U | + c

√
ξ2
x + ξ2

y + ξ2
z

)
i,j,kwithin a stenil of variable size. The quantities U and c designate the ontravariant veloity U =

uξx + vξy + wξz and the speed of sound respetively. Aording to Kim and Lee, ∆|λ|stenili+1/2,j,k isomputed using a stenil width of 7 points:
∆|λ|stenil

i+ 1
2
,j,k

=
3max

m=−2
(|λ|i+m,j,k) −

3min
m=−2

(|λ|i+m,j,k).



19 In order to maintain the auray of the numerial sheme, the seond-order �lter may only beapplied loally in the shok region. This is performed by the adaptive non-linear dissipation funtiongiven by
ǫ
(2)
i+1/2,j,k = κj,k

3max
m=−2

(Φi+m,j,k)where Φi,j,k is Jameson shok detetor de�ned in equation (1.14) and κj,k is the adaptive ontrolonstant. The latter is given by
κj,k =

1

σ
Rj,k

j,k

[1 + (σj,k − 1) tanh (
αj,k

βj,k
− 1)]

(√
α̂j,kβ̂j,k

)1+tanh (σj,k−1)

,where
σj,k =

pmax
j,k

pmin
j,k

, αj,k =
λmax

j,k

λmin
j,k

,

βi,j =

(
|λ|√

ξ2
x+ξ2

y+ξ2
z

)max
j,k(

|λ|√
ξ2
x+ξ2

y+ξ2
z

)min
j,k

,

Rj,k =
αj,k + βj,k

2αj,kβj,k
, α̂j,k =

[
αj,k + 1

αj,k − 1

]
tanh(αj,k),

β̂j,k =

[
βj,k + 1

βj,k − 1

]
tanh (βj,k − 1)The supersripts min and max are expressed in 3-D as

fmin
j,k =

i maxmin
i=1

fi,j,k, fmax
j,k =

i maxmax
i=1

fi,j,k.The paper of Kim and Lee [78℄ laks in detailed derivations of eah term. Following their paper,most of the terms have been implemented on the basis of various numerial tests and �ow onditions.The validation of the test ases shows that the self-adapting proedure works well and provides stableand aurate results.1.6.3 Detetion of the shok loationBesides the Jameson-type dissipation swith [73℄ introdued in equation (1.14), other approahes hasbeen used in the literature. Yee et al. [142℄ use an arti�ial ompression method proposed by Harten(ACM) [64℄ and Visbal and Gaitonde [137℄ a WENO-type smoothness riterion based on a weightedsum of a �rst and seond derivative operator that measures the slope and the urvature of the pressure�eld.In this work, the shok position is deteted by the Jameson sensor. Atually this sensor has shownto be too sensitive to pressure �utuations. As a onsequene, exessive �ltering of turbulent strutureshas been observed by Duros et al. [48℄ for instane. Those authors developed a modi�ed sensor whihis able to separate turbulent �utuations from shoks. This is done by multiplying the Jameson sensorby a seond sensor, that is
Ξi,j,k =

div(ui,j,k)
2div(ui,j,k)2 + rot(ui,j,k)2

,
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i of a plane wave p = exp (−ikx) as a funtion of the wavenumber k∆x for di�erent orders of the dissipation term: ��� seond-order (lassial Jameson);
· · · · · · · �fth-order, · − · − ·− tenth-order, - - - - - 11-point seletive dissipation.where u the veloity vetor ontaining the Cartesian veloity omponents. This sensor has beenapplied in various appliations in ombination with the Jameson sheme [48℄ and with harateristibased �lters [57℄. The omputation of the divergene and the rotational �eld is numerially expensiveand is not used in this work.An improvement of the detetion proedure an be ahieved by generalizing the Jameson detetorusing high-order seletive �lter operators instead of using the seond derivative. The generalizedJameson detetor an be written as:

Φξ
i,j,k =

∣∣∣∣∣
N∑

r=−N
drpi+r,j,k

∣∣∣∣∣
∣∣∣∣∣pi,j,k −

N∑
r=−N

drpi+r,j,k

∣∣∣∣∣

, Φη
i,j,k =

∣∣∣∣∣
N∑

r=−N
drpi,j+r,k

∣∣∣∣∣
∣∣∣∣∣pi,j,k −

N∑
r=−N

drpi,j+r,k

∣∣∣∣∣

, Φζ
i,j,k =

∣∣∣∣∣
N∑

r=−N
drpi,j,k+r

∣∣∣∣∣
∣∣∣∣∣pi,j,k −

N∑
r=−N

drpi,j,k+r

∣∣∣∣∣

,where dr are the oe�ients for a �lter of arbitrary order 2N . The detetor is �rst analyzed in 1-D,using a plane wave ansatz p = exp (−ikx), where k is the wavenumber, whih yields:
Φξ

i (k∆x) =

∣∣∣∣∣
N∑

r=−N
dr exp (−irk∆x)

∣∣∣∣∣
∣∣∣∣∣1 −

N∑
r=−N

dr exp (−irk∆x)

∣∣∣∣∣

,where ∆x the grid spaing width. Figure 1.2 gives the sensor strength Φξ
i as a funtion of the wave-number for di�erent �ltering operators: the standard seond- (lassial Jameson �lter N = 1), fourth-order (N = 2) and tenth-order (N = 5) ones and the 11-point optimized �lter (N = 5). Figure 1.2shows that using the high-order detetors leads to lower values in the low wave-number range whereas,for the high frequenies, the detetor behaves as the lassial Jameson detetor ensuring the shok-apturing property of the sheme. A similar approah has been proposed by Lokard and Morris [90℄using only the sixth-order �lter operator, without the normalizing term in the denominator.
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Figure 1.3: Model problem involving a disontinuity and a harmoni signal ontaining (a) high-frequeny ase(4 points per wave length); (b) low-frequeny ase (7 points per wave length).In order to study the behavior of the generalized Jameson �lter when a disontinuity and linear per-turbations are present, the following test problem is onsidered. A signal of a shok-sound interationproblem is modeled as follows
p(x) =

{
1 + 0.1 sin (klx), x ≤ 0

2 + 0.1 sin (klx), x > 0.where kl is the wave number of the linear signal. Two wavenumbers are onsidered kl = π/(2∆x) and
kl = 2π/(7∆x) orresponding to a wave that ontains 4 and 7 grid points respetively. Note that 4points per wave length is the auray limit of the present spatial di�erening sheme and is the ut-o�wave-length of the optimized low-pass �lter. The two signals are plotted in Figure 1.3 (a) and (b).The omputed sensor values are given in Figure 1.4 (a) and (b) respetively. All of the sensorsreah their maximum at the shok position. In the linear region the detetor value dereases of aboutone order of magnitude for the lassial seond-order detetor, whereas for the 11-point detetor thevalue drops four orders of magnitude. For the high-frequeny ase, all detetors have their maximumat the shok loation and the urve has a similar shape as for the low-frequeny ase. The detetorsof order 2 and 5 perform very poorly in the linear region. Their magnitude is of the same orderas for the shok and would lead to an exessive damping. For the tenth-order �lter, a value beingone order of magnitude smaller is reported and for the 11-point optimized sensor, the detetor is twoorders of magnitude smaller, showing the bene�t of the optimization. For the high-order �lters, thepeaks around the disontinuities are slightly more extended but more smooth. This is due to the largeextension of the eleven-point stenils, that ould be prevented by using ompat stenils [86℄. As Hixon[71℄ reommends a smooth introdution of the low-order Jameson dissipation term [71℄, this is rathera favorable property of the high-order detetors.The behavior of the modi�ed Jameson �lter is studied in the following when shoks and turbulentperturbations are present. Sine a vortex features a minimum in pressure loated in its ore, thelassial seond-order detetor does not well distinguish a vortex and a shok wave as Duros et al.



22 (a) (b)

−0.1 −0.05 0 0.05 0.1
−6

−5

−4

−3

−2

−1

0

x

lo
g(

Φ
)

−0.1 −0.05 0 0.05 0.1
−6

−5

−4

−3

−2

−1

0

x

lo
g(

Φ
)

Figure 1.4: Computed detetor Φξ
i values for di�erent �ltering order: seond-order N = 1; × fourth-order N = 2; ◦ tenth-order N = 5; optimized N = 5 (a) high-frequeny ase (4 points per wavelength); (b) low-frequeny ase (7 points per wave length); See Figure 1.3.[48℄ notie. Figure 1.5 (a) gives an example of a transoni on�ned jet suh as presented in hapter4. The �ow �eld is visualized by the ontours of the density gradient and exhibits a typial jet-likestruture with three shok ells. The jet is attahed to the upper wall. The detetor strength �eldsomputed using the seond-order and 11-point optimized �lter are plotted in Figure 1.5 (b)-(e). Thesame trend as for the 1-D ase an be observed. The low-order detetor identi�es regions without shoksas non-linear regions, whereas the high-order detetor is limited prinipally on the shok regions. Evenworse, the seond-order detetor detets instability waves developing in the shear layer, whih anin�uene the development of instabilities seriously.The modi�ed Jameson detetor based on the 11-point seletive �lter term are tested using 1-Dases suh as for the onvergent-divergent nozzle and the entropy wave/shok wave interation in thevalidation hapter 2. Due to stability and omputational limits, the 3-D transoni �ow presented inhapter 4 are omputed using a sensor with maximum fourth-order dissipation terms.
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Figure 1.5: Test of generalized Jameson detetor applied to a instantaneous pressure �eld of a �ow that on-tains turbulent �utuations and shoks. The �ow �eld is visualized in (a) by the iso ontours ofthe density gradient |∇xρ|. Detetor values log (Φξ
i,j,k) omputed in i-diretion using the lassialJameson detetor (b) and using detetor based on the 11-point optimized �lter (). Detetor values

log (Φη
i,j,k) omputed in j-diretion using the lassial Jameson detetor (d) and using the detetorbased on the 11-point optimized �lter (e). Color sales from −5 to 0.



241.7 Consideration of visous and heat ondution e�etsWhen a visous �uid is onsidered, the governing equations are the urvilinear Navier-Stokes equations.In 3-D they write:
∂Û

∂t
+

∂

∂ξ

{
1

J
[ξx(E − Ev) + ξy(F − Fv) + ξz(G− Gv)]

}

+
∂

∂η

{
1

J
[ηx(E − Ev) + ηy(F − Fv) + ηz(G− Gv)]

}

+
∂

∂ζ

{
1

J
[ζx(E − Ev) + ζy(F − Fv) + ζz(G − Gv)]

}
= 0,where the invisid �uxes are given by equation (1.7) and the visid �uxes write

Ev =




0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx




, Fv =




0

τxy

τyy

τyz

uτxy + vτyy + wτyz − qy




,

Gv =




0

τxz

τyz

τzz

uτxz + vτyz + wτzz − qz




.The visous stress terms are given by
τxx =

2

3
µ[2(ξxuξ + ηxuη + ζxuζ) − (ξyvξ + ηyvη + ζyvζ) − (ξzwξ + ηzwη + ζzwζ)],

τyy =
2

3
µ[2(ξyvξ + ηyvη + ζyvζ) − (ξxuξ + ηxuη + ζxuζ) − (ξzwξ + ηzwη + ζzwζ)],

τzz =
2

3
µ[2(ξzwξ + ηzwη + ζzwζ) − (ξxuξ + ηxuη + ζxuζ) − (ξyvξ + ηyvη + ζyvζ)],

τxy = µ(ξyuξ + ηyuη + ζyuζ + ξxvξ + ηxvη + ζxvζ),

τxz = µ(ξzuξ + ηzuη + ζzuζ + ξxwξ + ηxwη + ζxwζ),

τyz = µ(ξywξ + ηywη + ζywζ + ξzvξ + ηzvη + ζzvζ),where µ is the dynami visosity of the �uid. The heat �uxes are provided by the Fourier's law
q = −µcp

Pr
∇xT,



25where cp is the spei� heat apaity at onstant pressure, Pr the Prandtl number and T the temper-ature. The temperature is omputed with the equation of state for a perfet gas, T = p/(ρr), with thespei� gas onstant for air r = 287.05 J.kg−1.K−1.The temperature gradient ∇xT = (Tx, Ty, Tz)
T is omputed using

Tx = ξxTξ + ηxTη + ζxTζ ,

Ty = ξyTξ + ηyTη + ζyTζ ,

Tz = ξzTξ + ηzTη + ζzTζ ,in the physial domain. The dynami visosity is lassially a funtion of the temperature and isdetermined by Sutherland's law:
µ(T ) = µ0

√
T

T0

1 + C
T0

1 + C
T

, (1.15)where T0 is a referene temperature [K], µ0 = µ(T0) is the dynami visosity at the referene tempera-ture and C is a �uid dependent parameter. Visous and heat ondution terms are omputed like theEulerian �uxes and metri terms using the �nite-di�erene shemes, presented in setion 1.2.1.8 Stability riteriaThe time step ∆t is governed by stability riteria that an be found for the onvetive, visous andondutive terms.For a urvilinear grid, the stability riterion for the onvetive terms is given by the Courant-Friedrihs-Lewy (CFL) numberCFL = ∆t max |U | + c
√

ξ2
x + ξ2

y + ξ2
z

∆ξ
,
|V | + c

√
η2

x + η2
y + η2

z

∆η
,
|W | + c

√
ζ2
x + ζ2

y + ζ2
z

∆ζ


 ≤ 0.9.At low Reynolds numbers, when visous e�ets dominate, the stability riterion for the visous �uxesis given by

Cν = ∆t max( ν

x2
ξ

,
ν

y2
η

,
ν

z2
ζ

)
≤ 2.The riterion for the thermal ondution terms is onneted to the visous terms riteria via the Prandtlnumber:

CT =
Cν

Pr
,For high Reynolds number �ows suh as onsidered in this work onvetive terms will dominate andthe time step is governed prinipally by the CFL-riterion.



261.9 LES strategySolving Navier-Stokes equations implies to apture an energy asade from larger sales roughly har-aterized by the integral length sale Lf to smaller ones. This tehnique is alled Diret NumerialSimulation (DNS). The asade ends at the Kolmogorov sale lη when turbulent energy is dissipatedby the moleular visosity. For isotropi homogenous turbulene [9℄, the disparity between Lf and lηan be estimated using
Lf

lη
∼ Re3/4

Lf
, where ReLf

=
u′Lf

ν
,with u′ being the sale of the veloity �utuations in the �ow. For 3-D appliations, the total number ofgrid points required to simulate a volume of O(L3

f ) therefore varies with Re9/4
Lf

. Due to omputationallimits, only for �ows at moderate Reynolds number, DNS an be applied. For Reynolds numberhigher then ReLf
> 104, only the largest �ow sales an be omputed whereas the e�et of smallersales that are not supported by the grid have to be modeled. This approah is alled Large-EddySimulation (LES). In order to apture the prinipal physis of the �ow, the �ows are supposed tobe rather haraterized by the largest sales than by the smallest ones that are supposed to have aquasi-universal harater.In this setion, the �ltered Navier-Stokes equations are �rst presented. Then, the e�et of the ut-o� wave-number in LES is disussed and modeling approahes are realled. Finally, the LES strategyadapted in this work is presented.1.9.1 Filtered Navier-Stokes equationsTo separate the large from the small sales, LES is based on the de�nition of a �ltering operator. Inpratie, the disretization of a omputational domain ats like a low-pass spatial �lter applied to theNavier-Stokes equations whih introdues extra terms desribing the interation between the resolvedand the non-resolved sales. A �ltered variable is obtained by onvolution

f(x) =

∫

D

f(x)G∆(x− x′)dx′,where D is the omputational domain, G∆ is the �lter kernel and ∆ = ∆x the ut-o� sale of the�lter. By de�nition of the onvolution operator, the �lter ∗ : f → f is linear. Classially, it is admittedthat the �lter ommutates with the time and spatial derivatives, for more details refer to Sagaut [111℄,Lesieur et al. [87℄, Geurts [59℄. The disretization of a omputational domain means an irreversibleloss of information about sales smaller than the ut-o� sale of the �lter.In ompressible �ows, it is onvenient to use Favre-�ltering to avoid the introdution of a subgridsale term in the equation of mass onservation. The Favre-�ltered variable is de�ned as
f̃ =

ρf

ρ
,where ρ is the density of the �ow. In the following, f ′′ denotes the unresolved �ow features and isde�ned as f ′′ = f − f̃ .



27 The �ltered equations for mass and momentum write then in tensor form suh as
∂ρ

∂t
+ div(ρṼ) = 0,

∂ρṼ

∂t
+ div(ρṼ ⊗ Ṽ + pI − T̂

)
= div(T + T − T̂

)
,where V is the veloity vetor and the I the identity tensor and

T = 2µ(T )S, where S =
1

2

[gradV + grad(V)T − 2

3
IdivV] ,

T̂ = 2µ(T̃ )Ŝ, where Ŝ =
1

2

[gradṼ + grad(Ṽ)T − 2

3
IdivṼ] ,

T = ρṼ ⊗ Ṽ − ρṼ ⊗ VThe term T, alled subgrid stress tensor, desribes the e�ets of the unresolved sales and an not bedetermined using the resolved �ow �eld. This term must therefore be modeled.Following Vreman et al. [140℄, the �ltered equation for the energy an be derived suh as
∂ρêt

∂t
+ div [(ρêt + p)Ṽ + q̂− T̂ ⊗ Ṽ

]
= −divQ + Ṽ · divT + ρǫ̂ + ρπ̂

+div(T ⊗ Ṽ − T̂ ⊗ Ṽ
)
− div(q − q̂),where

ρêt =
p

γ − 1
+

1

2
ρṼ2,

q =
cpµ(T )

Pr
grad(T ),

q̂ =
cpµ(T̃ )

Pr
grad(T̃ ),

Q =
pV − pṼ

γ − 1
,

ρǫ̂ = T : gradV − T : gradṼ,

ρπ̂ = pdivṼ − pdivV.The quantity êt is the total energy of the resolved �ow �eld. Q is the vetor of the pressure-veloitysubgrid orrelation, ρǫ̂ orresponds to the turbulent subgrid dissipation and ρπ̂ is the pressure dilatationsubgrid orrelation.The �ltering of the Navier-Stokes equations adds terms that have to be modeled. Those termsare the subgrid stress tensor T whih is present both in the momentum and energy equations and thetwo other terms Q and ρπ̂. Aording to Vreman et al. [138℄, the other terms are negleted. Most ofsubgrid sale models are based on the isotropi homogenous turbulene ontext as the subgrid salesare supposed to have an isotropi behavior [111, 87℄.



281.9.2 Overview over the subgrid-sale modelsMany subgrid sale models have been proposed in order to model the e�et of the unresolved sales.In the following, the most popular models are realled and the lassi�ation of the LES strategy real-ized in this work is given at the end of this setion. For further leture, refer to the book of Sagaut [111℄Models based on the subgrid visosityMost of the models are based on the energeti interpretation of the e�et of subgrid sales. Thisis the reason why the subgrid visosity onept is introdued to model the subgrid stress tensor. Thisonept has an analogy to the turbulent visosity of Boussinesq for the Reynolds-Averaged Navier-Stokes (RANS) equations.Introduing νt the subgrid visosity in order to model the subgrid stress tensor.
T = 2ρνtS̃ − 2

3
ρk̃sgsI, with ρ̄k̃sgs =

1

2
ρ̄Ṽ′′ ·V′′where ksgs is the subgrid kineti energy. This term an be modeled, but is often negleted as Erlebaheret al. [51℄ states. Finally, the problem redues to the estimation of the subgrid visosity.Smagorinsky was one of the �rst to propose a model for νt. For inompressible �ows, aross a tubebundle in nulear appliations for example [7, 19℄, the Smagorinsky model is well adapted. However,this model introdues in general too muh dissipation in laminar zones as it assumes the presene ofturbulene when the �ow has a veloity gradient. At the example of the development of a mixinglayer, Vreman et al. [139℄ demonstrated that the Smagorinsky subgrid-sale model is less suited fortransition problems. An improved approah of this model is the dynami Smagorinsky model proposedby Germano et al. [58℄ whih adapts the onstant of the model loally to the �ow �eld. The modelreprodues transitional �ows in a satisfying way but are omputationally expensive [27℄.For the terms Q and ρπ̂ in the energy equation, a turbulent heat �ux an be introdued throughthe subgrid visosity onept introdued previously

−divQ + ρπ̂ = −div Q,with
Q = −ρνtcp

Prt
gradT̃ ,where Prt is the turbulent Prandtl number. Finally, with this approah the �ltered Navier-Stokesequations are similar to the lassial Navier-Stokes equations with the addition of ρνt to its moleularounterpart [96℄. The models based on the subgrid visosity risk therefore to inrease arti�ially thevisosity of the �uid. In onlusion, the e�etive Reynolds number of the �ow is modi�ed [47℄, whihan play an important role for jet noise omputations for example [27℄.Model based on deonvolution



29 An alternative way to determine the subgrid terms is to ompute them diretly from the �ltered�eld. This is obtained by a deonvolution of the �ltered �eld for wave-numbers up to the grid ut-o�wave-number. This takes into aount non-linear interations between sales beyond the auraylimit of the numerial sheme and up to the ut-o� wave-number of the grid. This method are knownunder the name of Approximate Deonvolution Method (ADM) and has been proposed by Stolz andAdams [120℄. Furthermore, the energy transfer from resolved to non-resolved sales is modeled by arelaxation term that drains energy of the non-resolved sales preventing an aumulation of energy inthe high-frequeny range.Impliit LESFor the impliit LES, the numerial dissipation is used to model the e�et of the subgrid sales. Infat, the numerial dissipation provides the damping e�et of the non-resolved sales: the subgrid stresstensor have not to be omputed. The numerial dissipation is provided lassially by a shok-apturingsheme [31℄. Garnier et al. [55℄ have been observed that shok-apturing shemes introdues too muhdissipation even for large sales. Additionally, the damping e�et of dissipation is not su�iently se-letive and an not be ontrolled due to the numerial omplexity of the shok-apturing shemes.LES based on expliit seletive �lteringIn this work, the seletive �lter used to remove grid-to-grid osillations suh as presented in setion1.4 plays the role of a eddy visosity model by removing properly the �utuations at wavenumbersgreater than the sheme resolution. This method bears some similarities to the Approximate Deon-volution Model (ADM) [120℄. As demonstrated by Mathew et al. [93℄, the e�et of onvolution withan expliit seletive �lter is similar to the e�et of ADM. Moreover, the seletive �ltering indues aregularization similar to that used in the ADM proedure. This approah has been applied suessfullyin various appliations [93, 105, 26, 20℄The equations to be solved write
∂ρ

∂t
+ div(ρṼ) = 0

∂(ρṼ)

∂t
+ div(ρṼ ⊗ Ṽ + pI − T̂

)
= 0

∂(ρêt)

∂t
+ div [(ρêt + p)Ṽ + q̂− T̂ ⊗ Ṽ

]
= 0,where

T̂ = 2µ(T̃ )Ŝ

Ŝ =
1

2

[gradṼ + grad(Ṽ)T − 2

3
IdivṼ]

ρêt =
p

γ − 1
+

1

2
ρṼ2



30
q̂ = −cpν(T̃ )

Pr
gradT̃Those equations are idential to the non-�ltered ones. Therefore, they are written under strong on-servation form whih is suitable to deal with disontinuities. For simpli�ation, notations assoiatedwith the �ltering are dropped in the following.1.10 Non re�etive boundary onditionsDue to omputational limitations the omputational domain involving open domain boundaries hasto be kept as small as possible and speial boundary onditions have to be used in order to take intoaount the trunated domain. This is not a trivial task in partiularly in CAA where perturbationshave to leave properly the omputational domain without generating non-physial perturbations [38℄.In CAA there exist two families of non-re�etive boundary onditions: the harateristi basedboundary onditions and onditions based on far-�eld expressions of the governing equations. Bothhave been used in this work and are presented in the following.1.10.1 Charateristi-based boundary onditionsThe �rst one is based on harateristis developed by Thompson [131, 132℄ and by Poinsot and Lele [99℄.The idea is to reast the Euler equations in the harateristi form projeted on the diretion normalto the boundaries of the omputational domain. For a boundary perpendiular to the x-diretion, theharateristi form writes:

∂ρ
∂t + 1

c2

[
L2 + 1

2(L5 + L1)
]

= 0

∂u
∂t + 1

2ρc(L5 − L1) = 0

∂v
∂t + L3 = 0

∂w
∂t + L4 = 0

∂p
∂t + 1

2(L5 + L1) = 0

where




L1 = (u − c)
(

∂p
∂x − ρc∂u

∂x

)

L2 = u
(
c2 ∂ρ

∂x − ∂p
∂x

)

L3 = u∂v
∂x

L4 = u∂w
∂x

L5 = (u + c)
(

∂p
∂x + ρc∂u

∂x

)
.The quantities Li, i = 1..5 are alled invariants of the Euler equations system. They remain onstantwhen they are propagated in the �ow. L1, L5 desribe the upstream and downstream traveling aoustimodes, L2 the onveted entropy mode and L3 and L4 the onveted vortial mode. For a non-re�etiveboundary ondition in x-diretion, all invariants that propagate into the omputational domain areset to be zero. The invariants that leave the omputational domain are omputed with non-entered�nite-di�erene shemes. The harateristi equations have been implemented in Cartesian oordinatesand applied only to 1-D �ows. Formulations for generalized oordinates an be found in the work ofKim and Lee [77, 79℄ for instane.



311.10.2 Far-�eld boundary onditionsThe seond approah onsists in designing boundary onditions for far-�eld radiation suh as proposedby Bayliss and Turkel [15℄. Tam and Webb developed radiation onditions by using far-�eld asymptotiexpressions of the Euler's equations linearized around a uniform mean �ow [128℄. Tam and Dong [127℄extended this approah to arbitrary mean �ows. A 3-D formulation is given by Bogey and Bailly [28℄.The set of equations solved on the last three points of the omputational domain writes
1

Vg

∂

∂t




ρ

u

v

w

p




+ vg

(
∂

∂r
+

1

r

)




ρ − ρ0

u − u0

v − v0

w − w0

p − p0




= 0,where vg is the speed of wave propagation given by
vg = (ū + c̄) · er.The radius an be omputed one a referene point (x0, y0, z0) is determined. Thus r omputes

r =
√

(x − x0)2 + (y − y0)2 + (z − z0)2In the urvilinear domain the derivatives in r-diretion are omputed by
∂

∂r
=

∂

∂ξ

∂ξ

∂r
+

∂

∂η

∂η

∂r
+

∂

∂ζ

∂ζ

∂rThe quantities ∂ξ/∂r, ∂η/∂r and ∂ζ/∂r are omputed by
∂ξ

∂r
= ξx

∂x

∂r
+ ξy

∂y

∂r
+ ξz

∂z

∂r
,

∂η

∂r
= ηx

∂x

∂r
+ ηy

∂y

∂r
+ ηz

∂z

∂r
,

∂ζ

∂r
= ζx

∂x

∂r
+ ζy

∂y

∂r
+ ζz

∂z

∂r
,where

∂x

∂r
=

x − x0

r
,

∂y

∂r
=

y − y0

r
,

∂z

∂r
=

z − z0

r
.This formulation takes into aount only aousti perturbations. A similar formulation an befound for vortial and entropi modes but is not used in this work [128℄.Due to their mono-dimensional harater, harateristi based boundary onditions are preferredwhen perturbations impinge normally to the boundary ondition. In general far-�eld radiation bound-ary ondition behave better in the multidimensional ase. As they are based on linearized Eulerequations, a drawbak is that they require a good guess of the mean quantities.



321.10.3 Sponge zoneBoth approahes perform very poorly as out�ow boundary ondition, when vortial strutures exitthe omputational domain. Thanks to a sponge zone vortial strutures are damped out before theyreah the boundary. The sponge zone used in this work onsists of a strong grid strething and of theappliation of an expliit Laplaian �lter, introdued smoothly in order to avoid re�etions. The �lteris separately applied in eah oordinate diretion after eah time iteration. A sponge zone applied ata out�ow boundary perpendiular to the x-diretion writes
Ui,j,k = Ui,j,k − α

(
xi,j,k − xie,j,k
xib,j,k − xie,j,k)β [

1

4
(Ui−1,j,k + Ui,j−1,k + Ui,j,k−1)

−3

2
Ui,j,k

+
1

4
(Ui+1,j,k + Ui,j+1,k + Ui,j,k+1)

]
,where the parameters α = 0.3 and β = 1.5 ensure a smooth introdution of the �lter [28℄. The integers

ib and ie designate the beginning and the end of the sponge zone respetively.Finally a relaxation term as proposed by Poinsot and Lele [99℄ is applied in order to avoid numerialdrift of the mean �ow. For instane the pressure is updated suh as
Ui,j,k = Ui,j,k + α(Ui,j,k − Ut), (1.16)where Ut is the target value of the boundary ondition. The term is applied to the pressure and thedensity at radiation and out�ow boundaries. Near in�ow boundaries this term is also applied to theveloity �eld. The oe�ient α = 0.005 has to be kept small in order to avoid re�etions of aoustiwaves.1.11 Solid wall boundaryIn this work, arbitrary bodies are disretized using body-�tted grids. Body-�tted grids are struturedgrids where the body boundary alines with a line in 2-D (or a surfae in 3-D), haraterized by aonstant urvilinear oordinate. A 2-D body-�tted grid is shown in Figure 1.6 (a) for η = onst. Asindiated in the sketh, the slip wall onditions used in this work do not require orthogonal meshesand are valid for any arbitrary urvilinear grids.In the following the solid wall boundary onditions are presented for invisid �ows where the�ow slips around the solid body. Then, the wall boundary ondition for Navier-Stokes equations arepresented where the �ow must satisfy the adherene ondition and appropriate thermal onditions.1.11.1 Slip wall onditionsA �ow around an invisid, non-moving and solid wall has to satisfy the ondition u.n = 0 wheren designates the vetor normal to the wall as Figure 1.6 (a) illustrates for a wall, expressed by
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Figure 1.6: Body �tted grid for η = const. The ontravariant veloity V = 0 for the ondition for a slip wall.For a no slip ondition the �ow veloity �eld has to satisfy u = 0 at the wall.
η = onst. In general, the normal vetor n oinides with the normalized gradient of η, de�ned by
∇xη = (ηx, ηy, ηz)

T , n =
∇xη

|∇xη| .Thus, the slip wall ondition an be expressed by the ontravariant veloity suh as
V = ∇xη.u = 0.Di�erent implementations of slip wall onditions are proposed in the literature [68℄. Most of theapproahes, in partiular �nite-volume methods, require an estimation of the pressure gradient ∂p/∂η atthe wall in order to determine the pressure at the wall. For a 3-D invisid �ow, ∂p/∂η an be omputedby projeting the momentum equations onto the wall normal diretion. For that, the momentumequations are reasted in primitive form by using the hain rule, the mass onservation equation andthe metri invariants (1.8):
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= 0.These equations are projeted on the wall normal diretion and leads to:
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|∇η|utFigure 1.7: Update of veloities at a 3-D slip wall (η = const). The �uid is fored to be tangential to wall.All terms multiplied by V or its derivative in ξ-diretion ∂V/∂ξ vanish at the wall. The derivativeof the pressure along η an be expressed by terms that only ontain derivatives in the ξ-diretion and
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.The �rst two braket terms would vanish for (urvilinear) orthogonal grids, as ∇xξ.∇xη = ∇xζ.∇xη =

0. The last two braket terms relate the pressure gradient to the �uid veloity and to the urvatureof the wall. Those terms also vanish when the �uid is at rest or the wall is plane. Finally, thedetermination of ∂p
∂η is quite ompliated and a simpli�ed wall treatment has been adapted in thiswork.For the wall η = onst., the �uxes in the ξ- and ζ-diretion are solved by entered shemes. The�ux in η-diretion is omputed �rst by setting V = 0 and derivated by applying non-entered (orby applying entered with redued stenils) �nite-di�erene shemes. Additionally, the veloities areupdated after every time step, by subtrating from the veloity vetor u the normal veloity vetoromponent un: uwall = u− un = ut,where ut is the tangential vetor suh as represented in Figure 1.7.The no-slip boundary ondition is suessfully applied in purely aousti test ases (with �uid inrest) as well as the omputation of a 3-D transoni invisid �ow in a onvergent divergent nozzle.



351.11.2 No-slip wall onditions with heat �uxA visous �ow around a solid body has to ful�ll the adherene ondition uwall = 0. The additionalvisid �uxes of the Navier-Stokes equations ontribute to the pressure gradient ∂p
∂η suh as:
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.The pressure derivative in the η-diretion is not required sine the momentum onservation equationsare not needed to be solved for wall points. Only the mass and energy onservation equations aresolved. The wall �ux term for the η-diretion beomes:
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Note that the total energy ρet at the wall is proportional to the pressure p as the veloities vanish

ρet = p/(γ − 1). Advaning the energy equation in time gives diretly the pressure at the wall.For isothermal walls the imposed temperature is presribed and ρ an be omputed by the idealgas law using the pressure p, obtained by the energy equation. When a heat �ux q is imposed, theomponents of the vetor q = (qx, qy, qz)
T are expressed as follows:q = qnFor adiabati walls the latter term is set to be zero. The temperature is not predited orretlyby setting the heat �ux normal to the wall equal q for long time simulations and the solution tends todiverge. Therefore the temperature is updated in a suh a way that the identity q.n = q is ful�lled.In this work only, adiabati walls are onsidered and the gradient of the temperature writes usingFourier's law

∇xT.∇xη = 0.Now, ∂T/∂η an be determined expliitly using
∂T

∂η
=

1

∇xη∇xη
(Tξ∇xξ∇xη + Tζ∇xζ∇xη) .Finally, the temperature at the wall is updated suh as
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36where ar are the oe�ients of a non entered �nite di�erene sheme of stenil width N . For stronglynon-linear problems the use of high-order non-entered �nite-di�erene shemes exhibited stabilityproblems. In this work only �rst-order approximations are therefore used:
Ti,j,k = Ti,j+1,k −

∂T

∂η

∣∣∣∣
i,j,kThe adiabati wall boundary onditions are validated in hapter 2 for a plane Couette �ow as well asfor the �ow around the ylinder.1.12 Multidomain approah for omplex geometriesDue to the omplexity of industrial on�gurations and the requirement to handle moving body prob-lems, the overset or Chimera grid approah is used in this work. First introdued by Benek et al. [18℄this approah uses a set of overlapping strutured grids to deompose the domain of interest.The Chimera grid sheme o�ers the following advantages: a) the use of strutured grids allowsthe use of e�ient blok strutured �ow solvers and the assoiated boundary onditions; b) the use ofinterpolation for ommuniation between overlapping grids allows grids to be moved relative to eahother. Although the ommuniation between overlapping grids must be reestablished whenever a gridis moved, this is omputationally less expensive than the reomputation of the whole grid as it is oftendone for unstrutured grids. The proess of establishing ommuniation between overlapping grids isreferred to as grid assembly. The Chimera approah was originally developed for seond-order auratesolvers. Delfs [43℄ who was the �rst using the overset grid tehnique for CAA onluded that high-order interpolation has to be used in order to maintain the global auray of the high-order shemes.As high-order interpolation involves larger stenils and therefore larger overlap regions, the order ofinterpolation is a very important parameter in the generation of overset grids and its omplex datastruture is done by a so alled grid assembly software.There exists several teams working about this problem sine the last two deades. A nie reviewan be found in [100℄. The �rst and more widely used ode is alled PEGASUS5 [109℄. The gridassembly has been automated and a minimum amount of user input is required to generate overset grids.PEGASUS5 is used by Sherer to generate high-order overset grids using a preproessing tool alledBELLERO [116℄. A reent software is the SUGGAR ode whih stands for Strutured, Unstrutured,Generalized overset Grid AssembleR. SUGGAR illustrates that the Chimera grid approah is notrestrited to strutured grids any more. This shows the new trend to ombine strutured grids withunstrutured grids resulting in so alled hybrid grids. Shwartzkop� et al. [114℄ work on this methodsmixing ADER methods for the unstrutured grids and DRP shemes for the strutured grids.Another assembly software mentioned here is Overture. Overture is an objet-oriented ode frame-work for solving partial di�erential equations developed by W. Henshaw [35℄ at the Center for AppliedSienti� Computing of the Lawrene Livermore National Laboratory (LLNL). The library is writtenin C++ and has Fortran kernels for omputationally intensive tasks. The Overture software onsistsof the grid generator ogen, the �ow solver overBlown and the visualizer plotStu�.



37 The grid generator is able to reate overlapping grids in 2-D and 3-D for interpolation of arbitraryorder. An example of an overset topology is given in Figure 1.12 showing a ylinder embedded ina Cartesian grid. The grid has been generated by Overture for fourth-order expliit �nite di�ereneshemes requiring a 5 point stenil. In order to reover overall fourth-order auray, fourth-orderinterpolation polynomials involving a 4 point stenil have to be used. In order to avoid an interpolationstenil to extend into the zone where the blok reeives interpolated data from other grids, a su�ientlylarge overlap region has to be generated as shown in Figure 1.12. Additionally, Overture features theuseful task of hole utting, utting out useless points that are ut by the ylindrial grid. To makeOverture to ut holes in the grids of demand a hierarhy between the omponent grids have to bespei�ed by the user. Overture prepares a mask array marking all interpolation, omputational andhole points whih an be exploited by the solver.Contrary to the �rst two softwares, Overture is freely available and an be downloaded withoutrestritions from the LLNL homepage. Although Overture is not as optimized as PEGASUS5, itswell de�ned algorithms are very stable [100℄. Overture is well doumented and e�ort is done for thegeneration of grids starting from CAD-�les in order to minimize the user input.Sine no stable parallel version of Overture exists, only the grid assembly abilities are exploitedin this work. A new ode, alled SAFARI (Simulation Aéroaoustique de Fluides Ave Resonanes etInterations), has been developed that prepares an overset grid, generated by Overture, for parallelomputation. SAFARI has been written in Fortran90 in order to bene�t of derived types like struturesin order to handle more omplex data strutures. The programming model used for SAFARI is referredto single proess multiple data (SPMD). This means that the same soure is ompiled and exeutedon eah proessor while manipulating its own data. Communiation between the proessors is realizedby using funtions issued from the MPI-library.The box bounded by the solid line in Figure 1.13 illustrates shematially the tasks that an bedone by SAFARI suh as it is developed in this work. First an overset grid is reated by the userin form of a sript �le with the extension .md. This �le ontains informations about the geometryof eah omponent grid, their hierarhy, the order of interpolation between the omponent grids andthe order of disretization used on eah omponent grid. In order to reate an overlapping grid the.md �le has to be ompiled by ogen, that reates and saves the geometry and the interpolation datain a .hdf �le (HDF4). SAFARI reads the .hdf �le using funtions provided by Overture. Eah singleomponent grid is then subdivided into bloks that are distributed to a single proessor. It distributesthe interpolation data omputed by ogen aording to the domain deomposition in order to parallelizethis omputationally expensive operation.To treat Fluid Struture Interation (FSI) problems, SAFARI will be able to takle with grids thatmove relative to eah other due to moments and fores that at on solid bodies. For that it will beneessary to all grid assembler funtions during the time integration loop. This task should be easyto implement thanks to the oneption of Overture as library.
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Figure 1.8: Example of an overset grid generated by ogen. The ylindrial grid is embedded in a Cartesian grid.The blak squares designate where information has to be exhanged in order to ompute a solution.Those values have to be interpolated as the grid points do not oinide in general.1.13 Communiation between proessorsThe solver for visid and invisid �ows developed in the previous setions uses an expliit single-time stepping algorithm. Therefore grid points on eah proessor may be updated to the next timelevel simultaneously. In order to alulate the spatial derivatives via expliit �nite-di�erene shemesonly near proessor domain boundaries data must be exhanged. For invisid omputations the �owvariables (ρ, ρu, ρv, ρw, ρet)
T must be transfered. Visous omputations require additionally the visousterms and the heat ondution terms to be passed by MPI. As double preision is needed a fairly amountof data has to be transfered.There are two kinds of ommuniations implemented in the ode: Inter-grid ommuniation thatonsists of an interpolation proedure and a MPI send-reeive proedure. Inter-blok ommuniationsare handled by MPI routines only, sine the points at the blok boundaries oinide.1.13.1 Inter-Grid ommuniationInter-grid ommuniation is a�eted by high-order interpolation shemes. Sherer and Sott [116℄ testedhigh-order interpolation methods. They onsidered a generalized Lagrangian polynomial method on-sisting of optimized or non-optimized methods in expliit and ompat form. Furthermore they om-pared them with interpolation methods using B-splines. They onluded that lassial Lagrangian
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Figure 1.9: Shemati diagram of SAFARI: box bounded by�� desribes the state of SAFARI suh as developedin this work; box bounded by - - - desribes the future state of SAFARI when FSI problems areaddressed.expliit interpolation methods o�er the best ompromise between auray, robustness and omplexityin implementation. Although B-Splines methods an be onstruted independently from the interpola-tion stenil size for arbitrary orders of auray, they are not preferred by Sherer and Sott as for thosemethods derivatives at the interpolation stenil extremities have to be spei�ed. Interpolation shemesoptimized for higher wave number were proposed by Tam [124℄ and Sherer and Sott [116℄. The latterstated that optimized Lagrangian interpolation performs well in the high wave number range but anderease in auray for lower wave number. Therefore high-order expliit Lagrangian polynomials areused in this work.Lagrangian polynomials are implemented in SAFARI as follows. At a point P , the value φP of afuntion φξ,η whih is known in the urvilinear oordinate system (ξ, η) is given in 2-D by
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,where Nξ and Nη are the number of interpolation points in the diretions ξ and η respetively, asdisplayed in Figure 1.10 (a). The point (IP , JP ) is the �rst point at the lower, left orner of theinterpolation stenil. The quantities δξ and δη are the urvilinear oordinates of the point P relativeto the point (IP , JP ). The interpolation oe�ients Rη

i and Rξ
j are omputed before entering in thetime integration loop and are stored in a 1-D array of length Nξ + Nη.In the literature the quantities δξ and δη are often alled o�sets. The aurate omputation ofthese o�sets is ruial for the overall auray of the interpolation. Overture omputes the o�setswith seond-order auray, when it does not know the inverse mapping funtion ξ = ξ(x) expliitly.Sine the test ases omputed in the validation hapter 2 of this work involve grid geometries withmoderately skewed grids or simple geometries like ylinders and uniform grids, the high-order aurateomputation of the o�set have not been implemented in this work. If high-order aurate o�sets are
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ξFigure 1.10: Example of a 2-D interpolation stenil in (a) physial spae and (b) omputational spae. Thepoint P on the grid needs to be updated via interpolation using data of the grid. In omputational spae the interpolation stenil is uniform. (Ip, Jp) is the lower left point of theinterpolation stenil, Nξ, Nη is the stenil width in ξ- and η-diretion and δξ, δη are the urvilineardistanes between the point P and (Ip, Jp), the lower left stenil point.required, Sherer [116℄ extended the inverse mapping problem for high-order shemes proposed by Beneket al. [18℄. Another method has been proposed by Guénan� [63℄.Note, that the maximum formal order of Lagrangian polynomials is related diretly to the lengthof the interpolation stenil Nξ. A multidimensional analysis of Lagrangian polynomials is given, forexample by Tam and Hu [124℄ and Guénan� [63℄.All data neessary for the interpolation are omputed by Overture in a preproessing step and areassoiated to the reeiver grid. However interpolation should be done by the donor grid in order tominimize the amount of data to be transfered between the proessors. Thus, the reeiver grid sendsall neessary data to the donor grid before time integration is started. This is not a trivial task sinea grid is divided in a arbitrary number of bloks. This task is parallelized in SAFARI, resulting in aminimized omputational overhead.1.13.2 Inter-Blok ommuniationSAFARI divides a omponent grid evenly in eah oordinate diretion ξ, η, ζ in bloks of grid points
Nblok,ξ, Nblok,η, Nblok,ζ . Figure 1.12 shows an example of a 2-D grid subdivided in Nblok,ξ = 3 bloksin ξ-diretion and Nblok,η = 2 bloks in η diretion. Periodi boundary onditions are also handledwith inter-blok ommuniations routines.The number of bloks per grid is estimated by a simple algorithm that requires as input themaximum number of grid points that should be omputed on one proessor. Under the assumptionthat all points need the same amount of operations, the algorithm determines the number of bloksneeded for one grid in order to not exeed the maximum number of grid points and by minimizing the
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blok2,2Figure 1.11: Example of a 2-D ylindrial grid subdivided in Nblok,ξ × Nblok,η = 2 × 2 bloks. Interpolationpoints reeive data from bloks belonging to the bakground grid (not represented in this Figure).blok1,2 and blok2,2 also have to interpolate data and send it to the bloks of the bakgroundgrid. blok1,1 and blok2,1 do not ontribute to the grid ommuniation.number of ommuniation points determined by
Aom = (Nblok,ξ − 1) · Nη · Nζ + (Nblok,η − 1) · Nξ · Nζ + (Nblok,ζ − 1) · Nξ · Nη,where Nξ, Nη, Nζ are the total number of grid points in eah diretion of omponent grid.Figure 1.12 gives a shematial view of the layout on a loal omputational blok used by a singleproessor. This shows that there are overlap regions on eah side of the loal domain where informationmust be obtained from neighboring proessors. Likewise, this proessor would also need to send somedata to these neighbors. For the �nite di�erene solver used in this work, where the spatial operatorsare applied in eah diretion separately no update of data at the orners is neessary. However it ispossible that a multidimensional interpolation stenil lies within the orner region as shown in Figure1.13. If this is the ase, SAFARI also updates in the orner region.
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Figure 1.12: Inter-blok ommuniation in a 2-D grid with periodi boundary ondition in η-diretion subdividedin Nblok,ξ × Nblok,η = 3 × 2 bloks.
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Figure 1.14: Salability of SAFARI. TN denotes the time needed to perform the task using N proesors. Speed-up urve for the ase with onstant total number of grid points Ntot: ◦ update only regions normalto boundaries; + additional update of orner regions.1.13.3 Saling test for inter-blok ommuniationIn this setion saling tests of the parallelization is provided for the examples of a ubi grid ontaining
Ntot = 100 × 100 × 100 = 1 × 106 grid points. The grid is generated by Overture and omputed bySAFARI, using Npros = i3, i = 1, 2, 3 proessors. This saling test is very demanding beause theratio between the number of ommuniation points and the number of omputation points beomesvery onstraining and gives an idea of the limit of grid points per proessor not to exeed. The resultswere obtained on the luster Tantale of the CEA (CP 4000 DL 585 quadri proessors AMD Opteron1.8 GHz, Network In�niband with a latene 5µs, 1 GByte.s−1). The time of one iteration required forone grid point on a single proessor is 8.6 × 10−6 s.Figure 1.14 shows the parallel performane of the ode ompared with the ideal linear speedupurve for the �rst test ase. Up to ten proessors the ode performs well. For ases with more thanten proessors the atual performane deviates from the ideal beause a large amount of data has tobe exhanged due to the use of large 11-point omputational stenils. For 3-D omputations, usingless then 1 × 105 per proessor should be avoided.As already mentioned only data normal to the ommuniation boundaries have to be exhangedas displayed in Figure 1.14. However if a interpolation point is situated near a orner so that theinterpolation stenil involves points in the orner regions data has to be updated. Figure 1.14 illustratesthat for the 3-D ase the parallel ode performs very poorly due to a large ommuniation overheadwhen the orners are updated. Therefore the update of the orners has to be avoided whenever it ispossible.The saling test reveals that ommuniations has to be minimized and optimized in the futureespeially for massively parallel omputations. This an be ahieved by non-bloking ommuniationsand a more sophistiated load balaning taking into aount boundary onditions. Anyways the mul-tidomain approah permits to aess appliations with a very large number of grid points. SAFARI isportable on several massively parallel platforms like HP Proliant, Bull 3045 and BlueGene.



441.14 ConlusionThe numerial algorithm SAFARI has been presented in this hapter. The assoiated �ow solver isa high-order �nite di�erene solver for the purpose of solving Euler and Navier-Stokes equations onstrutured grids. The implemented seletive �lter removes grid-to-grid osillations. When solvingNavier-Stokes equations, the seletive �lter plays the role of a sub-grid model by removing properlythe not well resolved turbulent sales. In order to treat �ows with shoks, a Jameson-type dissipationmodel has been implemented in the ode. The assoiated wall boundary onditions and non re�etiveboundary onditions have been spei�ed in this hapter.To takle with omplex geometries using a strutured grid solver, a high-order aurate oversetgrid approah has been implemented in the ode. The ode is parallelized using the MPI library andallows to aess to high-Reynolds appliations.



Chapter 2Validation of SAFARIIn the following, several validation test ases are reported. These test ases involve lassial problemsenountered in omputational aeroaoustis as well as in omputational �uid dynamis. The test asesare destinated to hek if the multi-domain approah and the shok-apturing tehnique implementedin this work are able to reover the auray of the high-order �nite-di�erene shemes. Sine the testases involve also walls and open domain boundary onditions, the implemented boundary onditionsare also validated in this hapter.2.1 Convetion of a vortex through interpolation zonesThe passage of the wake generated by a ylinder through an overlap region generates spurious aoustiwaves as it has been observed by Desquesnes et al. [45℄. In this work, a strong in�uene of thepolynomial order on the auray and on the generation of spurious aousti waves have been observedwhen vortial strutures are involved. The onvetion of a vortex by an invisid uniform mean �owthrough a overset region is therefore onsidered �rst. By varying the interpolation order, the minimumorder that is required to reover the auray of the optimized �nite-di�erene shemes is determinedin the following.The overlapping grid, generated by ogen, is displayed in Figure 2.1. It is omposed of three uniformgrids onneted by two overlap regions. The left and the right grids ontain Nξ ×Nη = 51× 51 points.The enter grid onsists of Nξ × Nη = 51 × 52 and is shifted by half a grid size length in x-diretionsuh as displayed in Figure 2.2 (a). This avoids interpolation points to oinide with grid points inthe zone where the vortex passes.The vortex is de�ned by the initial onditions using dimensionless variables:
ρ = 1

ρu = ρ

{
M + y ǫ exp

[
− log (2)

α2
(x2 + y2)

]}

ρv = ρ x ǫ exp

[
− log (2)

α2
(x2 + y2)

]
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Figure 2.1: Overlapping grid generated by ogen. The grid is omposed of three uniform grids onneted by twooverlap regions of variable width.
ρet =

1/γ

γ − 1
+

1

2
ρ(u2 + v2),where M = 0.5 is the freestream Mah number, ǫ = 0.01 is the vortex strength and α = 3∆x theGaussian half width. The Fourier transform of the swirl veloity (the transversal veloity omponentalong the x-axis at y = 0) is given by:

v̂(k) = −2i

√
π

a

k

4a
exp

[
−k2

4a

]
,where a = log (2)/α2 ontains the Gaussian half width. The normalized power spetral density isplotted in Figure 2.2 (b). A dominant peak at k∆x =

√
2a ≈ 2π/16 is observed. Most of the spetralontent is loated within the well resolved wave-number domain of the optimized �nite-di�ereneshemes.The radiation boundary onditions of Tam and Dong [127℄ are applied to all boundaries. Forall omputations the CFL number is �xed to CFL = 0.25. The simulations are arried out for 800iterations, the time required to onvet the vortex 100∆x.Five simulations are done varying the order of interpolation Norder = 2, 4, ...10. Figure 2.3 displaysa sequene of the instantaneous pressure �eld when the vortex, haraterized by a pressure minimum,meets the �rst overlap region. Figures 2.3 (a), (b) and () are obtained using Lagrangian polynomialsof order Norder = 2, 6 and 10 respetively. The aousti wave just leaving the omputational domainat the �rst and seond instant is due to an adaptation of the pressure �eld to the veloity �eld atthe beginning of the simulation. It is a transitional artefat and was also observed by Bogey [25℄.The sequene (a) using the seond-order interpolation, strong aousti disturbanes are generated andontaminate the physial solution. Those parasite waves are signi�antly redued when using sixth-order Lagrangian polynomials (sequene (b)) and disappears when a tenth-order interpolation shemeis used (sequene ()).In order to quantify the generation of spurious aousti perturbation the residual pressure for the
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Figure 2.2: (a) Detail view of the enter of an overlapping region (y = 0). The interpolation points do notmath with the interpolation data. (b) Normalized spetral ontents of the transversal veloityomponent of the initial vortex; dominant wave length, maximal resolution ofoptimized 11-points �nite di�erene shemes k∆x ≈ π/2 [30℄.left grid is omputed using the L2 norm:
Lp =

√√√√√ 1

NξNη

Nξ,Nη∑

i,j

p′i,j.The residual obtained for the left grid is plotted in Figure 2.4 (a) as a funtion of the number ofiterations. The solid line representing the pressure residual obtained with the single blok omputationis onsidered as a referene solution. The symbols in Figure 2.4 (a) represent the pressure residualobtained with the overlapping grid for varying polynomial orders. The �rst peak observed duringthe �rst 200 iterations for all setups is assoiated to the transitional pressure pulse. The dereaseof the residual pressure, indiates that the pressure pulse leaves the omputational domain withoutany spurious re�etions. When the vortex hits the overlap zone, the residual pressure obtained withseond-order polynomials shows a signi�ant inrease and on�rms the generation of aousti wavesobserved in Figure 2.3 (a). Using fourth-order polynomials the re�etion are only visible in a zoom onthe last 600 iterations given in Figure 2.4 (b). For orders higher than 6 the residual pressure evolveslike in the single-blok omputation and the re�etions are negligible.The error of the aerodynami �eld is estimated by omputing the L2 norm of the di�erene be-tween the exat swirl veloity and the swirl veloity when the vortex has reahed its �nal position at
x = 100 ∆x. The error is omputed along the x-axis at y = 0 suh as:

Lv =

√√√√ 1

Nξ

Nξ∑

i

vi|2y=0.The values for Lv are given in Table 2.1 and are plotted in Figure 2.5, normalized by the single-blokresult. Figure 2.5 reveals that for polynomial orders higher than 6 the auray of the numerialalgorithm is governed by the spatial and time integration errors and the interpolation error beomes
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(a)
(b)
()

Figure 2.3: Iso-ontours of the instantaneous pressure �elds omputed the left grid during the passage of thevortex through the overlapping region using Lagrangian polynomials of order (a) Norder = 2; (b)
Norder = 6 and () Norder = 10.

Norder 2 4 6 8 10 single blok
L2 × 104 7.637 1.630 1.164 1.104 1.097 1.096Table 2.1: L2 norm of error in swirl veloity after Nit = 800 iterations.negligible. In order to redue the e�ort in CPU and storage, the order of interpolation polynomials islimited to eighth-order for 2-D problems and to sixth-order for 3-D problems in this work.2.2 Di�ration of monopolar aousti soure by a ylinderThis test ase is issued from the seond CAA workshop [1℄ and serves to hek if sixth-order Lagrangianpolynomials are su�ient to reover the auray of the high-order �nite-di�erene shemes when onlyaousti perturbations are involved. The numerial setup is represented in Figure 2.6. The test asesolves the 2-D Euler equations in non-dimensional form. The referene length sale is the diameter ofthe ylinder d. A Gaussian shaped soure, applied to the pressure after eah Runge Kutta iteration,
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Figure 2.4: (a) Time evolution of the residual pressure Lp in left grid. (b) Detailed view on residual pressure
Lp; Lp of single blok omputation as referene solution; solution obtained with oversetgrid using interpolation of order + Norder = 2, ◦ Norder = 4, Norder = 6,
△ Norder = 8, ▽ Norder = 10
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Figure 2.5: L2 norm of the error of the swirl veloity normalized by the L2 obtained for the omputation on asingle blok.is plaed at (xs, ys) = (4, 0):
S = ǫ sin (ωt) exp

[
ln (2)

(x − xs)
2 + (y − ys)

2

b2

]
,where the frequeny is given by ω = 8π and the Gaussian half-width by b = 0.2. Originally, the test aseproposes to solve the linearized Euler equations. For the non-linear Euler equations a su�iently smallsoure strength ǫ has to be introdued, in order to avoid non-linear e�ets. In this work ǫ = 1.× 10−6has been hosen. For initial onditions air at rest at the pressure p0 = 1/γ and with the density ρ0 = 1is taken. The wave length assoiated to the soure is λ = c0/4 = 0.25. Sine the wave length is of thesame order as the soure, the soure is onsidered to be non ompat.A �rst simulation is done using a single ylindrial grid in order to validate for aousti problemsthe slip wall ondition developed in setion 1.11. The grid onsists of Nr ×Nθ = 781× 751 = 5.9× 105grid points and is spaed uniformly in r- and θ-diretion. The number of points in azimuthal diretion
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Figure 2.6: Con�guration for the di�ration test ast: the time harmoni monopolar soure is plaed at pointS. The diretivity D(θ) will be measured on a ar at r/d = 7.5, π/2 ≤ θ ≤ π.
Nθ is hosen to ensure a wave to be resolved by 7 points at r/d = 7.5. The number of points in radialdiretion Nr is taken to respet a ratio ∆r/∆θ = 1.5 at the ylinder wall.Figure 2.7 (a) shows the simulated �utuating pressure �eld. The aousti waves oming from thenon ompat soure generate a di�ration �eld. A silent zone behind the ylinder an be observed.The detailed view on the ylinder near region is given in Figure 2.8 (a).The diretivity given by

D(θ, r) = r
1

T

T∫
p′(θ, r)2 dtis omputed on a ar with r/d = 7.5 and π/2 ≤ θ ≤ π and is ompared to the analytial solution ofthe problem [1℄. In Figure 2.9 the diretivity D(θ, r) obtained by omputation is ompared with theanalytial solution. The omputed urve and the analytial urve ompare well.In a seond simulation, the same test ase will be done using the overset-grid approah. By makingseveral omputations with di�erent order of interpolation, the optimum interpolation order for thepresent numerial algorithm is determined.The overset grid is omposed of 2 grids: one ylindrial grid and one uniform grid. The uniformgrid is generated to resolve aousti wave with 7 points per wavelength ∆x = ∆y = λ/7 = 1/28. Theuniform grid is extended −10 ≤ x, y ≤ 10. The ylindrial grid is spaed uniformly in azimuthal andradial diretion and is limited by the outer radius ra/d = 1.5. In the radial diretion the grid lengthis hosen to be λ/13 and the number of grid points in azimuthal diretion is taken to ensure thatthe aspet ratio of the radial and azimuthal grid spaing is ∆r/∆θ = 1.1. The overset grid ontains

3.2 × 105 grid points, 45% less grid points than used for the single-blok omputation.Figure 2.7 (b) shows the �utuating pressure �eld for the overset grid using eighth-order interpo-lation polynomials. The di�rated �eld is very similar to the single-blok omputation. The detailedview on the ylinder near region is given in Figure 2.8 (b). The aousti waves propagates throughthe overlap region without generating spurious re�etions.In Figure 2.10 the quantity D(θ, r) along a line de�ned by θ = π/2 and 0.5 ≤ r/d ≤ 10 is omparedwith the analytial solution for the interpolation order of 2 and 6. Using seond-order polynomialsleads to large disrepanies in the near ylinder region. For polynomial orders higher than six, theerror made by the interpolation proedure tends to zero.
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Figure 2.7: Di�ration of pressure soure by ylinder: pressure �utuations �eld (olor sales ≤ 10−10 Pa) (a)obtained by single blok omputation; (b) obtained using overset grid approah and sixth-orderinterpoltion polynomials.(a) (b)

Figure 2.8: Di�ration of pressure soure by ylinder: Detailed view pressure �utuations �eld around the ylin-der (olor sales ≤ 10−10 Pa) (a) obtained by single blok omputation; (b) obtained using oversetgrid approah and sixth-order interpolation polynomials. The solid line presents the boundary ofthe ylindrial grid.In this setion, the overset approah has been suessfully applied and the results ompare verywell with the analytial solution. The test ases reveals that sixth-order Lagrangian polynomials aresu�ient when aousti perturbations are involved in order to maintain the global auray of the11-point �nite-di�erene sheme.
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Figure 2.9: Diretivity D(θ) = r < p′2 > at r/d = 7.5: omputed solution; analytial solution
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ρe, pe, Te, ue

ρw, Tw, qw = 0, uw = 0Figure 2.11: Sketh of the plane ouette �ow setup: the lower wall is adiabati and at rest and the upper wallmoves with a veloity ue and is isothermal. Linear veloity pro�le for inompressible �owsVeloity pro�le for ompressible �ow with temperature dependent visosity.2.3 Plane ompressible Couette �owFollowing Gloerfelt [60℄ who omputed a Poiseuille �ow in 2-D, a ompressible plane ouette �ow isonsidered. The test ase allows to validate the implementation of the visous and heat ondutionterms as well as thermal boundary onditions, reported in setion 1.11. At the same time this testase introdues some physial onepts enountered in ompressible visous �ows.The �ow on�guration is shown in Figure 2.11. Air �ows between two parallel plates, where theupper plate moves at a onstant veloity ue relative to the lower plate. The other boundary onditionsare as shown. The temperature at the upper and lower plate are designated Te and Tw, respetively. Aheat �ux is imposed at the lower wall and the upper wall is isothermal. The 2-D �ow is fully developedin x-diretion so that ∂/∂x = 0 and is steady ∂/∂t = 0. The ontinuity equation writes
∂(ρv)

∂y
= 0.The momentum equations give

∂τxy

∂y
=

∂

∂y

(
µ

∂u

∂y

)
= 0,

∂p

∂y
= 0.Thus, shear stress and pressure in wall normal diretion are onstant. For inompressible �ows, thevisosity is often taken to be onstant [119℄ and integration leads to a linear pro�le. For ompressible�ows, variations in temperature produe variations in visosity. The temperature distribution needstherefore to be known in order to integrate the momentum equation. This temperature is determinedby means of the energy equation that redues to

∂

∂y

(
µu

∂u

∂y
+ k

∂T

∂y

)
= 0,showing that for the Couette �ow the di�usion of kineti energy and heat ondution are in equilibrium.The equation is integrated from the lower wall outwards:

µu
∂u

∂y
+

µcp

Pr

∂T

∂y
= −qw.



54By noting that the shear stress is onstant and by assuming a onstant Prandtl number, the equationis reasted in
∂

∂y

(
CpT +

1

2
Pr u2

)
= −Pr

qw

τw

∂u

∂yand is integrated to obtain a relation between the temperature and the veloity distribution.
Cp(T − Tw) +

1

2
Pr u2 = −Pr

qw

τw
u.The lower wall is taken adiabati (qw = 0) whih allows to determine the temperature at the lowerwall diretly by the expression

Tw = Te +
1

2

Pr u2
e

Cp
.The adiabati wall temperature is alled the reovery temperature and is for the stationary wall equalto the total temperature. When the Prandtl number is not equal to 1 the total temperature of theouter �ow is not reovered entirely at the lower wall in form of heat. The momentum and energyequations are integrated numerially from the lower wall outwards to the upper wall leading to anexat temperature and veloity distribution. The temperature dependeny of the visosity is takeninto aount by Sutherland's law given by (1.15).In order to study the grid onvergene, three omputations on a 2-D uniformly spaed grid arearried out with di�erent numbers of grid points. The number of grid points in x-diretion is keptonstant Nx = 10, whereas the grid points in y-diretion are taken Ny = 21, 50 and 100. Note thatfor the oarsest grid, only ten points are omputed with the entered �nite-di�erene sheme. Theboundary points are omputed using the non-entered �nite-di�erene shemes and seletive �ltersproposed by Berland et al. [21℄.The onditions at the upper wall are taken to be ambient pe = 1.0 × 105 Pa and ρe = 1.2kg.m−3.A Reynolds number based on the height H and the upper veloity ue, and the visosity measured atthe upper wall is Re = 800. The Mah number is taken to be Me = 2.33. Adiabati no-slip boundaryonditions and onstant temperature onditions reported in setion 1.11 are applied at the lower walland upper wall respetively. Periodi boundary onditions are applied in x-diretion.The omputation is initialized using the linear inompressible veloity pro�le and a onstant pres-sure and temperature pro�le at ambient onditions. The omputations are arried out until the densityresidual reahes |ρn+1−ρn|/ρn ≤ 10−6. The onvergene rate for the three ases are provided in Figure2.12 (a). Note for all omputations, the time step is equal and is governed by the onstant grid sizein the x-diretion.The omputed veloity pro�les are given in Figure 2.12 (b). In agreement with the exat solution,the omputed veloity pro�les exhibit a di�erene due to the variation of visosity. The oarse gridsolution reveals some disrepanies. By re�ning the grid, the omputed solution onverges to the exatsolution. The same tendeny an be observed for the temperature pro�les given in Figure 2.13 (a). Itinreases and onverges to the reovery temperature near the wall. The error, de�ned by the absolutedi�erene between the exat and omputed reovery temperature, are plotted in Figure 2.13 (b) as afuntion of the grid size. The error sales with the grid size at the power of 6.2.
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Figure 2.12: (a) Time evolution of density residual; (b) Comparison of veloity pro�les omputed with di�erentgrid sizes ( ∆y = 1/20, ∆y = 1/50, ∆y = 1/100) with the exat solution. The straight line u/Ue = y represents the linear veloity pro�le for the inompressiblease. (a) (b)
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Figure 2.13: (a) Comparison of temperature pro�les omputed with di�erent grid sizes ( ∆y = 1/20,
∆y = 1/50, ∆y = 1/100) with the exat solution . The upper solid linesrepresents the distribution of the total temperature T0 = T + 0.5u2/Cp; (b) Di�erene betweenomputed and exat adiabati wall temperature Tw.The omputation of the plane Couette �ow demonstrates that ompressible visous and thermalinterations governed by the Prandtl number are predited orretly by the numerial ode. Theimplementation of the adiabati boundary onditions is robust and predits the reovery temperatureorretly.2.4 Flow around ylinder at low Reynolds and low Mah numberIn this setion, the simulation of a 2-D �ow around a ylinder at low Reynolds and Mah number ispresented. This �ow on�guration has been studied by Marsden et al. and Inoue and Hatakeyama



56[92, 72℄ using a single ylindrial grid. The �ow is solved using the overset-grid approah and omparedwith the omputed solution of the literature [72℄.The diameter of the ylinder is D = 2.0 × 10−5 m and the �ow Mah number is M∞ = 0.33. Forair at ambient onditions p∞ = 1.0 × 105 Pa and ρ = 1.2 kg.m−3 the Reynolds number based on theylinder diameter is omputed ReD = 150. In the experiments, no transition and no 3-D e�ets areobserved [144℄ for this Reynolds number and the problem an be simulated using a 2-D mesh.The grid generated by ogen is shown in Figure 2.14. It onsists of 5 omponent grids: the gridaround the ylinder, the grid in the wake of the ylinder, a highly strethed grid at the out�ow boundaryand a far-�eld grid in order to propagate the aousti �eld. The minimum grid size is governed by theboundary layer that develops along the ylinder wall. A grid size in radial diretion of ∆r = D/36is used. With this grid resolution the boundary layer near the stagnation ontains 4 grid points. Inazimuthal diretion 251 uniformly spaed grid spaing are used. The grid size of the wake grid has beenadapted to ylindrial grid in order to avoid great variation of ell sizes in the wake of the ylinder.The wake grid spreads in y-diretion and mathes the height of out�ow. The out�ow grid is highlystrethed with exponential funtions provided by ogen.The grid size for the aousti grid is determined as follows. A Strouhal number of StD = f D/U∞ =

0.18 is expeted, giving a wavelength of λa = (1/M∞ − 1)/St D = 11.3D for upstream travelingperturbations. The 11-point optimized sheme is able to propagate perturbations over far distaneswith 7 points per wavelength imposing a grid size of ∆x = λa/7 = 1.6D. The dimensions of the far-�eld grid are hosen suh as 5 wavelengths �t between the ylinder and the omputational boundariesin upstream diretion.Additionally, one intermediate grid is used in order to avoid large variation of grid sizes in theoverlap zones due to the large disparity between the grid around the ylinder and its wake and theoarse far-�eld grid. A detailed view on the near ylinder region provided in Figure 2.15 shows theylindrial grid and the wake grid embedded in the intermediate grid. The grid harateristis aredetailed in Table 2.2.At the wall adiabati non-slip onditions are applied and a simulation time orresponding to 100vortex shedding periods is a�eted. The hosen CFL = 0.4 results in a time step of ∆t = 4.28× 10−10s.
Nx Ny Ntot NprosCylinder grid 251 60 7530 2Wake grid 945 164 14089 11Out�ow grid 359 235 10545 8Far �eld grid 168 168 9408 3Intermediate grid 429 133 11411 5Table 2.2: Grid harateristis for the omputation of the �ow around a ylinder. The total number of 3.4×105grid points have been omputed by Npros = 29 proessors.Figure 2.16 shows the instantaneous plot of the pressure �utuation �eld p − p∞. The dipole
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Figure 2.14: Overset grid generated by ogen. The grid is omposed of 5 omponent grids: ylindrial grid(magenta), wake grid (red), out�ow grid (blue), intermediate grid (green), aousti grid (blue).harater of the noise soure is observed. The presene of a mean �ow leads to the ompression ofaousti wave length in the upstream diretion, similar to the Doppler e�et. Figure 2.17 shows theinstantaneous vortiity �eld. The Von Kármán vortex street is visible.The mean pressure oe�ient de�ned by
Cp =

p − p∞
1/2ρ∞v2

∞is ompared to the solution obtained by Inoue et al. [72℄ in Figure 2.18. The solution ompares wellwith the solution obtained by Inoue. Some disrepanies an be observed in the stagnation point andon the forward faing ylinder side where the �ow separates.The drag oe�ient based on the pressure fores is omputed suh as Cd = 1.25 and ompares wellwith the experimental values Cd = 1.32. The error is 5.3% and is assoiated to the oarse grid usedfor the grid in the omputation. Slight deviation of 5% an be observed for the Strouhal number thatis found to be 0.193 whih is aused to by the underresolution of the �ow.
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Figure 2.15: Overset generated by ogen. The detailed view on the ylinder region shows ylindrial grid embed-ded in the wake grid. Additionally, an intermediate grid is added in order to avoid large hangesin grid size. Blak markers visualize interpolation points.

Figure 2.16: Instantaneous pressure �utuations �eld (gray sales |p′| ≤ 200 Pa).



59

Figure 2.17: Instantaneous vortiity �utuations �eld (olor sales 0.1 ≤ |ω| ≤ 6.6 × 106 s−1).

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

θ

C
p

Figure 2.18: Pressure oe�ient along the ylinder surfae: �� solution provides by Inoue et al. [72℄; - - - -omputed solution.



602.5 1-D Shok/Entropy Wave InterationThe next example onsiders the 1-D invisid �ow proposed by Shu and Osher [117℄ as a model problemfor shok-turbulene interation. This test ase, whih inorporates both �ne-sale and strong nonlinearfeatures, onsists of a moving Mah 3 shok wave interating with a density �utuation. The domainextends from −5 ≤ x ≤ 5. The initial ondition is spei�ed as follows.
[ρ, u, p] =





[3.857143, 2.629369, 10.333333℄ for x < −4,[1 + 0.2 sin (5x), 0, 1]℄ for x ≥ −4The solution is advaned in time until t = 1.8 and the density distribution obtained with the presentnumerial algorithm on a 1601 point mesh is displayed in Figure 2.19 as well as the initial ondition.A ourant number of CFL = 0.1 is used in order to minimize the error form the Runge-Kutta sheme.This solution is onsidered as the referene solution.Figures 2.20 (a) and (b) show the solution obtained on a 401 points mesh and 201 points meshrespetively. Three omputations have been arried out with di�erent �ltering strategies. One ompu-tation is done using the entered seletive �lter sheme alone. Two further omputations are arried outapplying the shok apturing �lter presented in setion 1.6 after eah time iteration with the Jamesondetetor and with the modi�ed Jameson detetor based on the 11-point seletive �lter.The solution omputed with the seletive �ltering only ompares well with the referene solutionon both grids even if a small dispersion error is observed. The use of the shok-apturing �lter leads toa slight underestimation of the density perturbations whih beomes more obvious for the oarse meshomputation. The solution obtained with the modi�ed Jameson detetor leads to lower amplitudeerror due to a smaller peak value of the detetor in the shok region.This test ase shows that the numerial sheme is able to treat problems with strong non-linearities.Using the seletive �lter is su�ient to ensure stability and to provide an high-order aurate solution.An in�uene of the shok-apturing �lter an be observed, but an be minimized by using the modi�edJameson detetor. Comparisons with omputations found in the literature show that the implementedsheme is ompetitive with more sophistiated shok-apturing �lters based on MUSCL or WENOshemes for example onsidered reently by Visbal and Gaitonde [137℄ or Lo et al. [89℄.
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Figure 2.19: 1-D entropy wave/ shok interation problem: initial ondition and solution at
t = 1.8 obtained on 1601 point mesh.
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Figure 2.20: 1-D entropy wave/shok interation problem at t = 1.8: (a) 401 point mesh; (b) 201 point mesh;referene solution, seletive �ltering, seletive �ltering + shok apturing,seletive �ltering + shok apturing + modi�ed Jameson detetor.



622.6 1-D shok/sound interation in a onvergent divergent nozzleThe �ow in a onvergent-divergent nozzle is simulated. The test ase is taken from the third CAAworkshop [2℄ and proposes to solve the 1-D Euler equations with variable ross-setion. The equationsin onservative form an be written as
∂(AQ)

∂t
+

∂(AE)

∂x
+H = 0, (2.1)where the vetor Q = [ρ, ρu, ρe]T ontains the unknowns, E = [ρu, ρu2 + p, (ρe + p)u]T is the �uxvetor and H = dA/dx × [0, p, 0]T is the soure vetor that takes into aount the variation of theross-setion area. The equations are non-dimensionalized by the �ow properties at the dut in�ow.In the same way, the ross-setion area A(x) is saled by its value at the in�ow and is given by:

A(x) =





1.0 − 0.661514 exp [−(ln 2)(x/0.6)2], x < 0

0.536572 − 0.198086 exp [(−(ln 2)(x/0.6)2 ], x ≥ 0.The equations are solved on a uniform grid that ontains 351 points and the solution is advaned intime with CFL=0.1 in order to make the error of the time integration sheme negligible. Non-re�etingboundary onditions are implemented using harateristi boundary onditions at the in�ow and theout�ow. The Mah number is �xed at the in�ow of the dut (Min = 0.2006533). Imposing weaklythe pressure at the out�ow (pout = 0.6071752) using using a relaxation term given in equation (1.16),leads to a normal shok in the divergent part of the dut.Three simulations are arried out using the seletive �lter only, using the seletive �lter in ombina-tion with the shok apturing �lter with the lassial Jameson detetor and using the modi�ed Jamesondetetor based on the 11-point seletive �lter. Figure 2.21 gives the mean �ow quantities for the threeomputations. Using no shok-apturing terms generates overshoots around the disontinuities. Theyare assoiated with the lassial Gibbs phenomenon, whih is typial for high-order methods. The useof the shok-apturing �lter removes the overshoots and the shok is well aptured. The overshoots forthe modi�ed Jameson detetor are more present than with the lassial Jameson detetor indiatingthat less dissipation is introdued.One the mean �eld is onverged after about 100000 iterations, a harmoni aousti perturbation(10−5 order of magnitude, ω = 0.6π) is superimposed at the in�ow in order to study shok-soundinteration. Figure 2.22 displays the �utuating pressure �eld for the three ases. All solutions omparewell with the solution given by Hixon [2℄. The overshoots observed in the mean �ow pro�le when noshok-apturing sheme is used have no impat on the aousti signal. Furthermore, no in�ueneof the low-order shok-apturing terms an be observed. This is not surprising beause the aoustiperturbations are resolved with about 25 mesh points per wavelength.Pushing the test ase to its limits reveals the in�uene of the shok-apturing term. For that,the omputations are repeated involving a signal whih ontains only 7 points per wavelength. The�utuating �eld is given in Figure 2.23. Provided that 4 points per wavelength are the auray limit ofthe �nite-di�erene sheme, the solution obtained without shok-apturing is onsidered as a referene
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Figure 2.21: Aousti wave/shok interation problem in a onvergent divergent nozzle: mean properities
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Figure 2.22: Aousti wave/shok interation problem in a onvergent divergent nozzle: �utuating pressureobtained (a) with seletive �lter, (b) with seletive �lter + shok apturing �lter, () with seletive�lter + shok apturing �lter + modi�ed Jameson detetor.solution. Applying the shok-apturing leads to the damping of the signal downstream of the shok.The omputation using the shok-apturing �lter with the modi�ed Jameson �lter gives a slightly lessdamped signal thanks to less dissiption that is introdued in the shok region.The omputation of sound/shok wave interations in a 1-D divergent onvergent nozzle has shownthat the present algorithm is able to deal with problems involving several orders of magnitude.
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Figure 2.23: Aousti wave/shok interation problem in a onvergent divergent nozzle: �utuating pressure�eld for the high frequeny ase obtained (aousti wave is resolved with approximately 7 pointsper wave length) (a) with seletive �lter, (b) with seletive �lter + shok apturing �lter, () withseletive �lter + shok apturing �lter + modi�ed Jameson detetor.



652.7 Invisid �ow in 3-D irular shok tubeThe transoni �ow of setion 2.6 is now studied in a 3-D irular dut. The grid generated by ogen isrepresented in Figure 2.24 (a). For ylindrial grids a singular point arises in the enter (r = 0). Theoverset-grid approah an easily avoid suh singularity problems by deomposing the geometry in twoomponent grids.A �rst axis-symmetri grid with varying ross-setion is generated. The enterline at r = 0 isomitted by this grid. The external radius is given by rex(x) =
√

A(x)/π and internal radius by
rin = 0.3rex(0). A seond Cartesian is embedded at the enterline of the ylindrial grid as displayedin Figure 2.24 (b). The overlap is built for a interpolation of order 6. The ylindrial grid ontains
301 × 50× 80 ≈ 1.2 × 106 points and the Cartesian grid 301 × 31× 31 ≈ 0.3 × 106 points. At wall theslip ondition of setion 1.11 is applied and harateristi boundary onditions are applied at the in-and out�ow.The simulation is arried out for 1 × 105 iterations with a CFL number of CFL = 0.9. The non-linear shok-apturing �lter desribed in setion 1.6 is applied, in order to maintain numerial stability.The omputation is performed on 30 proessors.The Mah number �eld omputed in a x − r plane is represented in Figure 2.25. The iso-ontoursof the Mah number math very well in the overlap region. The normal shok passes the overlap regionwithout any spurious osillations. The mean �ow properties u, ρ, p along the enterline are omparedin Figure 2.26 with the analytial solution of the 1-D problem given by Hixon [2℄. They are in goodagreement. In partiular, the shok loation is orretly predited indiating the good onservativityof the sheme.
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Figure 2.24: Grid of the irular onvergent divergent nozzle: (a) Side view; (b) Setional view at x = −5 :blak and gray squares indiate the interpolation points of the Cartesian grid and the ylindrialgrid respetively; () Grid of the irular onvergent divergent nozzle: 3-D view
Figure 2.25: Mah number pro�le in a x − r plane for −2 ≤ x ≤ 2. Iso-ontours of the Mah number

M > 1 , M = 1, M < 1.
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xFigure 2.26: Centerline pro�les of u, p ρ (top down). The symbols orrespond to the numerial solution andthe solid line to the analytial solution.2.8 ConlusionIn this hapter, SAFARI has been validated with various lassial test ases given in the literature.The test ase of the onvetion of a vortex through an overlap region has shown that the auray ofthe optimized �nite-di�erene sheme an be reovered using at least sixth-order or better eighth-orderLagrangian polynomials. The ase of the di�ration of the monopolar soure by a ylinder demonstratesthat sixth-order polynomials are su�ient when only aousti perturbations are involved. Using ogenthe user is able to speify polynomial order for eah inter-grid ommuniation, this study allows tominimize ommuniation osts due to interpolation by using very high-order interpolation in non-linearzones suh as wakes or shok regions and to use smaller interpolation stenils linear regions withoutpassing vortial strutures.The seond part of validation is onerned to the shok treatment. For that a Jameson-typedissipation model has been implemented. This sheme has very good shok-apturing properties. Theexample of a 1-D entropy/ shok wave interation reveals that the nonlinear �ltering terms risk to dampout small sale perturbations. The same is observed for aousti/shok wave interation problems. Thedissipation an be minimized by using a modi�ed Jameson detetor based on high-order dissipationterms. The omputational e�ieny of the Jameson-type �lter shemes have made them to the preferedshok treatment in this work.Using the overset-grid approah omplex geometries an be treated now in a autmated manner.In this work, the grid assembler pakage ogen has been used to generate the omplex data struturerequired for the overset-grid approah. This is demonstrated for the 2-D low Reynolds number �ow aswell as for the omputation of a 3-D irular shok tube. The latter example shows the grid �exibiltythat SAFARI o�ers now.



68



Chapter 3Aeroaousti simulation of a duted avity�owThe on�guration of the present duted avity has been studied in the ontext of an industrial appli-ation. Tonal noise has been measured on the power steam line of a nulear power station and theavity loated at the bottom of a gate valve, as shown in Figure 1 (b), has been identi�ed as the mainnoise soure. This avity has two spei� harateristis from more lassial avities studied in theliterature: it is on�ned in a dut and partially overed.Due to the geometrial omplexity of the avity, a simpli�ed planar model has been �rst studiednumerially and experimentally by Lafon et al. [81℄. The retained geometry is reported in Figure 3.1.The avity is a shallow avity sine the aspet ratio is L/h = 2.5 > 1 [112℄.Con�ned avities an not be only found in pipe systems with �ow ontrol devies but also in organpipes or �utes for instane. They generate disrete tones that an be either disturbing when theyexite the natural modes of pipe struture or desirable for musial instruments.In this hapter the simulation of a on�ned avity is presented. First, the physis of the avity �owis summarized and the experimental results of the studied avity on�guration are disussed. Then,the results of the simulation are presented and validated with the experiments.3.1 Introdution to avity �owCavity �ow an be found in many appliations and many experimental studies about the self-sustainedosillations of avity �ow have been arried out in the last 50 years. Review artiles are provided byRokwell and Naudasher [108℄, Komerath et al. [80℄, Colonius [37℄ and Tadeka and Shieh [122℄.The self-sustained osillations is based on a feedbak mehanism that an be deomposed in twophases. First vortial strutures are triggered at the upstream angle of the avity. Due to Kevin-Helmholtz instability, vortial strutures develop and grow in the turbulent or laminar shear layerabove the avity.Vorties are onveted over the avity and interats with the downstream angle. The impat of theeddies on the downstream angle leads to perturbations that trigger further instabilities at the upstream
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Figure 3.1: Duted avity: sketh of the geometry and notations h = 0.02 m, d = 0.05 m, H = 0.137 m,
L = 0.073 m and W = 0.16 m. The aspet ratio of the avity is L/D = 2.5. U0 is the free streamveloity.avity angle resulting in phase-loked frequenies. Note that for inompressible �ows (water or air atsmall Mah number M < 0.3) the feedbak loop loses rather via a hydrodynami mehanism. Usingthe Biot and Savart law, vortex deformation an be assoiated with a perturbation at the upstreamavity angle [9℄. For ompressible �ows (M > 0.3), the wavelength of aousti perturbations is of thesame order as the avity length L. The instability is triggered by an aousti wave that is generatedby the impat of the vortial struture on the downstream angle. The emission of aousti waves havebeen visualized by Karamheti [76℄.Many models have been designed to predit the frequenies of the self-sustained osillations. Mod-els for the estimation of the amplitude are rare due to the number of parameters that omes intoplay. For example, Karamheti [76℄ found that self-sustained osillations our for avities exeed-ing a harateristi length L and that the frequenies sale with the reiproal of the avity length

L. Furthermore the inoming boundary layer thikness has an in�uene on the sound pressure level.For laminar boundary layers, the amplitude of the resonane frequenies are inreased. For turbulentboundary layers, the spetral ontent features more peaks. Sahoria [112℄ found that osillations ofavity �ows our above a ertain value of the ratio L/δθ, where δθ is the momentum thikness of theinoming boundary layer. The in�uene of width W has been examined by Ahuja and Mendoza [3℄and found small in�uene of the width on the pressure spetra. However Tray and Plentovih [133℄on�rm this only for deep avities with L/D < 2. For shallow avities L/D > 2, they observed aninrease of peak levels for small width W . The same authors found that for subsoni avity �ows thebroadness of the peak of the pressure spetra inreases whih is due to a derease of �ow oherene.Cavity �ow at supersoni speeds are not onsidered in this work. For further leture refer to the workof Heller and Bliss [66℄ and Larhevêque [85℄ for example.In the past, several analytial investigations about avities have been done. The most important
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Figure 3.2: Vortex onvetion and aousti wave propagation in the avity at two di�erent times t = 0 and
t = t′.model is the one proposed by Rossiter [110℄ whih is the basis of many more sophistiated models.Rossiter model:Rossiter [110℄ was the �rst to propose a model to estimate the frequeny of the self-sustainedosillations. The observation that the peaks in the pressure spetra are not related harmonially, gavethe motivation for this model. A relation for the frequenies an be found by onsidering separatelythe two omponents of the feedbak mehanism at two di�erent time instants t = 0 and t = t′.Figure 3.2 shows the vortex onveted with the speed κU0 in the shear layer and the aousti wavetraveling in upstream diretion with the speed of sound ca in the avity. At instant t = 0, a pressurewave is emitted when the vortex impats on the downstream edge. Introduing arbitrarily a time lagbetween the impat of the vortex and the emission of sound, the vortex has thus been onveted overa distane of γvλv from the avity leading edge. At instant t = 0, the length between the pressurewave that is loated nearest to the upstream angle and the downstream angle ontains ma aoustiwave lengths λa. At instant t = t′, this pressure wave has reahed the upstream angle and triggers thedevelopment of a new vortex. The length between the new vortex triggered at the leading edge andthe vortex that has been emitted the aousti wave at t = 0 is mvλv, where λv is the distane betweentwo vorties.Two relations an be found in order to determine the harateristi wavelengths of the vortex



72onvetion and the aousti wave propagation:
mvλv = L + γvλv + κU0t

′and
L = maλa + cat

′.Eliminating t′, leads to
mvλv − L − γvλv

κU0
=

L − maλa

c0
.De�ning a harateristi frequeny for the vortial mode and the aousti mode f = κU0/λv = ca/λagives

f =
U0

L

mv + ma − γv

M0
c0
ca

+ 1
κ

.For subsoni avities, the sound elerity in the avity and in the free-stream are nearly the same(c0 = ca). De�ning a mode number suh as nR = ma + mv, gives the Rossiter's formula:
f =

U0

L

n − γv

M0 + 1
κ

(3.1)The Rossiter's formula is a very e�ient way to estimate the resonane frequenies of avities insubsoni and transoni regime. The formula ontains two parameters κ and γv; κ ≡ Uc/U0 representsthe dimensionless onvetion veloity and γv is the time lag between the impat of the vortex and theemission of an aousti wave, a parameter that is di�ult to aess experimentally.The fat that the feedbak yle is losed with an upstream traveling aousti wave is not valid forinompressible and low Mah number �ows where the feedbak is rather based on a pure hydrodynamiphenomenon. Experienes have shown that for the present avity �ow at M ≈ 0.2, the Rossiter's modelis well adapted to predit the peak frequenies. A short overview over some extensions of the Rossiter'smodel are given in the following.Classial Extension:More sophistiated models have been proposed in the literature for the supersoni and subsoniregime. Blok [22℄ inludes the e�ets of the avity depth L/D as a model parameter and proposes avalue for λv. The frequenies an be estimated by the formula
fn =

U0

L

n

M(1 + 0.514
L/D ) + 1

κTam and Blok [126℄ propose to inlude the analytial developments of a �nite shear layer in orderto take into aount the exitation mehanism at the separation point. The model works well for lowMah number regimes from 0.2 < M < 0.4.The model of Sahoria [112℄ takes into aount the theory of instabilities of a thikening mixinglayer and derives a riteria to determine the dominant mode. Rokwell [107℄ re�nes the model in orderto predit the resonane frequenies based on the harateristis of the mixing layer.



73Numerial SimulationsMany numerial studies have been arried out sine the �rst simulation in 1977 of Borland [32℄based on the resolution of the 2-D Euler equations. Further simulations inluding turbulent e�etsusing Reynolds Averaged Navier-Stokes equations in 2-D [145℄ and 3-D [104℄ followed. Sinha [118℄noties that the use of averaged equations lead to an underpredition of the sound pressure levels dueto an overestimation of the turbulent visosity that damps pressure osillations.This observation initiated the use of Large Eddy Simulation for avity �ows. The �rst Very LargeEddy Simulation (VLES) has been made by Sinha [118℄. Other omputations followed using zonalhybrid methods that ombine RANS methods to model the inoming boundary layer and LES methodsfor the shear layer zone [8℄.A further way to simulate avity �ow is the Diret Numerial Simulation (DNS) of the Navier-Stokesequations. Being very demanding in omputation power and storage, DNS is limited to small Reynoldsnumber �ow and have been simulated in most of the ases in 2-D [39, 62℄ and more reently in 3-D byBrès and Colonius [33℄. Cavity �ow simulations have also been arried out using the Lattie Boltzmannmethod [103℄ for subsoni �ows for the purpose of automotive appliations. Another numerial exampleis the use of 2-D Euler equations for the omputation of the �ow over deep avities [44℄.Larhevêque et al. [85, 84℄ demonstrates that LES is a very promising way to reover the physisof avity �ow at higher Reynolds numbers. Several omputations of avities �ows with di�erentaspet ratios L/D have been omputed and reprodue the experimental results of Forestier [53℄ in animpressive way. In the same way, LES an reprodue the passive ontrol of avity �ow using a spanwiserod suh as demonstrated by Daude [42℄.The on�ned and partially overed avity onsidered here has already been studied in 2-D by using aseond-order TVD-Euler ode [81, 83℄. Rossiter frequenies have been reovered, but turbulent aspetsould not be onsidered due to the invisid 2-D simulation. Gloerfelt [61℄ omputed the �ow using2-D Navier-Stokes equations. He also ould reover the frequenies and demonstrated the evideneof the aeroaousti oupling between avity and dut modes. Disrepanies in amplitude have beenexplained by artefats due to the resolution of 2-D Navier-Stokes equations for this high-Reynoldsnumber appliation.3.2 Experimental observationsIn the following, the results of experiments are realled. The experimental data have been providedby the Institut Aérotehnique [81, 5℄ for the partially overed and duted avity, shown in Figure 3.1.3.2.1 In�uene of the upper wallFor unon�ned avities, the self-sustained osillations remain weak for �ows at low Mah numbers. Forduted avities, the possible oupling between Rossiter Modes (RM) and aousti Dut Modes (DM)
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Figure 3.3: Frequeny of dominant pressure spetra peaks (△, ◦) measured inside the avity ompared totheoretial ones as a funtion of the Mah number U0/c0:�� theoretial Rossiter mode for nR =

1, 2, 3, 4; �� aousti transverse dut modes nD = 1, 2 based on dut height H ; - - - - aoustitransverse dut modes nD = 2 based on dut height and avity height H + h.an lead to high amplitude osillations even at low speeds.Pressure signals have been measured by using a mirophone loated at the bottom enter of theavity [81, 5℄. The measured spetra exhibit peaks that an be assoiated with avity modes. Plotsof frequeny and pressure level of these peaks as funtions of the nominal Mah number M0 = U0/c0where c0 denotes the sound veloity at referene onditions (p0 = 1.0 × 105 Pa and ρ0 = 1.2 kg.m−3),are shown in Figure 3.3 and 3.4 respetively.The theoretial avity modes an be estimated by Rossiter's formula given by equation (3.1), where
γv = 0.25, U0/Uc = κ = 0.57. They are plotted in Figure 3.3 for nR = 1, 2, 3, 4. The transverse DMare given by

Std = fd
d

U0
=

nDc

2Hd

d

U0
,where nD is the DM number and Hd the height of the wave guide. The DM frequenies are plotted inFigure 3.3 for nD = 1, 2 and for the dut height, Hd = H. Additionally, the frequeny of the seondtranverse DM based on the sum of the dut height and the avity height, Hd = h + H, is plotted inFigure 3.3.The lok-in phenomenon an be observed when the frequenies of the avity modes stops to salewith the theoretial RM evolution and ontinues to sale with the DM frequeny. When lok-in ours,the ampli�ation of the pressure osillations is maximum. This an be always observed when the RMapproahes the DM. At M0 = 0.13, the third RM loks with the �rst DM and at M0 = 0.18, the seondRM loks with the �rst DM. At M0 = 0.23, the third RM loks with the seond DM. In this ase, themeasured frequenies ollapse with the frequenies of the seond DM, based on the sum of the avityand the dut heights.3.2.2 In�uene of the over platesThe in�uene of the nek has been studied experimentally by the Institut Aérotehnique [4℄. By �llingthe avity under the edges with material, a noise redution of 20 dB has been observed.
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Figure 3.4: Level of pressure osillations of dominant pressure spetra peaks (△, ◦) measured inside the avityas funtions of the Mah number .
Nx Ny Nz NprosDut 542 149 41 39Nek 126 39 41 3Cavity 180 61 41 5Table 3.1: Grid statistis for the duted avity. The ase has been omputed by Nprocs = 47 proessors. Thetotal number of grid points is 4 × 106. The nek is the region loated between the over plates.A numerial study of a open avity with over plates has been arried out by Heo and Lee [67℄ andGloerfelt [61℄. They observed a hange in diretivity. The non-overed avity emits noise in upstreamdiretion. The overed avity tends to emit less diretive noise but with higher amplitudes.The diretivity is due to the destrutive interferene of noise emitted by the avity diretly whenthe vortex impats at the downstream angle and the noise re�eted at the avity walls. For theovered avity, the aousti waves remain on�ned in the avity and noise redution via destrutiveinterferene does not our. This is probably ampli�ed by the resonane mehanism observed in thepresent on�guration and explains the signi�ant noise prodution of 20 dB. In the present work, onlythe avity with over plates is onsidered.3.3 Simulation parametersThe entire overset grid generated by ogen is displayed in Figure 3.5. It onsists of seven omponentgrids. As the grid points of the ommuniation interfaes oinide, no interpolation has to be used.The grid spaing is kept onstant inside the avity (∆x = 4 × 10−4 m and ∆y = 2 × 10−4 m) and inthe boundary layer (∆y = 2 × 10−4 m). In the dut, the grid is strethed in the y-diretion near theupper wall with 3.0%. Upstream and downstream of the avity, the grid is strethed in the x-diretionwith 1.0%.The Reynolds number based on the dut height H and the veloity U0 = M0c0 is ReH ≈ 5.6× 105.The ruial point in avity simulations is the boundary layer upstream the avity, whose shape ontrols
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Figure 3.5: Overset grid generated by ogen. Every tenth line is represented.the vortex shedding and the onvetion of the eddies in the shear layer. The boundary layer pro�lethat has been measured experimentally is �tted by a 1/n pro�le (Shlihting [113℄) :
u(y)

U0
=





(y

δ

) 1
n

, y ≤ δ

1, y > δwhere δ = 8.8 mm and n = 8.5. For the power law the momentum thikness of the boundary layeromputes suh as:
δθ =

n

(n + 1)(2 + n)
δ = 0.75 mm.The displaement thikness δ∗ of the boundary layer is given for the power law by:

δ∗ =
1

1 + n
δ = 0.92 mm.The form fator gives H = δ∗/δθ = 1.24 mm.The frition veloity an be estimated by the universal law of frition that is given by equation(20.30) of referene [113℄:

1

λ
= 2 log

(
Ud dH

ν

√
λ

)
− 0.8,where λ = 8(uf/Ud)

2, Ud = 52.5 m s−1 [4℄ is the �ux veloity and dH is the hydrauli diameter. Thelatter is given by dH = 2WH/(W + H) = 0.148 m. This equation has to be solved by a Newtonsolver and gives λ = 0.013. Finally, the frition veloity gives uf = 2.1 m s−1. The Reynolds numberbased on δ∗ and U0 = 0.18c0 is thus Reδ∗ = 3771. The grid size in wall units normal to the wall isomputed ∆y+ = ∆yuf/µ = 28. In order to avoid exessive �ltering of the in�ow veloity pro�le,only the �utuating quantities are �ltered. Upstream the avity, the initial mean �ow �eld is preservedduring the whole simulation run.The in�ow veloity pro�le, density and the pressure are imposed in a weak manner to preventpossible numerial drift due to numerial di�usion and trunation e�ets of the in�ow. As the �owMah number lies in the low subsoni domain, the mean density and the mean pressure are takenonstant over the whole height of the in�ow and out�ow (pin = pout = p0, ρin = ρout = ρ0). Duringthe simulation, the in�ow mean quantities are realled along the inlet boundary ondition with the
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Figure 3.6: Computed instantaneous vortiity modulus �eld (ωx= 25 × 103 s−1, ωx= −25 × 103 s−1) for M0 =

0.18; the instantaneous pressure �eld is shown in the bakground; gray sales−100 < p−p0 < 100 Pa.relaxation term of equation (1.16). In a similar way, the pressure and the density at the out�ow arerealled. A sponge zone ombining grid strething and a Laplaian �lter at the out�ow are used toavoid re�etions.As the in�uene of the boundary layer on the upper dut wall an be negleted, slip onditions areapplied. Otherwise no-slip adiabati onditions have been implemented along the wall boundaries. Inthe spanwise diretion, periodi onditions are applied.The time step is ∆t = 4.5 × 10−7 s. A number of 500000 iterations have to be run in order topass the transition phase and obtain su�iently long time signals for an aurate frequeny domainanalysis.3.4 ResultsFirst the results of the on�guration with M0 = 0.13, M0 = 0.18 and M0 = 0.23 are presented. Theaerodynami �eld of the omputation with M0 = 0.18 is onsidered in more detail. Then the resultsof a series of omputation with di�erent Mah numbers M0 are presented in order to demonstrate thenumerial evidene of the oupling mehanism between the RM and DM.3.4.1 Aerodynami �eld for M0 = 0.18Figure 3.6 shows the iso-surfae of a snapshot of the vortiity modulus inside the avity obtained for
M0 = 0.18. The inoming unperturbed boundary layer breaks down and generates oherent strutures.Two oherent strutures onveted in the shear layer an be observed and indiate the dominane ofthe seond Rossiter's mode. Seondary longitudinal vortex rolls an be observed.A plot of the streamlines is given in Figure 3.7. Two main irulation zones an be observed. Twoadditional irulation zones an be found under the over plates.
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Figure 3.7: Computed streamlines for the Mah number M0 = 0.18.(a) (b)
()

Figure 3.8: Dimensionless turbulent �utuations: (a) urms olor sales between 0 and 0.11; (b) vrms olor salesbetween 0 and 0.08 ; () wrms olor sales between 0 and 0.04.The turbulent �utuations of urms, vrms and wrms are given by
urms =

√
u2

U0
, vrms =

√
v2

U0
and wrms =

√
w2

U0and are plotted in Figure 3.8 (a), (b) and (). The urms �eld features a double peak typial for exitedshear layers [97℄ or for avities with high values of L/δθ [53℄. The origin of the double peak has beenexplained by Ziada and Rokwell [146℄ by the presene of Stuart vorties. The maximum value of
urms and vrms reahes a maximum value of 0.11 and 0.08 respetively. Those values are lower than thevalues of a mixing layer that are typially 0.16 < urms < 0.18 and 0.12 < vrms < 0.14 [60℄.The values of vrms reah a saturation state. The two peaks merges near the downstream angle of theavity. The �utuations vrms show a maximum at the downstream vertial wall indiating the preseneof a plane jet in vertial diretion. At the position where the jet reattahes, a maximum in urms anbe observed. The jet is formed due to the impat of the oherent strutures on the downstream angleand indues the reirulation zone in the avity.1-D frequeny spetra of the veloity omponents and pressure are given at the loation (x, y, z) =

(2h, 0, 0) in Figure 3.9. A dominant frequeny in the spetra of pressure signal and of streamwise
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Figure 3.9: 1-D spetra of (a) u-veloity omponent [m.s−1] ; (b) v-veloity omponent [m.s−1]; () w-veloityomponent [m.s−1]; (d) p-veloity omponent [Pa℄.- - - - designates the ut-o� frequeny.veloity omponent signal an be observed at around 1200 Hz orresponding to the resonane frequenyof the avity. The ut-o� frequeny of the seletive �lter is found behind the beginning of the energyasade. This indiates that the largest strutures of the avity �ow are aptured. No aumulationof energy an be observed in the high frequeny domain of the simulation so that the energy of notwell-resolved sales are removed properly by the seletive �lter.The pressure spetrum obtained for a signal reorded at the avity bottom is ompared with themeasured pressure spetrum in Figure 3.10. The omputed spetrum is globally overestimated of about
10 dB. For avity �ow simulations this disrepany is non typial sine in general the pressure levelsare not reovered due to exessive damping of the numerial algorithm. Preliminary 2-D omputationshave also given overestimations of broad-band noise [81, 61℄. This might be an indiation that a wrongsaling of the sound pressure levels has been a�eted on either the side of the experimental resultsor of the present simulation. Cavity �ow measurement are very sensitive. Even small geometrialirregularities an in�uene its resonane properties and lead to large hanges in sound pressure level.Furthermore the dynami gap between the peak frequeny and the broad-band noise, found in theexperienes is surprisingly large.
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Figure 3.10: Sound pressure level [dB℄ measured at the bottom of the avity: �� omputation; - - - - experi-ments.
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Figure 3.11: Computed instantaneous pressure �eld (ontours |p−p0| < 100 Pa) and spanwise averaged vortiitymodulus in the avity for di�erent Mah: (a) (b) M0 = 0.13 , () (d) M0 = 0.18 , (e) (f) M0 = 0.23.



823.4.2 Aousti data for M0 = 0.13, M0 = 0.18 and M0 = 0.23The aousti �elds of three seleted omputations with Mah numbers M0 = 0.13, M0 = 0.18 and
M0 = 0.23 are examined in the following. For those Mah numbers, maximum ampli�ation of pressureosillations due to oupling between RM and transverse DM have been observed experimentally.An instantaneous plot of the pressure �utuation �eld and the assoiated vortiity �eld for thethree di�erent Mah numbers are given in Figure 3.11 (a), () and (e). The presene of the �rsttransverse DM that propagates in upstream and downstream diretion an be observed for M0 = 0.13and M0 = 0.18. For the M0 = 0.23 ase, higher transverse DMs superposed to the �rst transverse DMare observed.The pressure signals for the three Mah numbers have been reorded in the bottom of the avityand on the upper wall at x = L/2 and are given in Figure 3.12. For M0 = 0.18 and M0 = 0.23, thenumerial solution onverged fast. For t > 0.02 s, after only 4 × 104 iterations, regular osillationsan be observed in the dut and in the avity. The M0 = 0.13 ase onverges after 4 × 105 iterations(t = 0.2 s). For all omputations, the pressure �utuations are regular and the amplitude at the upperwall are lower than in the avity due to the absene of hydrodynami pressure �utuations. For timesignals obtained with M0 = 0.23, low-frequeny modulations an be observed.The spetra of the signals at the avity bottom and the upper wall omputed with M0 = 0.18 areompared in Figure 3.13. The amplitude di�erene of the two spetra is about 5 dB in the peaks andan be up to 12 dB in the broad-band noise range. The experiene measured a di�erene of 15 dBbetween the peaks of the two signals.The ross power spetral density of the two signals obtained for the three Mah numbers havebeen omputed. Its phase and oherene are given in Figure 3.14 (a), (b) and () respetively. For
M0 = 0.13 the two signals are orrelated with a phase shift of π at the frequeny of the �rst transverseDM. This on�rms the observation made for the instantaneous pressure �eld. For M0 = 0.18 the �rstDM is also dominant as expeted. For the �ow at M0 = 0.23, maximum oherene an be observedat three frequenies orresponding to the �rst and to seond DM and to the frequeny of the seondRM. The �rst DM is shifted by π and the seond DM is not shifted in phase on�rming the preseneof the �rst and seond transverse dut modes respetively. As already observed in the snapshot of thepressure �utuations �eld for M0 = 0.23, the �rst and seond transverse DMs are present in the dut.3.4.3 Ampli�ation of the avity modesIn order to demonstrate the numerial evidene of the oupling between the RMs and DMs, furtheralulations have been arried out for several nominal Mah numbers M0: 0.13, 0.16, 0.18, 0.20, 0.21,
0.23 and 0.25.The numerial spetra obtained from signals reorded at the bottom enter of the avity (as for theexperiments) provides the frequeny and the amplitude of the peaks assoiated with the seond andthird avity modes. Figure 3.15 ompares the evolution of the omputed and measured frequenies ofthe modes. The frequeny of the di�erent modes are well retrieved. At M0 = 0.13, lok-in between
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Figure 3.12: Pressure signals [Pa℄ reorded at x = L/2 and z = 0: �� on the avity bottom; �� on theupper wall for di�erent Mah numbers: (a) M0 = 0.13 (b) M0 = 0.18 and () M0 = 0.23.the third RM and the �rst DM, at M0 = 0.20, lok-in between the seond RM and the �rst DMand at M0 = 0.23, lok-in between the third RM and the seond DM ours. In agreement withthe experiments in the latter ase, it is observed that the lok-in phenomenon ours rather with theseond DM mode based on the sum of the dut and avity height. The frequeny of third Rossitermode omputed for M0 = 0.16, 0.18 and 0.20 is invariant. The origin of this numerial artefat isunder onsideration.Figure 3.16 shows the evolution of the omputed and measured amplitudes of the avity modes.The omparison is qualitatively good. The seond RM remains too high after lok-in having ourred at
M0 = 0.20. The amplitude of the third RM is overpredited for low Mah numbers and underpreditedfor higher Mah numbers. As a onsequene, the rossing of the amplitude urves of the seond RM
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Figure 3.13: Sound pressure level [dB℄ measured at the bottom and �� at the upper wall ��.and third RM at M0 = 0.2 is not reprodued and no dominane of the third RM an be deteted athigher Mah number suh as M0 = 0.23 .Figure 3.11 (b), (d) and (f) show snapshots of the instantaneous vortiity �eld in the avity forthree di�erent Mah numbers M0 = 0.13, M0 = 0.18 and M0 = 0.23 respetively. At M0 = 0.18, twoeddies appear very distintly in the shear layer. This on�rms the seond RM to be dominant. InFigures 3.11 (b) and (f), no dominant third RM an be deteted, beause for these two Mah numbers,the seond RM and third RM have similar amplitudes.3.5 In�uene of the simulation parametersPreliminary 2-D omputations [61℄ using a similar grid resolution have overestimated the broad-bandnoise as well as the seond RM at M0 = 0.23. The similar behavior found for the present 3-Domputation with periodi onditions in spanwise diretion suggests that 2-D artefats might be theause of the disrepanies. The number of points in spanwise diretion have therefore been tripled(Nz = 121). The results of this omputation did not in�uene the broad band noise as well as thepeak levels and the third RM has not beome dominant.Therefore a seond grid has been generated. In this ase the grid size length have been halvedin the avity region whih is a very easy task using the overset grid approah. The omputation at
M0 = 0.23 is urrently running. Figure 3.17 shows a snapshot of the vortiity modulus, reveal thedominane of a third RM.3.6 ConlusionQuantitative disrepanies, in partiular the absene of a dominant third avity mode at high Mahnumbers and the overestimation of the broad band-noise, are urrently under examination. The useof a �ner grid shows very promising results and makes the third RM to emerge. The examination ofthe in�uene of a realisti turbulent boundary layer as the in�ow ondition should be onsidered inthe future. However, the present numerial study shows the apability of the numerial algorithm to
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fFigure 3.14: Phase Φpp and oherene Cpp of the ross power spetral density of signals reorded at the bottomof the avity and the upper dut wall for di�erent Mah numbers: (a) M0 = 0.13, (b) M0 = 0.18and () M0 = 0.23; N designates the seond Rossiter mode.reprodue the oupling phenomenon between the avity modes and the dut modes with a�ordableomputational resoures. In partiular, frequenies are well retrieved by the omputation.
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Figure 3.16: Computed power levels ( N mode 2, • mode 3) of the avity modes ompared to experimental ones(△ mode 2, ◦, mode 3).

Figure 3.17: Spanwise averaged vortiity modulus in the avity obtained for M0 = 0.23 on a �ne grid.



Chapter 4
Aeroaousti simulation of the suddenexpansion of a transoni �ow
4.1 IntrodutionStrong interations between shok osillations, internal aerodynami noise and aousti dut modesare often observed in on�ned �ows but are undesirable to prevent exitation of strutural vibrationsand fatigue. Numerous examples an be found in the review of Meier et al. [95℄.In the present work, a transoni �ow passing a sudden expansion in a dut is studied. This kind of�ow an be found downstream of ontrol devies suh as valves enountered in pipe systems of powerplants, and has been investigated experimentally by Meier et al. [94, 6℄. These authors studied atransoni �ow in a retangular dut suh as displayed in Figure 4.1. Air at atmospheri onditions(denoted by subsript a) passes through a onvergent nozzle. The �ow in the nozzle throat is expandedabruptly by passing in the expansion dut of larger ross-setion. The �ow is driven by the exit pressure
pe in the reservoir downstream of the expansion dut. Di�erent transoni and supersoni �ow regimeshave been investigated as a funtion of the pressure ratio de�ned by τ = pe/pa.For very low pressure ratios, the �ow in the upstream part of the test dut is entirely supersoni.The �ow regime for τ = 0.15 is visualized by means of Mah-Zehnder Interferometry [94℄ in Figure4.2 (a). A system of rossing oblique shok waves is observed. Inreasing the exit pressure leads toa �ow separation and to a breakdown of the shok ell struture. Shok pattern osillations are thenobserved. In this work, this �ow regime has not been onsidered. Details an be found in the work ofMeier et al. [94℄.If the downstream pressure is further inreased, the oblique shok wave system disappears and thesupersoni expansion ends up behind a single normal shok suh as presented in Figure 4.2 (b) for
τ = 0.364. In this ase, a strong oupling between the self sustained osillations of the normal shokand the longitudinal aousti modes of the dut is found. The observed osillation frequenies are low,typially f ∼ 102 Hz.For lower pressure ratios, the �ow regime is symmetrial. For higher pressure, ratios τ = 0.377
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bLFigure 4.1: Transoni �ow passing sudden expansion: sketh of the geometry and notations: H and L are theheight and the length of the expansion dut respetively, h designates the height of the in�ow nozzleand b = 0.1m is the width of the nozzle and the expansion dut in spanwise diretion; pa and Taare the pressure and temperature of air at ambient onditions; pe is the pressure in the downstreamreservoir imposed by the pressure ratio τ = pe/pa. pw is the pressure in the orner region.
for instane, asymmetri �ow pattern ours and one side is entirely separated from the wall suh asshown in Figure 4.2 (). For those �ows, having a more jet like struture, a oupling mehanism similarto the normal shok on�guration, is only observed for longer duts.The �ow regime depends also whether the pressure ratio is inreasing or dereasing. For inreasingpressure ratios, the symmetrial osillating �ow pattern is maintained even for pressure ratios whereasymmetrial non-osillating �ow regimes are observed when the pressure ratio is dereasing. Thishysteresis needs to be aurately aptured by the simulations to reprodue the oupling between theshok osillations and the longitudinal dut modes.Meier et al. [94℄ provide time sequene visualizations of the di�erent �ow regimes based on Mah-Zehnder Interferometry. Stati wall pressure data, frequeny spetra and ross orrelations of thepressure �utuations along the walls are also available, making possible a quantitative validation ofthe numerial results.This �ow on�guration involving turbulene, shoks, interation with boundary layers and aeroa-ousti resonanes is a real hallenge for omputational aeroaoustis [123℄. Devos and Lafon [82℄studied numerially this on�guration using a seond-order TVD �nite-volume sheme for solving 2-DEuler equations. The main �ow patterns were aptured but the oupling of the shok osillations withthe resonane modes of the dut was not onsidered.The hapter is organized as follows. In setion 4.2, the supersoni �ow at a low pressure ratio ispresented. In setion 4.3, four simulations are presented for pressure ratios involving a normal shok�ow pattern in order to demonstrate the in�uene of the pressure ratio on the �ow �eld. In setion 4.4a simulation is presented where the shok osillations ouple with longitudinal dut modes.



89 (a)
(b)
()Figure 4.2: Mah-Zehnder interferometry visualizations at pressure ratios: (a) τ = 0.151 (b) τ = 0.364 and ()

τ = 0.377 for a expansion dut length L = 0.24 m and aspet ratios L/H = 7.23 and h/H = 0.3.[94℄4.2 Supersoni �ow at low pressure ratio (τ = 0.15)4.2.1 Simulation parametersThe entire overset grid generated by ogen is represented in Figure 4.3 (a). It onsists of three parts:the nozzle, the expansion dut and the reservoir. Note that the onvergent part of the nozzle is notmodeled in this work. The in�ow onditions are determined assuming the �ow to be isentropi in theonvergent part. The grid points in the nozzle and in the expansion dut are spaed uniformly in eahdiretion. The reservoir grid is strethed in x-diretion on the last 30 points and in y-diretion on thelast 50 points with a ratio of 3% and 1% respetively. The grid in the spanwise z-diretion is alsospaed uniformly.For the low pressure ratio ase, shoks interat with the boundary layers developing along the wallsof the expansion dut and a �ne grid resolution in these regions is required. This an be aomplishedeasily by the overset grid approah that allows to path grids of arbitrarily re�nement in the regionsof interest as shown in Figure 4.3 (b). Re�ned grids has been used to mesh the nozzle and the nearwall zone of the expansion dut. Two simulations have been arried out using two di�erent grids: aoarse grid where the grid spaing in the wall region is halved relatively to the enter grid and a �negrid where the grid spaing in the wall region is quartered relatively to the enter grid. More detailsabout the oarse and �ne grid and its grid sizes in wall units are given in Table 4.1 and 4.2.The pressure and temperature of air at rest in the upstream reservoir (not onsidered in thesimulation) is provided by the experiments pa = 101325 Pa and Ta = 293 K. The soni onditionsimposed at the nozzle in�ow are omputed using isentropi relations [34℄:
Min = uin/cin = 1.01, vin = 0, pin = 0.5221 pa, Tin = 0.8306 Ta.The veloity pro�le at the nozzle in�ow is kept uniform. By applying no-slip adiabati wall onditions,
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Figure 4.3: Grid generated by ogen for the omputations at the the pressure ratio τ = 0.15 (x − y plane).The geometri parameters are L = 0.24 m, L/H = 7.23 and h/H = 0.3. Every eighth line isrepresented. Figure (a) shows the omplete omputational domain: the nozzle, the expansion dutand the out�ow reservoir. Figure (b) is a detailed view on the nozzle and the expansion dut. Thewalls are re�ned using overlapping grids.
Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min NprosNozzle 58 98 41 12 8 24 2Expansion dut 744 127 41 24 16 24 22Near wall grid 1439 47 41 12 8 24 2 × 9Reservoir 180 398 41 24 16 24 16Table 4.1: Charateristis of the oarse overset grid for the low pressure ratio ase τ = 0.15. The total numberof 14×106 grid points have been distributed over Npros = 58 proessors. The length sales are givenin wall units: y+ = yuf/ν. The frition veloity uf = 4.3 m.s−1 is determined near the out�ow at
x = 0.2 m.a laminar veloity pro�le develops along the nozzle. Its development is reported in Figure 4.4 thatshows the veloity pro�le at 3 positions in x-diretion of the nozzle omputed on the �ne grid. Thethikness of the boundary layer is 0.4 × 10−3 m and the developing boundary is resolved by 8 pointsusing the �ne grid. No further details about the boundary layer are given in the experiments.The Reynolds number based on the nozzle height h and the in�ow veloity uin is Reh = 2.1 × 105.Along the walls of the expansion dut, adiabati no-slip boundary onditions are imposed.
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Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min NprosNozzle 1491 41 6 4 24 2Expansion dut 744 127 41 24 16 24 22Near wall grid 3052 121 41 6 4 24 2 × 9Reservoir 180 398 41 24 16 24 16Table 4.2: Charateristis of the �ne overset mesh for the low pressure ratio ase τ = 0.15. The total numberof 46 × 106 grid points have been distributed over Npros = 253 proessors. The length sales aregiven in wall units: y+ = yuf/ν. The frition veloity uf = 4.3 m.s−1 omputed for the oarse gridhas been used, see Table 4.1.
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Figure 4.4: Veloity pro�les of the laminar boundary layer in the nozzle of length Ln = 9.1 × 10−3 m at threepositions: · at x = −Ln , ◦ at x = −Ln/2 and △ at x = 0.The pressure in the downstream reservoir pe = 17225 Pa is �xed by the pressure ratio τ = 0.15. Thetemperature in the downstream reservoir is given by Te = Ta = 293 K. The non-re�etive boundaryonditions of Tam and Dong [127℄, extended to 3-D by Bogey and Bailly [28℄, are used along thereservoir boundaries. The turbulent �ow leaves the omputational domain without spurious aoustire�etions thanks to a sponge zone [28℄. Periodi boundary onditions are used in spanwise diretion.The simulation has been arried out with the four stage Runge-Kutta sheme and the lassialJameson detetor. A number of 5 × 104 iterations has been run for the oarse grid omputation inorder to obtain a onverged mean �ow �eld. For the �ne grid simulation, a number of 6 ×104 iterationshas been arried out.4.2.2 ResultsMean �owMah Zehnder Interferometrie like plots showing the mean density iso-ontours omputed on theoarse and on the �ne grid are represented in Figure 4.5 (a) and (b) respetively. Qualitatively theresults orrespond well to the experiments presented in Figure 4.2 (a). A divergent supersoni jetformed by the expansion waves that are generated at the nozzle edges is observed. A �rst obliqueshok wave appears when the expansion waves are re�eted by the upper and lower wall. In the
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(a)
(b)
()

Figure 4.5: Mean density ρ̄ for pressure ratio τ = 0.15: (a) omputed on oarse grid (see Table 4.1) usinga Mah-Zehnder Interferometrie like olormap; (b) omputed on �ne grid (see Table 4.2) using aMah-Zehnder Interferometrie like olormap; () visualized by Mah-Zehnder Interferometrie [94℄.omputation, the density maximum observed downstream of the jet reattahement is less extended inboth omputations. However, the �ne grid omputation reprodues the �rst interation zone betterthan the oarse grid omputation. A zoom on this zone is provided in Figure 4.6. The density maximumis slightly detahed from the wall indiating more omplex interations.The omputed and measured stati mean pressure p̄, normalized by pa, along the lower wall aredisplayed in Figure 4.7 (a) for the oarse grid omputation and in 4.7 (b) for the �ne grid omputation.The omputed and experimental urve ompare well qualitatively. The �rst pressure peak aused bythe jet reattahement is aurately predited even though the peak is too narrow for the oarse grid.The �ne grid omputation seems to apture the pressure peak very well. The subsequent expansion�ts very well with the experimental pressure urve for both omputations. A seond ompressionindiating the re�etion of the oblique shok is also well predited in its amplitude but is loated toofar downstream and deviates about 10% for the oarse grid and about 2% for the �ne grid from theexperimental loation. For the oarse grid, this deviation is attributed to a di�erene of 2% of theomputed and experimental pressure in the orner regions. This pressure indeed determines the entire�ow regime in the downstream part of the expansion dut. In general, higher orner pressures lead tosmaller expansion angles and more inlined shok waves are generated when the jet reattahes. Thereason for the overpredited pressure is not lear but might be attributed to an underresolution of the
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Figure 4.6: Zoom on the reattahement zone of the abruptly expanded jet: mean density is visualized by theMah Zhender Interferometrie olormap.(a) (b)
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Figure 4.7: Stati pressure distribution along the dut wall, obtained by: the present omputation; ◦experiments [94℄: (a) oarse grid omputation (b) �ne grid omputation.�ow in the orner region, the reattahement region and of the inoming boundary layer.Further downstream, the shok waves are re�eted on the lower and upper wall respetively andform a symmetrial ell struture. Figure 4.5 (b) represents the mean pressure of the �ow. The pressurein the orner regions does not math the pressure of the expanding supersoni jet. The mismath isompensated by a normal shok near the nozzle edges. This an also be observed experimentally. Themean Mah number �eld, displayed in Figure 4.5 (), on�rms that the jet ore is entirely supersoniand reahes its maximum speed upstream the �rst shok rossing loation. The boundary layer thikenssigni�antly at the shok re�etion points. The �ow in the orner region between the jet boundariesand the dut walls remains subsoni.The existene of a universal law is examined. For inompressible equilibrium, zero-pressure-gradient, turbulent boundary layers, the mean veloity pro�le has a linear behavior u+VD = y+ for
y+ ≤ 5 and a logarithmi behavior in the overlap layer u+VD = 0.42 log (y+) + 5.2 for 10 ≤ y+ ≤ 30.This law is validated for ompressible �ows when the van Driest transformation is applied [119℄.
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(b)
()

Figure 4.8: Computed mean �ow properties for pressure ratio τ = 0.15: (a) iso-ontours of mean density ρ̄ usinga Mah-Zehnder Interferometrie like olormap; (b) mean pressure �eld (sale from 2000 Pa to 10000Pa); () mean Mah number �eld (sale from 0 to 3.7).The orretion takes into aount the variation of the visosity through the boundary layer due to tem-perature variations. This transformation makes to ollapse zero pressure gradient turbulent boundarylayer data at Mah numbers up to M = 12, and the onstants in the logarithmi law appear unhangedfrom their subsoni values. The van Driest transformation an be written as:
UVD =

u+
0∫

0

√
ρ̄

ρ
du+

0 ,The van Driest transformed veloity pro�les are given in Figure 4.9 for the �ne grid omputation attwo di�erent positions x = 2 H and x = 3.5 H. The linear behavior is well aptured by the ompu-tation. The mean �ow pro�les miss the logarithmi law. Propabely Further grid re�nement would beneessary but is not a�ordable due to an exessive small time step.Unsteady �ow aspetsA boundary layer develops along the dut walls where the jet reattahes and interats with theimpinging oblique shok waves. Complex phenomena our in suh on�gurations as desribed inthe review artile of Dolling [46℄. Instantaneous numerial Shlieren visualization of the entire om-putational domain is given in Figure 4.10 (a) for the �ne grid omputation. In the following, someinteresting aspets will be disussed. As no unsteady data is given by the experiments for this pressureratio, only qualitative omparison with similar ases issued from the literature an be arried out.A zoom on instantanenous numerial Shlieren visualization in the jet reattahement region is
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Figure 4.9: Van Driest transformed veloity pro�le at the positions x = 2H (△) and x = 3.5H (◦) for �ne gridomputation; Mean veloity pro�le for inompressible equilibrium, zero-pressure-gradient,turbulent boundary layers: linear behavior u+VD = y+ for y+ ≤ 5; logarithmi behavior in theoverlap layer u+VD = 0.42 log (y+) + 5.2 for 10 ≤ y+ ≤ 30.given in Figure 4.10 (b). The shear layer that represents a ontat disontinuity limits the expandingjet. Small ompression wave are emitted from the shear layer into the jet. Those are generated byinstablities that develop and grow in the shear layer. For supersoni shear layers, the growth rate issmall and the development of turbulent strutures is retarded. When the shear layer impinges on thewall, mixing is enhaned making the rattahment zone to shift. Behind the jet reattahement zones,oherent strutures that are sheded at low frequenies an be observed and might be linked to theinstability development in the free shear layer further upstream.
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Figure 4.10: Instantaneous numerial Shlieren �eld ∇ρ (a) view on entire omputational domain; (b) jet reat-tahement region; () �rst shok wave/ boundary layer interation zone (d) seond shok wave/boundary layer interation zone (e) Third shok wave/ boundary layer interation zone with �owseparation at the end of the dut.
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Figure 4.11: Detail view of the �rst shok wave/ boundary layer interation: (a) omputed mean pressureontours (31 ontours spaed between 2000 and 10000 Pa); (b) iso ontours of the turbulent kinetienergy k ranging from 0 ≤ k ≤ 25 m2.s−2 ; () iso ontours of the shear stress τxy/ρ ranging from
0 ≤ τxy/ρ ≤ 100m2.s−2.Visualizations of the instantaneous numerial Shlieren �eld of the �rst and seond oblique shok-wave boundary layer interation are given in Figure 4.10 () and (d). The inoming boundary layerseems to be transitional. Shok wave/ boundary layer interations are observed and the downstreamboundary layer is more turbulent. This mixing enhanement is typial for suh interations [119℄.A detailed view on the �rst shok-wave boundary layer interation on the lower wall is given inFigure 4.11 (a) representing the iso-ontours of the time averaged pressure p̄. The data is issuedfrom the oarse grid simulation as the seond order quantities for the �ne grid omputation are notonverged up to this point. The inident shok is deviated towards the wall when entering the boundarylayer and the re�eted shok originates well upstream of the nominal impingement point due to thevisous interation mehanism. A thikening of the boundary layer and small separation bubble anbe observed.The iso-ontour lines of spei� turbulent kineti energy k = (u′2+v′2+w′2)/2 and of τxy/ρ = |u′v′|,the turbulent shear stress, are represented in Figure 4.11 () and (d) respetively. The plot shows that
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Figure 4.12: 1-D frequeny spetra at (x, y) = (3.5 H, 15∆y+);- - - - designates the ut-o� frequeny.the turbulent kineti energy k takes its maximum near the point of separation as observed by Pirozzoliet al. [98℄. The turbulent shear stress reahes its maximum in the viinity of the shok foot of theinident shok wave.Figure 4.10 (e) shows the shok/boundary layer interation near the out�ow. The shok is normaland features a lambda shok. The boundary layer separates at the viinity of the upstream foot leg.Turbulent mixing is enhaned.1-D frequeny spetra have been reorded at a position (x, y) = (3.5 H, 15∆y+) and are given inFigure 4.12. The beginning of an energy asade an be observed before the seletive �lter uts o� thehigh frequenies.Beside these disrepanies, the present ode is able to apture visous as well as invisid featuresof the �ow. The passage of the oblique shok through the interpolation zone along y/H ≈ 0.3 happenswithout reating spurious osillations as they normally emerge when Lagrangian polynomials of higher-order ome into play. The seletive �lter and the non-linear �lter seems to eliminate those spuriousmodes e�iently. In the following, the expansion of a transoni �ow for higher pressure ratios ispresented.
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Figure 4.13: Stati mean pressure measured in the orner region (◦ upper wall • lower wall) as a funtion ofthe pressure ratio τ : in blak experimental values [94℄; in red and blue the omputed values for adut of length L = 0.16 m and L = 0.24 m respetively.4.3 The in�uene of the pressure ratio in the transoni regime4.3.1 Experimental observationsThe in�uene of the pressure ratio on the mean �ow �eld has been investigated by Meier et al. forvarious dut geometries. Due to omputational limitations, the following numerial study is done usingthe same dut as in the previous setion, but with a redued length L = 0.16 m. Figure 4.13 showsthe normalized time averaged pressure p̄w at the bottom and top orner region as a funtion of thepressure ratio τ , where p̄w denotes the base pressure.The mean base pressure p̄w remains onstant for low pressure ratios τ ≤ 0.25. Its values on bothsides of the dut are the same and the �ow is therefore symmetrial. The supersoni �ow presentedin setion 4.2 is an example of this �ow pattern. The omputed base pressure is marked with a bluedot obtained for the longer dut. Above τ = 0.25 the orner pressure inreases on both sides. Forthis pressure ratio range, the oblique shok system has ompletely broken down. In the range from
0.305 ≤ τ ≤ 0.352 a large amplitude osillation in the orner region an our. Those large osillationsare assoiated with the oupling of the shok motion with the longitudinal dut modes suh as desribedin the introdution. When these osillations exist, the base pressure on both sides are low and of thesame order of magnitude. The symmetrial �ow is shown in Figure 4.2 (b).With pressure ratios 0.316 ≤ τ ≤ 0.352 an additional �ow pattern may our in whih the �ow isasymmetrial and attahed either to the top or bottom wall of the dut. In ontrast to the symmetrialase, for the asymmetrial �ow pattern no base pressure osillations our for the dut length L = 0.16m. Figure 4.13 shows that two di�erent base pressure values exist for the asymmetrial �ow pattern: alower value for the attahed side and a higher value for the unattahed side. No preferred attahmentloation to either the top or the bottom side has been observed experimentally.The existene of the symmetrial, osillating �ow pattern or the asymmetrial, steady �ow pat-tern depends whether the �ow is driven with an inreasing or a dereasing downstream pressure. In
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Figure 4.14: Visualization of the grid in the x − y plane used for the ases of higher pressure ratios 0.30 ≤ τ ≤
0.348. The geometri parameters are L = 0.16 m, L/H = 5.23 and h/H = 0.3. Every eighth gridline is represented.the experiments the symmetrial osillating �ow pattern exists for an inreasing pressure ratio until

τ = 0.352 and swithes to an asymmetrial �ow pattern. When the pressure ratio dereases the asym-metrial �ow pattern swithes to the osillating �ow pattern at τ = 0.316. This hysteresis is indiatedin Figure 4.13 by the arrows.Four simulations with pressure ratios τ = 0.30, τ = 0.31, τ = 0.32 and τ = 0.348 have been arriedout in order to hek if it is possible to apture the symmetri �ow pattern. As observed experimentallyfor this dut geometry aeroaousti oupling between the shok motion and longitudinal dut modesours only with a symmetrial �ow.4.3.2 Simulation parametersThe grid is presented in Figure 4.14 that models a dut of length L = 0.16 m. Due to numeriallimitations, no grid re�nement near the dut walls are used for this study. The grid spaings are thesame as in setion 4.2 and are summarized in Table 4.4. The boundary onditions are applied as in theprevious setion. The same soni in�ow onditions as in setion 4.2 are used. For the following ases,slip wall onditions are applied along the nozzle walls. This ensures that the boundary layer remainsthin at the nozzle out�ow.The pressure ratios τ = 0.30, τ = 0.31, τ = 0.32 and τ = 0.348 impose exit pressures of pe =

30398 Pa, pe = 31411 Pa, pe = 32424 Pa and pe = 35261 Pa respetively. The temperature in the exitreservoir is given by Te = Ta = 293 K.4.3.3 Mean �ow propertiesThe results of the four di�erent omputations are gathered in this setion:
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Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min NprosNozzle 29 49 21 24 16 24 1Expansion dut 490 161 21 24 16 24 15Reservoir 180 398 21 24 16 24 16Table 4.3: Grid parameters for the high pressure ratio ases 0.30 ≤ τ ≤ 0.348. All these ases have beenomputed using Npros = 32 proessors. The total number of grid points is about 5.0 × 106.
• τ = 0.30:A rendered 3-D visualization of iso-surfaes of instantaneous numerial Shlieren and vortiity(spanwise omponent ωz) is given in Figure 4.15 (a). The �ow features a strong normal shokwave. The �ow is symmetrial and the normal shok interats with the attahing jet by forminga bifurating or lambda shok on the lower and upper wall. The front leg of the bifuration is theoblique shok wave that is generated when the supersoni jet is de�eted by the dut walls. Theupstream leg must exist to give proper ontinuity of the �ow diretion. Supersoni layers startat the lambda shok and are attahed to the upper and lower dut wall. In the vortex sheet,separating the supersoni near wall layers and the subsoni �ow in the dut enter, 2-D instabilityrolls develop. These instabilities give rise to turbulent 3-D strutures near the dut out�ow. Theplot of mean Mah number in the x−y plane in Figure 4.17 (a) on�rms that the �ow downstreamthe normal shok is subsoni. The �ow downstream the lambda shok remains supersoni upto x/H ≈ 3. The averaged shok position is smeared, due to large shok motions. Figure 4.16(a) shows the iso ontours of the time averaged density, using a Mah-Zehnder Interferometrielike olormap. The normalized stati mean pressure omputed along the lower and upper wallis plotted in Figure 4.20. The wall pressure urves show a symmetrial behaviour. The pressureis onstant in the base region and inreases in the reattahement zone. The pressure exhibits itsmaximum further downstream at x/H ≈ 2 and mathes the downstream reservoir pressure atthe end of the dut. The pressure in the base region at x = 0 is plotted in Figure 4.13 and is invery good agreement with the experimental values.
• τ = 0.31:An inrease of the reservoir pressure pe leads to an asymmetrial �ow as Figure 4.15 (b) illustrates.A slightly inlined normal shok an be observed. At the lower wall the normal shoks ends upwith a lambda struture situated more upstream than in the τ = 0.30 ase. The 2-D vortex rollsdevelop further downstream. 3-D turbulent strutures an already be observed at x/H ≈ 3.4.On the upper wall the jet is separated from the wall. The jet shear layer is thikened thanks toinstability development. The mean Mah number �eld displayed in Figure 4.17 (b) shows theinlined normal shok on�guration. The upper supersoni layer is separated from the wall, ismore extended in downstream diretion and thiker than the lower one. The turbulent haraterof the this �ow is illustrated in Figures 4.18 (a) and (b) showing the turbulent kineti energy

k = (u′2 + v′2 + w′2)/2 and the turbulent shear stresses τxy/ρ = |u′v′| respetively. High levels



102 are loalized along the upper jet shear layer. They reah a maximum in the interation zonewith the normal shok. Less turbulent energy is produed on the lower side. The turbulent levelgrows near the walls and along the vortex sheets and reahes a saturation in the last quarter ofthe dut. The mean pressure omputed along the upper and lower wall are given in Figure 4.20(b). The pressure in the lower orner region reahes a value similar to the one obtained for lowerpressure ratios. The subsequent ompression is aused by the shok that is loated slightly moreupstream as in the upper ase. The pressure in the upper orner region is inreased and theompression takes plae further downstream. The base pressures are also plotted in Figure 4.13and agree well with the experiment. This kind of asymmetry was observed in the experimentsonly for longer duts.
• τ = 0.32:Figure 4.15 () shows the �ow pattern obtained for τ = 0.32. The �ow is asymmetri and isseparated entirely from the lower dut wall. The iso-surfaes of vortiity shows how the jet ross-setion is initially intat and how it begins to break up and mix more e�iently at the middle ofthe �rst shok ell. On the lower wall regularly spaed strong perturbations that travel upstreaman be observed. The Mah number �eld given in Figure 4.17 () exhibits two shok ells and areversed �ow is found on the lower dut wall. The jet reattahes after the end of the seond shokell. No major jet spreading an be observed suh as observed for free jets. Turbulene datagiven in Figure 4.19 (a) and (b) show high turbulent kineti energy prodution along the upperand lower shear layers. On the attahed side turbulent prodution is endorsed by the preseneof the wall. On the lower wall, the turbulent energy has reahed its maximum downstream the�rst shok and drops to a onstant stagnant value up to the end of the dut. This indiates atransition to a fully turbulent �ow. The stati mean pressure along the upper and lower wall areplotted in Figure 4.20 (). The pressure at the dut end on the upper wall mathes the reservoirpressure after the sequene of expansion and ompression waves. The pressure urve at the lowerdut wall does not feel the presene of the shok and inreases slowly and ends up to math thereservoir pressure. Figure 4.13 reveals the exellent agreement of the normalized base pressureswith the upper branh of the experimentally measured urve.
• τ = 0.348:The �ow pattern of this pressure ratio is very similar to the ase with τ = 0.32. The jet isattahed on the upper wall. The jet expansion angle is smaller due to the inreased pressureratio. As shown in Figure 4.13, the pressure omputed in the orner region are slightly overestimated ompared to experiments.
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(a)
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()
Figure 4.15: Rendered 3-D view of iso-surfaes: red and blue surfaes represent instantaneous spanwise vortiity�eld for ωz = +150000 s−1 and ωz = −150000 s−1 respetively, green surfaes represent numerialShlieren with ∇ρ = 200 kg.m−4 for di�erent pressure ratios: (a) τ = 0.30, (b) τ = 0.31 and ()

τ = 0.32.
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Figure 4.16: Iso-ontours of the mean density ρ̄ for di�erent pressure ratios: (a) τ = 0.30, (b) τ = 0.31, ()
τ = 0.32.
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Figure 4.17: Mean Mah number �eld M = |ū|/c̄ for di�erent pressure ratios: (a) τ = 0.30, (b) τ = 0.31, ()
τ = 0.32; the olor sale lies in the range 0 ≤ M̄ ≤ 2.1. represents the soni line M = 1.
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Figure 4.18: Turbulent data for the pressure ratio τ = 0.31: (a) turbulent kineti energy: the olor sale rangefrom 0 ≤ k ≤ 20 m2.s−2; (b) turbulent shear stresses: the olor sale range from 0 ≤ τxy/ρ̄ ≤
90 m2.s−2.

(a)
(b)

Figure 4.19: Turbulent data for the pressure ratio τ = 0.32: (a) turbulent kineti energy: the olor sale rangefrom 0 ≤ k ≤ 25 m2.s−2; (b) turbulent shear stresses: the olor sale range from 0 ≤ τxy/ρ̄ ≤
100 m2.s−2.
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Figure 4.20: Stati mean pressure measured on the lower (- - - - -) and upper (���) wall for di�erent pressureratios: (a) τ = 0.30, (b) τ = 0.31, () τ = 0.32.



1084.3.4 Unsteady �ow aspetsThe pressure signals reorded along the upper wall are examined for the �ows omputed for the pres-sure ratios τ = 0.31 and τ = 0.32.
• τ = 0.31:The signal on the upper wall at the orner (x = 0) and at the dut end (x = L) are plotted inFigure 4.21. Regular small amplitude osillations in the base region are observed. At the dutend, broadband noise dominates. Sound pressure levels are provided in Figure 4.22 (a) at threepositions (x = 0, x = L/2 and x = L). Low frequeny omponents, at x = 0 and at x = L/2, areobserved. Those omponents are not present at the end of the dut. The pressure spetra reveala high frequeny omponent at f ≈ 4500 Hz. This frequeny is assoiated to the transverse dutmodes that are exited by the turbulent broadband noise.During the simulation run a swith to a symmetrial �ow pattern has been observed. The timehistory is given in Figure 4.23 (a). When this happens, strong pressure osillations our whih isonsistent with experimental observations. The pressure spetra obtained for a signal, when the�ow is symmetrial is given in Figure 4.23 (b). The pressure signals exhibit a high amplitude, lowfrequeny peak at f ≈ 350 Hz. The reason for this swith that has random nature is not lear upto now. However, this phenomenon underlines the importane of the presene of a symmetrial�ow pattern, for the omputation of transoni resonane.
• τ = 0.32:For τ = 0.32, no low frequeny osillations an be observed. A frequeny f ≈ 1500 Hz isdominant. A high-frequeny mode at f ≈ 5000 Hz is also observed for this pressure ratio.For this omputation, the in�uene of the shok apturing is onsidered. As observed for thevalidation test ases, the shok apturing an be minimized by the use of a high-order Jamesondetetor. Two omputations have been arried out: one using the Jameson �lter and one usingthe modi�ed detetor based on the seletive 11-point �lter. The obtained 1-D spetra are givenin Figure 4.24. Using the lassial detetor leads to slightly lower amplitudes espeially for w,the veloity omponent in spanwise diretion. This might be an indiation that the transitionto a turbulent state of the shear layer might be retarded due to higher dissipation introduedby the low order shok apturing �lter. Using the lassial Jameson detetor, an energy asadeis well aptured and an be observed for the veloity omponent u over one frequeny deade.Using the modi�ed Jameson detetor, the signal is disturbed by high frequeny omponents. Theorigin of these high frequeny omponents is propably due to the redued low-order dissipationin the shok regions leading to a higher aliasing error.
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Figure 4.21: Pressure signals reorded at the upper wall for di�erent pressure ratios for τ = 0.31, τ = 0.32.No areoaousti oupling is deteted by the present simulation when the �ow is asymmetrial. Thisis onsistent with the experiments that does not exhibit aeroaousti oupling when the asymmetritransoni �ow regime is established in the dut. The dominane of the asymmetri �ow pattern an beaused by the appliation of periodi boundary onditions in the spanwise diretion. The pressure inthe upper and lower orner regions annot be kept in balane as it would be the ase when the lateralwalls are present: the jet destabilizes and attahes to one dut side more easily.
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Figure 4.22: Spetra of pressure signals reorded on the upper wall at three positions x = 0,
x = L/2, x = L for di�erent pressure ratios (a) τ = 0.31, (b) τ = 0.32.
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Figure 4.23: (a) Time history of the pressure measured in the orner region at x = 0 on the lower (��-) andupper ��- wall; (b) Pressure spetrum of a signal, when symmetrial �ow pattern dominates.
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Figure 4.24: 1-D spetra for the pressure ratio τ = 0.32 using the Jameson detetor (- - - -) and the modi�edJameson detetor based on 11-point seletive �lter (��-).



1124.4 Transoni resonaneA new grid has been built using the approximately the same number of grid points as in the previoussetion but taking a dut length of L = 0.08 m and an aspet ratio φ = 0.4. This has two advantages:(a) the Reynolds number is dereased and (b) the new aspet ratio prefers a more symmetri �owregime as it is shown in Figure 4.27 (b). The plot shows the pressure in the orner pw measured as afuntion of the out�ow pressure pe. The hysteresis region for this dut length is muh smaller than forthe longer dut ase L = 0.16 m suh as given in Figure 4.13.
Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min NprosNozzle 29 65 21 12 8 12 6Expansion dut 490 161 21 12 8 12 77Reservoir 180 398 21 12 8 12 82Table 4.4: Grid parameters for L = 0.08 m, L/H = 5.33 and φ = 0.4 for τ = 0.42. All these ases have beenomputed using Npros = 165 proessors. The total number of grid points is about 5 × 106.The omputation is arried out using a pressure ratio of τ = 0.41, where transoni osillations havebeen observed experimentally. In the following, the aerodynami properties of the mean �ow �eld arepresented. Then, unsteady �ow aspets are onsidered and the oupling of the shok osillations withlongitudinal dut modes is explained.4.4.1 Aerodynami �eldMean propertiesFigure 4.25 shows the omputed �eld of the mean number of the �ow inluding the reservoir. The �owis symmetrial. A normal shok an be observed in the upstream part of the dut. The mean shokposition is slightly smeared indiating that the shok osillates. The �ow downstream the normal shokis subsoni and layers with higher speeds an be observed near the upper and the lower dut wall. Thesubsoni jet downstream of the dut spreads as it is observed for free jets.The Mah-Zehnder interferometrie like plot of the time averaged mean density in Figure 4.26 (a)ompares qualitatively well with an instantaneous visualization for a similar �ow regime observed witha longer dut with L = 0.16 m, φ = 0.3 and τ = 0.364 in Figure 4.26 (b).The orresponding omputed time averaged stati pressure distributions along the upper and lowerdut walls are given in Figure 4.27 (a). After the expansion, the ompression zone indiates the loationof the strong normal shok. Further downstream, the stati pressure on the upper and the lower dutonverges to a value that is lose to the downstream pressure pe = 0.41pa.The time averaged pressures in the upper and lower orner region pw obtained by omputation areompared to the experimental values given as a funtion of the pressure ratio τ = pa/p0 in Figure4.27 (b). The mean pressure omputed in the upper and lower orner is in exellent agreement withthe measured orner pressure.
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Figure 4.25: Computed time averaged Mah number �eld for τ = 0.41 for a expansion dut length L = 0.08 mand aspet ratios L/H = 5.33 and h/H = 0.4. Color sales from 0 to 2.3.A relation between the orner pressure and the Mah number downstream is given in the Meier etal. [94℄:
1 − φ

φ

pw

p0
=

(
2

γ + 1

) γ+1
2(γ−1) 1 + γM2

e

Me

√
(1 + γ−1

2 M2
e )

− (γ + 1)

(
2

γ + 1

) γ
γ−1

, (4.1)where Me is the Mah number behind the shok. Its derivation is has been reprodued in the AppendixB. This relation is plotted in Figure 4.28 (a) for di�erent nozzle aspet ratios 0.1 ≤ φ ≤ 1.. TheMah number behind the shok inreases with inreasing aspet ratios φ. This is due to an inreasedaeleration of the �ow and inreased Mah numbers upstream the normal shok. For the omputedpressure a Mah number of Me = 0.51 an be omputed by equation (4.1) and is in good agreementwith the omputed Mah number along the enterline y = 0 of the dut, given in Figure 4.28 (b). Themean pressure and the time averaged speed of sound are given in Figure 4.29 (a) and (b) respetively.



114

Figure 4.26: Mah-Zehnder interferometry visualizations of the time averaged density at pressure ratios: (a)omputed for τ = 0.41 for a expansion dut length L = 0.08 m and aspet ratios L/H = 5.33 andh/H = 0.4. (b) visualized experimentally for τ = 0.364 for a expansion dut length L = 0.24 mand aspet ratios L/H = 7.23 and h/H = 0.3 [94℄.
(a) (b)

0 2 4 6 8
0.1

0.2

0.3

0.4

x/H

p 0/p
a

0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

p
e
/p

a

p w
/p

a

Figure 4.27: (a) Time averaged stati mean pressure omputed along the upper and lower wall; (b) Time averaged stati mean pressure measured in the orner region (◦ upper wall • lowerwall) as a funtion of the pressure ratio τ : in blak experimental values [94℄; in red the omputedvalues for a dut of length L = 0.08 m.
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Figure 4.28: (a) Corner pressure as a funtion of the Mah number downstream of the shok for inreasingaspet ratios φ; ��� φ = 0.4; (b) Loal time averaged Mah number along the enterline y = 0;- - - - - theoretially predited Mah number using equation (4.1).
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Figure 4.29: Time averaged quantities along the enterline (y = 0): (a) pressure; (b) speed of sound.



116

Figure 4.30: View on numerial Shlieren |∇ρ| in a x − y-plane of the entire omputational domain.Instantaneous �ow visualizationsFigure 4.30 shows the instantaneous numerial Shlieren �eld of the entire omputational domain.The jet is exhausted at the out�ow of the expansion dut. The jet is reeived by the sponge layer and�ne sale vortial strutures are dissipated without generating spurious sound. Thus the sponge layeris well suited. The aousti waves that originate at the out�ow of the test dut leave the omputationaldomain without spurious re�etions.4.4.2 Shok osillationsFigure 4.31 (a) and (b) ompare two instants of the shok-osillation yle for the experiment andthe omputation by visualizing the iso-density ontours. The �ow visualizations show two extremepositions of the shok during a shok osillation yle. When the shok is losest to the nozzle, thesubsoni enter �ow is more extended to the walls. In the seond visualization the shok reahes itsposition farthest from the nozzle. The subsoni region is more narrow. The omputed density �eldompares well with the experiments.In the following, the self-exiting mehanism of the base pressure osillations is explained. For thata sequene of the instantaneous Mah number �eld is given in Figure 4.32. The mehanism orrespondsto the explanations of Meier et al. [94℄.In frame 1, the dead-air region is onneted to the downstream region by a subsoni layer on bothsides of a entral supersoni �ow near the nozzle exit. The supersoni �ow ends with a strong normalshok whih is followed by subsoni �ow in the entral part of the �eld. Supersoni regions are formeddownstream of the extremities of the normal shok. A pressure drop in the orner region makes the jetto spread and to reattah on both dut walls (frame 2). Meier et al. [94℄ notied that the pressure dropis aused by an entrainment of air by the jet and a subsequent evauation of the orner region. Thisauses an expansion and an aeleration of the transoni jet. The entrainment of air is inreased andthe expansion is therefore a self-amplifying proess. One the jet reattahes, the reattahement point
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Figure 4.31: Time sequene of shok osillation yle: (a) the experiments for a longer dut (L = 0.16 m,
L/H = 4.82, Φ = 0.3); (b) omputed results are visualized by a Mah-Zehnder-interferometrie-likeolormap.moves in upstream diretion (frame 2 and 3). The expansion angle of the jet inreases and the normalshok is moving upstream and reahes a position losest to the nozzle (frame 3). The jet veloity isinreasing and the pressure therefore inreases behind the shok. The pressure rise downstream ofthe reattahement zone makes the boundary layer to separate. The jet separates ompletely from theupper and lower dut wall (frame 4). The pressure rises in the orner region due to a ompressionwave that travels through the slit between the separated jet and the dut wall. In the experimentsthe pressure is ampli�ed by a strong bak �ow in the orner region. The height of the normal shokredues (frames 4-7) and the pressure behind the shok dereases. The shok moves downstream untilreahing the most downstream position in frame 7. In frame 8, an expansion of the jet is observed.The jet begins to reattah to the dut wall and the loop is losed.
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Figure 4.32: Time sequene of shok osillation yle: loal Mah number (olor sales from 0 to 3).



1194.4.3 Aeroaousti ouplingThe self-exiting mehanism suh as explained in the previous setion exists without a oupled res-onator. In this ase, the pressure osillations are irregular and weak. Coupling takes plae only whenthe osillation frequeny of the shok is lose to the longitudinal dut resonane frequenies.The spetral densities of signals reorded along the upper dut wall are given in a 3-D plot of Figure4.33 (a). A peak an be observed at f = 710 Hz. The amplitude diminishes when approahing thedut end. This indiates the presene of a standing aousti wave in the dut.The natural frequenies an be estimated in order to show that the base pressure osillations areontrolled by dut resonane. Assuming a 1-D �ow the frequenies an be estimated by
fdut,n = (2n − 1)(1 − M2

e )
ce

4L
, for n = 1, 2, 3 et. (4.2)where n is the dut mode number. This expression gives the frequenies of (2n− 1)× quarter standingwaves whih are supported by a dut that is losed at one end (u′ = 0) and that is open at the otherend (p′ = 0). The term (1 − M2

e ) takes into aount the mean Mah number Me of the subsoni �owbehind the normal shok. The mean sound speed of the �ow is denoted by ce. Note that the upstreampart of the dut an be treated as a losed end beause a soni �ow is present at the throat at all timesand no information an travel upstream through the nozzle.Equation (4.2) identi�es, beside the dut length, the speed of sound as a determining parameterof the dut resonane. The mean Mah number is subsoni in the ase of a normal shok. Meier etal. [94℄ estimated the downstream mean Mah number by a 1-D approah that an be found in thework of Jungowski [75℄. The speed of sound has been determined from tables of adiabati �ow. Theexperimentally measured frequenies and the theoretially predited frequenies of the base pressureosillations are plotted in Figure 4.33 (b) as a funtion of the pressure ratio τ for a dut of length
L = 0.08. The theoretial frequenies ompare well with the measured ones indiating a oupling ofshok osillation and longitudinal dut modes.For the simulated ase, the mean Mah number M̄e and the mean sound veloity c̄e are omputedusing an average de�ned by

M̄e =
1

L

xs+L∫

xs

M̄y=0 dx, c̄e =
1

L

xs+L∫

xs

c̄y=0 dx,where the quantity xs is the shok position and M̄y=0, c̄y=0 are the enterline distribution of the meanMah number and sound speed, given in Figure 4.28 (b) and 4.29 (b) respetively. The omputedfrequeny and the theoretial predited frequeny are given in Figure 4.33. First, the frequeny of theomputed result ompare well with the measured frequeny. Seond, the theoretial frequeny omparewell with the dut mode frequeny given by equation (4.2). This indiates that the shok osillationsare ontrolled by longitudinal dut modes.
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aFigure 4.33: (a) Spetra of pressure signals reorded along the upper wall; - - - designates the dominantfrequeny at f = 710 Hz; (b) Frequenies of base pressure osillations as a funtion of the pressureratio τ for a dut of length L = 0.08 m; △ experimental values [94℄ ▽ theoretially predited valuesfor the �rst longitudinal dut mode n = 1 using equation (4.2) [94℄; + the omputed values ×theoretial predited values using equation (4.2)4.5 ConlusionThe numerial algorithm is able to reprodue in a satisfying way the expansion of a transoni �owin a dut for various pressure ratios and dut geometries. First, the expansion of a transoni �owin a retangular dut is omputed for a pressure ratio leading to an entirely supersoni �ow. Theaerodynami �eld is found to be in good agreement with experiments. Seond, several simulationsof the same on�guration for di�erent pressure ratios, where oupling between normal shok motionand longitudinal dut modes are likely to our, are presented. An investigation of the in�uene ofpressure ratio on the mean �ow �eld shows that the present numerial algorithm is able to reproduethe main �ow patterns in a satisfying way. The abrupt swith from symmetrial to asymmetrial �owpattern is well predited and follows the hysteresis branh obtained for dereasing pressure ratios.The asymmetri �ow pattern is the preferred on�guration of the numerial simulation. In agreementwith experiments, no aeroaoustial oupling is observed for the asymmetrial �ow pattern. Third,a simulation were onduted where the symmetri �ow pattern is aptured. As observed by theexperiments oupling between the shok osillations and longitudinal dut modes ours.



General onlusionIn the present work, a high-order algorithm based on entered �nite-di�erene shemes has been de-veloped for diret omputation of aeroaousti phenomena in omplex geometries.The �rst hapter is dediated to the desription of the numerial algorithm SAFARI (SimulationAéroaoustique de Fluides Ave Resonanes et Interations). The governing equations, the Euler andNavier-Stokes equations, are solved with high-order optimized �nite-di�erene shemes. In order totreat ompressible �ows, a �rst-order Jameson-like shok-apturing �lter has been used. The �lter isapplied loally in the viinity of shoks. The shok loation is deteted with a Jameson sensor. Ahigh-order overset-grid approah is used in order to treat omplex geometries with strutured grids.The omplex data struture is provided by a grid assembly software ogen, part of the freely availablelibrary Overture, that has been interfaed with SAFARI. The solver is parallelized using the standardMPI library and eah grid an be omputed on an arbitrary number of proessors for the purpose ofload balane. High-order Lagrangian polynomials are used for grid boundaries where the grid points donot oinide. The solver is portable on several massively parallel platforms. Computations involving
50 × 106 grid points with 250 proessors have been arried out.In the seond hapter, the multi-domain ability and the in�uene of the implemented shok-apturing �lter are validated with typial test ases found in the litterature. The onvetion of avortex through an interpolation zone has been �rst examined. In partiular, the generation of spurioussound when a vortex passes through an interpolation zone has been onsidered as a funtion of thepolynomial order used for interpolation. The di�ration of a monopolar pressure soure by a ylinderhave been omputed on a single-blok grid and on an overset grid. These two test ases reveal that theauray of the high-order �nite-di�erene sheme an be reovered when Lagrangian polynomials ofsu�iently high-order are used. The omputation of entropy/shok wave interation and the ompu-tation of the sound/shok wave interation problem reveal an impat of the shok-apturing �lter onthe small sale perturbations. The dissipation an be minimized using a modi�ed Jameson sensor thatis based on high-order dissipation terms. Furthermore, the omputation of a low Reynolds number�ow and a 3-D irular shok tube demonstrate that SAFARI is able to treat geometries involving gridsingularities and omplex overset-grid strutures.In the third and fourth hapter, SAFARI has been applied to two on�gurations typial for in-dustrial appliations of EDF. The two planar on�gurations have been solved in 3-D with periodiboundary onditions in spanwise diretion.The �rst appliation is the duted avity at low Mah number regime. In the experiments a strong



122oupling between the avity modes and the transverse dut modes has been observed. In order to showthe numerial evidene of the oupling, omputations with varying Mah numbers have been arriedout. This oupling has been suessfully reprodued by the algorithm. Despite some disrepanies inamplitude, the frequenies have been very well retrieved.The seond test ase is the omputation of a suddenly expanded transoni �ow in a retangulardut. The �ow regime is governed in partiular by the pressure ratio. For very low pressure ratios,the �ow in the planar dut is entirely supersoni. The omputation exhibits good agreement withthe �ow visualizations and wall pressure measurements. Furthermore the in�uene of the pressureratio on the �ow regimes has been examined. For higher pressure ratios, two �ow regimes have beenobserved in the dut: a symmetrial and an asymmetrial �eld. The observed regime depends whetherthe pressure ratio inreases or dereases, showing a hysteresis phenomenon. In the experiments, onlythe symmetrial �ow regime has produed strong aeroaousti oupling between shok osillationsand longitudinal resonane modes. From an industrial point of view, it is therefore ruial to knowwhether the symmetrial or the asymmetrial �ow regime is stable. Numerially the hysteresis andthe abrupt swith between the two regimes have been well reprodued. Then, the oupling for asymmetri �ow regime is omputed using a dut on�guration where the hysteresis is less dominant.The shok osillations have been well reprodued. The frequenies measured in the dut indiate thatthe longitudinal aousti dut modes are exited.The omputation of these two industrial ases demonstrates that SAFARI is able to reprodueaeroaousti phenomena in di�erent �ow regimes using a�ordable omputer resoures. The presentwork has shown that �ows with industrial relevane an be omputed using high-auray numerialtehniques.OutlookSAFARI has been applied to 3-D �ows using periodi boundary onditions in the third diretion. Thenext step should be to take into aount the entire 3-D geometry of the real gate valve, presented inFigure 1 (b).In this work, the solver has been developed for stati grids. In the future, the solver shouldbe extended in order to takle with overlapping grids that move relative to eah other. The mainon�gurations of interest are aeroelasti vibrations of turbine low pressure blades. For this purpose,the interfae between Overture and SAFARI has to be developed beause interpolation data has to beupdated at eah time step.Another point that should be onsidered in the future is the use of multi-time stepping methodsin order to overome the onstraining CFL ondition of expliit time stepping for wall-bounded �ows.This development should be quite easy due to the multidomain struture of SAFARI.



Appendix AConservativity aspets of �nite-di�ereneshemesIn CAA, �nite-di�erene shemes are more popular than �nite-volume methods as its order of aurayan be inreased easily. Additionally, they an be tuned in order to have minimum dispersion anddissipation over a ertain wave-number range. However, �nite-di�erene methods are non onservative,ompared to �nite-volume methods that ensures onservation of mass, momentum and energy peronstrution.In the following, a �nite-volume formulation of a entered �nite-di�erene sheme is presented, whenthe governing equations are solved in onservation from. Furthermore, using onservative operators�nite-di�erene operators ensure onservativity for �ows ontaining shoks.Finite-volume formulation of �nite-di�ereneThe �nite-volume formulation of �nite-di�erene shemes is onsidered in 1-D, using the followingmodel non-linear equation in onservation form:
∂u

∂t
+

∂f(u)

∂x
= 0,where u = u(x, t). On a uniform gird with grid spaing ∆x, the spatial derivative is disretized in the�nite-di�erene approah by the following expression:

∣∣∣∣
∂f(u)

∂x

∣∣∣∣
i

≈ 1

∆x

n∑

r=−n

arfi+rConservative �nite-volume approahes are based on the integral onservation law of a grid elementlimited by xi−1/2 ≤ x ≤ xi+1/2 suh as shown in Figure A.1 whih leads on the semi-disrete form:ddt xi+1/2∫

xi−1/2

u dx + fi−1/2 − fi−1/2 = 0.The �uxes at the interfae fi−1/2 are omputed via interpolation of the points at the ell enters xi.This step is also known as reonstrution step. The interpolation an be expressed in terms of a
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xixi−1 xi+1

fi−1/2 fi+1/2

Figure A.1: Denotations used for the �nite-di�erene and �nite-volume approah.�nite-di�erene approximation as:
fi−1/2 =

n∑

j=1

bj(fi−1+j + fi−j), fi+1/2 =

n∑

j=1

bj(fi+j + fi+1−j),where bj are the oe�ients for a interpolation. The �nite-di�erene form an be reasted in a �nite-volume like form suh as
n∑

r=1

ar(fi+r − fi−r) =
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r=1

br(fi+r + fi+1−r − fi−1+r − fi−r)

=
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brfi+1−r −
n∑
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brfi−1+r

=
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r=1

br(fi+r − fi−r) +

n−1∑

r=0

br+1fi−r −
n−1∑

r=0

br+1fi+rFinally, the reursive formula is obtained:
n∑

r=1

ar(fi+r − fi−r) =

n∑

r=1

br(fi+r + fi+1−r − fi−1+r − fi−r)For j = n, an = bn and for 1 ≤ j ≤ n − 1 the aj an be omputed via aj = bj − bj+1. Kim and Lee[78℄ writes this
bj =

n∑

l=j

al.For example, for a lassial fourth-order �nite-di�erene sheme the oe�ients for ar are:
∣∣∣∣
∂f(u)

∂x
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i

≈ a1(fi+1 − fi−1) + a2(fi+2 − fi−2), a1 = 8/12, a2 = −1/12and the oe�ients for br are:
∣∣∣∣
∂f(u)

∂x

∣∣∣∣
i

≈ b1(fi+1 + fi) + b2(fi+2 + fi−1) − b1(fi + fi−1) − b2(fi+1 + fi−2)with b1 = 7/12 and b2 = −1/12.In onlusion, entered �nite-di�erene shemes on uniform Cartesian grids an be written ononservation form whih is a neessary ondition to deal with strong gradients [88℄. This onservativeproperty is still veri�ed on orthogonal urvilinear grids provided some metris relation are respeted[130℄.



Appendix BEstimation of the Mah numberdownstream of an abruptly expandedtransoni �owThe simpli�ed �ow model is skethed in Figure B.1. A normal shok is situated in the dut and the�ow downstream of the normal shok is subsoni. In this setion the model suh as proposed in thework of Jungowski [75℄ is derived.In order to estimate the Mah number behind the shok the equations of mass, momentum andenergy are used. The momentum equation writes
h(ph + u2

hρh) + (H − h)pw − H(pe + ρu2
e) = 0.Mass onservation gives

hρhuh − Hρeue = 0.Assuming adiabati walls, the energy onservation gives:
cpTh +

1

2
u2

h − cpTe +
1

2
u2

e = 0.In terms of the loal Mah number M = u/c and c2 = γp/ρ the momentum equation writes:
hph(1 + γM2

h) + (H − h)pw − pe(H + hγM2
e ) = 0.This an be rearranged suh as

Φph(1 + γM2
h) + (1 − Φ)pw − pe(1 + γM2

e ) = 0,Using the fat that the �ow in the throat is soni (Mh = 1) the quantity ph/p0 = ((γ + 1)/2)−γ/(γ−1)an be introdued:
(1 + γ)

(
2

γ + 1

) γ
(γ−1)

+
(1 − Φ)

Φ

pw

p0
− 1

Φ
(1 + γM2)

pe

p0
= 0.
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Figure B.1: Simpli�ed model of the expansion of a on�ned �ow; box bounded with - - - is the ontrol volumefor the appliation of the onservation equations.Now, the quantities pe/p0 and Φj an be estimated using the mass onservation and energy onservationequations. These an be written in terms of loal Mahnumber following Candel [34℄ with cp =
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Développement d'un algorithme d'ordre élevé multi-domaines pour l'aéroaoustique numérique:Appliation aux éoulements on�nés en régimes subsonique et transoniqueUn nouvel algorithme de simulation numérique pour l'aéroaoustique, SAFARI (Simulation Aéroaoustique desFluides Ave Résonanes et Interations), a été développé pour le alul diret du bruit. Il s'appuie sur la résolution deséquations de Navier-Stokes ompressibles en oordonnées urvilignes. Des shémas aux di�érenes �nies d'ordre élevésont implémentés. La solution est alulée sur des maillages reouvrants (méthode Chimère) pour traiter des géométriesomplexes. L'interpolation entre les maillages est e�etuée par des polyn�mes de Lagrange également d'ordre élevé. Deplus haque maillage est déoupé en blos pour permettre l'exéution du alul sur des mahines parallèles. Le solveurest parallélisé à l'aide de la bibliothèque MPI. A�n d'assurer la apture des hos forts, un �ltre non linéaire de typeJameson est utilisé.SAFARI est d'abord onfronté à des as-test simples: par exemple en 1-D l'éoulement dans une tuyère onver-gente/divergente ou en 2-D l'éoulement à bas nombre de Reynolds autour d'un ylindre. Les as tests montrent quel'algorithme produit des résultats de haute préision et est bien adapté pour des aluls aéroaoustiques.Ensuite, les simulations en 3-D de deux as d'intérêt industriel sont présentées. D'abord un éoulement à nombrede Reynolds élevé et à nombre de Mah modéré a�eurant une avité on�née a été simulé. Pour des avités on�néesles modes de avité peuvent se oupler ave les modes de résonane de la veine et produire des osillations de grandeamplitude. Le alul met lairement e ouplage en évidene.La deuxième appliation industrielle traitée dans le adre de e travail est la simulation d'un éoulement transsoniqueau travers d'un élargissement brusque dans un onduit plan. En fontion de la pression en aval, di�érents régimesd'éoulements s'établissent dans le tuyau. Pour des pressions faibles, l'éoulement est supersonique dans le tuyau et unsystème de hos obliques s'établit. Pour des pressions plus élévées, un ho droit osillant apparaît dans l'éoulement.Les osillations de e ho se ouplent ave les modes aoustiques longitudinaux du tuyau. Pour des pressions en avalenore plus élevées , le jet reolle sur une des parois inférieure ou supérieure et des ellules des ho sont observées. Lesrésultats présentés dans e travail reproduisent tous les aspets de e type d'éoulement.Development of a multidomain high-order algorithm for omputational aeroaoustis:Appliation to subsoni and transoni on�ned �owsA new algorithm for omputational aeroaoustis, SAFARI (Simulation Aéroaoustique des Fluides Ave Résonaneset Interations) is proposed for the diret alulation of noise. The ompressible Navier-Stokes equations are solved usinghigh-order �nite di�erene shemes on strutured urvilinear grids. To takle with omplex geometries, a high-orderoverset grid approah is implemented that onsists in deomposing the geometry in grids that overlap. Communiationbetween grids is omputed by high-order multidimensional Lagrangian polynomials. Eah grid is divided into bloks forallowing the use of parallel omputing. The ode has been parallelized using MPI-library and has been validated onmassively parallel platforms. In order to aurately apture shoks, a Jameson-like dissipation has been implemented.For validation, several anonial test ases have been omputed that are typial for Computational Fluid Dynamisand Computational AeroAoustis (CAA): for example a 2-D low Reynolds number �ow around a ylinder and thetransoni �ow in a onvergent-divergent nozzle. The test ases demonstrate that the solver is able to provide high-orderaurate solutions on omplex geometries and the shok-apturing strategy is well adapted to CAA problemsThe �rst industrial appliation presented in this work is the simulation of a high-Reynolds number �ow at low Mahnumbers past a duted avity. For the hosen �ow regime, the avity modes ouple with resonane modes of the dut,leading to high pressure levels. The oupling phenomenon is well reprodued by the omputation.As seond industrial appliation, a soni �ow in a plane dut passing an abrupt inrease in ross-setion is numer-ially studied by solving 3-D ompressible Navier-Stokes equations. Di�erent �ow patterns are likely to appear in suhon�guration. For a very low downstream pressure, the �ow is entirely supersoni. For higher pressures, unstable �owpatterns emerge. One of these patterns features a normal shok, that osillates due to a self-exiting mehanism. Asthe dut is open at the out�ow, aeroaousti oupling ours when the shok osillations get in resonane with thelongitudinal aousti modes of the dut. The simulated �ow has been found to be in good agreement with availableexperimental data.


