
N◦ d'ordre : 2007-30 ANNÉE 2007THÈSEprésentée devantL'ÉCOLE CENTRALE DE LYONpour obtenirle titre de DOCTEURSPÉCIALITÉ ACOUSTIQUEparThomas EmmertDevelopment of a multidomain high-order algorithm for
omputational aeroa
ousti
s:Appli
ation to subsoni
 and transoni
 
on�ned �owsSoutenue le 15 novembre 2007 devant la Commission d'ExamenJURYM. Christophe BAILLY prof. E
ole Centrale de LyonM. Patri
k BONTOUX DR CNRS, MSNM-GP MarseilleM. Sébastien CANDEL prof. E
ole Centrale de ParisM. Philippe LAFON ingénieur 
her
heur EDF & LaMSIDM. Éri
 MANOHA ingénieur 
her
heur ONERAM. Claus-Dieter MUNZ (Rapporteur) prof. Université de StuttgartM. Pierre SAGAUT (Rapporteur) prof. Université Paris VI
Laboratoire de Mé
anique des Fluides et d'A
oustiqueUMR CNRS 5509 et É
ole Centrale de Lyon



Ce travail s'est déroulé au sein du Laboratoire de Mé
anique des Stru
tures Industrielles Durables,UMR EDF CNRS 2832. Il s'est e�e
tué dans le 
adre de la 
ollaboration entre le département AnalysesMé
aniques et A
oustique d'EDF R&D et le Laboratoire de Mé
anique des Fluides et d'A
oustique del'E
ole Centrale Lyon.Je souhaite tout d'abord remer
ier 
haleureusement Philippe Lafon, ingénieur 
her
heur et ChristopheBailly, professeur de l'ECL, pour avoir en
adré 
ette thèse et pour m'avoir a

ordé leur 
on�an
e. Jetiens à remer
ier Stéphane Andrieux pour m'avoir a

ueilli au sein du LaMSID.J'exprime tout parti
ulièrement mes remer
iements à Claus-Dieter Munz et à Pierre Sagaut qui m'ontfait l'honneur d'a

epter d'être rapporteurs de mon travail. Je remer
ie sin
èrement Sébastien Candel,Patri
k Bontoux et Eri
 Manoha d'avoir fait partie du jury de thèse.Je remer
ie les an
iens thésards du Centre A
oustique de l'E
ole Centrale de Lyon et notammentJulien Berland, Vin
ent Fleury et Olivier Marsden dont j'ai eu l'honneur d'être le stagiaire pendantmon travail de �n d'études au Centre A
oustique.Je remer
ie les ingénieurs du groupe T63, pour leur a

ueil 
haleureux. Mer
i notamment à SébastienCaillaud, Fabien Crouzet, Jean-Paul Devos, Mi
hel Guivar
h, Fabri
e Junker et Pierre Moussou.Je remer
ie les do
torants et les post do
torants du LaMSID, qui m'ont suivi au �l de 
es trois années.Une pensée parti
ulière est réservée à Josselin Delmas, Amine Sbitti, Mohamed Torkhani, Khaled HadjSassi, Pierre-Emmanuel Dumou
hel, Benjamin Groult et Frédéri
 Daude. Un grand mer
i à Géral-dine Fassassi pour son e�
a
ité à résoudre nos problèmes administratifs. Mer
i également à Maria etCatherine pour le 
afé bienfaiteur du matin.Finalement, je remer
ie Lu
ie pour m'avoir supporté et en
ouragé pendant presque trois ans et aussitous les habitants du 9 rue des Citeaux; Beatri
e et Domini
, Carole, Bertrand et Jules, Christine,Patri
e, Boris, Maxime, Pas
ale et Johan. Le temps que j'ai passé ave
 eux fut une sour
e de motiva-tion et d'inspiration. Un grand mer
i également à ma famille, notamment à mon frère Andi, dont lesoutien a rendu la �n de ma thèse possible.





Contents
Introdu
tion 51 Governing equations and numeri
al algorithm 91.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.2 Spatial Di�erentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.3 Time integration s
heme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 Sele
tive �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.5 Computation of the metri
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.6 Sho
k-
apturing �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.6.1 Sho
k-
apturing for LES and CAA . . . . . . . . . . . . . . . . . . . . . . . . . 161.6.2 Implementation of the sho
k-
apturing �lter . . . . . . . . . . . . . . . . . . . . 181.6.3 Dete
tion of the sho
k lo
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.7 Consideration of vis
ous and heat 
ondu
tion e�e
ts . . . . . . . . . . . . . . . . . . . 241.8 Stability 
riteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.9 LES strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261.9.1 Filtered Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . 261.9.2 Overview over the subgrid-s
ale models . . . . . . . . . . . . . . . . . . . . . . 281.10 Non re�e
tive boundary 
onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301.10.1 Chara
teristi
-based boundary 
onditions . . . . . . . . . . . . . . . . . . . . . 301.10.2 Far-�eld boundary 
onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.10.3 Sponge zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321.11 Solid wall boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321.11.1 Slip wall 
onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321.11.2 No-slip wall 
onditions with heat �ux . . . . . . . . . . . . . . . . . . . . . . . 351.12 Multidomain approa
h for 
omplex geometries . . . . . . . . . . . . . . . . . . . . . . . 361.13 Communi
ation between pro
essors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381.13.1 Inter-Grid 
ommuni
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381.13.2 Inter-Blo
k 
ommuni
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401.13.3 S
aling test for inter-blo
k 
ommuni
ation . . . . . . . . . . . . . . . . . . . . . 431.14 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



22 Validation of SAFARI 452.1 Conve
tion of a vortex through interpolation zones . . . . . . . . . . . . . . . . . . . . 452.2 Di�ra
tion of monopolar a
ousti
 sour
e by a 
ylinder . . . . . . . . . . . . . . . . . . 482.3 Plane 
ompressible Couette �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532.4 Flow around 
ylinder at low Reynolds and low Ma
h number . . . . . . . . . . . . . . 552.5 1-D Sho
k/Entropy Wave Intera
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602.6 1-D sho
k/sound intera
tion in a 
onvergent divergent nozzle . . . . . . . . . . . . . . 622.7 Invis
id �ow in 3-D 
ir
ular sho
k tube . . . . . . . . . . . . . . . . . . . . . . . . . . . 652.8 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 Aeroa
ousti
 simulation of a du
ted 
avity �ow 693.1 Introdu
tion to 
avity �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.2 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733.2.1 In�uen
e of the upper wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733.2.2 In�uen
e of the 
over plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743.3 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773.4.1 Aerodynami
 �eld for M0 = 0.18 . . . . . . . . . . . . . . . . . . . . . . . . . . 773.4.2 A
ousti
 data for M0 = 0.13, M0 = 0.18 and M0 = 0.23 . . . . . . . . . . . . . 823.4.3 Ampli�
ation of the 
avity modes . . . . . . . . . . . . . . . . . . . . . . . . . . 823.5 In�uen
e of the simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 843.6 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844 Aeroa
ousti
 simulation of the sudden expansion of a transoni
 �ow 874.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874.2 Supersoni
 �ow at low pressure ratio (τ = 0.15) . . . . . . . . . . . . . . . . . . . . . . 894.2.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.3 The in�uen
e of the pressure ratio in the transoni
 regime . . . . . . . . . . . . . . . . 994.3.1 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994.3.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004.3.3 Mean �ow properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004.3.4 Unsteady �ow aspe
ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084.4 Transoni
 resonan
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124.4.1 Aerodynami
 �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124.4.2 Sho
k os
illations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164.4.3 Aeroa
ousti
 
oupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194.5 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120General 
on
lusion 121



3A Conservativity aspe
ts of �nite-di�eren
e s
hemes 123B Estimation of the Ma
h number downstream of an abruptly expanded transoni
�ow 125



4



Introdu
tionFlows generate noise, and noise often intera
ts with �ows through a feedba
k loop. These 
omplexme
hanisms raise many questions of fundamental, te
hni
al and industrial interests. Sin
e the 50's andthe development of turbojet engines for 
ommer
ial air
rafts, the need to deal with these problems hasspread to other industrial �elds: ground transportation, energy produ
tion, ...Aeroa
ousti
s is 
onsidered as a bran
h of �uid me
hani
s. But the nature of a
ousti
s �u
tuationsthat are 
ompressible, propagative and of small amplitude takes a spe
ial pla
e in the �eld of �uidme
hani
s that usually deals with in
ompressible, 
onve
tive, turbulent �u
tuations draining a signif-i
ant per
entage of the main �ow energy. Here lies the di�
ulty of aeroa
ousti
s whi
h is devoted to�ow indu
ed noise and more generally to �ow a
ousti
s phenomena.Industrial ba
kgroundIn the industrial �eld of interest for EDF, strong aeroa
ousti
 phenomena are often generated whenpipe �ows are disturbed by �ow 
ontrol devi
es. That is the 
ase, for example, downstream 
ontrolvalve at small aperture su
h as shown in Figure 1 (a). The pressure ratio is very high and the �ow isthen transoni
. In su
h sho
ked 
on�gurations, �ow patterns are very sensitive to instabilities and this
an lead to strong pressure os
illations when they are in resonan
e with a
ousti
 modes [95, 6℄. Otherexamples are given by di�user �ows where os
illations are generated due to the intera
tion of a normalsho
k with a separating shear or boundary layer [24, 23℄. Self-sustained os
illations of the sho
k wave
an 
ouple with longitudinal a
ousti
 du
t modes [143℄ and 
an lead to high amplitude os
illations.That is also the 
ase in subsoni
 �ow when shear layers or jets impinge on downstream obsta
les.It is well know that in su
h situations, self-sustained os
illations 
an appear. The �ow above a shallow
avity is a typi
al illustration of this phenomenon. An industrial example is given in Figure 1 (b)showing a gate valve with a 
avity lo
ated at the bottom of the valve. Due to 
on�nement, 
oupling
an o

ur with transverse du
t modes when the frequen
y of 
avity os
illations mat
hes the resonantfrequen
y of the du
t. This leads to high amplitude pressure �u
tuations even at low Ma
h numberswhereas for open 
avities, no 
onsiderable noise generation is observed. The same phenomenon 
aneven be found in nearly in
ompressible �ow su
h as high pressure water �ow through ori�
es [129℄. The
onsequen
e of these phenomena is the generation of large amplitude a
ousti
 tones that are undesirableas regards vibrations of pipe stru
tures and prote
tion of nearby workers from high a
ousti
 levels.All these aeroa
ousti
 phenomena exhibit the same physi
al behavior: they o

ur when a self-
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Figure 1: Examples of �ow 
ontrol devi
es: (a) Strios
opy of the �ow in a 
ontrol valve; (a) gate valve.sustained os
illation due to a �ow instability (sho
k, jet, shear layer) is 
oupled with an a
ousti
resonator. They also 
learly emphasize feedba
k loops from the a
ousti
s to the aerodynami
s.Computational issuesSin
e the beginning of the 50's and the birth of aeroa
ousti
s as a new s
ienti�
 �eld through thepubli
ation by Lighthill of its founding papers, the problem is mainly how to use the information 
omingfrom the aerodynami
s and espe
ially how to link aerodynami
s and aeroa
ousti
s in a modeling pointof view. Although a
ousti
s and aerodynami
s are two bran
hes of �uid me
hani
s, 
lassi
al methodsused in Computational Fluid Dynami
s (CFD) 
an not be applied easily. This is due to the disparityof s
ales and dynami
s between the aerodynami
 �eld and the a
ousti
 �eld. For example, for a freejet at Ma
h M = 0.9, the pressure �u
tuations of the a
ousti
 �eld is about 100 times smaller thanthe pressure �u
tuations of the aerodynami
 �eld. The disparity is even greater between the velo
ity�u
tuations of the a
ousti
 �eld and the aerodynami
 �eld. An error of 1% in the 
omputation ofthe aerodynami
 �eld therefore produ
es an error of 100% for the a
ousti
 �eld. As a result, twoapproa
hes have been developed in the past.The �rst approa
h is based on the so-
alled hybrid methods that 
onsist of a two-step pro
edure.First, the in
ompressible mean �ow �eld is 
al
ulated, then a sour
e term is de�ned and at last ana
ousti
 solver gives the propagation �eld generated by the sour
e. That is the prin
iple of Lighthill'sor Ffow
s-Williams's analogies that use integral methods as the a
ousti
 solver but that is also theprin
iple of the methods based on the 
omputation of Linearized Euler Equations (LEE). In this�rst approa
h, the �ow is obtained from 
lassi
al in
ompressible low-order �ow solvers giving steady(Reynolds Averaged Navier-Stokes (RANS) models) or unsteady (Unsteady RANS (URANS), Large-Eddy Simulation (LES)) results. The sour
e term expression 
an be either statisti
al [17, 10℄, sto
hasti
[16, 12, 91, 11, 52℄ or temporal [14, 41℄.



7 It has been shown above that in many issues, the a
ousti
 �eld intera
ts with the �ow �eld.Parti
ularly in du
ted 
on�gurations, strong a
ousti
 feedba
k me
hanisms are involved. For thoseproblems, the hybrid approa
hes are no longer valid and it is ne
essary to use the se
ond modelingapproa
h whi
h implies to solve �ow and a
ousti
 �elds at on
e [54, 29℄ . This approa
h is 
alledDire
t Noise Computation (DNC). In this 
ase, standard low-order CFD te
hniques are di�
ult to usebe
ause they are too dissipative and too dispersive so they 
an not preserve the amplitude and thephase of the a
ousti
 �u
tuations. Large e�orts have been 
arried out to develop numeri
al te
hniquessuitable to Computational AeroA
ousti
s (CAA) [123, 40℄. An important step was made with theDispersion Relation Preserving s
hemes introdu
ed by Tam and Webb [128℄. These s
hemes are basedon high-order a

urate �nite di�eren
es, optimized in order to minimize the dispersion error. Althoughthey are restri
ted to stru
tured 
omputational grids and despite of the impressive rise in 
omputingpower, their 
omputational e�
ien
y 
ompared to �nite volume methods su
h as spe
tral volume ordis
ontinuous Galerkin methods made them very popular. Following this prin
iple, Bogey and Bailly[30℄ proposed improved s
hemes whi
h have proved their e�
ien
y on jet noise 
omputations [29℄. Inorder to treat more 
ompli
ated geometries, Marsden [92℄ applied these s
hemes on 
urvilinear meshesaround bodies su
h as 
ylinders or a NACA0012 pro�le. The present work is on the same path andaims to be able to deal with 
on�gurations 
lose to industrial appli
ations.Obje
tives of the thesisThe obje
tives of the thesis are to develop a high-order �nite-di�eren
e algorithm for Euler and Navier-Stokes equations for the simulation of aeroa
ousti
 phenomena in 
omplex geometries and to applyit on �ow 
on�gurations that are typi
al of industrial appli
ations. The �ows to be addressed aresubsoni
, transoni
 and supersoni
.In order to apply high-order �nite-di�eren
e s
hemes in 
omplex geometries, an overset-grid ap-proa
h is 
hosen. Classi
ally used for a
ousti
 propagation problems, this approa
h [43℄ has re
entlybeen adapted for the Dire
t Noise Computation approa
h and LES [116, 92, 45, 134℄. In order toavoid algorithmi
 developments that are not in the s
ope of this work, it is ne
essary to use availabletools dealing with overset grids. For example, the freely available Overture library developed by theLawren
e Livermore National Laboratory seems to be a good 
andidate for the 
reation of overset gridsin 
omplex geometries. In this work the appli
ability of su
h tools will be studied. In parti
ular, the
ru
ial problem of the 
ommuni
ation between grids through interpolation will be examined be
auseinterpolation must be of high-order to preserve the a

ura
y given by the numeri
al s
hemes.Another disadvantage of �nite-di�eren
e s
hemes is that they exhibit stability problems due totheir minimized dissipation. In general, high-order �nite-di�eren
e s
hemes fail to simulate �ows withstrong sho
ks. Sho
k-
apturing �lters have therefore been developed in the literature for high-ordera

urate 
omputation of transoni
 and supersoni
 sho
k-
ontaining �ows. In this work, we will verifythat they are suitable to model aeroa
ousti
 phenomena and will adapt them if ne
essary.After having validated the algorithm on 
lassi
al test 
ases for CAA, its appli
ation on two 
omplex



8
on�gurations that are typi
al of the industrial problems of EDF will be tested: �rst the 
ase of asubsoni
 
on�ned 
avity and se
ond the 
ase of an abruptly expanded transoni
 �ow. The simulations
an be validated with available experimental data. In parti
ular, the a
ousti
 
oupling of self-sustainedos
illation and du
t resonan
e modes is to be 
onsidered in this work.Organization of thesisThe thesis is organized as follows. First, the numeri
al algorithm is explained in detail and the 
hosennumeri
al s
hemes are detailed. The implemented sho
k-
apturing �lter is dis
ussed. The overset-gridapproa
h is explained and some performan
e aspe
ts of the parallelized solver are given.In the se
ond 
hapter, 
lassi
al validation test 
ases are presented. Those test 
ases, involvingthe di�ra
tion of a monopolar pressure sour
e by a 
ylinder, the 
onve
tion of an invis
id vortex, the1-D sho
k/sound intera
tion problem in a 
onvergent divergent nozzle, the 1-D sho
k/entropy waveintera
tion problem, a 2-D 
ompressible plane Couette �ow, a low-Reynolds number �ow and the
omputation of a 3-D sho
k tube, are reported.In the third 
hapter, a �rst industrial appli
ation is presented. The 
on�guration 
onsists in alow Ma
h number �ow over a du
ted 
avity. The �ow at high Reynolds number is 
omputed in 3-D and 
ompared to available experimental data. In order to demonstrate the numeri
al eviden
e ofthe 
oupling me
hanism, a series of 
omputations with di�erent Ma
h numbers are 
arried out. Forparti
ular values of the in
oming velo
ity, the ampli�
ation of the pressure is maximum, showing the
oupling of the 
avity modes and the du
t modes.In 
hapter four, the sudden expansion of a transoni
 �ow is 
omputed for di�erent pressure ratios.The study 
onsists �rst in a 
omputation of a pressure ratio where the �ow is entirely supersoni
 andfeatures a system of 
rossing oblique sho
ks. Then, the in�uen
e of the pressure ratio on the �ow isexamined. Finally, a 
on�guration is presented where the os
illations of the sho
k are 
oupled withlongitudinal du
t modes.



Chapter 1Governing equations and numeri
alalgorithm
1.1 Governing equationsThe governing equations used in this work are the 
urvilinear Euler and Navier-Stokes equations,written in 
onservative form. In this se
tion, the derivation is �rst established for the Euler equations.The derivation of the 
urvilinear Navier-Stokes equations is given in se
tion 1.7.The system of equations 
an be derived starting from the Euler equations written in Cartesian
oordinates

∂U

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0. (1.1)The unknown ve
tor U 
ontains the 
onservative variables

U =




ρ

ρu

ρv

ρw

ρet




,where ρ is the density, u, v and w are the velo
ity 
omponents in x, y and z-dire
tion and ρet is thespe
i�
 total energy. For a perfe
t gas, ρet is de�ned su
h as
ρet =

p

γ − 1
+

1

2
ρ(u2 + v2 + w2),where γ is the ratio of spe
i�
 heats and p designates the pressure. The ve
tors E, F, G 
ontain theEulerian �ux terms

E =




ρu

ρu2 + p

ρuv

ρuw

(ρet + p)u




,F =




ρv

ρvu

ρv2 + p

ρvw

(ρet + p)v




,G =




ρw

ρwu

ρwv

ρw2 + p

(ρet + p)w




. (1.2)



10In the following, the 
oordinate transformation of the Euler equations (1.1) from Cartesian 
oordinates
(x, y, z) to 
urvilinear 
oordinates (ξ, η, ζ) is sket
hed. Only time-invariant grids are 
onsidered in thiswork resulting in 
urvilinear 
oordinates whi
h are only fun
tions of (x, y, z):

τ ≡ t, ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z). (1.3)Further details 
an be found in the work of Vinokur [136℄ and Pulliam and Steger [102℄.Chain rule expansions are used to represent the Cartesian derivatives in terms of the 
urvilinearderivatives 


∂x

∂y

∂z


 =




ξx ηx ζx

ξy ηy ζy

ξz ηz ζz







∂ξ

∂η

∂ζ


 . (1.4)Solving the metri
 equations leads to the following expressions:

ξ̂x = yηzζ − yζzη , η̂x = yζzξ − yξzζ , ζ̂x = yξzη − yηzξ,

ξ̂y = zηxζ − zζxη, η̂y = zζxξ − zξxζ , ζ̂y = zξxη − zηxξ,

ξ̂z = xηyζ − xζyη, η̂z = xζyξ − xξyζ , ζ̂z = xξyη − xηyξ,

(1.5)where ξ̂x = ξx/J , ξ̂y = ξy/J , ... and J stands for the determinant of the transformation Ja
obianmatrix that is determined using
1

J
= xξyηzζ + xζyξzη + xηyζzξ − xξyζzη − xηyξzζ − xζyηzξ.Applying the transformation (1.4) to the governing equations (1.1), the weak 
onservation form of the
urvilinear equations is obtained:

Ut + ξxEξ + ηxEη + ζxEζ + ξyFξ + ηyFη + ζyFζ + ξzGξ + ηzGη + ζzGζ = 0.The strong 
onservation form is re
overed by dividing by the Ja
obian J and by using the produ
trule. For example we have:
ξ̂xEξ = (ξ̂xE)ξ − (ξ̂x)ξE.Thus the Euler equations be
ome for 
urvilinear 
oordinates

1

J
Ut + (ξ̂xE + ξ̂yF + ξ̂zG)ξ + (η̂xE + η̂yF + η̂zG)η + (ζ̂xE + ζ̂yF + ζ̂zG)ζ (1.6)

+E
[
(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ

]
+ F

[
(ξ̂y)ξ + (η̂y)η + (ζ̂y)ζ

]
+ G

[
(ξ̂z)ξ + (η̂z)η + (ζ̂z)ζ

]
= 0.The terms in bra
kets are known as the metri
 invariants of the transformation. If the equations forthe metri
 relations (1.5) are introdu
ed, they vanish and the strong 
onservation form of the governingequations is �nally derived:

∂Û

∂t
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
= 0, (1.7)
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x

y η

ξFigure 1.1: 2-D transformation from Cartesian 
oordinates (x, y) in the physi
al domain to 
urvilinear 
oordi-nates (ξ, η) in the 
omputational domain.The unknown ve
tor Û = U/J 
ontains the 
onservative variables weighted by the inverse of theJa
obian, proportional to the volume of a grid 
ell in 3-D. The new �ux ve
tors Ê, F̂, Ĝ 
ontain theEulerian �ux terms
Ê =

1

J




ρU

ρUu + pξx

ρUv + pξy

ρUw + pξz

(ρet + p)U




, F̂ =
1

J




ρV

ρV u + pηx

ρV v + pηy

ρV w + pηz

(ρet + p)V




, Ĝ =
1

J




ρW

ρWu + pζx

ρWv + pζy

ρWw + pζz

(ρet + p)W




.The quantities U, V,W are the 
ontravariant 
omponents of the velo
ity, de�ned by
U = ξxu + ξyv + ξzw, V = ηxu + ηyv + ηzw and W = ζxu + ζyv + ζzw.The resolution of the Euler equations on a 
urvilinear grid is then similar to the resolution of theequations on Cartesian mesh. The 
omputation of the �ux terms is more 
omputationally demanding,as the 
ontravariant velo
ities have to be 
omputed �rst. The grid spa
ing in the 
omputational domainis taken uniform with ∆ξ = 1, ∆η = 1 and ∆ζ = 1.1.2 Spatial Di�erentiationThe invis
id non-linear �ux terms govern the propagation of a
ousti
 waves and their intera
tion withthe aerodynami
 �eld. In aeroa
ousti
s, a
ousti
 waves are propagated over long distan
es that requireslow dispersion and low dissipation errors of the numeri
al s
heme. This makes the use of high-ordera

urate s
hemes ne
essary.Many high-order a

urate s
hemes have been proposed in the literature for the purpose of CAA andLES. An overview on high-order a

urate s
hemes 
an be found in the review arti
le of Ekaterinaris[50℄. Either based on the integral form or on the di�erential form of the Euler equations, two approa
hes
an be found in the literature: the �nite-volume and the �nite-di�eren
e approa
hes.



12 The �nite-volume approa
h is based on the integral form of the Euler equations and the �ow�eld is 
omputed via surfa
e integrals of the �uxes through a 
ontrol volume. Finite-volume methodsare used in 
ommer
ial CFD 
odes be
ause they 
an be applied to unstru
tured grids and are by
onstru
tion 
onservative. Traditionally �nite-volume methods are low-order a

urate. In the lastde
ade, high-order a

urate �nite volume-approa
hes have been developed. For example Barth etal. [13℄ pioneered the use of an arbitrary high-order re
onstru
tion method to 
ompute the �ux atthe 
ontrol volume boundary. Other methods like the Dis
ontinuous Galerkin (DG) methods thathave been developed by Co
kburn et al. [36℄ shows promise for high-resolution simulations on fullyunstru
tured meshes. Another method based on the �nite-element framework are spe
tral elementmethods developed re
ently by Wang [141℄. ADER (Arbitrary high-order s
hemes using DERivatives)�nite-volume methods developed by S
hwartzkop� et al. [115℄ and DG methods have been proposedin the literature [49℄. Although these methods allows a maximum �exibility in grid generation, high-order �nite volume methods on unstru
tured grids remain 
omputationally intensive and very few 3-Dappli
ations, in general at low Reynolds numbers, 
an be found in the literature [50℄.The �nite-di�eren
e approa
h is based on the di�erential form of the Euler equations. Thosemethods do not require a re
onstru
tion of the �ux around a 
ontrol volume and the derivatives areapproximated by �nite-di�eren
es. High-order a

ura
y 
an be obtained very easily by enlarging the�nite-di�eren
e sten
il and by eliminating low-order terms by a 
ertain 
hoi
e of the sten
il 
oe�
ients.As large sten
ils of grid points are needed to re
onstru
t the derivatives with high a

ura
y, the �nite-di�eren
e approa
h is in general restri
ted to stru
tured grids with redu
ed grid �exibility. For non-linear problems the �nite-di�eren
e approa
h allows to a

ess to high Reynolds number appli
ationsand are often used for DNS and LES. In 
ombination with high-order overset-grid approa
h, 
omplexgeometries 
an be taken into a

ount and the �nite-di�eren
e method has been used in this work.Several �nite-di�eren
e based s
hemes exist in the literature. Among those the 
ompa
t s
hemesof Lele [86℄, the Dispersion Relation Preserving (DRP) s
heme of Tam and Webb [128℄, high-orderimpli
it 
ompa
t Ma
Corma
k-type s
heme su
h as developed by Hixon et al. [70℄ and the expli
it11-point optimized expli
it �nite-di�eren
e s
heme of Bogey and Bailly [30℄ 
an be mentioned at thispoint.In order to simplify the domain de
omposition in a parallel approa
h, the expli
it 
entered 11-point�nite-di�eren
e s
heme developed by Bogey and Bailly [30℄ has been implemented in this work. Thiss
heme is optimized in wave number spa
e and is able to resolve a

urately perturbations with onlyfour points per wavelength. For example, the derivative of Ê in ξ-dire
tion at (i, j, k) is 
omputedusing the expression
∂Ê

∂ξ

∣∣∣∣∣
i,j,k

=

5∑

r=1

ar(Ê|i+r,j,k − Ê|i−r,j,k).The 
oe�
ients ar of the s
heme are given in Table 1.1.
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a0 = 0.

a1 = 0.872756993962667

a2 = −0.286511173973333

a3 = 9.032000128000002 × 10−2

a4 = −2.077940582400000 × 10−2

a5 = 2.484594688000000 × 10−3Table 1.1: Coe�
ients of the interior 
entered spatial di�eren
ing s
heme [30℄.1.3 Time integration s
hemeA low-storage expli
it Runge-Kutta s
heme has been implemented in the solver to update the �owvariables at the new time instan
e Ûn+1. The algorithm 
an be summarized as follows:
Û(0) = Ûn,

Û(l) = Ûn − αl ∆t F(Û(l−1)) for l = 1, ..., p,

Ûn+1 = Û(p),where Û(l) 
ontains the �ow variables 
omputed at the sub stage l, αl are the 
oe�
ients of the RungeKutta s
heme given in Table 1.3, ∆t is the time step and F is given by
∂Û

∂t
+ F(Û) = 0.RK(p=4) RKo(p=6)

α1 1/4 0.11797990162882

α2 1/3 0.18464696649448

α3 1/2 0.24662360430959

α4 1 0.33183954273562

α5 − 1/2

α6 − 1Table 1.2: Coe�
ients αl of standard (RK) and optimized Runge Kutta (RKo) s
heme [30℄.In this work, either four-stage or an optimized six-stage Runge-Kutta s
heme su
h as proposed byBogey and Bailly [30℄ are used. The six-stage s
heme has been optimized in the frequen
y domainin order to redu
e the dispersion and dissipation errors. Both s
hemes are fourth-order a

urate forlinear problems and are se
ond-order for non-linear problems.1.4 Sele
tive �lteringCentered �nite-di�eren
e s
hemes have no built-in dissipation su
h as upwind s
hemes. Non physi
algrid-to-grid os
illations that are generated at boundary 
onditions, geometri
al singularities, non-linearenergy 
as
ade and strong gradients su
h as sho
ks 
an a

umulate in the 
omputational domain,



14ending up with a divergen
e of the solution. In order to ensure numeri
al stability, an expli
it 11-pointlow-pass �lter has been implemented. The �lter, optimized in the wave-number spa
e [30℄, removesall high frequen
y waves resolved with less then 4 points per wavelength. Thus the 
ut-o� frequen
ymat
hes with the maximum resolution of the �nite-di�eren
e s
hemes. The �lter is separately appliedon
e after every time iteration in ea
h 
oordinate dire
tion. The algorithm for �ltering in ξ-dire
tion
an be written su
h as
Wp

d
i,j,k = Wpi,j,k − σ(Dξ + Dη + Dζ)where

Dξ =

5∑

r=−5

drWpi+r,j,k, Dη =

5∑

r=−5

drWpi,j+r,k, Dζ =

5∑

r=−5

drWpi,j,k+r.The �ltering 
oe�
ient σ has to be 
hosen between 0 and 1. If not otherwise indi
ated a 
oe�
ientof σ = 0.2 is used. The �lter is applied to the primitive variables W = (ρ, u, v, w, p)T . The sten
il
oe�
ients dr = d−r are given in Table 1.3.
d0 = 0.2150448841109084

d1 = −0.1877728835894673

d2 = 0.1237559487873421

d3 = −5.922757557574387 × 10−2

d4 = 1.872160915720372 × 10−2

d5 = −2.999540834788787 × 10−3Table 1.3: Coe�
ients of the 
entered �ltering [30℄ for interior points.In order to preserve a

ura
y near the wall boundaries, the optimized 11-point non-
entered �nite-di�eren
e s
hemes su
h as developed by Berland et al. [21℄ are used. The asso
iated non-
entered�lters exhibit stability problems, when the mesh is stret
hed, 
ontains dis
ontinuities or for strongly
ompressible �ows. Centered �lters with redu
ed order 
an be therefore optionally applied at boundary
onditions.1.5 Computation of the metri
sThe solution of the transformed Navier-Stokes equations require the evaluation of the Ja
obian matrix
J:

J =
∂(ξ, η, ζ)

∂(x, y, z)
=




ξx ηx ζx

ξy ηy ζy

ξz ηz ζz


 ,and its determinant J. Only the mapping fun
tion x = (x,y, z)T = x(ξ, η, ζ) is a priori knownand therefore only its inverse J−1 
an be determined dire
tly from x. The Ja
obian matrix J 
anbe 
omputed from equation (1.5). When solving the transformed Navier-Stokes equations grid with�nite-di�eren
e s
hemes, Pulliam and Steger [101℄ and Thomas and Lombard [130℄ highlighted then



15the following relations,
(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ = 0,

(ξ̂y)ξ + (η̂y)η + (ζ̂y)ζ = 0,

(ξ̂z)ξ + (η̂z)η + (ζ̂z)ζ = 0,

(1.8)must be veri�ed numeri
ally to ensure an e�e
tive 
onservative form. The metri
 relations are the�rst part of the Geometri
 Conservation Law (GCL). An additional equation 
omes into play whenthe mesh is time-variant. The equation writes [130℄
Jt + (ξ̂t)ξ + (η̂t)ζ + (ζ̂t)ζ = 0.However being evaluated with �nite-di�eren
es, the �rst metri
 relation be
omes for example:

(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ = (yηzζ)ξ − (yζzη)ξ + (yζzξ)η − (yξzζ)η + (yξzη)ζ − (yηzξ)ζ 6= 0due to the numeri
al failure of the produ
t rule as noti
ed by Hixon [69℄. Therefore Thomas andLombard [130℄ proposed to 
ompute the metri
 
oe�
ients in a 
onservative form su
h as:
ξ̂x = (yηz)ζ − (yζz)η, η̂x = (yζz)ξ − (yξz)ζ , ζ̂x = (yξz)η − (yηz)ξ,

ξ̂y = (zηx)ζ − (zζx)η , η̂y = (zζx)ξ − (zξx)ζ , ζ̂y = (zξx)η − (zηx)ξ,

ξ̂z = (xηy)ζ − (xζy)η, η̂z = (xζy)ξ − (xξy)ζ , ζ̂z = (xξy)η − (xηy)ξ.

(1.9)This form is analyti
ally identi
al to the metri
 terms in equations (1.5). Substituting this in the �rstmetri
 invariant gives
(ξ̂x)ξ + (η̂x)η + (ζ̂x)ζ = (yηz)ζξ − (yζz)ηξ + (yζz)ξη − (yξz)ζη + (yξz)ηζ − (yηz)ξζ = 0be
ause the order of di�erentiation 
an be inter
hanged numeri
ally as also explained by Hixon [69℄.This is demonstrated by using a ξ-derivative and η-derivative de�ned by

(xi,j)ξ =

ke∑

k=ks

akxi+k,j, (xi,j)η =

le∑

l=ls

blxi,j+l,where ks, ls and ke, le denote the number points on the left and right side of the sten
il respe
tivelyand ak and bl the sten
il 
oe�
ients. Note that the index for the third dire
tion is omitted. Thequantity xξη is 
omputed as:
[(xξ)η]i,j =

le∑

l=ls

bl




ke∑

k=ks

akxi+k,j+l


 (1.10)

=

le∑

l=ls

ke∑

k=ks

blakxi+k,j+l (1.11)
=

ke∑

k=ks

le∑

l=ls

akblxi+k,j+l (1.12)
= [(xη)ξ]i,j (1.13)



16This holds as long as the ξ derivative sten
il has no η dependen
e and vi
e-versa. Near boundariesalong η = 
onst., for instan
e, the η derivative sten
ils vary in η-dire
tion but not in ξ-dire
tion andthe 
an
ellation of the metri
 relations are 
onserved.For 2-D problems the 
an
ellation of the metri
 invariants is always ensured numeri
ally. For 3-Dproblems, all metri
 derivatives must be 
omputed using the same di�eren
ing sten
ils. For examplewhen working with Ma
 Corma
k s
hemes using a forward based and ba
kward based sten
il, the met-ri
s have to be 
omputed twi
e using a forward and a ba
kward based sten
il respe
tively. The methodfails also for �nite-di�eren
e s
hemes based on a Weighted Essentially Non-Os
illatory (WENO) re
on-stru
tion. As WENO s
hemes adapt the 
omputational sten
il for the derivative approximation lo
allyto the �ow �eld, a numeri
al 
an
ellation of the metri
 invariants 
an not be ensured. Implementationsof the WENO s
hemes in a more 
omputationally expensive �nite-volume approa
h are therefore more
ommon and re
ommended.1.6 Sho
k-
apturing �lteringIn regions with strong sho
ks, additional numeri
al dissipation is introdu
ed in order to avoid thedivergen
e of the numeri
al solution and to redu
e the overshoots that o

urs around the sho
k. Severalsho
k-
apturing s
hemes have been developed for that purpose. Among those the Jameson s
heme [73℄,the Total Variation Diminishing (TVD) [65℄, Monotone Upstream-Centered S
heme for ConservationLaws (MUSCL) [135℄ and (Weighted) Essentially Non-Os
illatory ((W)ENO) [74℄ s
hemes are oftenused for aeronauti
al appli
ations.However for aeroa
ousti
 problems 
lassi
al sho
k-
apturing s
hemes are less suitable due to anex
essive dissipation and dispersion error. Also for Large-Eddy Simulations, those s
hemes written inthe 
lassi
al form are too dissipative and mask the di�usion provided by the subgrid s
ale model [55℄.In the last de
ade, mu
h work has been done to adapt sho
k-
apturing s
hemes for the purpose ofLES and CAA of transoni
 �ows. Most of the approa
hes are based on a lo
al in
rease of dissipationprovided by the sho
k-
apturing s
heme, whereas dissipation is minimized in smooth regions. Thismakes the dete
tion of the sho
k lo
ation to be a very important point for LES and CAA of transoni
and supersoni
 �ows.In this se
tion, �rst some re
ent developments of sho
k-
apturing s
hemes towards CAA and LESfound in the literature are summarized. Se
ond, the implementation of the sho
k-
apturing s
hemeused in the present work is explained. Third, the sho
k dete
tion pro
edure is des
ribed.1.6.1 Sho
k-
apturing for LES and CAAOriginally Jameson et al. [73℄ proposed to dis
retize the Euler equations using a se
ond-order �nite-volume s
heme. Se
ond- and fourth-order dissipation terms with 
oe�
ients that depend on the lo
alpressure gradient are added on the right hand side of the equations. The s
heme writes in 1-D as
∂U

∂t

∣∣∣∣
i

+ F(U)|i = −
(Di+ 1

2
− Di− 1

2
)

∆x
,



17where F(U)|i is the dis
retized �ux term and the terms on the right have the form:
Di+ 1

2
=

[
ǫ
(2)

i+ 1
2

(Ui+1 −Ui) − ǫ
(4)

i+ 1
2

(Ui+2 − 3Ui+1 + 3Ui − Ui−1)

]The weights ǫ
(2)

i+ 1
2

, ǫ
(4)

i+ 1
2

of the smoothing terms are fun
tions of the 
onsidered equations and aredetermined using a smoothness dete
tor applied to the pressure �eld:
Φi =

|pi+1 − 2pi + pi−1|
|pi+1 + 2pi + pi−1|

. (1.14)The weighting fun
tions are de�ned as
ǫ
(2)

i+ 1
2

= κ(2)max(Φi,Φi+1)and
ǫ
(4)

i+ 1
2

= max [0,(κ(4) − ǫ
(2)

i+ 1
2

)]
,where κ(4) and κ(2) are adjustable problem dependent values. In smooth regions of the �ow, thesmoothness dete
tor is of se
ond-order and the low-order dissipation is swit
hed o� thanks to ǫ

(2)

i+ 1
2

. Inregions of strong pressure gradients, the smoothness dete
tor redu
es to �rst-order and the low-orderdissipation dominates.It has been observed by Jameson [73℄ that the low-order dissipation terms do not avoid some smallhigh-frequen
y os
illations, whi
h prevent the 
omplete 
onvergen
e of the solution to steady state.The fourth-order dissipation term is therefore introdu
ed, whi
h is swit
hed on through the whole
omputational domain where the solution is smooth. In regions with strong gradients, the fourth-orderdissipation term has shown to generate overshoots that are asso
iated to the Gibbs phenomenon andare typi
al for high-order �nite-di�eren
e s
hemes. This term is therefore swit
hed o� in sho
k regionsthanks to ǫ
(4)

i+ 1
2

.Following the idea of a lo
ally introdu
ed dissipation, Yee et al. [142℄ proposed to isolate thedissipative part of 
lassi
al sho
k-
apturing s
hemes and to apply it like a �ltering operator in regionswith strong non-linearities. They used those 
hara
teristi
 based �lters in 
ombination with high-order
entered �nite-di�eren
e s
hemes. Thus, in smooth regions where no non-linear �ltering is applied, thea

ura
y of the high-order s
hemes 
an be maintained. Yee et al. [142℄ developed those �lters for theTVD, MUSCL and ENO s
hemes. Garnier et al. [56, 57℄ applied 
hara
teristi
 based �lter based onWENO s
hemes su

essfully for sho
k/turbulen
e and sho
k/boundary layer intera
tions.Visbal and Gaitonde [137℄ developed a hybrid 
ompa
t-Roe method, where a 
ompa
t �nite-di�eren
e s
heme is used in smooth regions. In sho
k regions, the 
ompa
t s
heme is repla
ed bya third-order MUSCL based upwind-biased Roe s
heme. The s
heme performs very well in various test
ases and has been used for a LES of a supersoni
 �ow over a 
ompression ramp [106℄.Tam and Shen [125℄ proposed to use the DRP s
heme [128℄ for the simulation of a non-lineara
ousti
 pulse and to use a variable damping algorithm whi
h introdu
es more numeri
al vis
osityin regions with strong gradients. The sho
k regions are dete
ted using usten
il = |umax − umin|; thedi�eren
e between the maximum velo
ity, umax, and the minimum velo
ity, umin, in the sten
il. The



18numeri
al vis
osity is provided by a 7 point 
entered �lter weighted by usten
il/Rsten
il/∆x, where the
onstant sten
il Reynolds number Rsten
il ≈ 0.06 has been introdu
ed.Kim and Lee [78℄ have shown that this formulation does not ful�ll 
onservativity and explain whythe sho
k propagation velo
ity is not well predi
ted. Basing on the le
ture notes of Leveque [88℄, theyre
asted the 
entered sele
tive �lter into a 
onservative form similar to the Jameson �lter. Detailsabout this 
an be found in appendix A. Additionally, Kim and Lee [78℄ 
ombined this �lter with thelow-order sho
k-
apturing term of the Jameson s
heme. Furthermore, they proposed a self-adaptingpro
edure determining automati
ally the problem depending parameters ǫ(2) and ǫ(4) of the originalJameson s
heme. The s
heme has been validated for 1-D and multi-dimensional CAA ben
hmark test
ases.Ex
ept the Jameson s
heme, sho
k-
apturing s
hemes exploit the hyperboli
 nature of the Eulerequations, making them more suitable for �ows at very high Ma
h numbers. On the other hand,it is di�
ult to quantify the error as a fun
tion of the wave-number su
h as it is often done withs
hemes dedi
ated to LES and CAA. The error made by the Jameson s
heme, that adds expli
itsele
tive smoothness terms to the governing equations, 
an be quanti�ed using a linear error analysis.Furthermore, the Jameson type s
hemes are very simple in implementation and are 
omputationallyvery e�
ient. The method used here follows the Jameson-type dissipation model and is similar to thedissipation model proposed by Kim and Lee [78℄.1.6.2 Implementation of the sho
k-
apturing �lterA sho
k-
apturing �lter based on the adaptive non-linear arti�
ial dissipation model of Kim and Lee[78℄ has been implemented in the solver as follows. Only the low-order sho
k-
apturing �lter is appliedto the 
onservative variables, that have already been �ltered using the sele
tive �lter presented inse
tion 1.4. The �ltering operator writes in 
onservative form:
Ûi,j,k = Ûi,j,k − ∆t(D̂i+ 1

2
,j,k − D̂i− 1

2
,j,k),where

D̂i+ 1
2
,j,k =

∆|λ|sten
il
i+ 1

2
,j,k

1
2(Ji+1,j,k + Ji,j,k)

ǫ
(2)

i+ 1
2
,j,k

∆t (Ui+1,j,k − Ui,j,k) .Similar to Swanson and Turkel [121℄, Kim and Lee uses the sten
il eigenvalue ∆|λ|sten
ili+1/2,j,k that denotesthe di�eren
e between the maximum and the minimum eigenvalue
|λ|i,j,k =

(
|U | + c

√
ξ2
x + ξ2

y + ξ2
z

)
i,j,kwithin a sten
il of variable size. The quantities U and c designate the 
ontravariant velo
ity U =

uξx + vξy + wξz and the speed of sound respe
tively. A

ording to Kim and Lee, ∆|λ|sten
ili+1/2,j,k is
omputed using a sten
il width of 7 points:
∆|λ|sten
il

i+ 1
2
,j,k

=
3max

m=−2
(|λ|i+m,j,k) −

3min
m=−2

(|λ|i+m,j,k).



19 In order to maintain the a

ura
y of the numeri
al s
heme, the se
ond-order �lter may only beapplied lo
ally in the sho
k region. This is performed by the adaptive non-linear dissipation fun
tiongiven by
ǫ
(2)
i+1/2,j,k = κj,k

3max
m=−2

(Φi+m,j,k)where Φi,j,k is Jameson sho
k dete
tor de�ned in equation (1.14) and κj,k is the adaptive 
ontrol
onstant. The latter is given by
κj,k =

1

σ
Rj,k

j,k

[1 + (σj,k − 1) tanh (
αj,k

βj,k
− 1)]

(√
α̂j,kβ̂j,k

)1+tanh (σj,k−1)

,where
σj,k =

pmax
j,k

pmin
j,k

, αj,k =
λmax

j,k

λmin
j,k

,

βi,j =

(
|λ|√

ξ2
x+ξ2

y+ξ2
z

)max
j,k(

|λ|√
ξ2
x+ξ2

y+ξ2
z

)min
j,k

,

Rj,k =
αj,k + βj,k

2αj,kβj,k
, α̂j,k =

[
αj,k + 1

αj,k − 1

]
tanh(αj,k),

β̂j,k =

[
βj,k + 1

βj,k − 1

]
tanh (βj,k − 1)The supers
ripts min and max are expressed in 3-D as

fmin
j,k =

i maxmin
i=1

fi,j,k, fmax
j,k =

i maxmax
i=1

fi,j,k.The paper of Kim and Lee [78℄ la
ks in detailed derivations of ea
h term. Following their paper,most of the terms have been implemented on the basis of various numeri
al tests and �ow 
onditions.The validation of the test 
ases shows that the self-adapting pro
edure works well and provides stableand a

urate results.1.6.3 Dete
tion of the sho
k lo
ationBesides the Jameson-type dissipation swit
h [73℄ introdu
ed in equation (1.14), other approa
hes hasbeen used in the literature. Yee et al. [142℄ use an arti�
ial 
ompression method proposed by Harten(ACM) [64℄ and Visbal and Gaitonde [137℄ a WENO-type smoothness 
riterion based on a weightedsum of a �rst and se
ond derivative operator that measures the slope and the 
urvature of the pressure�eld.In this work, the sho
k position is dete
ted by the Jameson sensor. A
tually this sensor has shownto be too sensitive to pressure �u
tuations. As a 
onsequen
e, ex
essive �ltering of turbulent stru
tureshas been observed by Du
ros et al. [48℄ for instan
e. Those authors developed a modi�ed sensor whi
his able to separate turbulent �u
tuations from sho
ks. This is done by multiplying the Jameson sensorby a se
ond sensor, that is
Ξi,j,k =

div(ui,j,k)
2div(ui,j,k)2 + rot(ui,j,k)2

,
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k∆ xFigure 1.2: Generalized Jameson dete
tor strength Φξ

i of a plane wave p = exp (−ikx) as a fun
tion of the wavenumber k∆x for di�erent orders of the dissipation term: ��� se
ond-order (
lassi
al Jameson);
· · · · · · · �fth-order, · − · − ·− tenth-order, - - - - - 11-point sele
tive dissipation.where u the velo
ity ve
tor 
ontaining the Cartesian velo
ity 
omponents. This sensor has beenapplied in various appli
ations in 
ombination with the Jameson s
heme [48℄ and with 
hara
teristi
based �lters [57℄. The 
omputation of the divergen
e and the rotational �eld is numeri
ally expensiveand is not used in this work.An improvement of the dete
tion pro
edure 
an be a
hieved by generalizing the Jameson dete
torusing high-order sele
tive �lter operators instead of using the se
ond derivative. The generalizedJameson dete
tor 
an be written as:

Φξ
i,j,k =

∣∣∣∣∣
N∑

r=−N
drpi+r,j,k

∣∣∣∣∣
∣∣∣∣∣pi,j,k −

N∑
r=−N

drpi+r,j,k

∣∣∣∣∣

, Φη
i,j,k =

∣∣∣∣∣
N∑

r=−N
drpi,j+r,k

∣∣∣∣∣
∣∣∣∣∣pi,j,k −

N∑
r=−N

drpi,j+r,k

∣∣∣∣∣

, Φζ
i,j,k =

∣∣∣∣∣
N∑

r=−N
drpi,j,k+r

∣∣∣∣∣
∣∣∣∣∣pi,j,k −

N∑
r=−N

drpi,j,k+r

∣∣∣∣∣

,where dr are the 
oe�
ients for a �lter of arbitrary order 2N . The dete
tor is �rst analyzed in 1-D,using a plane wave ansatz p = exp (−ikx), where k is the wavenumber, whi
h yields:
Φξ

i (k∆x) =

∣∣∣∣∣
N∑

r=−N
dr exp (−irk∆x)

∣∣∣∣∣
∣∣∣∣∣1 −

N∑
r=−N

dr exp (−irk∆x)

∣∣∣∣∣

,where ∆x the grid spa
ing width. Figure 1.2 gives the sensor strength Φξ
i as a fun
tion of the wave-number for di�erent �ltering operators: the standard se
ond- (
lassi
al Jameson �lter N = 1), fourth-order (N = 2) and tenth-order (N = 5) ones and the 11-point optimized �lter (N = 5). Figure 1.2shows that using the high-order dete
tors leads to lower values in the low wave-number range whereas,for the high frequen
ies, the dete
tor behaves as the 
lassi
al Jameson dete
tor ensuring the sho
k-
apturing property of the s
heme. A similar approa
h has been proposed by Lo
kard and Morris [90℄using only the sixth-order �lter operator, without the normalizing term in the denominator.
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Figure 1.3: Model problem involving a dis
ontinuity and a harmoni
 signal 
ontaining (a) high-frequen
y 
ase(4 points per wave length); (b) low-frequen
y 
ase (7 points per wave length).In order to study the behavior of the generalized Jameson �lter when a dis
ontinuity and linear per-turbations are present, the following test problem is 
onsidered. A signal of a sho
k-sound intera
tionproblem is modeled as follows
p(x) =

{
1 + 0.1 sin (klx), x ≤ 0

2 + 0.1 sin (klx), x > 0.where kl is the wave number of the linear signal. Two wavenumbers are 
onsidered kl = π/(2∆x) and
kl = 2π/(7∆x) 
orresponding to a wave that 
ontains 4 and 7 grid points respe
tively. Note that 4points per wave length is the a

ura
y limit of the present spatial di�eren
ing s
heme and is the 
ut-o�wave-length of the optimized low-pass �lter. The two signals are plotted in Figure 1.3 (a) and (b).The 
omputed sensor values are given in Figure 1.4 (a) and (b) respe
tively. All of the sensorsrea
h their maximum at the sho
k position. In the linear region the dete
tor value de
reases of aboutone order of magnitude for the 
lassi
al se
ond-order dete
tor, whereas for the 11-point dete
tor thevalue drops four orders of magnitude. For the high-frequen
y 
ase, all dete
tors have their maximumat the sho
k lo
ation and the 
urve has a similar shape as for the low-frequen
y 
ase. The dete
torsof order 2 and 5 perform very poorly in the linear region. Their magnitude is of the same orderas for the sho
k and would lead to an ex
essive damping. For the tenth-order �lter, a value beingone order of magnitude smaller is reported and for the 11-point optimized sensor, the dete
tor is twoorders of magnitude smaller, showing the bene�t of the optimization. For the high-order �lters, thepeaks around the dis
ontinuities are slightly more extended but more smooth. This is due to the largeextension of the eleven-point sten
ils, that 
ould be prevented by using 
ompa
t sten
ils [86℄. As Hixon[71℄ re
ommends a smooth introdu
tion of the low-order Jameson dissipation term [71℄, this is rathera favorable property of the high-order dete
tors.The behavior of the modi�ed Jameson �lter is studied in the following when sho
ks and turbulentperturbations are present. Sin
e a vortex features a minimum in pressure lo
ated in its 
ore, the
lassi
al se
ond-order dete
tor does not well distinguish a vortex and a sho
k wave as Du
ros et al.
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Figure 1.4: Computed dete
tor Φξ
i values for di�erent �ltering order: se
ond-order N = 1; × fourth-order N = 2; ◦ tenth-order N = 5; optimized N = 5 (a) high-frequen
y 
ase (4 points per wavelength); (b) low-frequen
y 
ase (7 points per wave length); See Figure 1.3.[48℄ noti
e. Figure 1.5 (a) gives an example of a transoni
 
on�ned jet su
h as presented in 
hapter4. The �ow �eld is visualized by the 
ontours of the density gradient and exhibits a typi
al jet-likestru
ture with three sho
k 
ells. The jet is atta
hed to the upper wall. The dete
tor strength �elds
omputed using the se
ond-order and 11-point optimized �lter are plotted in Figure 1.5 (b)-(e). Thesame trend as for the 1-D 
ase 
an be observed. The low-order dete
tor identi�es regions without sho
ksas non-linear regions, whereas the high-order dete
tor is limited prin
ipally on the sho
k regions. Evenworse, the se
ond-order dete
tor dete
ts instability waves developing in the shear layer, whi
h 
anin�uen
e the development of instabilities seriously.The modi�ed Jameson dete
tor based on the 11-point sele
tive �lter term are tested using 1-D
ases su
h as for the 
onvergent-divergent nozzle and the entropy wave/sho
k wave intera
tion in thevalidation 
hapter 2. Due to stability and 
omputational limits, the 3-D transoni
 �ow presented in
hapter 4 are 
omputed using a sensor with maximum fourth-order dissipation terms.
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Figure 1.5: Test of generalized Jameson dete
tor applied to a instantaneous pressure �eld of a �ow that 
on-tains turbulent �u
tuations and sho
ks. The �ow �eld is visualized in (a) by the iso 
ontours ofthe density gradient |∇xρ|. Dete
tor values log (Φξ
i,j,k) 
omputed in i-dire
tion using the 
lassi
alJameson dete
tor (b) and using dete
tor based on the 11-point optimized �lter (
). Dete
tor values

log (Φη
i,j,k) 
omputed in j-dire
tion using the 
lassi
al Jameson dete
tor (d) and using the dete
torbased on the 11-point optimized �lter (e). Color s
ales from −5 to 0.



241.7 Consideration of vis
ous and heat 
ondu
tion e�e
tsWhen a vis
ous �uid is 
onsidered, the governing equations are the 
urvilinear Navier-Stokes equations.In 3-D they write:
∂Û

∂t
+

∂

∂ξ

{
1

J
[ξx(E − Ev) + ξy(F − Fv) + ξz(G− Gv)]

}

+
∂

∂η

{
1

J
[ηx(E − Ev) + ηy(F − Fv) + ηz(G− Gv)]

}

+
∂

∂ζ

{
1

J
[ζx(E − Ev) + ζy(F − Fv) + ζz(G − Gv)]

}
= 0,where the invis
id �uxes are given by equation (1.7) and the vis
id �uxes write

Ev =




0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx




, Fv =




0

τxy

τyy

τyz

uτxy + vτyy + wτyz − qy




,

Gv =




0

τxz

τyz

τzz

uτxz + vτyz + wτzz − qz




.The vis
ous stress terms are given by
τxx =

2

3
µ[2(ξxuξ + ηxuη + ζxuζ) − (ξyvξ + ηyvη + ζyvζ) − (ξzwξ + ηzwη + ζzwζ)],

τyy =
2

3
µ[2(ξyvξ + ηyvη + ζyvζ) − (ξxuξ + ηxuη + ζxuζ) − (ξzwξ + ηzwη + ζzwζ)],

τzz =
2

3
µ[2(ξzwξ + ηzwη + ζzwζ) − (ξxuξ + ηxuη + ζxuζ) − (ξyvξ + ηyvη + ζyvζ)],

τxy = µ(ξyuξ + ηyuη + ζyuζ + ξxvξ + ηxvη + ζxvζ),

τxz = µ(ξzuξ + ηzuη + ζzuζ + ξxwξ + ηxwη + ζxwζ),

τyz = µ(ξywξ + ηywη + ζywζ + ξzvξ + ηzvη + ζzvζ),where µ is the dynami
 vis
osity of the �uid. The heat �uxes are provided by the Fourier's law
q = −µcp

Pr
∇xT,



25where cp is the spe
i�
 heat 
apa
ity at 
onstant pressure, Pr the Prandtl number and T the temper-ature. The temperature is 
omputed with the equation of state for a perfe
t gas, T = p/(ρr), with thespe
i�
 gas 
onstant for air r = 287.05 J.kg−1.K−1.The temperature gradient ∇xT = (Tx, Ty, Tz)
T is 
omputed using

Tx = ξxTξ + ηxTη + ζxTζ ,

Ty = ξyTξ + ηyTη + ζyTζ ,

Tz = ξzTξ + ηzTη + ζzTζ ,in the physi
al domain. The dynami
 vis
osity is 
lassi
ally a fun
tion of the temperature and isdetermined by Sutherland's law:
µ(T ) = µ0

√
T

T0

1 + C
T0

1 + C
T

, (1.15)where T0 is a referen
e temperature [K], µ0 = µ(T0) is the dynami
 vis
osity at the referen
e tempera-ture and C is a �uid dependent parameter. Vis
ous and heat 
ondu
tion terms are 
omputed like theEulerian �uxes and metri
 terms using the �nite-di�eren
e s
hemes, presented in se
tion 1.2.1.8 Stability 
riteriaThe time step ∆t is governed by stability 
riteria that 
an be found for the 
onve
tive, vis
ous and
ondu
tive terms.For a 
urvilinear grid, the stability 
riterion for the 
onve
tive terms is given by the Courant-Friedri
hs-Lewy (CFL) numberCFL = ∆t max |U | + c
√

ξ2
x + ξ2

y + ξ2
z

∆ξ
,
|V | + c

√
η2

x + η2
y + η2

z

∆η
,
|W | + c

√
ζ2
x + ζ2

y + ζ2
z

∆ζ


 ≤ 0.9.At low Reynolds numbers, when vis
ous e�e
ts dominate, the stability 
riterion for the vis
ous �uxesis given by

Cν = ∆t max( ν

x2
ξ

,
ν

y2
η

,
ν

z2
ζ

)
≤ 2.The 
riterion for the thermal 
ondu
tion terms is 
onne
ted to the vis
ous terms 
riteria via the Prandtlnumber:

CT =
Cν

Pr
,For high Reynolds number �ows su
h as 
onsidered in this work 
onve
tive terms will dominate andthe time step is governed prin
ipally by the CFL-
riterion.



261.9 LES strategySolving Navier-Stokes equations implies to 
apture an energy 
as
ade from larger s
ales roughly 
har-a
terized by the integral length s
ale Lf to smaller ones. This te
hnique is 
alled Dire
t Numeri
alSimulation (DNS). The 
as
ade ends at the Kolmogorov s
ale lη when turbulent energy is dissipatedby the mole
ular vis
osity. For isotropi
 homogenous turbulen
e [9℄, the disparity between Lf and lη
an be estimated using
Lf

lη
∼ Re3/4

Lf
, where ReLf

=
u′Lf

ν
,with u′ being the s
ale of the velo
ity �u
tuations in the �ow. For 3-D appli
ations, the total number ofgrid points required to simulate a volume of O(L3

f ) therefore varies with Re9/4
Lf

. Due to 
omputationallimits, only for �ows at moderate Reynolds number, DNS 
an be applied. For Reynolds numberhigher then ReLf
> 104, only the largest �ow s
ales 
an be 
omputed whereas the e�e
t of smallers
ales that are not supported by the grid have to be modeled. This approa
h is 
alled Large-EddySimulation (LES). In order to 
apture the prin
ipal physi
s of the �ow, the �ows are supposed tobe rather 
hara
terized by the largest s
ales than by the smallest ones that are supposed to have aquasi-universal 
hara
ter.In this se
tion, the �ltered Navier-Stokes equations are �rst presented. Then, the e�e
t of the 
ut-o� wave-number in LES is dis
ussed and modeling approa
hes are re
alled. Finally, the LES strategyadapted in this work is presented.1.9.1 Filtered Navier-Stokes equationsTo separate the large from the small s
ales, LES is based on the de�nition of a �ltering operator. Inpra
ti
e, the dis
retization of a 
omputational domain a
ts like a low-pass spatial �lter applied to theNavier-Stokes equations whi
h introdu
es extra terms des
ribing the intera
tion between the resolvedand the non-resolved s
ales. A �ltered variable is obtained by 
onvolution

f(x) =

∫

D

f(x)G∆(x− x′)dx′,where D is the 
omputational domain, G∆ is the �lter kernel and ∆ = ∆x the 
ut-o� s
ale of the�lter. By de�nition of the 
onvolution operator, the �lter ∗ : f → f is linear. Classi
ally, it is admittedthat the �lter 
ommutates with the time and spatial derivatives, for more details refer to Sagaut [111℄,Lesieur et al. [87℄, Geurts [59℄. The dis
retization of a 
omputational domain means an irreversibleloss of information about s
ales smaller than the 
ut-o� s
ale of the �lter.In 
ompressible �ows, it is 
onvenient to use Favre-�ltering to avoid the introdu
tion of a subgrids
ale term in the equation of mass 
onservation. The Favre-�ltered variable is de�ned as
f̃ =

ρf

ρ
,where ρ is the density of the �ow. In the following, f ′′ denotes the unresolved �ow features and isde�ned as f ′′ = f − f̃ .



27 The �ltered equations for mass and momentum write then in tensor form su
h as
∂ρ

∂t
+ div(ρṼ) = 0,

∂ρṼ

∂t
+ div(ρṼ ⊗ Ṽ + pI − T̂

)
= div(T + T − T̂

)
,where V is the velo
ity ve
tor and the I the identity tensor and

T = 2µ(T )S, where S =
1

2

[gradV + grad(V)T − 2

3
IdivV] ,

T̂ = 2µ(T̃ )Ŝ, where Ŝ =
1

2

[gradṼ + grad(Ṽ)T − 2

3
IdivṼ] ,

T = ρṼ ⊗ Ṽ − ρṼ ⊗ VThe term T, 
alled subgrid stress tensor, des
ribes the e�e
ts of the unresolved s
ales and 
an not bedetermined using the resolved �ow �eld. This term must therefore be modeled.Following Vreman et al. [140℄, the �ltered equation for the energy 
an be derived su
h as
∂ρêt

∂t
+ div [(ρêt + p)Ṽ + q̂− T̂ ⊗ Ṽ

]
= −divQ + Ṽ · divT + ρǫ̂ + ρπ̂

+div(T ⊗ Ṽ − T̂ ⊗ Ṽ
)
− div(q − q̂),where

ρêt =
p

γ − 1
+

1

2
ρṼ2,

q =
cpµ(T )

Pr
grad(T ),

q̂ =
cpµ(T̃ )

Pr
grad(T̃ ),

Q =
pV − pṼ

γ − 1
,

ρǫ̂ = T : gradV − T : gradṼ,

ρπ̂ = pdivṼ − pdivV.The quantity êt is the total energy of the resolved �ow �eld. Q is the ve
tor of the pressure-velo
itysubgrid 
orrelation, ρǫ̂ 
orresponds to the turbulent subgrid dissipation and ρπ̂ is the pressure dilatationsubgrid 
orrelation.The �ltering of the Navier-Stokes equations adds terms that have to be modeled. Those termsare the subgrid stress tensor T whi
h is present both in the momentum and energy equations and thetwo other terms Q and ρπ̂. A

ording to Vreman et al. [138℄, the other terms are negle
ted. Most ofsubgrid s
ale models are based on the isotropi
 homogenous turbulen
e 
ontext as the subgrid s
alesare supposed to have an isotropi
 behavior [111, 87℄.



281.9.2 Overview over the subgrid-s
ale modelsMany subgrid s
ale models have been proposed in order to model the e�e
t of the unresolved s
ales.In the following, the most popular models are re
alled and the 
lassi�
ation of the LES strategy real-ized in this work is given at the end of this se
tion. For further le
ture, refer to the book of Sagaut [111℄Models based on the subgrid vis
osityMost of the models are based on the energeti
 interpretation of the e�e
t of subgrid s
ales. Thisis the reason why the subgrid vis
osity 
on
ept is introdu
ed to model the subgrid stress tensor. This
on
ept has an analogy to the turbulent vis
osity of Boussinesq for the Reynolds-Averaged Navier-Stokes (RANS) equations.Introdu
ing νt the subgrid vis
osity in order to model the subgrid stress tensor.
T = 2ρνtS̃ − 2

3
ρk̃sgsI, with ρ̄k̃sgs =

1

2
ρ̄Ṽ′′ ·V′′where ksgs is the subgrid kineti
 energy. This term 
an be modeled, but is often negle
ted as Erleba
heret al. [51℄ states. Finally, the problem redu
es to the estimation of the subgrid vis
osity.Smagorinsky was one of the �rst to propose a model for νt. For in
ompressible �ows, a
ross a tubebundle in nu
lear appli
ations for example [7, 19℄, the Smagorinsky model is well adapted. However,this model introdu
es in general too mu
h dissipation in laminar zones as it assumes the presen
e ofturbulen
e when the �ow has a velo
ity gradient. At the example of the development of a mixinglayer, Vreman et al. [139℄ demonstrated that the Smagorinsky subgrid-s
ale model is less suited fortransition problems. An improved approa
h of this model is the dynami
 Smagorinsky model proposedby Germano et al. [58℄ whi
h adapts the 
onstant of the model lo
ally to the �ow �eld. The modelreprodu
es transitional �ows in a satisfying way but are 
omputationally expensive [27℄.For the terms Q and ρπ̂ in the energy equation, a turbulent heat �ux 
an be introdu
ed throughthe subgrid vis
osity 
on
ept introdu
ed previously

−divQ + ρπ̂ = −div Q,with
Q = −ρνtcp

Prt
gradT̃ ,where Prt is the turbulent Prandtl number. Finally, with this approa
h the �ltered Navier-Stokesequations are similar to the 
lassi
al Navier-Stokes equations with the addition of ρνt to its mole
ular
ounterpart [96℄. The models based on the subgrid vis
osity risk therefore to in
rease arti�
ially thevis
osity of the �uid. In 
on
lusion, the e�e
tive Reynolds number of the �ow is modi�ed [47℄, whi
h
an play an important role for jet noise 
omputations for example [27℄.Model based on de
onvolution



29 An alternative way to determine the subgrid terms is to 
ompute them dire
tly from the �ltered�eld. This is obtained by a de
onvolution of the �ltered �eld for wave-numbers up to the grid 
ut-o�wave-number. This takes into a

ount non-linear intera
tions between s
ales beyond the a

ura
ylimit of the numeri
al s
heme and up to the 
ut-o� wave-number of the grid. This method are knownunder the name of Approximate De
onvolution Method (ADM) and has been proposed by Stolz andAdams [120℄. Furthermore, the energy transfer from resolved to non-resolved s
ales is modeled by arelaxation term that drains energy of the non-resolved s
ales preventing an a

umulation of energy inthe high-frequen
y range.Impli
it LESFor the impli
it LES, the numeri
al dissipation is used to model the e�e
t of the subgrid s
ales. Infa
t, the numeri
al dissipation provides the damping e�e
t of the non-resolved s
ales: the subgrid stresstensor have not to be 
omputed. The numeri
al dissipation is provided 
lassi
ally by a sho
k-
apturings
heme [31℄. Garnier et al. [55℄ have been observed that sho
k-
apturing s
hemes introdu
es too mu
hdissipation even for large s
ales. Additionally, the damping e�e
t of dissipation is not su�
iently se-le
tive and 
an not be 
ontrolled due to the numeri
al 
omplexity of the sho
k-
apturing s
hemes.LES based on expli
it sele
tive �lteringIn this work, the sele
tive �lter used to remove grid-to-grid os
illations su
h as presented in se
tion1.4 plays the role of a eddy vis
osity model by removing properly the �u
tuations at wavenumbersgreater than the s
heme resolution. This method bears some similarities to the Approximate De
on-volution Model (ADM) [120℄. As demonstrated by Mathew et al. [93℄, the e�e
t of 
onvolution withan expli
it sele
tive �lter is similar to the e�e
t of ADM. Moreover, the sele
tive �ltering indu
es aregularization similar to that used in the ADM pro
edure. This approa
h has been applied su

essfullyin various appli
ations [93, 105, 26, 20℄The equations to be solved write
∂ρ

∂t
+ div(ρṼ) = 0

∂(ρṼ)

∂t
+ div(ρṼ ⊗ Ṽ + pI − T̂

)
= 0

∂(ρêt)

∂t
+ div [(ρêt + p)Ṽ + q̂− T̂ ⊗ Ṽ

]
= 0,where

T̂ = 2µ(T̃ )Ŝ

Ŝ =
1

2

[gradṼ + grad(Ṽ)T − 2

3
IdivṼ]

ρêt =
p

γ − 1
+

1

2
ρṼ2
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q̂ = −cpν(T̃ )

Pr
gradT̃Those equations are identi
al to the non-�ltered ones. Therefore, they are written under strong 
on-servation form whi
h is suitable to deal with dis
ontinuities. For simpli�
ation, notations asso
iatedwith the �ltering are dropped in the following.1.10 Non re�e
tive boundary 
onditionsDue to 
omputational limitations the 
omputational domain involving open domain boundaries hasto be kept as small as possible and spe
ial boundary 
onditions have to be used in order to take intoa

ount the trun
ated domain. This is not a trivial task in parti
ularly in CAA where perturbationshave to leave properly the 
omputational domain without generating non-physi
al perturbations [38℄.In CAA there exist two families of non-re�e
tive boundary 
onditions: the 
hara
teristi
 basedboundary 
onditions and 
onditions based on far-�eld expressions of the governing equations. Bothhave been used in this work and are presented in the following.1.10.1 Chara
teristi
-based boundary 
onditionsThe �rst one is based on 
hara
teristi
s developed by Thompson [131, 132℄ and by Poinsot and Lele [99℄.The idea is to re
ast the Euler equations in the 
hara
teristi
 form proje
ted on the dire
tion normalto the boundaries of the 
omputational domain. For a boundary perpendi
ular to the x-dire
tion, the
hara
teristi
 form writes:

∂ρ
∂t + 1

c2

[
L2 + 1

2(L5 + L1)
]

= 0

∂u
∂t + 1

2ρc(L5 − L1) = 0

∂v
∂t + L3 = 0

∂w
∂t + L4 = 0

∂p
∂t + 1

2(L5 + L1) = 0

where




L1 = (u − c)
(

∂p
∂x − ρc∂u

∂x

)

L2 = u
(
c2 ∂ρ

∂x − ∂p
∂x

)

L3 = u∂v
∂x

L4 = u∂w
∂x

L5 = (u + c)
(

∂p
∂x + ρc∂u

∂x

)
.The quantities Li, i = 1..5 are 
alled invariants of the Euler equations system. They remain 
onstantwhen they are propagated in the �ow. L1, L5 des
ribe the upstream and downstream traveling a
ousti
modes, L2 the 
onve
ted entropy mode and L3 and L4 the 
onve
ted vorti
al mode. For a non-re�e
tiveboundary 
ondition in x-dire
tion, all invariants that propagate into the 
omputational domain areset to be zero. The invariants that leave the 
omputational domain are 
omputed with non-
entered�nite-di�eren
e s
hemes. The 
hara
teristi
 equations have been implemented in Cartesian 
oordinatesand applied only to 1-D �ows. Formulations for generalized 
oordinates 
an be found in the work ofKim and Lee [77, 79℄ for instan
e.



311.10.2 Far-�eld boundary 
onditionsThe se
ond approa
h 
onsists in designing boundary 
onditions for far-�eld radiation su
h as proposedby Bayliss and Turkel [15℄. Tam and Webb developed radiation 
onditions by using far-�eld asymptoti
expressions of the Euler's equations linearized around a uniform mean �ow [128℄. Tam and Dong [127℄extended this approa
h to arbitrary mean �ows. A 3-D formulation is given by Bogey and Bailly [28℄.The set of equations solved on the last three points of the 
omputational domain writes
1

Vg

∂

∂t




ρ

u

v

w

p




+ vg

(
∂

∂r
+

1

r

)




ρ − ρ0

u − u0

v − v0

w − w0

p − p0




= 0,where vg is the speed of wave propagation given by
vg = (ū + c̄) · er.The radius 
an be 
omputed on
e a referen
e point (x0, y0, z0) is determined. Thus r 
omputes

r =
√

(x − x0)2 + (y − y0)2 + (z − z0)2In the 
urvilinear domain the derivatives in r-dire
tion are 
omputed by
∂

∂r
=

∂

∂ξ

∂ξ

∂r
+

∂

∂η

∂η

∂r
+

∂

∂ζ

∂ζ

∂rThe quantities ∂ξ/∂r, ∂η/∂r and ∂ζ/∂r are 
omputed by
∂ξ

∂r
= ξx

∂x

∂r
+ ξy

∂y

∂r
+ ξz

∂z

∂r
,

∂η

∂r
= ηx

∂x

∂r
+ ηy

∂y

∂r
+ ηz

∂z

∂r
,

∂ζ

∂r
= ζx

∂x

∂r
+ ζy

∂y

∂r
+ ζz

∂z

∂r
,where

∂x

∂r
=

x − x0

r
,

∂y

∂r
=

y − y0

r
,

∂z

∂r
=

z − z0

r
.This formulation takes into a

ount only a
ousti
 perturbations. A similar formulation 
an befound for vorti
al and entropi
 modes but is not used in this work [128℄.Due to their mono-dimensional 
hara
ter, 
hara
teristi
 based boundary 
onditions are preferredwhen perturbations impinge normally to the boundary 
ondition. In general far-�eld radiation bound-ary 
ondition behave better in the multidimensional 
ase. As they are based on linearized Eulerequations, a drawba
k is that they require a good guess of the mean quantities.



321.10.3 Sponge zoneBoth approa
hes perform very poorly as out�ow boundary 
ondition, when vorti
al stru
tures exitthe 
omputational domain. Thanks to a sponge zone vorti
al stru
tures are damped out before theyrea
h the boundary. The sponge zone used in this work 
onsists of a strong grid stret
hing and of theappli
ation of an expli
it Lapla
ian �lter, introdu
ed smoothly in order to avoid re�e
tions. The �lteris separately applied in ea
h 
oordinate dire
tion after ea
h time iteration. A sponge zone applied ata out�ow boundary perpendi
ular to the x-dire
tion writes
Ui,j,k = Ui,j,k − α

(
xi,j,k − xie,j,k
xib,j,k − xie,j,k)β [

1

4
(Ui−1,j,k + Ui,j−1,k + Ui,j,k−1)

−3

2
Ui,j,k

+
1

4
(Ui+1,j,k + Ui,j+1,k + Ui,j,k+1)

]
,where the parameters α = 0.3 and β = 1.5 ensure a smooth introdu
tion of the �lter [28℄. The integers

ib and ie designate the beginning and the end of the sponge zone respe
tively.Finally a relaxation term as proposed by Poinsot and Lele [99℄ is applied in order to avoid numeri
aldrift of the mean �ow. For instan
e the pressure is updated su
h as
Ui,j,k = Ui,j,k + α(Ui,j,k − Ut), (1.16)where Ut is the target value of the boundary 
ondition. The term is applied to the pressure and thedensity at radiation and out�ow boundaries. Near in�ow boundaries this term is also applied to thevelo
ity �eld. The 
oe�
ient α = 0.005 has to be kept small in order to avoid re�e
tions of a
ousti
waves.1.11 Solid wall boundaryIn this work, arbitrary bodies are dis
retized using body-�tted grids. Body-�tted grids are stru
turedgrids where the body boundary alines with a line in 2-D (or a surfa
e in 3-D), 
hara
terized by a
onstant 
urvilinear 
oordinate. A 2-D body-�tted grid is shown in Figure 1.6 (a) for η = 
onst. Asindi
ated in the sket
h, the slip wall 
onditions used in this work do not require orthogonal meshesand are valid for any arbitrary 
urvilinear grids.In the following the solid wall boundary 
onditions are presented for invis
id �ows where the�ow slips around the solid body. Then, the wall boundary 
ondition for Navier-Stokes equations arepresented where the �ow must satisfy the adheren
e 
ondition and appropriate thermal 
onditions.1.11.1 Slip wall 
onditionsA �ow around an invis
id, non-moving and solid wall has to satisfy the 
ondition u.n = 0 wheren designates the ve
tor normal to the wall as Figure 1.6 (a) illustrates for a wall, expressed by
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η

u
ξ

n = ∇η/|∇η|

Figure 1.6: Body �tted grid for η = const. The 
ontravariant velo
ity V = 0 for the 
ondition for a slip wall.For a no slip 
ondition the �ow velo
ity �eld has to satisfy u = 0 at the wall.
η = 
onst. In general, the normal ve
tor n 
oin
ides with the normalized gradient of η, de�ned by
∇xη = (ηx, ηy, ηz)

T , n =
∇xη

|∇xη| .Thus, the slip wall 
ondition 
an be expressed by the 
ontravariant velo
ity su
h as
V = ∇xη.u = 0.Di�erent implementations of slip wall 
onditions are proposed in the literature [68℄. Most of theapproa
hes, in parti
ular �nite-volume methods, require an estimation of the pressure gradient ∂p/∂η atthe wall in order to determine the pressure at the wall. For a 3-D invis
id �ow, ∂p/∂η 
an be 
omputedby proje
ting the momentum equations onto the wall normal dire
tion. For that, the momentumequations are re
asted in primitive form by using the 
hain rule, the mass 
onservation equation andthe metri
 invariants (1.8):

ρ
∂u

∂t
+ ρU

∂u

∂ξ
+ ρV

∂u

∂η
+ ρW

∂u

∂ζ
+ ξx

∂p

∂ξ
+ ηx

∂p

∂η
+ ζx

∂p

∂ζ
= 0,

ρ
∂v

∂t
+ ρU

∂v

∂ξ
+ ρV

∂v

∂η
+ ρW

∂v

∂ζ
+ ξy

∂p

∂ξ
+ ηy

∂p

∂η
+ ζy

∂p

∂ζ
= 0,

ρ
∂w

∂t
+ ρU

∂w

∂ξ
+ ρV

∂w

∂η
+ ρW

∂w

∂ζ
+ ξz

∂p

∂ξ
+ ηz

∂p

∂η
+ ζz

∂p

∂ζ
= 0.These equations are proje
ted on the wall normal dire
tion and leads to:

ρ
∂V

∂t
+ ρU

∂V

∂ξ
+ ρV

∂V

∂η
+ ρW

∂V

∂ζ

+(ξxηx + ξyηy + ξzηz)
∂p

∂ξ
+ (ζxηx + ζyηy + ζzηz)

∂p

∂ζ
+ (η2

x + η2
y + η2

z)
∂p

∂η

−
[
ρU(u

∂ηx

∂ξ
+ v

∂ηy

∂ξ
+ w

∂ηz

∂ξ
) + ρV (u

∂ηx

∂η
+ v

∂ηy

∂η
+ w

∂ηz

∂η
) + ρW (u

∂ηx

∂ζ
+ v

∂ηy

∂ζ
+ w

∂ηz

∂ζ
)

]
= 0.
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u

ξ

η

ζ

un = u. ∇η
|∇η|utFigure 1.7: Update of velo
ities at a 3-D slip wall (η = const). The �uid is for
ed to be tangential to wall.All terms multiplied by V or its derivative in ξ-dire
tion ∂V/∂ξ vanish at the wall. The derivativeof the pressure along η 
an be expressed by terms that only 
ontain derivatives in the ξ-dire
tion and

ζ-dire
tion:
∂p
∂η

∣∣∣
V =0

= −1
η2

x+η2
y+η2

z

[
(ξxηx + ξyηy + ξzηz)

∂p
∂ξ + (ζxηx + ζyηy + ζzηz)

∂p
∂ζ

−ρU(u∂ηx

∂ξ + v
∂ηy

∂ξ + w ∂ηz

∂ξ ) − ρW (u∂ηx

∂η + v
∂ηy

∂η + w ∂ηz

∂η )
]
.The �rst two bra
ket terms would vanish for (
urvilinear) orthogonal grids, as ∇xξ.∇xη = ∇xζ.∇xη =

0. The last two bra
ket terms relate the pressure gradient to the �uid velo
ity and to the 
urvatureof the wall. Those terms also vanish when the �uid is at rest or the wall is plane. Finally, thedetermination of ∂p
∂η is quite 
ompli
ated and a simpli�ed wall treatment has been adapted in thiswork.For the wall η = 
onst., the �uxes in the ξ- and ζ-dire
tion are solved by 
entered s
hemes. The�ux in η-dire
tion is 
omputed �rst by setting V = 0 and derivated by applying non-
entered (orby applying 
entered with redu
ed sten
ils) �nite-di�eren
e s
hemes. Additionally, the velo
ities areupdated after every time step, by subtra
ting from the velo
ity ve
tor u the normal velo
ity ve
tor
omponent un: uwall = u− un = ut,where ut is the tangential ve
tor su
h as represented in Figure 1.7.The no-slip boundary 
ondition is su

essfully applied in purely a
ousti
 test 
ases (with �uid inrest) as well as the 
omputation of a 3-D transoni
 invis
id �ow in a 
onvergent divergent nozzle.



351.11.2 No-slip wall 
onditions with heat �uxA vis
ous �ow around a solid body has to ful�ll the adheren
e 
ondition uwall = 0. The additionalvis
id �uxes of the Navier-Stokes equations 
ontribute to the pressure gradient ∂p
∂η su
h as:

∂p

∂η
=

∂p

∂η

∣∣∣∣
V =0

+
1

η2
x + η2

y + η2
z

·
{

ηx
∂

∂ξ

[
1

J
(ξxτxx + ξyτxy + ξzτxz)

]

+ ηy
∂

∂η

[
1

J
(ηxτxy + ηyτyy + ηyτyz)

]

+ ηz
∂

∂ζ

[
1

J
(ζxτxz + ζyτyz + ζzτzz)

]}
.The pressure derivative in the η-dire
tion is not required sin
e the momentum 
onservation equationsare not needed to be solved for wall points. Only the mass and energy 
onservation equations aresolved. The wall �ux term for the η-dire
tion be
omes:

∂F

∂η
=




ρ ∂
∂η

(
V
J

)

0

0

0
γ

γ−1p ∂
∂η

(
V
J

)
− ∂

∂η [ 1
J (ηxEv,5 + ηyFv,5 + ηzGv,5)]


Note that the total energy ρet at the wall is proportional to the pressure p as the velo
ities vanish

ρet = p/(γ − 1). Advan
ing the energy equation in time gives dire
tly the pressure at the wall.For isothermal walls the imposed temperature is pres
ribed and ρ 
an be 
omputed by the idealgas law using the pressure p, obtained by the energy equation. When a heat �ux q is imposed, the
omponents of the ve
tor q = (qx, qy, qz)
T are expressed as follows:q = qnFor adiabati
 walls the latter term is set to be zero. The temperature is not predi
ted 
orre
tlyby setting the heat �ux normal to the wall equal q for long time simulations and the solution tends todiverge. Therefore the temperature is updated in a su
h a way that the identity q.n = q is ful�lled.In this work only, adiabati
 walls are 
onsidered and the gradient of the temperature writes usingFourier's law

∇xT.∇xη = 0.Now, ∂T/∂η 
an be determined expli
itly using
∂T

∂η
=

1

∇xη∇xη
(Tξ∇xξ∇xη + Tζ∇xζ∇xη) .Finally, the temperature at the wall is updated su
h as

Ti,j,k =
1

a0

(
∂T

∂η

∣∣∣∣
i,j,k

−
N−1∑

r=1

arTi,j+r,k

)
,



36where ar are the 
oe�
ients of a non 
entered �nite di�eren
e s
heme of sten
il width N . For stronglynon-linear problems the use of high-order non-
entered �nite-di�eren
e s
hemes exhibited stabilityproblems. In this work only �rst-order approximations are therefore used:
Ti,j,k = Ti,j+1,k −

∂T

∂η

∣∣∣∣
i,j,kThe adiabati
 wall boundary 
onditions are validated in 
hapter 2 for a plane Couette �ow as well asfor the �ow around the 
ylinder.1.12 Multidomain approa
h for 
omplex geometriesDue to the 
omplexity of industrial 
on�gurations and the requirement to handle moving body prob-lems, the overset or Chimera grid approa
h is used in this work. First introdu
ed by Benek et al. [18℄this approa
h uses a set of overlapping stru
tured grids to de
ompose the domain of interest.The Chimera grid s
heme o�ers the following advantages: a) the use of stru
tured grids allowsthe use of e�
ient blo
k stru
tured �ow solvers and the asso
iated boundary 
onditions; b) the use ofinterpolation for 
ommuni
ation between overlapping grids allows grids to be moved relative to ea
hother. Although the 
ommuni
ation between overlapping grids must be reestablished whenever a gridis moved, this is 
omputationally less expensive than the re
omputation of the whole grid as it is oftendone for unstru
tured grids. The pro
ess of establishing 
ommuni
ation between overlapping grids isreferred to as grid assembly. The Chimera approa
h was originally developed for se
ond-order a

uratesolvers. Delfs [43℄ who was the �rst using the overset grid te
hnique for CAA 
on
luded that high-order interpolation has to be used in order to maintain the global a

ura
y of the high-order s
hemes.As high-order interpolation involves larger sten
ils and therefore larger overlap regions, the order ofinterpolation is a very important parameter in the generation of overset grids and its 
omplex datastru
ture is done by a so 
alled grid assembly software.There exists several teams working about this problem sin
e the last two de
ades. A ni
e review
an be found in [100℄. The �rst and more widely used 
ode is 
alled PEGASUS5 [109℄. The gridassembly has been automated and a minimum amount of user input is required to generate overset grids.PEGASUS5 is used by Sherer to generate high-order overset grids using a prepro
essing tool 
alledBELLERO [116℄. A re
ent software is the SUGGAR 
ode whi
h stands for Stru
tured, Unstru
tured,Generalized overset Grid AssembleR. SUGGAR illustrates that the Chimera grid approa
h is notrestri
ted to stru
tured grids any more. This shows the new trend to 
ombine stru
tured grids withunstru
tured grids resulting in so 
alled hybrid grids. S
hwartzkop� et al. [114℄ work on this methodsmixing ADER methods for the unstru
tured grids and DRP s
hemes for the stru
tured grids.Another assembly software mentioned here is Overture. Overture is an obje
t-oriented 
ode frame-work for solving partial di�erential equations developed by W. Henshaw [35℄ at the Center for AppliedS
ienti�
 Computing of the Lawren
e Livermore National Laboratory (LLNL). The library is writtenin C++ and has Fortran kernels for 
omputationally intensive tasks. The Overture software 
onsistsof the grid generator ogen, the �ow solver overBlown and the visualizer plotStu�.



37 The grid generator is able to 
reate overlapping grids in 2-D and 3-D for interpolation of arbitraryorder. An example of an overset topology is given in Figure 1.12 showing a 
ylinder embedded ina Cartesian grid. The grid has been generated by Overture for fourth-order expli
it �nite di�eren
es
hemes requiring a 5 point sten
il. In order to re
over overall fourth-order a

ura
y, fourth-orderinterpolation polynomials involving a 4 point sten
il have to be used. In order to avoid an interpolationsten
il to extend into the zone where the blo
k re
eives interpolated data from other grids, a su�
ientlylarge overlap region has to be generated as shown in Figure 1.12. Additionally, Overture features theuseful task of hole 
utting, 
utting out useless points that are 
ut by the 
ylindri
al grid. To makeOverture to 
ut holes in the grids of demand a hierar
hy between the 
omponent grids have to bespe
i�ed by the user. Overture prepares a mask array marking all interpolation, 
omputational andhole points whi
h 
an be exploited by the solver.Contrary to the �rst two softwares, Overture is freely available and 
an be downloaded withoutrestri
tions from the LLNL homepage. Although Overture is not as optimized as PEGASUS5, itswell de�ned algorithms are very stable [100℄. Overture is well do
umented and e�ort is done for thegeneration of grids starting from CAD-�les in order to minimize the user input.Sin
e no stable parallel version of Overture exists, only the grid assembly abilities are exploitedin this work. A new 
ode, 
alled SAFARI (Simulation Aéroa
oustique de Fluides Ave
 Resonan
es etIntera
tions), has been developed that prepares an overset grid, generated by Overture, for parallel
omputation. SAFARI has been written in Fortran90 in order to bene�t of derived types like stru
turesin order to handle more 
omplex data stru
tures. The programming model used for SAFARI is referredto single pro
ess multiple data (SPMD). This means that the same sour
e is 
ompiled and exe
utedon ea
h pro
essor while manipulating its own data. Communi
ation between the pro
essors is realizedby using fun
tions issued from the MPI-library.The box bounded by the solid line in Figure 1.13 illustrates s
hemati
ally the tasks that 
an bedone by SAFARI su
h as it is developed in this work. First an overset grid is 
reated by the userin form of a s
ript �le with the extension .
md. This �le 
ontains informations about the geometryof ea
h 
omponent grid, their hierar
hy, the order of interpolation between the 
omponent grids andthe order of dis
retization used on ea
h 
omponent grid. In order to 
reate an overlapping grid the.
md �le has to be 
ompiled by ogen, that 
reates and saves the geometry and the interpolation datain a .hdf �le (HDF4). SAFARI reads the .hdf �le using fun
tions provided by Overture. Ea
h single
omponent grid is then subdivided into blo
ks that are distributed to a single pro
essor. It distributesthe interpolation data 
omputed by ogen a

ording to the domain de
omposition in order to parallelizethis 
omputationally expensive operation.To treat Fluid Stru
ture Intera
tion (FSI) problems, SAFARI will be able to ta
kle with grids thatmove relative to ea
h other due to moments and for
es that a
t on solid bodies. For that it will bene
essary to 
all grid assembler fun
tions during the time integration loop. This task should be easyto implement thanks to the 
on
eption of Overture as library.
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Figure 1.8: Example of an overset grid generated by ogen. The 
ylindri
al grid is embedded in a Cartesian grid.The bla
k squares designate where information has to be ex
hanged in order to 
ompute a solution.Those values have to be interpolated as the grid points do not 
oin
ide in general.1.13 Communi
ation between pro
essorsThe solver for vis
id and invis
id �ows developed in the previous se
tions uses an expli
it single-time stepping algorithm. Therefore grid points on ea
h pro
essor may be updated to the next timelevel simultaneously. In order to 
al
ulate the spatial derivatives via expli
it �nite-di�eren
e s
hemesonly near pro
essor domain boundaries data must be ex
hanged. For invis
id 
omputations the �owvariables (ρ, ρu, ρv, ρw, ρet)
T must be transfered. Vis
ous 
omputations require additionally the vis
ousterms and the heat 
ondu
tion terms to be passed by MPI. As double pre
ision is needed a fairly amountof data has to be transfered.There are two kinds of 
ommuni
ations implemented in the 
ode: Inter-grid 
ommuni
ation that
onsists of an interpolation pro
edure and a MPI send-re
eive pro
edure. Inter-blo
k 
ommuni
ationsare handled by MPI routines only, sin
e the points at the blo
k boundaries 
oin
ide.1.13.1 Inter-Grid 
ommuni
ationInter-grid 
ommuni
ation is a�e
ted by high-order interpolation s
hemes. Sherer and S
ott [116℄ testedhigh-order interpolation methods. They 
onsidered a generalized Lagrangian polynomial method 
on-sisting of optimized or non-optimized methods in expli
it and 
ompa
t form. Furthermore they 
om-pared them with interpolation methods using B-splines. They 
on
luded that 
lassi
al Lagrangian



39
grid Ngrid 1 grid 2

grid assembly

forces/moments

comp_grid.cmd

displacement

SAFARI

block 1 block 3 block n−1

solver 1 solver 1 solver 2 solver N solver N

block 2 block n

Figure 1.9: S
hemati
 diagram of SAFARI: box bounded by�� des
ribes the state of SAFARI su
h as developedin this work; box bounded by - - - des
ribes the future state of SAFARI when FSI problems areaddressed.expli
it interpolation methods o�er the best 
ompromise between a

ura
y, robustness and 
omplexityin implementation. Although B-Splines methods 
an be 
onstru
ted independently from the interpola-tion sten
il size for arbitrary orders of a

ura
y, they are not preferred by Sherer and S
ott as for thosemethods derivatives at the interpolation sten
il extremities have to be spe
i�ed. Interpolation s
hemesoptimized for higher wave number were proposed by Tam [124℄ and Sherer and S
ott [116℄. The latterstated that optimized Lagrangian interpolation performs well in the high wave number range but 
ande
rease in a

ura
y for lower wave number. Therefore high-order expli
it Lagrangian polynomials areused in this work.Lagrangian polynomials are implemented in SAFARI as follows. At a point P , the value φP of afun
tion φξ,η whi
h is known in the 
urvilinear 
oordinate system (ξ, η) is given in 2-D by
φP =

Nξ−1∑

i=0

Nη−1∑

j=0

Rη
i R

ξ
j φIP +i,JP +j where Rξ

i =

Nξ∏

m = 0

m 6= i

(δξ − m)

(i − m)
and Rη

j =

Nη∏

m = 0

m 6= j

(δη − m)

(j − m)
,where Nξ and Nη are the number of interpolation points in the dire
tions ξ and η respe
tively, asdisplayed in Figure 1.10 (a). The point (IP , JP ) is the �rst point at the lower, left 
orner of theinterpolation sten
il. The quantities δξ and δη are the 
urvilinear 
oordinates of the point P relativeto the point (IP , JP ). The interpolation 
oe�
ients Rη

i and Rξ
j are 
omputed before entering in thetime integration loop and are stored in a 1-D array of length Nξ + Nη.In the literature the quantities δξ and δη are often 
alled o�sets. The a

urate 
omputation ofthese o�sets is 
ru
ial for the overall a

ura
y of the interpolation. Overture 
omputes the o�setswith se
ond-order a

ura
y, when it does not know the inverse mapping fun
tion ξ = ξ(x) expli
itly.Sin
e the test 
ases 
omputed in the validation 
hapter 2 of this work involve grid geometries withmoderately skewed grids or simple geometries like 
ylinders and uniform grids, the high-order a

urate
omputation of the o�set have not been implemented in this work. If high-order a

urate o�sets are
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δξ
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ξ
(Ip, Jp)

η

ξFigure 1.10: Example of a 2-D interpolation sten
il in (a) physi
al spa
e and (b) 
omputational spa
e. Thepoint P on the grid needs to be updated via interpolation using data of the grid. In 
omputational spa
e the interpolation sten
il is uniform. (Ip, Jp) is the lower left point of theinterpolation sten
il, Nξ, Nη is the sten
il width in ξ- and η-dire
tion and δξ, δη are the 
urvilineardistan
es between the point P and (Ip, Jp), the lower left sten
il point.required, Sherer [116℄ extended the inverse mapping problem for high-order s
hemes proposed by Beneket al. [18℄. Another method has been proposed by Guénan� [63℄.Note, that the maximum formal order of Lagrangian polynomials is related dire
tly to the lengthof the interpolation sten
il Nξ. A multidimensional analysis of Lagrangian polynomials is given, forexample by Tam and Hu [124℄ and Guénan� [63℄.All data ne
essary for the interpolation are 
omputed by Overture in a prepro
essing step and areasso
iated to the re
eiver grid. However interpolation should be done by the donor grid in order tominimize the amount of data to be transfered between the pro
essors. Thus, the re
eiver grid sendsall ne
essary data to the donor grid before time integration is started. This is not a trivial task sin
ea grid is divided in a arbitrary number of blo
ks. This task is parallelized in SAFARI, resulting in aminimized 
omputational overhead.1.13.2 Inter-Blo
k 
ommuni
ationSAFARI divides a 
omponent grid evenly in ea
h 
oordinate dire
tion ξ, η, ζ in blo
ks of grid points
Nblo
k,ξ, Nblo
k,η, Nblo
k,ζ . Figure 1.12 shows an example of a 2-D grid subdivided in Nblo
k,ξ = 3 blo
ksin ξ-dire
tion and Nblo
k,η = 2 blo
ks in η dire
tion. Periodi
 boundary 
onditions are also handledwith inter-blo
k 
ommuni
ations routines.The number of blo
ks per grid is estimated by a simple algorithm that requires as input themaximum number of grid points that should be 
omputed on one pro
essor. Under the assumptionthat all points need the same amount of operations, the algorithm determines the number of blo
ksneeded for one grid in order to not ex
eed the maximum number of grid points and by minimizing the
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ξ

η

blo
k1,1

points to interpolateinterpolation points blo
k1,2

blo
k2,1

blo
k2,2Figure 1.11: Example of a 2-D 
ylindri
al grid subdivided in Nblo
k,ξ × Nblo
k,η = 2 × 2 blo
ks. Interpolationpoints re
eive data from blo
ks belonging to the ba
kground grid (not represented in this Figure).blo
k1,2 and blo
k2,2 also have to interpolate data and send it to the blo
ks of the ba
kgroundgrid. blo
k1,1 and blo
k2,1 do not 
ontribute to the grid 
ommuni
ation.number of 
ommuni
ation points determined by
A
om = (Nblo
k,ξ − 1) · Nη · Nζ + (Nblo
k,η − 1) · Nξ · Nζ + (Nblo
k,ζ − 1) · Nξ · Nη,where Nξ, Nη, Nζ are the total number of grid points in ea
h dire
tion of 
omponent grid.Figure 1.12 gives a s
hemati
al view of the layout on a lo
al 
omputational blo
k used by a singlepro
essor. This shows that there are overlap regions on ea
h side of the lo
al domain where informationmust be obtained from neighboring pro
essors. Likewise, this pro
essor would also need to send somedata to these neighbors. For the �nite di�eren
e solver used in this work, where the spatial operatorsare applied in ea
h dire
tion separately no update of data at the 
orners is ne
essary. However it ispossible that a multidimensional interpolation sten
il lies within the 
orner region as shown in Figure1.13. If this is the 
ase, SAFARI also updates in the 
orner region.
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Figure 1.12: Inter-blo
k 
ommuni
ation in a 2-D grid with periodi
 boundary 
ondition in η-dire
tion subdividedin Nblo
k,ξ × Nblo
k,η = 3 × 2 blo
ks.
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orner region when interpolation sten
il in
ludes points of thisregion.
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Figure 1.14: S
alability of SAFARI. TN denotes the time needed to perform the task using N pro
esors. Speed-up 
urve for the 
ase with 
onstant total number of grid points Ntot: ◦ update only regions normalto boundaries; + additional update of 
orner regions.1.13.3 S
aling test for inter-blo
k 
ommuni
ationIn this se
tion s
aling tests of the parallelization is provided for the examples of a 
ubi
 grid 
ontaining
Ntot = 100 × 100 × 100 = 1 × 106 grid points. The grid is generated by Overture and 
omputed bySAFARI, using Npro
s = i3, i = 1, 2, 3 pro
essors. This s
aling test is very demanding be
ause theratio between the number of 
ommuni
ation points and the number of 
omputation points be
omesvery 
onstraining and gives an idea of the limit of grid points per pro
essor not to ex
eed. The resultswere obtained on the 
luster Tantale of the CEA (CP 4000 DL 585 quadri pro
essors AMD Opteron1.8 GHz, Network In�niband with a laten
e 5µs, 1 GByte.s−1). The time of one iteration required forone grid point on a single pro
essor is 8.6 × 10−6 s.Figure 1.14 shows the parallel performan
e of the 
ode 
ompared with the ideal linear speedup
urve for the �rst test 
ase. Up to ten pro
essors the 
ode performs well. For 
ases with more thanten pro
essors the a
tual performan
e deviates from the ideal be
ause a large amount of data has tobe ex
hanged due to the use of large 11-point 
omputational sten
ils. For 3-D 
omputations, usingless then 1 × 105 per pro
essor should be avoided.As already mentioned only data normal to the 
ommuni
ation boundaries have to be ex
hangedas displayed in Figure 1.14. However if a interpolation point is situated near a 
orner so that theinterpolation sten
il involves points in the 
orner regions data has to be updated. Figure 1.14 illustratesthat for the 3-D 
ase the parallel 
ode performs very poorly due to a large 
ommuni
ation overheadwhen the 
orners are updated. Therefore the update of the 
orners has to be avoided whenever it ispossible.The s
aling test reveals that 
ommuni
ations has to be minimized and optimized in the futureespe
ially for massively parallel 
omputations. This 
an be a
hieved by non-blo
king 
ommuni
ationsand a more sophisti
ated load balan
ing taking into a

ount boundary 
onditions. Anyways the mul-tidomain approa
h permits to a

ess appli
ations with a very large number of grid points. SAFARI isportable on several massively parallel platforms like HP Proliant, Bull 3045 and BlueGene.



441.14 Con
lusionThe numeri
al algorithm SAFARI has been presented in this 
hapter. The asso
iated �ow solver isa high-order �nite di�eren
e solver for the purpose of solving Euler and Navier-Stokes equations onstru
tured grids. The implemented sele
tive �lter removes grid-to-grid os
illations. When solvingNavier-Stokes equations, the sele
tive �lter plays the role of a sub-grid model by removing properlythe not well resolved turbulent s
ales. In order to treat �ows with sho
ks, a Jameson-type dissipationmodel has been implemented in the 
ode. The asso
iated wall boundary 
onditions and non re�e
tiveboundary 
onditions have been spe
i�ed in this 
hapter.To ta
kle with 
omplex geometries using a stru
tured grid solver, a high-order a

urate oversetgrid approa
h has been implemented in the 
ode. The 
ode is parallelized using the MPI library andallows to a

ess to high-Reynolds appli
ations.



Chapter 2Validation of SAFARIIn the following, several validation test 
ases are reported. These test 
ases involve 
lassi
al problemsen
ountered in 
omputational aeroa
ousti
s as well as in 
omputational �uid dynami
s. The test 
asesare destinated to 
he
k if the multi-domain approa
h and the sho
k-
apturing te
hnique implementedin this work are able to re
over the a

ura
y of the high-order �nite-di�eren
e s
hemes. Sin
e the test
ases involve also walls and open domain boundary 
onditions, the implemented boundary 
onditionsare also validated in this 
hapter.2.1 Conve
tion of a vortex through interpolation zonesThe passage of the wake generated by a 
ylinder through an overlap region generates spurious a
ousti
waves as it has been observed by Desquesnes et al. [45℄. In this work, a strong in�uen
e of thepolynomial order on the a

ura
y and on the generation of spurious a
ousti
 waves have been observedwhen vorti
al stru
tures are involved. The 
onve
tion of a vortex by an invis
id uniform mean �owthrough a overset region is therefore 
onsidered �rst. By varying the interpolation order, the minimumorder that is required to re
over the a

ura
y of the optimized �nite-di�eren
e s
hemes is determinedin the following.The overlapping grid, generated by ogen, is displayed in Figure 2.1. It is 
omposed of three uniformgrids 
onne
ted by two overlap regions. The left and the right grids 
ontain Nξ ×Nη = 51× 51 points.The 
enter grid 
onsists of Nξ × Nη = 51 × 52 and is shifted by half a grid size length in x-dire
tionsu
h as displayed in Figure 2.2 (a). This avoids interpolation points to 
oin
ide with grid points inthe zone where the vortex passes.The vortex is de�ned by the initial 
onditions using dimensionless variables:
ρ = 1

ρu = ρ

{
M + y ǫ exp

[
− log (2)

α2
(x2 + y2)

]}

ρv = ρ x ǫ exp

[
− log (2)

α2
(x2 + y2)

]



46

Figure 2.1: Overlapping grid generated by ogen. The grid is 
omposed of three uniform grids 
onne
ted by twooverlap regions of variable width.
ρet =

1/γ

γ − 1
+

1

2
ρ(u2 + v2),where M = 0.5 is the freestream Ma
h number, ǫ = 0.01 is the vortex strength and α = 3∆x theGaussian half width. The Fourier transform of the swirl velo
ity (the transversal velo
ity 
omponentalong the x-axis at y = 0) is given by:

v̂(k) = −2i

√
π

a

k

4a
exp

[
−k2

4a

]
,where a = log (2)/α2 
ontains the Gaussian half width. The normalized power spe
tral density isplotted in Figure 2.2 (b). A dominant peak at k∆x =

√
2a ≈ 2π/16 is observed. Most of the spe
tral
ontent is lo
ated within the well resolved wave-number domain of the optimized �nite-di�eren
es
hemes.The radiation boundary 
onditions of Tam and Dong [127℄ are applied to all boundaries. Forall 
omputations the CFL number is �xed to CFL = 0.25. The simulations are 
arried out for 800iterations, the time required to 
onve
t the vortex 100∆x.Five simulations are done varying the order of interpolation Norder = 2, 4, ...10. Figure 2.3 displaysa sequen
e of the instantaneous pressure �eld when the vortex, 
hara
terized by a pressure minimum,meets the �rst overlap region. Figures 2.3 (a), (b) and (
) are obtained using Lagrangian polynomialsof order Norder = 2, 6 and 10 respe
tively. The a
ousti
 wave just leaving the 
omputational domainat the �rst and se
ond instant is due to an adaptation of the pressure �eld to the velo
ity �eld atthe beginning of the simulation. It is a transitional artefa
t and was also observed by Bogey [25℄.The sequen
e (a) using the se
ond-order interpolation, strong a
ousti
 disturban
es are generated and
ontaminate the physi
al solution. Those parasite waves are signi�
antly redu
ed when using sixth-order Lagrangian polynomials (sequen
e (b)) and disappears when a tenth-order interpolation s
hemeis used (sequen
e (
)).In order to quantify the generation of spurious a
ousti
 perturbation the residual pressure for the
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Figure 2.2: (a) Detail view of the 
enter of an overlapping region (y = 0). The interpolation points do notmat
h with the interpolation data. (b) Normalized spe
tral 
ontents of the transversal velo
ity
omponent of the initial vortex; dominant wave length, maximal resolution ofoptimized 11-points �nite di�eren
e s
hemes k∆x ≈ π/2 [30℄.left grid is 
omputed using the L2 norm:
Lp =

√√√√√ 1

NξNη

Nξ,Nη∑

i,j

p′i,j.The residual obtained for the left grid is plotted in Figure 2.4 (a) as a fun
tion of the number ofiterations. The solid line representing the pressure residual obtained with the single blo
k 
omputationis 
onsidered as a referen
e solution. The symbols in Figure 2.4 (a) represent the pressure residualobtained with the overlapping grid for varying polynomial orders. The �rst peak observed duringthe �rst 200 iterations for all setups is asso
iated to the transitional pressure pulse. The de
reaseof the residual pressure, indi
ates that the pressure pulse leaves the 
omputational domain withoutany spurious re�e
tions. When the vortex hits the overlap zone, the residual pressure obtained withse
ond-order polynomials shows a signi�
ant in
rease and 
on�rms the generation of a
ousti
 wavesobserved in Figure 2.3 (a). Using fourth-order polynomials the re�e
tion are only visible in a zoom onthe last 600 iterations given in Figure 2.4 (b). For orders higher than 6 the residual pressure evolveslike in the single-blo
k 
omputation and the re�e
tions are negligible.The error of the aerodynami
 �eld is estimated by 
omputing the L2 norm of the di�eren
e be-tween the exa
t swirl velo
ity and the swirl velo
ity when the vortex has rea
hed its �nal position at
x = 100 ∆x. The error is 
omputed along the x-axis at y = 0 su
h as:

Lv =

√√√√ 1

Nξ

Nξ∑

i

vi|2y=0.The values for Lv are given in Table 2.1 and are plotted in Figure 2.5, normalized by the single-blo
kresult. Figure 2.5 reveals that for polynomial orders higher than 6 the a

ura
y of the numeri
alalgorithm is governed by the spatial and time integration errors and the interpolation error be
omes
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Figure 2.3: Iso-
ontours of the instantaneous pressure �elds 
omputed the left grid during the passage of thevortex through the overlapping region using Lagrangian polynomials of order (a) Norder = 2; (b)
Norder = 6 and (
) Norder = 10.

Norder 2 4 6 8 10 single blo
k
L2 × 104 7.637 1.630 1.164 1.104 1.097 1.096Table 2.1: L2 norm of error in swirl velo
ity after Nit = 800 iterations.negligible. In order to redu
e the e�ort in CPU and storage, the order of interpolation polynomials islimited to eighth-order for 2-D problems and to sixth-order for 3-D problems in this work.2.2 Di�ra
tion of monopolar a
ousti
 sour
e by a 
ylinderThis test 
ase is issued from the se
ond CAA workshop [1℄ and serves to 
he
k if sixth-order Lagrangianpolynomials are su�
ient to re
over the a

ura
y of the high-order �nite-di�eren
e s
hemes when onlya
ousti
 perturbations are involved. The numeri
al setup is represented in Figure 2.6. The test 
asesolves the 2-D Euler equations in non-dimensional form. The referen
e length s
ale is the diameter ofthe 
ylinder d. A Gaussian shaped sour
e, applied to the pressure after ea
h Runge Kutta iteration,
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Figure 2.4: (a) Time evolution of the residual pressure Lp in left grid. (b) Detailed view on residual pressure
Lp; Lp of single blo
k 
omputation as referen
e solution; solution obtained with oversetgrid using interpolation of order + Norder = 2, ◦ Norder = 4, Norder = 6,
△ Norder = 8, ▽ Norder = 10
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Figure 2.5: L2 norm of the error of the swirl velo
ity normalized by the L2 obtained for the 
omputation on asingle blo
k.is pla
ed at (xs, ys) = (4, 0):
S = ǫ sin (ωt) exp

[
ln (2)

(x − xs)
2 + (y − ys)

2

b2

]
,where the frequen
y is given by ω = 8π and the Gaussian half-width by b = 0.2. Originally, the test 
aseproposes to solve the linearized Euler equations. For the non-linear Euler equations a su�
iently smallsour
e strength ǫ has to be introdu
ed, in order to avoid non-linear e�e
ts. In this work ǫ = 1.× 10−6has been 
hosen. For initial 
onditions air at rest at the pressure p0 = 1/γ and with the density ρ0 = 1is taken. The wave length asso
iated to the sour
e is λ = c0/4 = 0.25. Sin
e the wave length is of thesame order as the sour
e, the sour
e is 
onsidered to be non 
ompa
t.A �rst simulation is done using a single 
ylindri
al grid in order to validate for a
ousti
 problemsthe slip wall 
ondition developed in se
tion 1.11. The grid 
onsists of Nr ×Nθ = 781× 751 = 5.9× 105grid points and is spa
ed uniformly in r- and θ-dire
tion. The number of points in azimuthal dire
tion
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Figure 2.6: Con�guration for the di�ra
tion test 
ast: the time harmoni
 monopolar sour
e is pla
ed at pointS. The dire
tivity D(θ) will be measured on a ar
 at r/d = 7.5, π/2 ≤ θ ≤ π.
Nθ is 
hosen to ensure a wave to be resolved by 7 points at r/d = 7.5. The number of points in radialdire
tion Nr is taken to respe
t a ratio ∆r/∆θ = 1.5 at the 
ylinder wall.Figure 2.7 (a) shows the simulated �u
tuating pressure �eld. The a
ousti
 waves 
oming from thenon 
ompa
t sour
e generate a di�ra
tion �eld. A silent zone behind the 
ylinder 
an be observed.The detailed view on the 
ylinder near region is given in Figure 2.8 (a).The dire
tivity given by

D(θ, r) = r
1

T

T∫
p′(θ, r)2 dtis 
omputed on a ar
 with r/d = 7.5 and π/2 ≤ θ ≤ π and is 
ompared to the analyti
al solution ofthe problem [1℄. In Figure 2.9 the dire
tivity D(θ, r) obtained by 
omputation is 
ompared with theanalyti
al solution. The 
omputed 
urve and the analyti
al 
urve 
ompare well.In a se
ond simulation, the same test 
ase will be done using the overset-grid approa
h. By makingseveral 
omputations with di�erent order of interpolation, the optimum interpolation order for thepresent numeri
al algorithm is determined.The overset grid is 
omposed of 2 grids: one 
ylindri
al grid and one uniform grid. The uniformgrid is generated to resolve a
ousti
 wave with 7 points per wavelength ∆x = ∆y = λ/7 = 1/28. Theuniform grid is extended −10 ≤ x, y ≤ 10. The 
ylindri
al grid is spa
ed uniformly in azimuthal andradial dire
tion and is limited by the outer radius ra/d = 1.5. In the radial dire
tion the grid lengthis 
hosen to be λ/13 and the number of grid points in azimuthal dire
tion is taken to ensure thatthe aspe
t ratio of the radial and azimuthal grid spa
ing is ∆r/∆θ = 1.1. The overset grid 
ontains

3.2 × 105 grid points, 45% less grid points than used for the single-blo
k 
omputation.Figure 2.7 (b) shows the �u
tuating pressure �eld for the overset grid using eighth-order interpo-lation polynomials. The di�ra
ted �eld is very similar to the single-blo
k 
omputation. The detailedview on the 
ylinder near region is given in Figure 2.8 (b). The a
ousti
 waves propagates throughthe overlap region without generating spurious re�e
tions.In Figure 2.10 the quantity D(θ, r) along a line de�ned by θ = π/2 and 0.5 ≤ r/d ≤ 10 is 
omparedwith the analyti
al solution for the interpolation order of 2 and 6. Using se
ond-order polynomialsleads to large dis
repan
ies in the near 
ylinder region. For polynomial orders higher than six, theerror made by the interpolation pro
edure tends to zero.
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Figure 2.7: Di�ra
tion of pressure sour
e by 
ylinder: pressure �u
tuations �eld (
olor s
ales ≤ 10−10 Pa) (a)obtained by single blo
k 
omputation; (b) obtained using overset grid approa
h and sixth-orderinterpoltion polynomials.(a) (b)

Figure 2.8: Di�ra
tion of pressure sour
e by 
ylinder: Detailed view pressure �u
tuations �eld around the 
ylin-der (
olor s
ales ≤ 10−10 Pa) (a) obtained by single blo
k 
omputation; (b) obtained using oversetgrid approa
h and sixth-order interpolation polynomials. The solid line presents the boundary ofthe 
ylindri
al grid.In this se
tion, the overset approa
h has been su

essfully applied and the results 
ompare verywell with the analyti
al solution. The test 
ases reveals that sixth-order Lagrangian polynomials aresu�
ient when a
ousti
 perturbations are involved in order to maintain the global a

ura
y of the11-point �nite-di�eren
e s
heme.
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ρe, pe, Te, ue

ρw, Tw, qw = 0, uw = 0Figure 2.11: Sket
h of the plane 
ouette �ow setup: the lower wall is adiabati
 and at rest and the upper wallmoves with a velo
ity ue and is isothermal. Linear velo
ity pro�le for in
ompressible �owsVelo
ity pro�le for 
ompressible �ow with temperature dependent vis
osity.2.3 Plane 
ompressible Couette �owFollowing Gloerfelt [60℄ who 
omputed a Poiseuille �ow in 2-D, a 
ompressible plane 
ouette �ow is
onsidered. The test 
ase allows to validate the implementation of the vis
ous and heat 
ondu
tionterms as well as thermal boundary 
onditions, reported in se
tion 1.11. At the same time this test
ase introdu
es some physi
al 
on
epts en
ountered in 
ompressible vis
ous �ows.The �ow 
on�guration is shown in Figure 2.11. Air �ows between two parallel plates, where theupper plate moves at a 
onstant velo
ity ue relative to the lower plate. The other boundary 
onditionsare as shown. The temperature at the upper and lower plate are designated Te and Tw, respe
tively. Aheat �ux is imposed at the lower wall and the upper wall is isothermal. The 2-D �ow is fully developedin x-dire
tion so that ∂/∂x = 0 and is steady ∂/∂t = 0. The 
ontinuity equation writes
∂(ρv)

∂y
= 0.The momentum equations give

∂τxy

∂y
=

∂

∂y

(
µ

∂u

∂y

)
= 0,

∂p

∂y
= 0.Thus, shear stress and pressure in wall normal dire
tion are 
onstant. For in
ompressible �ows, thevis
osity is often taken to be 
onstant [119℄ and integration leads to a linear pro�le. For 
ompressible�ows, variations in temperature produ
e variations in vis
osity. The temperature distribution needstherefore to be known in order to integrate the momentum equation. This temperature is determinedby means of the energy equation that redu
es to

∂

∂y

(
µu

∂u

∂y
+ k

∂T

∂y

)
= 0,showing that for the Couette �ow the di�usion of kineti
 energy and heat 
ondu
tion are in equilibrium.The equation is integrated from the lower wall outwards:

µu
∂u

∂y
+

µcp

Pr

∂T

∂y
= −qw.



54By noting that the shear stress is 
onstant and by assuming a 
onstant Prandtl number, the equationis re
asted in
∂

∂y

(
CpT +

1

2
Pr u2

)
= −Pr

qw

τw

∂u

∂yand is integrated to obtain a relation between the temperature and the velo
ity distribution.
Cp(T − Tw) +

1

2
Pr u2 = −Pr

qw

τw
u.The lower wall is taken adiabati
 (qw = 0) whi
h allows to determine the temperature at the lowerwall dire
tly by the expression

Tw = Te +
1

2

Pr u2
e

Cp
.The adiabati
 wall temperature is 
alled the re
overy temperature and is for the stationary wall equalto the total temperature. When the Prandtl number is not equal to 1 the total temperature of theouter �ow is not re
overed entirely at the lower wall in form of heat. The momentum and energyequations are integrated numeri
ally from the lower wall outwards to the upper wall leading to anexa
t temperature and velo
ity distribution. The temperature dependen
y of the vis
osity is takeninto a

ount by Sutherland's law given by (1.15).In order to study the grid 
onvergen
e, three 
omputations on a 2-D uniformly spa
ed grid are
arried out with di�erent numbers of grid points. The number of grid points in x-dire
tion is kept
onstant Nx = 10, whereas the grid points in y-dire
tion are taken Ny = 21, 50 and 100. Note thatfor the 
oarsest grid, only ten points are 
omputed with the 
entered �nite-di�eren
e s
heme. Theboundary points are 
omputed using the non-
entered �nite-di�eren
e s
hemes and sele
tive �ltersproposed by Berland et al. [21℄.The 
onditions at the upper wall are taken to be ambient pe = 1.0 × 105 Pa and ρe = 1.2kg.m−3.A Reynolds number based on the height H and the upper velo
ity ue, and the vis
osity measured atthe upper wall is Re = 800. The Ma
h number is taken to be Me = 2.33. Adiabati
 no-slip boundary
onditions and 
onstant temperature 
onditions reported in se
tion 1.11 are applied at the lower walland upper wall respe
tively. Periodi
 boundary 
onditions are applied in x-dire
tion.The 
omputation is initialized using the linear in
ompressible velo
ity pro�le and a 
onstant pres-sure and temperature pro�le at ambient 
onditions. The 
omputations are 
arried out until the densityresidual rea
hes |ρn+1−ρn|/ρn ≤ 10−6. The 
onvergen
e rate for the three 
ases are provided in Figure2.12 (a). Note for all 
omputations, the time step is equal and is governed by the 
onstant grid sizein the x-dire
tion.The 
omputed velo
ity pro�les are given in Figure 2.12 (b). In agreement with the exa
t solution,the 
omputed velo
ity pro�les exhibit a di�eren
e due to the variation of vis
osity. The 
oarse gridsolution reveals some dis
repan
ies. By re�ning the grid, the 
omputed solution 
onverges to the exa
tsolution. The same tenden
y 
an be observed for the temperature pro�les given in Figure 2.13 (a). Itin
reases and 
onverges to the re
overy temperature near the wall. The error, de�ned by the absolutedi�eren
e between the exa
t and 
omputed re
overy temperature, are plotted in Figure 2.13 (b) as afun
tion of the grid size. The error s
ales with the grid size at the power of 6.2.
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Figure 2.12: (a) Time evolution of density residual; (b) Comparison of velo
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t solution. The straight line u/Ue = y represents the linear velo
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Figure 2.13: (a) Comparison of temperature pro�les 
omputed with di�erent grid sizes ( ∆y = 1/20,
∆y = 1/50, ∆y = 1/100) with the exa
t solution . The upper solid linesrepresents the distribution of the total temperature T0 = T + 0.5u2/Cp; (b) Di�eren
e between
omputed and exa
t adiabati
 wall temperature Tw.The 
omputation of the plane Couette �ow demonstrates that 
ompressible vis
ous and thermalintera
tions governed by the Prandtl number are predi
ted 
orre
tly by the numeri
al 
ode. Theimplementation of the adiabati
 boundary 
onditions is robust and predi
ts the re
overy temperature
orre
tly.2.4 Flow around 
ylinder at low Reynolds and low Ma
h numberIn this se
tion, the simulation of a 2-D �ow around a 
ylinder at low Reynolds and Ma
h number ispresented. This �ow 
on�guration has been studied by Marsden et al. and Inoue and Hatakeyama



56[92, 72℄ using a single 
ylindri
al grid. The �ow is solved using the overset-grid approa
h and 
omparedwith the 
omputed solution of the literature [72℄.The diameter of the 
ylinder is D = 2.0 × 10−5 m and the �ow Ma
h number is M∞ = 0.33. Forair at ambient 
onditions p∞ = 1.0 × 105 Pa and ρ = 1.2 kg.m−3 the Reynolds number based on the
ylinder diameter is 
omputed ReD = 150. In the experiments, no transition and no 3-D e�e
ts areobserved [144℄ for this Reynolds number and the problem 
an be simulated using a 2-D mesh.The grid generated by ogen is shown in Figure 2.14. It 
onsists of 5 
omponent grids: the gridaround the 
ylinder, the grid in the wake of the 
ylinder, a highly stret
hed grid at the out�ow boundaryand a far-�eld grid in order to propagate the a
ousti
 �eld. The minimum grid size is governed by theboundary layer that develops along the 
ylinder wall. A grid size in radial dire
tion of ∆r = D/36is used. With this grid resolution the boundary layer near the stagnation 
ontains 4 grid points. Inazimuthal dire
tion 251 uniformly spa
ed grid spa
ing are used. The grid size of the wake grid has beenadapted to 
ylindri
al grid in order to avoid great variation of 
ell sizes in the wake of the 
ylinder.The wake grid spreads in y-dire
tion and mat
hes the height of out�ow. The out�ow grid is highlystret
hed with exponential fun
tions provided by ogen.The grid size for the a
ousti
 grid is determined as follows. A Strouhal number of StD = f D/U∞ =

0.18 is expe
ted, giving a wavelength of λa = (1/M∞ − 1)/St D = 11.3D for upstream travelingperturbations. The 11-point optimized s
heme is able to propagate perturbations over far distan
eswith 7 points per wavelength imposing a grid size of ∆x = λa/7 = 1.6D. The dimensions of the far-�eld grid are 
hosen su
h as 5 wavelengths �t between the 
ylinder and the 
omputational boundariesin upstream dire
tion.Additionally, one intermediate grid is used in order to avoid large variation of grid sizes in theoverlap zones due to the large disparity between the grid around the 
ylinder and its wake and the
oarse far-�eld grid. A detailed view on the near 
ylinder region provided in Figure 2.15 shows the
ylindri
al grid and the wake grid embedded in the intermediate grid. The grid 
hara
teristi
s aredetailed in Table 2.2.At the wall adiabati
 non-slip 
onditions are applied and a simulation time 
orresponding to 100vortex shedding periods is a�e
ted. The 
hosen CFL = 0.4 results in a time step of ∆t = 4.28× 10−10s.
Nx Ny Ntot Npro
sCylinder grid 251 60 7530 2Wake grid 945 164 14089 11Out�ow grid 359 235 10545 8Far �eld grid 168 168 9408 3Intermediate grid 429 133 11411 5Table 2.2: Grid 
hara
teristi
s for the 
omputation of the �ow around a 
ylinder. The total number of 3.4×105grid points have been 
omputed by Npro
s = 29 pro
essors.Figure 2.16 shows the instantaneous plot of the pressure �u
tuation �eld p − p∞. The dipole
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Figure 2.14: Overset grid generated by ogen. The grid is 
omposed of 5 
omponent grids: 
ylindri
al grid(magenta), wake grid (red), out�ow grid (blue), intermediate grid (green), a
ousti
 grid (blue).
hara
ter of the noise sour
e is observed. The presen
e of a mean �ow leads to the 
ompression ofa
ousti
 wave length in the upstream dire
tion, similar to the Doppler e�e
t. Figure 2.17 shows theinstantaneous vorti
ity �eld. The Von Kármán vortex street is visible.The mean pressure 
oe�
ient de�ned by
Cp =

p − p∞
1/2ρ∞v2

∞is 
ompared to the solution obtained by Inoue et al. [72℄ in Figure 2.18. The solution 
ompares wellwith the solution obtained by Inoue. Some dis
repan
ies 
an be observed in the stagnation point andon the forward fa
ing 
ylinder side where the �ow separates.The drag 
oe�
ient based on the pressure for
es is 
omputed su
h as Cd = 1.25 and 
ompares wellwith the experimental values Cd = 1.32. The error is 5.3% and is asso
iated to the 
oarse grid usedfor the grid in the 
omputation. Slight deviation of 5% 
an be observed for the Strouhal number thatis found to be 0.193 whi
h is 
aused to by the underresolution of the �ow.
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Figure 2.15: Overset generated by ogen. The detailed view on the 
ylinder region shows 
ylindri
al grid embed-ded in the wake grid. Additionally, an intermediate grid is added in order to avoid large 
hangesin grid size. Bla
k markers visualize interpolation points.

Figure 2.16: Instantaneous pressure �u
tuations �eld (gray s
ales |p′| ≤ 200 Pa).



59

Figure 2.17: Instantaneous vorti
ity �u
tuations �eld (
olor s
ales 0.1 ≤ |ω| ≤ 6.6 × 106 s−1).
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Figure 2.18: Pressure 
oe�
ient along the 
ylinder surfa
e: �� solution provides by Inoue et al. [72℄; - - - -
omputed solution.



602.5 1-D Sho
k/Entropy Wave Intera
tionThe next example 
onsiders the 1-D invis
id �ow proposed by Shu and Osher [117℄ as a model problemfor sho
k-turbulen
e intera
tion. This test 
ase, whi
h in
orporates both �ne-s
ale and strong nonlinearfeatures, 
onsists of a moving Ma
h 3 sho
k wave intera
ting with a density �u
tuation. The domainextends from −5 ≤ x ≤ 5. The initial 
ondition is spe
i�ed as follows.
[ρ, u, p] =





[3.857143, 2.629369, 10.333333℄ for x < −4,[1 + 0.2 sin (5x), 0, 1]℄ for x ≥ −4The solution is advan
ed in time until t = 1.8 and the density distribution obtained with the presentnumeri
al algorithm on a 1601 point mesh is displayed in Figure 2.19 as well as the initial 
ondition.A 
ourant number of CFL = 0.1 is used in order to minimize the error form the Runge-Kutta s
heme.This solution is 
onsidered as the referen
e solution.Figures 2.20 (a) and (b) show the solution obtained on a 401 points mesh and 201 points meshrespe
tively. Three 
omputations have been 
arried out with di�erent �ltering strategies. One 
ompu-tation is done using the 
entered sele
tive �lter s
heme alone. Two further 
omputations are 
arried outapplying the sho
k 
apturing �lter presented in se
tion 1.6 after ea
h time iteration with the Jamesondete
tor and with the modi�ed Jameson dete
tor based on the 11-point sele
tive �lter.The solution 
omputed with the sele
tive �ltering only 
ompares well with the referen
e solutionon both grids even if a small dispersion error is observed. The use of the sho
k-
apturing �lter leads toa slight underestimation of the density perturbations whi
h be
omes more obvious for the 
oarse mesh
omputation. The solution obtained with the modi�ed Jameson dete
tor leads to lower amplitudeerror due to a smaller peak value of the dete
tor in the sho
k region.This test 
ase shows that the numeri
al s
heme is able to treat problems with strong non-linearities.Using the sele
tive �lter is su�
ient to ensure stability and to provide an high-order a

urate solution.An in�uen
e of the sho
k-
apturing �lter 
an be observed, but 
an be minimized by using the modi�edJameson dete
tor. Comparisons with 
omputations found in the literature show that the implementeds
heme is 
ompetitive with more sophisti
ated sho
k-
apturing �lters based on MUSCL or WENOs
hemes for example 
onsidered re
ently by Visbal and Gaitonde [137℄ or Lo et al. [89℄.
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Figure 2.19: 1-D entropy wave/ sho
k intera
tion problem: initial 
ondition and solution at
t = 1.8 obtained on 1601 point mesh.
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Figure 2.20: 1-D entropy wave/sho
k intera
tion problem at t = 1.8: (a) 401 point mesh; (b) 201 point mesh;referen
e solution, sele
tive �ltering, sele
tive �ltering + sho
k 
apturing,sele
tive �ltering + sho
k 
apturing + modi�ed Jameson dete
tor.



622.6 1-D sho
k/sound intera
tion in a 
onvergent divergent nozzleThe �ow in a 
onvergent-divergent nozzle is simulated. The test 
ase is taken from the third CAAworkshop [2℄ and proposes to solve the 1-D Euler equations with variable 
ross-se
tion. The equationsin 
onservative form 
an be written as
∂(AQ)

∂t
+

∂(AE)

∂x
+H = 0, (2.1)where the ve
tor Q = [ρ, ρu, ρe]T 
ontains the unknowns, E = [ρu, ρu2 + p, (ρe + p)u]T is the �uxve
tor and H = dA/dx × [0, p, 0]T is the sour
e ve
tor that takes into a

ount the variation of the
ross-se
tion area. The equations are non-dimensionalized by the �ow properties at the du
t in�ow.In the same way, the 
ross-se
tion area A(x) is s
aled by its value at the in�ow and is given by:

A(x) =





1.0 − 0.661514 exp [−(ln 2)(x/0.6)2], x < 0

0.536572 − 0.198086 exp [(−(ln 2)(x/0.6)2 ], x ≥ 0.The equations are solved on a uniform grid that 
ontains 351 points and the solution is advan
ed intime with CFL=0.1 in order to make the error of the time integration s
heme negligible. Non-re�e
tingboundary 
onditions are implemented using 
hara
teristi
 boundary 
onditions at the in�ow and theout�ow. The Ma
h number is �xed at the in�ow of the du
t (Min = 0.2006533). Imposing weaklythe pressure at the out�ow (pout = 0.6071752) using using a relaxation term given in equation (1.16),leads to a normal sho
k in the divergent part of the du
t.Three simulations are 
arried out using the sele
tive �lter only, using the sele
tive �lter in 
ombina-tion with the sho
k 
apturing �lter with the 
lassi
al Jameson dete
tor and using the modi�ed Jamesondete
tor based on the 11-point sele
tive �lter. Figure 2.21 gives the mean �ow quantities for the three
omputations. Using no sho
k-
apturing terms generates overshoots around the dis
ontinuities. Theyare asso
iated with the 
lassi
al Gibbs phenomenon, whi
h is typi
al for high-order methods. The useof the sho
k-
apturing �lter removes the overshoots and the sho
k is well 
aptured. The overshoots forthe modi�ed Jameson dete
tor are more present than with the 
lassi
al Jameson dete
tor indi
atingthat less dissipation is introdu
ed.On
e the mean �eld is 
onverged after about 100000 iterations, a harmoni
 a
ousti
 perturbation(10−5 order of magnitude, ω = 0.6π) is superimposed at the in�ow in order to study sho
k-soundintera
tion. Figure 2.22 displays the �u
tuating pressure �eld for the three 
ases. All solutions 
omparewell with the solution given by Hixon [2℄. The overshoots observed in the mean �ow pro�le when nosho
k-
apturing s
heme is used have no impa
t on the a
ousti
 signal. Furthermore, no in�uen
eof the low-order sho
k-
apturing terms 
an be observed. This is not surprising be
ause the a
ousti
perturbations are resolved with about 25 mesh points per wavelength.Pushing the test 
ase to its limits reveals the in�uen
e of the sho
k-
apturing term. For that,the 
omputations are repeated involving a signal whi
h 
ontains only 7 points per wavelength. The�u
tuating �eld is given in Figure 2.23. Provided that 4 points per wavelength are the a

ura
y limit ofthe �nite-di�eren
e s
heme, the solution obtained without sho
k-
apturing is 
onsidered as a referen
e
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Figure 2.21: A
ousti
 wave/sho
k intera
tion problem in a 
onvergent divergent nozzle: mean properities
(ρ, p, u) obtained (a) with sele
tive �lter, (b) with sele
tive �lter + sho
k 
apturing �lter, (
)with sele
tive �lter + sho
k 
apturing �lter + modi�ed Jameson dete
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Figure 2.22: A
ousti
 wave/sho
k intera
tion problem in a 
onvergent divergent nozzle: �u
tuating pressureobtained (a) with sele
tive �lter, (b) with sele
tive �lter + sho
k 
apturing �lter, (
) with sele
tive�lter + sho
k 
apturing �lter + modi�ed Jameson dete
tor.solution. Applying the sho
k-
apturing leads to the damping of the signal downstream of the sho
k.The 
omputation using the sho
k-
apturing �lter with the modi�ed Jameson �lter gives a slightly lessdamped signal thanks to less dissiption that is introdu
ed in the sho
k region.The 
omputation of sound/sho
k wave intera
tions in a 1-D divergent 
onvergent nozzle has shownthat the present algorithm is able to deal with problems involving several orders of magnitude.
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Figure 2.23: A
ousti
 wave/sho
k intera
tion problem in a 
onvergent divergent nozzle: �u
tuating pressure�eld for the high frequen
y 
ase obtained (a
ousti
 wave is resolved with approximately 7 pointsper wave length) (a) with sele
tive �lter, (b) with sele
tive �lter + sho
k 
apturing �lter, (
) withsele
tive �lter + sho
k 
apturing �lter + modi�ed Jameson dete
tor.



652.7 Invis
id �ow in 3-D 
ir
ular sho
k tubeThe transoni
 �ow of se
tion 2.6 is now studied in a 3-D 
ir
ular du
t. The grid generated by ogen isrepresented in Figure 2.24 (a). For 
ylindri
al grids a singular point arises in the 
enter (r = 0). Theoverset-grid approa
h 
an easily avoid su
h singularity problems by de
omposing the geometry in two
omponent grids.A �rst axis-symmetri
 grid with varying 
ross-se
tion is generated. The 
enterline at r = 0 isomitted by this grid. The external radius is given by rex(x) =
√

A(x)/π and internal radius by
rin = 0.3rex(0). A se
ond Cartesian is embedded at the 
enterline of the 
ylindri
al grid as displayedin Figure 2.24 (b). The overlap is built for a interpolation of order 6. The 
ylindri
al grid 
ontains
301 × 50× 80 ≈ 1.2 × 106 points and the Cartesian grid 301 × 31× 31 ≈ 0.3 × 106 points. At wall theslip 
ondition of se
tion 1.11 is applied and 
hara
teristi
 boundary 
onditions are applied at the in-and out�ow.The simulation is 
arried out for 1 × 105 iterations with a CFL number of CFL = 0.9. The non-linear sho
k-
apturing �lter des
ribed in se
tion 1.6 is applied, in order to maintain numeri
al stability.The 
omputation is performed on 30 pro
essors.The Ma
h number �eld 
omputed in a x − r plane is represented in Figure 2.25. The iso-
ontoursof the Ma
h number mat
h very well in the overlap region. The normal sho
k passes the overlap regionwithout any spurious os
illations. The mean �ow properties u, ρ, p along the 
enterline are 
omparedin Figure 2.26 with the analyti
al solution of the 1-D problem given by Hixon [2℄. They are in goodagreement. In parti
ular, the sho
k lo
ation is 
orre
tly predi
ted indi
ating the good 
onservativityof the s
heme.
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(
)

Figure 2.24: Grid of the 
ir
ular 
onvergent divergent nozzle: (a) Side view; (b) Se
tional view at x = −5 :bla
k and gray squares indi
ate the interpolation points of the Cartesian grid and the 
ylindri
algrid respe
tively; (
) Grid of the 
ir
ular 
onvergent divergent nozzle: 3-D view
Figure 2.25: Ma
h number pro�le in a x − r plane for −2 ≤ x ≤ 2. Iso-
ontours of the Ma
h number

M > 1 , M = 1, M < 1.
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xFigure 2.26: Centerline pro�les of u, p ρ (top down). The symbols 
orrespond to the numeri
al solution andthe solid line to the analyti
al solution.2.8 Con
lusionIn this 
hapter, SAFARI has been validated with various 
lassi
al test 
ases given in the literature.The test 
ase of the 
onve
tion of a vortex through an overlap region has shown that the a

ura
y ofthe optimized �nite-di�eren
e s
heme 
an be re
overed using at least sixth-order or better eighth-orderLagrangian polynomials. The 
ase of the di�ra
tion of the monopolar sour
e by a 
ylinder demonstratesthat sixth-order polynomials are su�
ient when only a
ousti
 perturbations are involved. Using ogenthe user is able to spe
ify polynomial order for ea
h inter-grid 
ommuni
ation, this study allows tominimize 
ommuni
ation 
osts due to interpolation by using very high-order interpolation in non-linearzones su
h as wakes or sho
k regions and to use smaller interpolation sten
ils linear regions withoutpassing vorti
al stru
tures.The se
ond part of validation is 
on
erned to the sho
k treatment. For that a Jameson-typedissipation model has been implemented. This s
heme has very good sho
k-
apturing properties. Theexample of a 1-D entropy/ sho
k wave intera
tion reveals that the nonlinear �ltering terms risk to dampout small s
ale perturbations. The same is observed for a
ousti
/sho
k wave intera
tion problems. Thedissipation 
an be minimized by using a modi�ed Jameson dete
tor based on high-order dissipationterms. The 
omputational e�
ien
y of the Jameson-type �lter s
hemes have made them to the preferedsho
k treatment in this work.Using the overset-grid approa
h 
omplex geometries 
an be treated now in a autmated manner.In this work, the grid assembler pa
kage ogen has been used to generate the 
omplex data stru
turerequired for the overset-grid approa
h. This is demonstrated for the 2-D low Reynolds number �ow aswell as for the 
omputation of a 3-D 
ir
ular sho
k tube. The latter example shows the grid �exibiltythat SAFARI o�ers now.
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Chapter 3Aeroa
ousti
 simulation of a du
ted 
avity�owThe 
on�guration of the present du
ted 
avity has been studied in the 
ontext of an industrial appli-
ation. Tonal noise has been measured on the power steam line of a nu
lear power station and the
avity lo
ated at the bottom of a gate valve, as shown in Figure 1 (b), has been identi�ed as the mainnoise sour
e. This 
avity has two spe
i�
 
hara
teristi
s from more 
lassi
al 
avities studied in theliterature: it is 
on�ned in a du
t and partially 
overed.Due to the geometri
al 
omplexity of the 
avity, a simpli�ed planar model has been �rst studiednumeri
ally and experimentally by Lafon et al. [81℄. The retained geometry is reported in Figure 3.1.The 
avity is a shallow 
avity sin
e the aspe
t ratio is L/h = 2.5 > 1 [112℄.Con�ned 
avities 
an not be only found in pipe systems with �ow 
ontrol devi
es but also in organpipes or �utes for instan
e. They generate dis
rete tones that 
an be either disturbing when theyex
ite the natural modes of pipe stru
ture or desirable for musi
al instruments.In this 
hapter the simulation of a 
on�ned 
avity is presented. First, the physi
s of the 
avity �owis summarized and the experimental results of the studied 
avity 
on�guration are dis
ussed. Then,the results of the simulation are presented and validated with the experiments.3.1 Introdu
tion to 
avity �owCavity �ow 
an be found in many appli
ations and many experimental studies about the self-sustainedos
illations of 
avity �ow have been 
arried out in the last 50 years. Review arti
les are provided byRo
kwell and Naudas
her [108℄, Komerath et al. [80℄, Colonius [37℄ and Tadeka and Shieh [122℄.The self-sustained os
illations is based on a feedba
k me
hanism that 
an be de
omposed in twophases. First vorti
al stru
tures are triggered at the upstream angle of the 
avity. Due to Kevin-Helmholtz instability, vorti
al stru
tures develop and grow in the turbulent or laminar shear layerabove the 
avity.Vorti
es are 
onve
ted over the 
avity and intera
ts with the downstream angle. The impa
t of theeddies on the downstream angle leads to perturbations that trigger further instabilities at the upstream
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Figure 3.1: Du
ted 
avity: sket
h of the geometry and notations h = 0.02 m, d = 0.05 m, H = 0.137 m,
L = 0.073 m and W = 0.16 m. The aspe
t ratio of the 
avity is L/D = 2.5. U0 is the free streamvelo
ity.
avity angle resulting in phase-lo
ked frequen
ies. Note that for in
ompressible �ows (water or air atsmall Ma
h number M < 0.3) the feedba
k loop 
loses rather via a hydrodynami
 me
hanism. Usingthe Biot and Savart law, vortex deformation 
an be asso
iated with a perturbation at the upstream
avity angle [9℄. For 
ompressible �ows (M > 0.3), the wavelength of a
ousti
 perturbations is of thesame order as the 
avity length L. The instability is triggered by an a
ousti
 wave that is generatedby the impa
t of the vorti
al stru
ture on the downstream angle. The emission of a
ousti
 waves havebeen visualized by Karam
heti [76℄.Many models have been designed to predi
t the frequen
ies of the self-sustained os
illations. Mod-els for the estimation of the amplitude are rare due to the number of parameters that 
omes intoplay. For example, Karam
heti [76℄ found that self-sustained os
illations o

ur for 
avities ex
eed-ing a 
hara
teristi
 length L and that the frequen
ies s
ale with the re
ipro
al of the 
avity length

L. Furthermore the in
oming boundary layer thi
kness has an in�uen
e on the sound pressure level.For laminar boundary layers, the amplitude of the resonan
e frequen
ies are in
reased. For turbulentboundary layers, the spe
tral 
ontent features more peaks. Sahoria [112℄ found that os
illations of
avity �ows o

ur above a 
ertain value of the ratio L/δθ, where δθ is the momentum thi
kness of thein
oming boundary layer. The in�uen
e of width W has been examined by Ahuja and Mendoza [3℄and found small in�uen
e of the width on the pressure spe
tra. However Tra
y and Plentovi
h [133℄
on�rm this only for deep 
avities with L/D < 2. For shallow 
avities L/D > 2, they observed anin
rease of peak levels for small width W . The same authors found that for subsoni
 
avity �ows thebroadness of the peak of the pressure spe
tra in
reases whi
h is due to a de
rease of �ow 
oheren
e.Cavity �ow at supersoni
 speeds are not 
onsidered in this work. For further le
ture refer to the workof Heller and Bliss [66℄ and Lar
hevêque [85℄ for example.In the past, several analyti
al investigations about 
avities have been done. The most important
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Figure 3.2: Vortex 
onve
tion and a
ousti
 wave propagation in the 
avity at two di�erent times t = 0 and
t = t′.model is the one proposed by Rossiter [110℄ whi
h is the basis of many more sophisti
ated models.Rossiter model:Rossiter [110℄ was the �rst to propose a model to estimate the frequen
y of the self-sustainedos
illations. The observation that the peaks in the pressure spe
tra are not related harmoni
ally, gavethe motivation for this model. A relation for the frequen
ies 
an be found by 
onsidering separatelythe two 
omponents of the feedba
k me
hanism at two di�erent time instants t = 0 and t = t′.Figure 3.2 shows the vortex 
onve
ted with the speed κU0 in the shear layer and the a
ousti
 wavetraveling in upstream dire
tion with the speed of sound ca in the 
avity. At instant t = 0, a pressurewave is emitted when the vortex impa
ts on the downstream edge. Introdu
ing arbitrarily a time lagbetween the impa
t of the vortex and the emission of sound, the vortex has thus been 
onve
ted overa distan
e of γvλv from the 
avity leading edge. At instant t = 0, the length between the pressurewave that is lo
ated nearest to the upstream angle and the downstream angle 
ontains ma a
ousti
wave lengths λa. At instant t = t′, this pressure wave has rea
hed the upstream angle and triggers thedevelopment of a new vortex. The length between the new vortex triggered at the leading edge andthe vortex that has been emitted the a
ousti
 wave at t = 0 is mvλv, where λv is the distan
e betweentwo vorti
es.Two relations 
an be found in order to determine the 
hara
teristi
 wavelengths of the vortex



72
onve
tion and the a
ousti
 wave propagation:
mvλv = L + γvλv + κU0t

′and
L = maλa + cat

′.Eliminating t′, leads to
mvλv − L − γvλv

κU0
=

L − maλa

c0
.De�ning a 
hara
teristi
 frequen
y for the vorti
al mode and the a
ousti
 mode f = κU0/λv = ca/λagives

f =
U0

L

mv + ma − γv

M0
c0
ca

+ 1
κ

.For subsoni
 
avities, the sound 
elerity in the 
avity and in the free-stream are nearly the same(c0 = ca). De�ning a mode number su
h as nR = ma + mv, gives the Rossiter's formula:
f =

U0

L

n − γv

M0 + 1
κ

(3.1)The Rossiter's formula is a very e�
ient way to estimate the resonan
e frequen
ies of 
avities insubsoni
 and transoni
 regime. The formula 
ontains two parameters κ and γv; κ ≡ Uc/U0 representsthe dimensionless 
onve
tion velo
ity and γv is the time lag between the impa
t of the vortex and theemission of an a
ousti
 wave, a parameter that is di�
ult to a

ess experimentally.The fa
t that the feedba
k 
y
le is 
losed with an upstream traveling a
ousti
 wave is not valid forin
ompressible and low Ma
h number �ows where the feedba
k is rather based on a pure hydrodynami
phenomenon. Experien
es have shown that for the present 
avity �ow at M ≈ 0.2, the Rossiter's modelis well adapted to predi
t the peak frequen
ies. A short overview over some extensions of the Rossiter'smodel are given in the following.Classi
al Extension:More sophisti
ated models have been proposed in the literature for the supersoni
 and subsoni
regime. Blo
k [22℄ in
ludes the e�e
ts of the 
avity depth L/D as a model parameter and proposes avalue for λv. The frequen
ies 
an be estimated by the formula
fn =

U0

L

n

M(1 + 0.514
L/D ) + 1

κTam and Blo
k [126℄ propose to in
lude the analyti
al developments of a �nite shear layer in orderto take into a

ount the ex
itation me
hanism at the separation point. The model works well for lowMa
h number regimes from 0.2 < M < 0.4.The model of Sahoria [112℄ takes into a

ount the theory of instabilities of a thi
kening mixinglayer and derives a 
riteria to determine the dominant mode. Ro
kwell [107℄ re�nes the model in orderto predi
t the resonan
e frequen
ies based on the 
hara
teristi
s of the mixing layer.
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al SimulationsMany numeri
al studies have been 
arried out sin
e the �rst simulation in 1977 of Borland [32℄based on the resolution of the 2-D Euler equations. Further simulations in
luding turbulent e�e
tsusing Reynolds Averaged Navier-Stokes equations in 2-D [145℄ and 3-D [104℄ followed. Sinha [118℄noti
es that the use of averaged equations lead to an underpredi
tion of the sound pressure levels dueto an overestimation of the turbulent vis
osity that damps pressure os
illations.This observation initiated the use of Large Eddy Simulation for 
avity �ows. The �rst Very LargeEddy Simulation (VLES) has been made by Sinha [118℄. Other 
omputations followed using zonalhybrid methods that 
ombine RANS methods to model the in
oming boundary layer and LES methodsfor the shear layer zone [8℄.A further way to simulate 
avity �ow is the Dire
t Numeri
al Simulation (DNS) of the Navier-Stokesequations. Being very demanding in 
omputation power and storage, DNS is limited to small Reynoldsnumber �ow and have been simulated in most of the 
ases in 2-D [39, 62℄ and more re
ently in 3-D byBrès and Colonius [33℄. Cavity �ow simulations have also been 
arried out using the Latti
e Boltzmannmethod [103℄ for subsoni
 �ows for the purpose of automotive appli
ations. Another numeri
al exampleis the use of 2-D Euler equations for the 
omputation of the �ow over deep 
avities [44℄.Lar
hevêque et al. [85, 84℄ demonstrates that LES is a very promising way to re
over the physi
sof 
avity �ow at higher Reynolds numbers. Several 
omputations of 
avities �ows with di�erentaspe
t ratios L/D have been 
omputed and reprodu
e the experimental results of Forestier [53℄ in animpressive way. In the same way, LES 
an reprodu
e the passive 
ontrol of 
avity �ow using a spanwiserod su
h as demonstrated by Daude [42℄.The 
on�ned and partially 
overed 
avity 
onsidered here has already been studied in 2-D by using ase
ond-order TVD-Euler 
ode [81, 83℄. Rossiter frequen
ies have been re
overed, but turbulent aspe
ts
ould not be 
onsidered due to the invis
id 2-D simulation. Gloerfelt [61℄ 
omputed the �ow using2-D Navier-Stokes equations. He also 
ould re
over the frequen
ies and demonstrated the eviden
eof the aeroa
ousti
 
oupling between 
avity and du
t modes. Dis
repan
ies in amplitude have beenexplained by artefa
ts due to the resolution of 2-D Navier-Stokes equations for this high-Reynoldsnumber appli
ation.3.2 Experimental observationsIn the following, the results of experiments are re
alled. The experimental data have been providedby the Institut Aérote
hnique [81, 5℄ for the partially 
overed and du
ted 
avity, shown in Figure 3.1.3.2.1 In�uen
e of the upper wallFor un
on�ned 
avities, the self-sustained os
illations remain weak for �ows at low Ma
h numbers. Fordu
ted 
avities, the possible 
oupling between Rossiter Modes (RM) and a
ousti
 Du
t Modes (DM)
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Figure 3.3: Frequen
y of dominant pressure spe
tra peaks (△, ◦) measured inside the 
avity 
ompared totheoreti
al ones as a fun
tion of the Ma
h number U0/c0:�� theoreti
al Rossiter mode for nR =

1, 2, 3, 4; �� a
ousti
 transverse du
t modes nD = 1, 2 based on du
t height H ; - - - - a
ousti
transverse du
t modes nD = 2 based on du
t height and 
avity height H + h.
an lead to high amplitude os
illations even at low speeds.Pressure signals have been measured by using a mi
rophone lo
ated at the bottom 
enter of the
avity [81, 5℄. The measured spe
tra exhibit peaks that 
an be asso
iated with 
avity modes. Plotsof frequen
y and pressure level of these peaks as fun
tions of the nominal Ma
h number M0 = U0/c0where c0 denotes the sound velo
ity at referen
e 
onditions (p0 = 1.0 × 105 Pa and ρ0 = 1.2 kg.m−3),are shown in Figure 3.3 and 3.4 respe
tively.The theoreti
al 
avity modes 
an be estimated by Rossiter's formula given by equation (3.1), where
γv = 0.25, U0/Uc = κ = 0.57. They are plotted in Figure 3.3 for nR = 1, 2, 3, 4. The transverse DMare given by

Std = fd
d

U0
=

nDc

2Hd

d

U0
,where nD is the DM number and Hd the height of the wave guide. The DM frequen
ies are plotted inFigure 3.3 for nD = 1, 2 and for the du
t height, Hd = H. Additionally, the frequen
y of the se
ondtranverse DM based on the sum of the du
t height and the 
avity height, Hd = h + H, is plotted inFigure 3.3.The lo
k-in phenomenon 
an be observed when the frequen
ies of the 
avity modes stops to s
alewith the theoreti
al RM evolution and 
ontinues to s
ale with the DM frequen
y. When lo
k-in o

urs,the ampli�
ation of the pressure os
illations is maximum. This 
an be always observed when the RMapproa
hes the DM. At M0 = 0.13, the third RM lo
ks with the �rst DM and at M0 = 0.18, the se
ondRM lo
ks with the �rst DM. At M0 = 0.23, the third RM lo
ks with the se
ond DM. In this 
ase, themeasured frequen
ies 
ollapse with the frequen
ies of the se
ond DM, based on the sum of the 
avityand the du
t heights.3.2.2 In�uen
e of the 
over platesThe in�uen
e of the ne
k has been studied experimentally by the Institut Aérote
hnique [4℄. By �llingthe 
avity under the edges with material, a noise redu
tion of 20 dB has been observed.
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Figure 3.4: Level of pressure os
illations of dominant pressure spe
tra peaks (△, ◦) measured inside the 
avityas fun
tions of the Ma
h number .
Nx Ny Nz Npro
sDu
t 542 149 41 39Ne
k 126 39 41 3Cavity 180 61 41 5Table 3.1: Grid statisti
s for the du
ted 
avity. The 
ase has been 
omputed by Nprocs = 47 pro
essors. Thetotal number of grid points is 4 × 106. The ne
k is the region lo
ated between the 
over plates.A numeri
al study of a open 
avity with 
over plates has been 
arried out by Heo and Lee [67℄ andGloerfelt [61℄. They observed a 
hange in dire
tivity. The non-
overed 
avity emits noise in upstreamdire
tion. The 
overed 
avity tends to emit less dire
tive noise but with higher amplitudes.The dire
tivity is due to the destru
tive interferen
e of noise emitted by the 
avity dire
tly whenthe vortex impa
ts at the downstream angle and the noise re�e
ted at the 
avity walls. For the
overed 
avity, the a
ousti
 waves remain 
on�ned in the 
avity and noise redu
tion via destru
tiveinterferen
e does not o

ur. This is probably ampli�ed by the resonan
e me
hanism observed in thepresent 
on�guration and explains the signi�
ant noise produ
tion of 20 dB. In the present work, onlythe 
avity with 
over plates is 
onsidered.3.3 Simulation parametersThe entire overset grid generated by ogen is displayed in Figure 3.5. It 
onsists of seven 
omponentgrids. As the grid points of the 
ommuni
ation interfa
es 
oin
ide, no interpolation has to be used.The grid spa
ing is kept 
onstant inside the 
avity (∆x = 4 × 10−4 m and ∆y = 2 × 10−4 m) and inthe boundary layer (∆y = 2 × 10−4 m). In the du
t, the grid is stret
hed in the y-dire
tion near theupper wall with 3.0%. Upstream and downstream of the 
avity, the grid is stret
hed in the x-dire
tionwith 1.0%.The Reynolds number based on the du
t height H and the velo
ity U0 = M0c0 is ReH ≈ 5.6× 105.The 
ru
ial point in 
avity simulations is the boundary layer upstream the 
avity, whose shape 
ontrols
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Figure 3.5: Overset grid generated by ogen. Every tenth line is represented.the vortex shedding and the 
onve
tion of the eddies in the shear layer. The boundary layer pro�lethat has been measured experimentally is �tted by a 1/n pro�le (S
hli
hting [113℄) :
u(y)

U0
=





(y

δ

) 1
n

, y ≤ δ

1, y > δwhere δ = 8.8 mm and n = 8.5. For the power law the momentum thi
kness of the boundary layer
omputes su
h as:
δθ =

n

(n + 1)(2 + n)
δ = 0.75 mm.The displa
ement thi
kness δ∗ of the boundary layer is given for the power law by:

δ∗ =
1

1 + n
δ = 0.92 mm.The form fa
tor gives H = δ∗/δθ = 1.24 mm.The fri
tion velo
ity 
an be estimated by the universal law of fri
tion that is given by equation(20.30) of referen
e [113℄:

1

λ
= 2 log

(
Ud dH

ν

√
λ

)
− 0.8,where λ = 8(uf/Ud)

2, Ud = 52.5 m s−1 [4℄ is the �ux velo
ity and dH is the hydrauli
 diameter. Thelatter is given by dH = 2WH/(W + H) = 0.148 m. This equation has to be solved by a Newtonsolver and gives λ = 0.013. Finally, the fri
tion velo
ity gives uf = 2.1 m s−1. The Reynolds numberbased on δ∗ and U0 = 0.18c0 is thus Reδ∗ = 3771. The grid size in wall units normal to the wall is
omputed ∆y+ = ∆yuf/µ = 28. In order to avoid ex
essive �ltering of the in�ow velo
ity pro�le,only the �u
tuating quantities are �ltered. Upstream the 
avity, the initial mean �ow �eld is preservedduring the whole simulation run.The in�ow velo
ity pro�le, density and the pressure are imposed in a weak manner to preventpossible numeri
al drift due to numeri
al di�usion and trun
ation e�e
ts of the in�ow. As the �owMa
h number lies in the low subsoni
 domain, the mean density and the mean pressure are taken
onstant over the whole height of the in�ow and out�ow (pin = pout = p0, ρin = ρout = ρ0). Duringthe simulation, the in�ow mean quantities are re
alled along the inlet boundary 
ondition with the
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Figure 3.6: Computed instantaneous vorti
ity modulus �eld (ωx= 25 × 103 s−1, ωx= −25 × 103 s−1) for M0 =

0.18; the instantaneous pressure �eld is shown in the ba
kground; gray s
ales−100 < p−p0 < 100 Pa.relaxation term of equation (1.16). In a similar way, the pressure and the density at the out�ow arere
alled. A sponge zone 
ombining grid stret
hing and a Lapla
ian �lter at the out�ow are used toavoid re�e
tions.As the in�uen
e of the boundary layer on the upper du
t wall 
an be negle
ted, slip 
onditions areapplied. Otherwise no-slip adiabati
 
onditions have been implemented along the wall boundaries. Inthe spanwise dire
tion, periodi
 
onditions are applied.The time step is ∆t = 4.5 × 10−7 s. A number of 500000 iterations have to be run in order topass the transition phase and obtain su�
iently long time signals for an a

urate frequen
y domainanalysis.3.4 ResultsFirst the results of the 
on�guration with M0 = 0.13, M0 = 0.18 and M0 = 0.23 are presented. Theaerodynami
 �eld of the 
omputation with M0 = 0.18 is 
onsidered in more detail. Then the resultsof a series of 
omputation with di�erent Ma
h numbers M0 are presented in order to demonstrate thenumeri
al eviden
e of the 
oupling me
hanism between the RM and DM.3.4.1 Aerodynami
 �eld for M0 = 0.18Figure 3.6 shows the iso-surfa
e of a snapshot of the vorti
ity modulus inside the 
avity obtained for
M0 = 0.18. The in
oming unperturbed boundary layer breaks down and generates 
oherent stru
tures.Two 
oherent stru
tures 
onve
ted in the shear layer 
an be observed and indi
ate the dominan
e ofthe se
ond Rossiter's mode. Se
ondary longitudinal vortex rolls 
an be observed.A plot of the streamlines is given in Figure 3.7. Two main 
ir
ulation zones 
an be observed. Twoadditional 
ir
ulation zones 
an be found under the 
over plates.
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Figure 3.7: Computed streamlines for the Ma
h number M0 = 0.18.(a) (b)
(
)

Figure 3.8: Dimensionless turbulent �u
tuations: (a) urms 
olor s
ales between 0 and 0.11; (b) vrms 
olor s
alesbetween 0 and 0.08 ; (
) wrms 
olor s
ales between 0 and 0.04.The turbulent �u
tuations of urms, vrms and wrms are given by
urms =

√
u2

U0
, vrms =

√
v2

U0
and wrms =

√
w2

U0and are plotted in Figure 3.8 (a), (b) and (
). The urms �eld features a double peak typi
al for ex
itedshear layers [97℄ or for 
avities with high values of L/δθ [53℄. The origin of the double peak has beenexplained by Ziada and Ro
kwell [146℄ by the presen
e of Stuart vorti
es. The maximum value of
urms and vrms rea
hes a maximum value of 0.11 and 0.08 respe
tively. Those values are lower than thevalues of a mixing layer that are typi
ally 0.16 < urms < 0.18 and 0.12 < vrms < 0.14 [60℄.The values of vrms rea
h a saturation state. The two peaks merges near the downstream angle of the
avity. The �u
tuations vrms show a maximum at the downstream verti
al wall indi
ating the presen
eof a plane jet in verti
al dire
tion. At the position where the jet reatta
hes, a maximum in urms 
anbe observed. The jet is formed due to the impa
t of the 
oherent stru
tures on the downstream angleand indu
es the re
ir
ulation zone in the 
avity.1-D frequen
y spe
tra of the velo
ity 
omponents and pressure are given at the lo
ation (x, y, z) =

(2h, 0, 0) in Figure 3.9. A dominant frequen
y in the spe
tra of pressure signal and of streamwise
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Figure 3.9: 1-D spe
tra of (a) u-velo
ity 
omponent [m.s−1] ; (b) v-velo
ity 
omponent [m.s−1]; (
) w-velo
ity
omponent [m.s−1]; (d) p-velo
ity 
omponent [Pa℄.- - - - designates the 
ut-o� frequen
y.velo
ity 
omponent signal 
an be observed at around 1200 Hz 
orresponding to the resonan
e frequen
yof the 
avity. The 
ut-o� frequen
y of the sele
tive �lter is found behind the beginning of the energy
as
ade. This indi
ates that the largest stru
tures of the 
avity �ow are 
aptured. No a

umulationof energy 
an be observed in the high frequen
y domain of the simulation so that the energy of notwell-resolved s
ales are removed properly by the sele
tive �lter.The pressure spe
trum obtained for a signal re
orded at the 
avity bottom is 
ompared with themeasured pressure spe
trum in Figure 3.10. The 
omputed spe
trum is globally overestimated of about
10 dB. For 
avity �ow simulations this dis
repan
y is non typi
al sin
e in general the pressure levelsare not re
overed due to ex
essive damping of the numeri
al algorithm. Preliminary 2-D 
omputationshave also given overestimations of broad-band noise [81, 61℄. This might be an indi
ation that a wrongs
aling of the sound pressure levels has been a�e
ted on either the side of the experimental resultsor of the present simulation. Cavity �ow measurement are very sensitive. Even small geometri
alirregularities 
an in�uen
e its resonan
e properties and lead to large 
hanges in sound pressure level.Furthermore the dynami
 gap between the peak frequen
y and the broad-band noise, found in theexperien
es is surprisingly large.
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Figure 3.10: Sound pressure level [dB℄ measured at the bottom of the 
avity: �� 
omputation; - - - - experi-ments.



81
(a)

−0.2 −0.1 0 0.1 0.2

0

0.05

0.1

x

y

(b)
(
)

−0.2 −0.1 0 0.1 0.2

0

0.05

0.1

x

y

(d)
(e)

−0.2 −0.1 0 0.1 0.2

0

0.05

0.1

x

y

(f)
Figure 3.11: Computed instantaneous pressure �eld (
ontours |p−p0| < 100 Pa) and spanwise averaged vorti
itymodulus in the 
avity for di�erent Ma
h: (a) (b) M0 = 0.13 , (
) (d) M0 = 0.18 , (e) (f) M0 = 0.23.



823.4.2 A
ousti
 data for M0 = 0.13, M0 = 0.18 and M0 = 0.23The a
ousti
 �elds of three sele
ted 
omputations with Ma
h numbers M0 = 0.13, M0 = 0.18 and
M0 = 0.23 are examined in the following. For those Ma
h numbers, maximum ampli�
ation of pressureos
illations due to 
oupling between RM and transverse DM have been observed experimentally.An instantaneous plot of the pressure �u
tuation �eld and the asso
iated vorti
ity �eld for thethree di�erent Ma
h numbers are given in Figure 3.11 (a), (
) and (e). The presen
e of the �rsttransverse DM that propagates in upstream and downstream dire
tion 
an be observed for M0 = 0.13and M0 = 0.18. For the M0 = 0.23 
ase, higher transverse DMs superposed to the �rst transverse DMare observed.The pressure signals for the three Ma
h numbers have been re
orded in the bottom of the 
avityand on the upper wall at x = L/2 and are given in Figure 3.12. For M0 = 0.18 and M0 = 0.23, thenumeri
al solution 
onverged fast. For t > 0.02 s, after only 4 × 104 iterations, regular os
illations
an be observed in the du
t and in the 
avity. The M0 = 0.13 
ase 
onverges after 4 × 105 iterations(t = 0.2 s). For all 
omputations, the pressure �u
tuations are regular and the amplitude at the upperwall are lower than in the 
avity due to the absen
e of hydrodynami
 pressure �u
tuations. For timesignals obtained with M0 = 0.23, low-frequen
y modulations 
an be observed.The spe
tra of the signals at the 
avity bottom and the upper wall 
omputed with M0 = 0.18 are
ompared in Figure 3.13. The amplitude di�eren
e of the two spe
tra is about 5 dB in the peaks and
an be up to 12 dB in the broad-band noise range. The experien
e measured a di�eren
e of 15 dBbetween the peaks of the two signals.The 
ross power spe
tral density of the two signals obtained for the three Ma
h numbers havebeen 
omputed. Its phase and 
oheren
e are given in Figure 3.14 (a), (b) and (
) respe
tively. For
M0 = 0.13 the two signals are 
orrelated with a phase shift of π at the frequen
y of the �rst transverseDM. This 
on�rms the observation made for the instantaneous pressure �eld. For M0 = 0.18 the �rstDM is also dominant as expe
ted. For the �ow at M0 = 0.23, maximum 
oheren
e 
an be observedat three frequen
ies 
orresponding to the �rst and to se
ond DM and to the frequen
y of the se
ondRM. The �rst DM is shifted by π and the se
ond DM is not shifted in phase 
on�rming the presen
eof the �rst and se
ond transverse du
t modes respe
tively. As already observed in the snapshot of thepressure �u
tuations �eld for M0 = 0.23, the �rst and se
ond transverse DMs are present in the du
t.3.4.3 Ampli�
ation of the 
avity modesIn order to demonstrate the numeri
al eviden
e of the 
oupling between the RMs and DMs, further
al
ulations have been 
arried out for several nominal Ma
h numbers M0: 0.13, 0.16, 0.18, 0.20, 0.21,
0.23 and 0.25.The numeri
al spe
tra obtained from signals re
orded at the bottom 
enter of the 
avity (as for theexperiments) provides the frequen
y and the amplitude of the peaks asso
iated with the se
ond andthird 
avity modes. Figure 3.15 
ompares the evolution of the 
omputed and measured frequen
ies ofthe modes. The frequen
y of the di�erent modes are well retrieved. At M0 = 0.13, lo
k-in between
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Figure 3.12: Pressure signals [Pa℄ re
orded at x = L/2 and z = 0: �� on the 
avity bottom; �� on theupper wall for di�erent Ma
h numbers: (a) M0 = 0.13 (b) M0 = 0.18 and (
) M0 = 0.23.the third RM and the �rst DM, at M0 = 0.20, lo
k-in between the se
ond RM and the �rst DMand at M0 = 0.23, lo
k-in between the third RM and the se
ond DM o

urs. In agreement withthe experiments in the latter 
ase, it is observed that the lo
k-in phenomenon o

urs rather with these
ond DM mode based on the sum of the du
t and 
avity height. The frequen
y of third Rossitermode 
omputed for M0 = 0.16, 0.18 and 0.20 is invariant. The origin of this numeri
al artefa
t isunder 
onsideration.Figure 3.16 shows the evolution of the 
omputed and measured amplitudes of the 
avity modes.The 
omparison is qualitatively good. The se
ond RM remains too high after lo
k-in having o

urred at
M0 = 0.20. The amplitude of the third RM is overpredi
ted for low Ma
h numbers and underpredi
tedfor higher Ma
h numbers. As a 
onsequen
e, the 
rossing of the amplitude 
urves of the se
ond RM
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Figure 3.13: Sound pressure level [dB℄ measured at the bottom and �� at the upper wall ��.and third RM at M0 = 0.2 is not reprodu
ed and no dominan
e of the third RM 
an be dete
ted athigher Ma
h number su
h as M0 = 0.23 .Figure 3.11 (b), (d) and (f) show snapshots of the instantaneous vorti
ity �eld in the 
avity forthree di�erent Ma
h numbers M0 = 0.13, M0 = 0.18 and M0 = 0.23 respe
tively. At M0 = 0.18, twoeddies appear very distin
tly in the shear layer. This 
on�rms the se
ond RM to be dominant. InFigures 3.11 (b) and (f), no dominant third RM 
an be dete
ted, be
ause for these two Ma
h numbers,the se
ond RM and third RM have similar amplitudes.3.5 In�uen
e of the simulation parametersPreliminary 2-D 
omputations [61℄ using a similar grid resolution have overestimated the broad-bandnoise as well as the se
ond RM at M0 = 0.23. The similar behavior found for the present 3-D
omputation with periodi
 
onditions in spanwise dire
tion suggests that 2-D artefa
ts might be the
ause of the dis
repan
ies. The number of points in spanwise dire
tion have therefore been tripled(Nz = 121). The results of this 
omputation did not in�uen
e the broad band noise as well as thepeak levels and the third RM has not be
ome dominant.Therefore a se
ond grid has been generated. In this 
ase the grid size length have been halvedin the 
avity region whi
h is a very easy task using the overset grid approa
h. The 
omputation at
M0 = 0.23 is 
urrently running. Figure 3.17 shows a snapshot of the vorti
ity modulus, reveal thedominan
e of a third RM.3.6 Con
lusionQuantitative dis
repan
ies, in parti
ular the absen
e of a dominant third 
avity mode at high Ma
hnumbers and the overestimation of the broad band-noise, are 
urrently under examination. The useof a �ner grid shows very promising results and makes the third RM to emerge. The examination ofthe in�uen
e of a realisti
 turbulent boundary layer as the in�ow 
ondition should be 
onsidered inthe future. However, the present numeri
al study shows the 
apability of the numeri
al algorithm to
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fFigure 3.14: Phase Φpp and 
oheren
e Cpp of the 
ross power spe
tral density of signals re
orded at the bottomof the 
avity and the upper du
t wall for di�erent Ma
h numbers: (a) M0 = 0.13, (b) M0 = 0.18and (
) M0 = 0.23; N designates the se
ond Rossiter mode.reprodu
e the 
oupling phenomenon between the 
avity modes and the du
t modes with a�ordable
omputational resour
es. In parti
ular, frequen
ies are well retrieved by the 
omputation.
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Figure 3.15: Computed frequen
ies (N mode 2, • mode 3) of the 
avity modes 
ompared to experimental ones(△ mode 2, ◦ mode 3) and to Rossiter and du
t mode frequen
ies (RM = Rossiter mode, DM =du
t modes). The modi�ed se
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al
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Figure 3.16: Computed power levels ( N mode 2, • mode 3) of the 
avity modes 
ompared to experimental ones(△ mode 2, ◦, mode 3).

Figure 3.17: Spanwise averaged vorti
ity modulus in the 
avity obtained for M0 = 0.23 on a �ne grid.



Chapter 4
Aeroa
ousti
 simulation of the suddenexpansion of a transoni
 �ow
4.1 Introdu
tionStrong intera
tions between sho
k os
illations, internal aerodynami
 noise and a
ousti
 du
t modesare often observed in 
on�ned �ows but are undesirable to prevent ex
itation of stru
tural vibrationsand fatigue. Numerous examples 
an be found in the review of Meier et al. [95℄.In the present work, a transoni
 �ow passing a sudden expansion in a du
t is studied. This kind of�ow 
an be found downstream of 
ontrol devi
es su
h as valves en
ountered in pipe systems of powerplants, and has been investigated experimentally by Meier et al. [94, 6℄. These authors studied atransoni
 �ow in a re
tangular du
t su
h as displayed in Figure 4.1. Air at atmospheri
 
onditions(denoted by subs
ript a) passes through a 
onvergent nozzle. The �ow in the nozzle throat is expandedabruptly by passing in the expansion du
t of larger 
ross-se
tion. The �ow is driven by the exit pressure
pe in the reservoir downstream of the expansion du
t. Di�erent transoni
 and supersoni
 �ow regimeshave been investigated as a fun
tion of the pressure ratio de�ned by τ = pe/pa.For very low pressure ratios, the �ow in the upstream part of the test du
t is entirely supersoni
.The �ow regime for τ = 0.15 is visualized by means of Ma
h-Zehnder Interferometry [94℄ in Figure4.2 (a). A system of 
rossing oblique sho
k waves is observed. In
reasing the exit pressure leads toa �ow separation and to a breakdown of the sho
k 
ell stru
ture. Sho
k pattern os
illations are thenobserved. In this work, this �ow regime has not been 
onsidered. Details 
an be found in the work ofMeier et al. [94℄.If the downstream pressure is further in
reased, the oblique sho
k wave system disappears and thesupersoni
 expansion ends up behind a single normal sho
k su
h as presented in Figure 4.2 (b) for
τ = 0.364. In this 
ase, a strong 
oupling between the self sustained os
illations of the normal sho
kand the longitudinal a
ousti
 modes of the du
t is found. The observed os
illation frequen
ies are low,typi
ally f ∼ 102 Hz.For lower pressure ratios, the �ow regime is symmetri
al. For higher pressure, ratios τ = 0.377
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bLFigure 4.1: Transoni
 �ow passing sudden expansion: sket
h of the geometry and notations: H and L are theheight and the length of the expansion du
t respe
tively, h designates the height of the in�ow nozzleand b = 0.1m is the width of the nozzle and the expansion du
t in spanwise dire
tion; pa and Taare the pressure and temperature of air at ambient 
onditions; pe is the pressure in the downstreamreservoir imposed by the pressure ratio τ = pe/pa. pw is the pressure in the 
orner region.
for instan
e, asymmetri
 �ow pattern o

urs and one side is entirely separated from the wall su
h asshown in Figure 4.2 (
). For those �ows, having a more jet like stru
ture, a 
oupling me
hanism similarto the normal sho
k 
on�guration, is only observed for longer du
ts.The �ow regime depends also whether the pressure ratio is in
reasing or de
reasing. For in
reasingpressure ratios, the symmetri
al os
illating �ow pattern is maintained even for pressure ratios whereasymmetri
al non-os
illating �ow regimes are observed when the pressure ratio is de
reasing. Thishysteresis needs to be a

urately 
aptured by the simulations to reprodu
e the 
oupling between thesho
k os
illations and the longitudinal du
t modes.Meier et al. [94℄ provide time sequen
e visualizations of the di�erent �ow regimes based on Ma
h-Zehnder Interferometry. Stati
 wall pressure data, frequen
y spe
tra and 
ross 
orrelations of thepressure �u
tuations along the walls are also available, making possible a quantitative validation ofthe numeri
al results.This �ow 
on�guration involving turbulen
e, sho
ks, intera
tion with boundary layers and aeroa-
ousti
 resonan
es is a real 
hallenge for 
omputational aeroa
ousti
s [123℄. Devos and Lafon [82℄studied numeri
ally this 
on�guration using a se
ond-order TVD �nite-volume s
heme for solving 2-DEuler equations. The main �ow patterns were 
aptured but the 
oupling of the sho
k os
illations withthe resonan
e modes of the du
t was not 
onsidered.The 
hapter is organized as follows. In se
tion 4.2, the supersoni
 �ow at a low pressure ratio ispresented. In se
tion 4.3, four simulations are presented for pressure ratios involving a normal sho
k�ow pattern in order to demonstrate the in�uen
e of the pressure ratio on the �ow �eld. In se
tion 4.4a simulation is presented where the sho
k os
illations 
ouple with longitudinal du
t modes.



89 (a)
(b)
(
)Figure 4.2: Ma
h-Zehnder interferometry visualizations at pressure ratios: (a) τ = 0.151 (b) τ = 0.364 and (
)

τ = 0.377 for a expansion du
t length L = 0.24 m and aspe
t ratios L/H = 7.23 and h/H = 0.3.[94℄4.2 Supersoni
 �ow at low pressure ratio (τ = 0.15)4.2.1 Simulation parametersThe entire overset grid generated by ogen is represented in Figure 4.3 (a). It 
onsists of three parts:the nozzle, the expansion du
t and the reservoir. Note that the 
onvergent part of the nozzle is notmodeled in this work. The in�ow 
onditions are determined assuming the �ow to be isentropi
 in the
onvergent part. The grid points in the nozzle and in the expansion du
t are spa
ed uniformly in ea
hdire
tion. The reservoir grid is stret
hed in x-dire
tion on the last 30 points and in y-dire
tion on thelast 50 points with a ratio of 3% and 1% respe
tively. The grid in the spanwise z-dire
tion is alsospa
ed uniformly.For the low pressure ratio 
ase, sho
ks intera
t with the boundary layers developing along the wallsof the expansion du
t and a �ne grid resolution in these regions is required. This 
an be a

omplishedeasily by the overset grid approa
h that allows to pat
h grids of arbitrarily re�nement in the regionsof interest as shown in Figure 4.3 (b). Re�ned grids has been used to mesh the nozzle and the nearwall zone of the expansion du
t. Two simulations have been 
arried out using two di�erent grids: a
oarse grid where the grid spa
ing in the wall region is halved relatively to the 
enter grid and a �negrid where the grid spa
ing in the wall region is quartered relatively to the 
enter grid. More detailsabout the 
oarse and �ne grid and its grid sizes in wall units are given in Table 4.1 and 4.2.The pressure and temperature of air at rest in the upstream reservoir (not 
onsidered in thesimulation) is provided by the experiments pa = 101325 Pa and Ta = 293 K. The soni
 
onditionsimposed at the nozzle in�ow are 
omputed using isentropi
 relations [34℄:
Min = uin/cin = 1.01, vin = 0, pin = 0.5221 pa, Tin = 0.8306 Ta.The velo
ity pro�le at the nozzle in�ow is kept uniform. By applying no-slip adiabati
 wall 
onditions,
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Figure 4.3: Grid generated by ogen for the 
omputations at the the pressure ratio τ = 0.15 (x − y plane).The geometri
 parameters are L = 0.24 m, L/H = 7.23 and h/H = 0.3. Every eighth line isrepresented. Figure (a) shows the 
omplete 
omputational domain: the nozzle, the expansion du
tand the out�ow reservoir. Figure (b) is a detailed view on the nozzle and the expansion du
t. Thewalls are re�ned using overlapping grids.
Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min Npro
sNozzle 58 98 41 12 8 24 2Expansion du
t 744 127 41 24 16 24 22Near wall grid 1439 47 41 12 8 24 2 × 9Reservoir 180 398 41 24 16 24 16Table 4.1: Chara
teristi
s of the 
oarse overset grid for the low pressure ratio 
ase τ = 0.15. The total numberof 14×106 grid points have been distributed over Npro
s = 58 pro
essors. The length s
ales are givenin wall units: y+ = yuf/ν. The fri
tion velo
ity uf = 4.3 m.s−1 is determined near the out�ow at
x = 0.2 m.a laminar velo
ity pro�le develops along the nozzle. Its development is reported in Figure 4.4 thatshows the velo
ity pro�le at 3 positions in x-dire
tion of the nozzle 
omputed on the �ne grid. Thethi
kness of the boundary layer is 0.4 × 10−3 m and the developing boundary is resolved by 8 pointsusing the �ne grid. No further details about the boundary layer are given in the experiments.The Reynolds number based on the nozzle height h and the in�ow velo
ity uin is Reh = 2.1 × 105.Along the walls of the expansion du
t, adiabati
 no-slip boundary 
onditions are imposed.
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Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min Npro
sNozzle 1491 41 6 4 24 2Expansion du
t 744 127 41 24 16 24 22Near wall grid 3052 121 41 6 4 24 2 × 9Reservoir 180 398 41 24 16 24 16Table 4.2: Chara
teristi
s of the �ne overset mesh for the low pressure ratio 
ase τ = 0.15. The total numberof 46 × 106 grid points have been distributed over Npro
s = 253 pro
essors. The length s
ales aregiven in wall units: y+ = yuf/ν. The fri
tion velo
ity uf = 4.3 m.s−1 
omputed for the 
oarse gridhas been used, see Table 4.1.
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Figure 4.4: Velo
ity pro�les of the laminar boundary layer in the nozzle of length Ln = 9.1 × 10−3 m at threepositions: · at x = −Ln , ◦ at x = −Ln/2 and △ at x = 0.The pressure in the downstream reservoir pe = 17225 Pa is �xed by the pressure ratio τ = 0.15. Thetemperature in the downstream reservoir is given by Te = Ta = 293 K. The non-re�e
tive boundary
onditions of Tam and Dong [127℄, extended to 3-D by Bogey and Bailly [28℄, are used along thereservoir boundaries. The turbulent �ow leaves the 
omputational domain without spurious a
ousti
re�e
tions thanks to a sponge zone [28℄. Periodi
 boundary 
onditions are used in spanwise dire
tion.The simulation has been 
arried out with the four stage Runge-Kutta s
heme and the 
lassi
alJameson dete
tor. A number of 5 × 104 iterations has been run for the 
oarse grid 
omputation inorder to obtain a 
onverged mean �ow �eld. For the �ne grid simulation, a number of 6 ×104 iterationshas been 
arried out.4.2.2 ResultsMean �owMa
h Zehnder Interferometrie like plots showing the mean density iso-
ontours 
omputed on the
oarse and on the �ne grid are represented in Figure 4.5 (a) and (b) respe
tively. Qualitatively theresults 
orrespond well to the experiments presented in Figure 4.2 (a). A divergent supersoni
 jetformed by the expansion waves that are generated at the nozzle edges is observed. A �rst obliquesho
k wave appears when the expansion waves are re�e
ted by the upper and lower wall. In the
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(a)
(b)
(
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Figure 4.5: Mean density ρ̄ for pressure ratio τ = 0.15: (a) 
omputed on 
oarse grid (see Table 4.1) usinga Ma
h-Zehnder Interferometrie like 
olormap; (b) 
omputed on �ne grid (see Table 4.2) using aMa
h-Zehnder Interferometrie like 
olormap; (
) visualized by Ma
h-Zehnder Interferometrie [94℄.
omputation, the density maximum observed downstream of the jet reatta
hement is less extended inboth 
omputations. However, the �ne grid 
omputation reprodu
es the �rst intera
tion zone betterthan the 
oarse grid 
omputation. A zoom on this zone is provided in Figure 4.6. The density maximumis slightly deta
hed from the wall indi
ating more 
omplex intera
tions.The 
omputed and measured stati
 mean pressure p̄, normalized by pa, along the lower wall aredisplayed in Figure 4.7 (a) for the 
oarse grid 
omputation and in 4.7 (b) for the �ne grid 
omputation.The 
omputed and experimental 
urve 
ompare well qualitatively. The �rst pressure peak 
aused bythe jet reatta
hement is a

urately predi
ted even though the peak is too narrow for the 
oarse grid.The �ne grid 
omputation seems to 
apture the pressure peak very well. The subsequent expansion�ts very well with the experimental pressure 
urve for both 
omputations. A se
ond 
ompressionindi
ating the re�e
tion of the oblique sho
k is also well predi
ted in its amplitude but is lo
ated toofar downstream and deviates about 10% for the 
oarse grid and about 2% for the �ne grid from theexperimental lo
ation. For the 
oarse grid, this deviation is attributed to a di�eren
e of 2% of the
omputed and experimental pressure in the 
orner regions. This pressure indeed determines the entire�ow regime in the downstream part of the expansion du
t. In general, higher 
orner pressures lead tosmaller expansion angles and more in
lined sho
k waves are generated when the jet reatta
hes. Thereason for the overpredi
ted pressure is not 
lear but might be attributed to an underresolution of the
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Figure 4.6: Zoom on the reatta
hement zone of the abruptly expanded jet: mean density is visualized by theMa
h Zhender Interferometrie 
olormap.(a) (b)
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Figure 4.7: Stati
 pressure distribution along the du
t wall, obtained by: the present 
omputation; ◦experiments [94℄: (a) 
oarse grid 
omputation (b) �ne grid 
omputation.�ow in the 
orner region, the reatta
hement region and of the in
oming boundary layer.Further downstream, the sho
k waves are re�e
ted on the lower and upper wall respe
tively andform a symmetri
al 
ell stru
ture. Figure 4.5 (b) represents the mean pressure of the �ow. The pressurein the 
orner regions does not mat
h the pressure of the expanding supersoni
 jet. The mismat
h is
ompensated by a normal sho
k near the nozzle edges. This 
an also be observed experimentally. Themean Ma
h number �eld, displayed in Figure 4.5 (
), 
on�rms that the jet 
ore is entirely supersoni
and rea
hes its maximum speed upstream the �rst sho
k 
rossing lo
ation. The boundary layer thi
kenssigni�
antly at the sho
k re�e
tion points. The �ow in the 
orner region between the jet boundariesand the du
t walls remains subsoni
.The existen
e of a universal law is examined. For in
ompressible equilibrium, zero-pressure-gradient, turbulent boundary layers, the mean velo
ity pro�le has a linear behavior u+VD = y+ for
y+ ≤ 5 and a logarithmi
 behavior in the overlap layer u+VD = 0.42 log (y+) + 5.2 for 10 ≤ y+ ≤ 30.This law is validated for 
ompressible �ows when the van Driest transformation is applied [119℄.
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(b)
(
)

Figure 4.8: Computed mean �ow properties for pressure ratio τ = 0.15: (a) iso-
ontours of mean density ρ̄ usinga Ma
h-Zehnder Interferometrie like 
olormap; (b) mean pressure �eld (s
ale from 2000 Pa to 10000Pa); (
) mean Ma
h number �eld (s
ale from 0 to 3.7).The 
orre
tion takes into a

ount the variation of the vis
osity through the boundary layer due to tem-perature variations. This transformation makes to 
ollapse zero pressure gradient turbulent boundarylayer data at Ma
h numbers up to M = 12, and the 
onstants in the logarithmi
 law appear un
hangedfrom their subsoni
 values. The van Driest transformation 
an be written as:
UVD =

u+
0∫

0

√
ρ̄

ρ
du+

0 ,The van Driest transformed velo
ity pro�les are given in Figure 4.9 for the �ne grid 
omputation attwo di�erent positions x = 2 H and x = 3.5 H. The linear behavior is well 
aptured by the 
ompu-tation. The mean �ow pro�les miss the logarithmi
 law. Propabely Further grid re�nement would bene
essary but is not a�ordable due to an ex
essive small time step.Unsteady �ow aspe
tsA boundary layer develops along the du
t walls where the jet reatta
hes and intera
ts with theimpinging oblique sho
k waves. Complex phenomena o

ur in su
h 
on�gurations as des
ribed inthe review arti
le of Dolling [46℄. Instantaneous numeri
al S
hlieren visualization of the entire 
om-putational domain is given in Figure 4.10 (a) for the �ne grid 
omputation. In the following, someinteresting aspe
ts will be dis
ussed. As no unsteady data is given by the experiments for this pressureratio, only qualitative 
omparison with similar 
ases issued from the literature 
an be 
arried out.A zoom on instantanenous numeri
al S
hlieren visualization in the jet reatta
hement region is
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Figure 4.9: Van Driest transformed velo
ity pro�le at the positions x = 2H (△) and x = 3.5H (◦) for �ne grid
omputation; Mean velo
ity pro�le for in
ompressible equilibrium, zero-pressure-gradient,turbulent boundary layers: linear behavior u+VD = y+ for y+ ≤ 5; logarithmi
 behavior in theoverlap layer u+VD = 0.42 log (y+) + 5.2 for 10 ≤ y+ ≤ 30.given in Figure 4.10 (b). The shear layer that represents a 
onta
t dis
ontinuity limits the expandingjet. Small 
ompression wave are emitted from the shear layer into the jet. Those are generated byinstablities that develop and grow in the shear layer. For supersoni
 shear layers, the growth rate issmall and the development of turbulent stru
tures is retarded. When the shear layer impinges on thewall, mixing is enhan
ed making the ratta
hment zone to shift. Behind the jet reatta
hement zones,
oherent stru
tures that are sheded at low frequen
ies 
an be observed and might be linked to theinstability development in the free shear layer further upstream.
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(a)
(b)
(
)
(d)
(e)

Figure 4.10: Instantaneous numeri
al S
hlieren �eld ∇ρ (a) view on entire 
omputational domain; (b) jet reat-ta
hement region; (
) �rst sho
k wave/ boundary layer intera
tion zone (d) se
ond sho
k wave/boundary layer intera
tion zone (e) Third sho
k wave/ boundary layer intera
tion zone with �owseparation at the end of the du
t.
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Figure 4.11: Detail view of the �rst sho
k wave/ boundary layer intera
tion: (a) 
omputed mean pressure
ontours (31 
ontours spa
ed between 2000 and 10000 Pa); (b) iso 
ontours of the turbulent kineti
energy k ranging from 0 ≤ k ≤ 25 m2.s−2 ; (
) iso 
ontours of the shear stress τxy/ρ ranging from
0 ≤ τxy/ρ ≤ 100m2.s−2.Visualizations of the instantaneous numeri
al S
hlieren �eld of the �rst and se
ond oblique sho
k-wave boundary layer intera
tion are given in Figure 4.10 (
) and (d). The in
oming boundary layerseems to be transitional. Sho
k wave/ boundary layer intera
tions are observed and the downstreamboundary layer is more turbulent. This mixing enhan
ement is typi
al for su
h intera
tions [119℄.A detailed view on the �rst sho
k-wave boundary layer intera
tion on the lower wall is given inFigure 4.11 (a) representing the iso-
ontours of the time averaged pressure p̄. The data is issuedfrom the 
oarse grid simulation as the se
ond order quantities for the �ne grid 
omputation are not
onverged up to this point. The in
ident sho
k is deviated towards the wall when entering the boundarylayer and the re�e
ted sho
k originates well upstream of the nominal impingement point due to thevis
ous intera
tion me
hanism. A thi
kening of the boundary layer and small separation bubble 
anbe observed.The iso-
ontour lines of spe
i�
 turbulent kineti
 energy k = (u′2+v′2+w′2)/2 and of τxy/ρ = |u′v′|,the turbulent shear stress, are represented in Figure 4.11 (
) and (d) respe
tively. The plot shows that
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Figure 4.12: 1-D frequen
y spe
tra at (x, y) = (3.5 H, 15∆y+);- - - - designates the 
ut-o� frequen
y.the turbulent kineti
 energy k takes its maximum near the point of separation as observed by Pirozzoliet al. [98℄. The turbulent shear stress rea
hes its maximum in the vi
inity of the sho
k foot of thein
ident sho
k wave.Figure 4.10 (e) shows the sho
k/boundary layer intera
tion near the out�ow. The sho
k is normaland features a lambda sho
k. The boundary layer separates at the vi
inity of the upstream foot leg.Turbulent mixing is enhan
ed.1-D frequen
y spe
tra have been re
orded at a position (x, y) = (3.5 H, 15∆y+) and are given inFigure 4.12. The beginning of an energy 
as
ade 
an be observed before the sele
tive �lter 
uts o� thehigh frequen
ies.Beside these dis
repan
ies, the present 
ode is able to 
apture vis
ous as well as invis
id featuresof the �ow. The passage of the oblique sho
k through the interpolation zone along y/H ≈ 0.3 happenswithout 
reating spurious os
illations as they normally emerge when Lagrangian polynomials of higher-order 
ome into play. The sele
tive �lter and the non-linear �lter seems to eliminate those spuriousmodes e�
iently. In the following, the expansion of a transoni
 �ow for higher pressure ratios ispresented.



99

0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

p
e
/p

a
p w

/p
a

Figure 4.13: Stati
 mean pressure measured in the 
orner region (◦ upper wall • lower wall) as a fun
tion ofthe pressure ratio τ : in bla
k experimental values [94℄; in red and blue the 
omputed values for adu
t of length L = 0.16 m and L = 0.24 m respe
tively.4.3 The in�uen
e of the pressure ratio in the transoni
 regime4.3.1 Experimental observationsThe in�uen
e of the pressure ratio on the mean �ow �eld has been investigated by Meier et al. forvarious du
t geometries. Due to 
omputational limitations, the following numeri
al study is done usingthe same du
t as in the previous se
tion, but with a redu
ed length L = 0.16 m. Figure 4.13 showsthe normalized time averaged pressure p̄w at the bottom and top 
orner region as a fun
tion of thepressure ratio τ , where p̄w denotes the base pressure.The mean base pressure p̄w remains 
onstant for low pressure ratios τ ≤ 0.25. Its values on bothsides of the du
t are the same and the �ow is therefore symmetri
al. The supersoni
 �ow presentedin se
tion 4.2 is an example of this �ow pattern. The 
omputed base pressure is marked with a bluedot obtained for the longer du
t. Above τ = 0.25 the 
orner pressure in
reases on both sides. Forthis pressure ratio range, the oblique sho
k system has 
ompletely broken down. In the range from
0.305 ≤ τ ≤ 0.352 a large amplitude os
illation in the 
orner region 
an o

ur. Those large os
illationsare asso
iated with the 
oupling of the sho
k motion with the longitudinal du
t modes su
h as des
ribedin the introdu
tion. When these os
illations exist, the base pressure on both sides are low and of thesame order of magnitude. The symmetri
al �ow is shown in Figure 4.2 (b).With pressure ratios 0.316 ≤ τ ≤ 0.352 an additional �ow pattern may o

ur in whi
h the �ow isasymmetri
al and atta
hed either to the top or bottom wall of the du
t. In 
ontrast to the symmetri
al
ase, for the asymmetri
al �ow pattern no base pressure os
illations o

ur for the du
t length L = 0.16m. Figure 4.13 shows that two di�erent base pressure values exist for the asymmetri
al �ow pattern: alower value for the atta
hed side and a higher value for the unatta
hed side. No preferred atta
hmentlo
ation to either the top or the bottom side has been observed experimentally.The existen
e of the symmetri
al, os
illating �ow pattern or the asymmetri
al, steady �ow pat-tern depends whether the �ow is driven with an in
reasing or a de
reasing downstream pressure. In
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Figure 4.14: Visualization of the grid in the x − y plane used for the 
ases of higher pressure ratios 0.30 ≤ τ ≤
0.348. The geometri
 parameters are L = 0.16 m, L/H = 5.23 and h/H = 0.3. Every eighth gridline is represented.the experiments the symmetri
al os
illating �ow pattern exists for an in
reasing pressure ratio until

τ = 0.352 and swit
hes to an asymmetri
al �ow pattern. When the pressure ratio de
reases the asym-metri
al �ow pattern swit
hes to the os
illating �ow pattern at τ = 0.316. This hysteresis is indi
atedin Figure 4.13 by the arrows.Four simulations with pressure ratios τ = 0.30, τ = 0.31, τ = 0.32 and τ = 0.348 have been 
arriedout in order to 
he
k if it is possible to 
apture the symmetri
 �ow pattern. As observed experimentallyfor this du
t geometry aeroa
ousti
 
oupling between the sho
k motion and longitudinal du
t modeso

urs only with a symmetri
al �ow.4.3.2 Simulation parametersThe grid is presented in Figure 4.14 that models a du
t of length L = 0.16 m. Due to numeri
allimitations, no grid re�nement near the du
t walls are used for this study. The grid spa
ings are thesame as in se
tion 4.2 and are summarized in Table 4.4. The boundary 
onditions are applied as in theprevious se
tion. The same soni
 in�ow 
onditions as in se
tion 4.2 are used. For the following 
ases,slip wall 
onditions are applied along the nozzle walls. This ensures that the boundary layer remainsthin at the nozzle out�ow.The pressure ratios τ = 0.30, τ = 0.31, τ = 0.32 and τ = 0.348 impose exit pressures of pe =

30398 Pa, pe = 31411 Pa, pe = 32424 Pa and pe = 35261 Pa respe
tively. The temperature in the exitreservoir is given by Te = Ta = 293 K.4.3.3 Mean �ow propertiesThe results of the four di�erent 
omputations are gathered in this se
tion:
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Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min Npro
sNozzle 29 49 21 24 16 24 1Expansion du
t 490 161 21 24 16 24 15Reservoir 180 398 21 24 16 24 16Table 4.3: Grid parameters for the high pressure ratio 
ases 0.30 ≤ τ ≤ 0.348. All these 
ases have been
omputed using Npro
s = 32 pro
essors. The total number of grid points is about 5.0 × 106.
• τ = 0.30:A rendered 3-D visualization of iso-surfa
es of instantaneous numeri
al S
hlieren and vorti
ity(spanwise 
omponent ωz) is given in Figure 4.15 (a). The �ow features a strong normal sho
kwave. The �ow is symmetri
al and the normal sho
k intera
ts with the atta
hing jet by forminga bifur
ating or lambda sho
k on the lower and upper wall. The front leg of the bifur
ation is theoblique sho
k wave that is generated when the supersoni
 jet is de�e
ted by the du
t walls. Theupstream leg must exist to give proper 
ontinuity of the �ow dire
tion. Supersoni
 layers startat the lambda sho
k and are atta
hed to the upper and lower du
t wall. In the vortex sheet,separating the supersoni
 near wall layers and the subsoni
 �ow in the du
t 
enter, 2-D instabilityrolls develop. These instabilities give rise to turbulent 3-D stru
tures near the du
t out�ow. Theplot of mean Ma
h number in the x−y plane in Figure 4.17 (a) 
on�rms that the �ow downstreamthe normal sho
k is subsoni
. The �ow downstream the lambda sho
k remains supersoni
 upto x/H ≈ 3. The averaged sho
k position is smeared, due to large sho
k motions. Figure 4.16(a) shows the iso 
ontours of the time averaged density, using a Ma
h-Zehnder Interferometrielike 
olormap. The normalized stati
 mean pressure 
omputed along the lower and upper wallis plotted in Figure 4.20. The wall pressure 
urves show a symmetri
al behaviour. The pressureis 
onstant in the base region and in
reases in the reatta
hement zone. The pressure exhibits itsmaximum further downstream at x/H ≈ 2 and mat
hes the downstream reservoir pressure atthe end of the du
t. The pressure in the base region at x = 0 is plotted in Figure 4.13 and is invery good agreement with the experimental values.
• τ = 0.31:An in
rease of the reservoir pressure pe leads to an asymmetri
al �ow as Figure 4.15 (b) illustrates.A slightly in
lined normal sho
k 
an be observed. At the lower wall the normal sho
ks ends upwith a lambda stru
ture situated more upstream than in the τ = 0.30 
ase. The 2-D vortex rollsdevelop further downstream. 3-D turbulent stru
tures 
an already be observed at x/H ≈ 3.4.On the upper wall the jet is separated from the wall. The jet shear layer is thi
kened thanks toinstability development. The mean Ma
h number �eld displayed in Figure 4.17 (b) shows thein
lined normal sho
k 
on�guration. The upper supersoni
 layer is separated from the wall, ismore extended in downstream dire
tion and thi
ker than the lower one. The turbulent 
hara
terof the this �ow is illustrated in Figures 4.18 (a) and (b) showing the turbulent kineti
 energy

k = (u′2 + v′2 + w′2)/2 and the turbulent shear stresses τxy/ρ = |u′v′| respe
tively. High levels
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alized along the upper jet shear layer. They rea
h a maximum in the intera
tion zonewith the normal sho
k. Less turbulent energy is produ
ed on the lower side. The turbulent levelgrows near the walls and along the vortex sheets and rea
hes a saturation in the last quarter ofthe du
t. The mean pressure 
omputed along the upper and lower wall are given in Figure 4.20(b). The pressure in the lower 
orner region rea
hes a value similar to the one obtained for lowerpressure ratios. The subsequent 
ompression is 
aused by the sho
k that is lo
ated slightly moreupstream as in the upper 
ase. The pressure in the upper 
orner region is in
reased and the
ompression takes pla
e further downstream. The base pressures are also plotted in Figure 4.13and agree well with the experiment. This kind of asymmetry was observed in the experimentsonly for longer du
ts.
• τ = 0.32:Figure 4.15 (
) shows the �ow pattern obtained for τ = 0.32. The �ow is asymmetri
 and isseparated entirely from the lower du
t wall. The iso-surfa
es of vorti
ity shows how the jet 
ross-se
tion is initially inta
t and how it begins to break up and mix more e�
iently at the middle ofthe �rst sho
k 
ell. On the lower wall regularly spa
ed strong perturbations that travel upstream
an be observed. The Ma
h number �eld given in Figure 4.17 (
) exhibits two sho
k 
ells and areversed �ow is found on the lower du
t wall. The jet reatta
hes after the end of the se
ond sho
k
ell. No major jet spreading 
an be observed su
h as observed for free jets. Turbulen
e datagiven in Figure 4.19 (a) and (b) show high turbulent kineti
 energy produ
tion along the upperand lower shear layers. On the atta
hed side turbulent produ
tion is endorsed by the presen
eof the wall. On the lower wall, the turbulent energy has rea
hed its maximum downstream the�rst sho
k and drops to a 
onstant stagnant value up to the end of the du
t. This indi
ates atransition to a fully turbulent �ow. The stati
 mean pressure along the upper and lower wall areplotted in Figure 4.20 (
). The pressure at the du
t end on the upper wall mat
hes the reservoirpressure after the sequen
e of expansion and 
ompression waves. The pressure 
urve at the lowerdu
t wall does not feel the presen
e of the sho
k and in
reases slowly and ends up to mat
h thereservoir pressure. Figure 4.13 reveals the ex
ellent agreement of the normalized base pressureswith the upper bran
h of the experimentally measured 
urve.
• τ = 0.348:The �ow pattern of this pressure ratio is very similar to the 
ase with τ = 0.32. The jet isatta
hed on the upper wall. The jet expansion angle is smaller due to the in
reased pressureratio. As shown in Figure 4.13, the pressure 
omputed in the 
orner region are slightly overestimated 
ompared to experiments.
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(a)

(b)

(
)
Figure 4.15: Rendered 3-D view of iso-surfa
es: red and blue surfa
es represent instantaneous spanwise vorti
ity�eld for ωz = +150000 s−1 and ωz = −150000 s−1 respe
tively, green surfa
es represent numeri
alS
hlieren with ∇ρ = 200 kg.m−4 for di�erent pressure ratios: (a) τ = 0.30, (b) τ = 0.31 and (
)

τ = 0.32.



104
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Figure 4.16: Iso-
ontours of the mean density ρ̄ for di�erent pressure ratios: (a) τ = 0.30, (b) τ = 0.31, (
)
τ = 0.32.
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(a)
(b)
(d)

Figure 4.17: Mean Ma
h number �eld M = |ū|/c̄ for di�erent pressure ratios: (a) τ = 0.30, (b) τ = 0.31, (
)
τ = 0.32; the 
olor s
ale lies in the range 0 ≤ M̄ ≤ 2.1. represents the soni
 line M = 1.
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Figure 4.18: Turbulent data for the pressure ratio τ = 0.31: (a) turbulent kineti
 energy: the 
olor s
ale rangefrom 0 ≤ k ≤ 20 m2.s−2; (b) turbulent shear stresses: the 
olor s
ale range from 0 ≤ τxy/ρ̄ ≤
90 m2.s−2.

(a)
(b)

Figure 4.19: Turbulent data for the pressure ratio τ = 0.32: (a) turbulent kineti
 energy: the 
olor s
ale rangefrom 0 ≤ k ≤ 25 m2.s−2; (b) turbulent shear stresses: the 
olor s
ale range from 0 ≤ τxy/ρ̄ ≤
100 m2.s−2.
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Figure 4.20: Stati
 mean pressure measured on the lower (- - - - -) and upper (���) wall for di�erent pressureratios: (a) τ = 0.30, (b) τ = 0.31, (
) τ = 0.32.



1084.3.4 Unsteady �ow aspe
tsThe pressure signals re
orded along the upper wall are examined for the �ows 
omputed for the pres-sure ratios τ = 0.31 and τ = 0.32.
• τ = 0.31:The signal on the upper wall at the 
orner (x = 0) and at the du
t end (x = L) are plotted inFigure 4.21. Regular small amplitude os
illations in the base region are observed. At the du
tend, broadband noise dominates. Sound pressure levels are provided in Figure 4.22 (a) at threepositions (x = 0, x = L/2 and x = L). Low frequen
y 
omponents, at x = 0 and at x = L/2, areobserved. Those 
omponents are not present at the end of the du
t. The pressure spe
tra reveala high frequen
y 
omponent at f ≈ 4500 Hz. This frequen
y is asso
iated to the transverse du
tmodes that are ex
ited by the turbulent broadband noise.During the simulation run a swit
h to a symmetri
al �ow pattern has been observed. The timehistory is given in Figure 4.23 (a). When this happens, strong pressure os
illations o

ur whi
h is
onsistent with experimental observations. The pressure spe
tra obtained for a signal, when the�ow is symmetri
al is given in Figure 4.23 (b). The pressure signals exhibit a high amplitude, lowfrequen
y peak at f ≈ 350 Hz. The reason for this swit
h that has random nature is not 
lear upto now. However, this phenomenon underlines the importan
e of the presen
e of a symmetri
al�ow pattern, for the 
omputation of transoni
 resonan
e.
• τ = 0.32:For τ = 0.32, no low frequen
y os
illations 
an be observed. A frequen
y f ≈ 1500 Hz isdominant. A high-frequen
y mode at f ≈ 5000 Hz is also observed for this pressure ratio.For this 
omputation, the in�uen
e of the sho
k 
apturing is 
onsidered. As observed for thevalidation test 
ases, the sho
k 
apturing 
an be minimized by the use of a high-order Jamesondete
tor. Two 
omputations have been 
arried out: one using the Jameson �lter and one usingthe modi�ed dete
tor based on the sele
tive 11-point �lter. The obtained 1-D spe
tra are givenin Figure 4.24. Using the 
lassi
al dete
tor leads to slightly lower amplitudes espe
ially for w,the velo
ity 
omponent in spanwise dire
tion. This might be an indi
ation that the transitionto a turbulent state of the shear layer might be retarded due to higher dissipation introdu
edby the low order sho
k 
apturing �lter. Using the 
lassi
al Jameson dete
tor, an energy 
as
adeis well 
aptured and 
an be observed for the velo
ity 
omponent u over one frequen
y de
ade.Using the modi�ed Jameson dete
tor, the signal is disturbed by high frequen
y 
omponents. Theorigin of these high frequen
y 
omponents is propably due to the redu
ed low-order dissipationin the sho
k regions leading to a higher aliasing error.
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Figure 4.21: Pressure signals re
orded at the upper wall for di�erent pressure ratios for τ = 0.31, τ = 0.32.No areoa
ousti
 
oupling is dete
ted by the present simulation when the �ow is asymmetri
al. Thisis 
onsistent with the experiments that does not exhibit aeroa
ousti
 
oupling when the asymmetri
transoni
 �ow regime is established in the du
t. The dominan
e of the asymmetri
 �ow pattern 
an be
aused by the appli
ation of periodi
 boundary 
onditions in the spanwise dire
tion. The pressure inthe upper and lower 
orner regions 
annot be kept in balan
e as it would be the 
ase when the lateralwalls are present: the jet destabilizes and atta
hes to one du
t side more easily.
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Figure 4.22: Spe
tra of pressure signals re
orded on the upper wall at three positions x = 0,
x = L/2, x = L for di�erent pressure ratios (a) τ = 0.31, (b) τ = 0.32.
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Figure 4.23: (a) Time history of the pressure measured in the 
orner region at x = 0 on the lower (��-) andupper ��- wall; (b) Pressure spe
trum of a signal, when symmetri
al �ow pattern dominates.
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Figure 4.24: 1-D spe
tra for the pressure ratio τ = 0.32 using the Jameson dete
tor (- - - -) and the modi�edJameson dete
tor based on 11-point sele
tive �lter (��-).



1124.4 Transoni
 resonan
eA new grid has been built using the approximately the same number of grid points as in the previousse
tion but taking a du
t length of L = 0.08 m and an aspe
t ratio φ = 0.4. This has two advantages:(a) the Reynolds number is de
reased and (b) the new aspe
t ratio prefers a more symmetri
 �owregime as it is shown in Figure 4.27 (b). The plot shows the pressure in the 
orner pw measured as afun
tion of the out�ow pressure pe. The hysteresis region for this du
t length is mu
h smaller than forthe longer du
t 
ase L = 0.16 m su
h as given in Figure 4.13.
Nx Ny Nz ∆x+

min ∆y+
min ∆z+

min Npro
sNozzle 29 65 21 12 8 12 6Expansion du
t 490 161 21 12 8 12 77Reservoir 180 398 21 12 8 12 82Table 4.4: Grid parameters for L = 0.08 m, L/H = 5.33 and φ = 0.4 for τ = 0.42. All these 
ases have been
omputed using Npro
s = 165 pro
essors. The total number of grid points is about 5 × 106.The 
omputation is 
arried out using a pressure ratio of τ = 0.41, where transoni
 os
illations havebeen observed experimentally. In the following, the aerodynami
 properties of the mean �ow �eld arepresented. Then, unsteady �ow aspe
ts are 
onsidered and the 
oupling of the sho
k os
illations withlongitudinal du
t modes is explained.4.4.1 Aerodynami
 �eldMean propertiesFigure 4.25 shows the 
omputed �eld of the mean number of the �ow in
luding the reservoir. The �owis symmetri
al. A normal sho
k 
an be observed in the upstream part of the du
t. The mean sho
kposition is slightly smeared indi
ating that the sho
k os
illates. The �ow downstream the normal sho
kis subsoni
 and layers with higher speeds 
an be observed near the upper and the lower du
t wall. Thesubsoni
 jet downstream of the du
t spreads as it is observed for free jets.The Ma
h-Zehnder interferometrie like plot of the time averaged mean density in Figure 4.26 (a)
ompares qualitatively well with an instantaneous visualization for a similar �ow regime observed witha longer du
t with L = 0.16 m, φ = 0.3 and τ = 0.364 in Figure 4.26 (b).The 
orresponding 
omputed time averaged stati
 pressure distributions along the upper and lowerdu
t walls are given in Figure 4.27 (a). After the expansion, the 
ompression zone indi
ates the lo
ationof the strong normal sho
k. Further downstream, the stati
 pressure on the upper and the lower du
t
onverges to a value that is 
lose to the downstream pressure pe = 0.41pa.The time averaged pressures in the upper and lower 
orner region pw obtained by 
omputation are
ompared to the experimental values given as a fun
tion of the pressure ratio τ = pa/p0 in Figure4.27 (b). The mean pressure 
omputed in the upper and lower 
orner is in ex
ellent agreement withthe measured 
orner pressure.
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Figure 4.25: Computed time averaged Ma
h number �eld for τ = 0.41 for a expansion du
t length L = 0.08 mand aspe
t ratios L/H = 5.33 and h/H = 0.4. Color s
ales from 0 to 2.3.A relation between the 
orner pressure and the Ma
h number downstream is given in the Meier etal. [94℄:
1 − φ

φ

pw

p0
=

(
2

γ + 1

) γ+1
2(γ−1) 1 + γM2

e

Me

√
(1 + γ−1

2 M2
e )

− (γ + 1)

(
2

γ + 1

) γ
γ−1

, (4.1)where Me is the Ma
h number behind the sho
k. Its derivation is has been reprodu
ed in the AppendixB. This relation is plotted in Figure 4.28 (a) for di�erent nozzle aspe
t ratios 0.1 ≤ φ ≤ 1.. TheMa
h number behind the sho
k in
reases with in
reasing aspe
t ratios φ. This is due to an in
reaseda

eleration of the �ow and in
reased Ma
h numbers upstream the normal sho
k. For the 
omputedpressure a Ma
h number of Me = 0.51 
an be 
omputed by equation (4.1) and is in good agreementwith the 
omputed Ma
h number along the 
enterline y = 0 of the du
t, given in Figure 4.28 (b). Themean pressure and the time averaged speed of sound are given in Figure 4.29 (a) and (b) respe
tively.
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Figure 4.26: Ma
h-Zehnder interferometry visualizations of the time averaged density at pressure ratios: (a)
omputed for τ = 0.41 for a expansion du
t length L = 0.08 m and aspe
t ratios L/H = 5.33 andh/H = 0.4. (b) visualized experimentally for τ = 0.364 for a expansion du
t length L = 0.24 mand aspe
t ratios L/H = 7.23 and h/H = 0.3 [94℄.
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Figure 4.27: (a) Time averaged stati
 mean pressure 
omputed along the upper and lower wall; (b) Time averaged stati
 mean pressure measured in the 
orner region (◦ upper wall • lowerwall) as a fun
tion of the pressure ratio τ : in bla
k experimental values [94℄; in red the 
omputedvalues for a du
t of length L = 0.08 m.
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Figure 4.28: (a) Corner pressure as a fun
tion of the Ma
h number downstream of the sho
k for in
reasingaspe
t ratios φ; ��� φ = 0.4; (b) Lo
al time averaged Ma
h number along the 
enterline y = 0;- - - - - theoreti
ally predi
ted Ma
h number using equation (4.1).
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Figure 4.29: Time averaged quantities along the 
enterline (y = 0): (a) pressure; (b) speed of sound.
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Figure 4.30: View on numeri
al S
hlieren |∇ρ| in a x − y-plane of the entire 
omputational domain.Instantaneous �ow visualizationsFigure 4.30 shows the instantaneous numeri
al S
hlieren �eld of the entire 
omputational domain.The jet is exhausted at the out�ow of the expansion du
t. The jet is re
eived by the sponge layer and�ne s
ale vorti
al stru
tures are dissipated without generating spurious sound. Thus the sponge layeris well suited. The a
ousti
 waves that originate at the out�ow of the test du
t leave the 
omputationaldomain without spurious re�e
tions.4.4.2 Sho
k os
illationsFigure 4.31 (a) and (b) 
ompare two instants of the sho
k-os
illation 
y
le for the experiment andthe 
omputation by visualizing the iso-density 
ontours. The �ow visualizations show two extremepositions of the sho
k during a sho
k os
illation 
y
le. When the sho
k is 
losest to the nozzle, thesubsoni
 
enter �ow is more extended to the walls. In the se
ond visualization the sho
k rea
hes itsposition farthest from the nozzle. The subsoni
 region is more narrow. The 
omputed density �eld
ompares well with the experiments.In the following, the self-ex
iting me
hanism of the base pressure os
illations is explained. For thata sequen
e of the instantaneous Ma
h number �eld is given in Figure 4.32. The me
hanism 
orrespondsto the explanations of Meier et al. [94℄.In frame 1, the dead-air region is 
onne
ted to the downstream region by a subsoni
 layer on bothsides of a 
entral supersoni
 �ow near the nozzle exit. The supersoni
 �ow ends with a strong normalsho
k whi
h is followed by subsoni
 �ow in the 
entral part of the �eld. Supersoni
 regions are formeddownstream of the extremities of the normal sho
k. A pressure drop in the 
orner region makes the jetto spread and to reatta
h on both du
t walls (frame 2). Meier et al. [94℄ noti
ed that the pressure dropis 
aused by an entrainment of air by the jet and a subsequent eva
uation of the 
orner region. This
auses an expansion and an a

eleration of the transoni
 jet. The entrainment of air is in
reased andthe expansion is therefore a self-amplifying pro
ess. On
e the jet reatta
hes, the reatta
hement point
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Figure 4.31: Time sequen
e of sho
k os
illation 
y
le: (a) the experiments for a longer du
t (L = 0.16 m,
L/H = 4.82, Φ = 0.3); (b) 
omputed results are visualized by a Ma
h-Zehnder-interferometrie-like
olormap.moves in upstream dire
tion (frame 2 and 3). The expansion angle of the jet in
reases and the normalsho
k is moving upstream and rea
hes a position 
losest to the nozzle (frame 3). The jet velo
ity isin
reasing and the pressure therefore in
reases behind the sho
k. The pressure rise downstream ofthe reatta
hement zone makes the boundary layer to separate. The jet separates 
ompletely from theupper and lower du
t wall (frame 4). The pressure rises in the 
orner region due to a 
ompressionwave that travels through the slit between the separated jet and the du
t wall. In the experimentsthe pressure is ampli�ed by a strong ba
k �ow in the 
orner region. The height of the normal sho
kredu
es (frames 4-7) and the pressure behind the sho
k de
reases. The sho
k moves downstream untilrea
hing the most downstream position in frame 7. In frame 8, an expansion of the jet is observed.The jet begins to reatta
h to the du
t wall and the loop is 
losed.
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Figure 4.32: Time sequen
e of sho
k os
illation 
y
le: lo
al Ma
h number (
olor s
ales from 0 to 3).



1194.4.3 Aeroa
ousti
 
ouplingThe self-ex
iting me
hanism su
h as explained in the previous se
tion exists without a 
oupled res-onator. In this 
ase, the pressure os
illations are irregular and weak. Coupling takes pla
e only whenthe os
illation frequen
y of the sho
k is 
lose to the longitudinal du
t resonan
e frequen
ies.The spe
tral densities of signals re
orded along the upper du
t wall are given in a 3-D plot of Figure4.33 (a). A peak 
an be observed at f = 710 Hz. The amplitude diminishes when approa
hing thedu
t end. This indi
ates the presen
e of a standing a
ousti
 wave in the du
t.The natural frequen
ies 
an be estimated in order to show that the base pressure os
illations are
ontrolled by du
t resonan
e. Assuming a 1-D �ow the frequen
ies 
an be estimated by
fdu
t,n = (2n − 1)(1 − M2

e )
ce

4L
, for n = 1, 2, 3 et
. (4.2)where n is the du
t mode number. This expression gives the frequen
ies of (2n− 1)× quarter standingwaves whi
h are supported by a du
t that is 
losed at one end (u′ = 0) and that is open at the otherend (p′ = 0). The term (1 − M2

e ) takes into a

ount the mean Ma
h number Me of the subsoni
 �owbehind the normal sho
k. The mean sound speed of the �ow is denoted by ce. Note that the upstreampart of the du
t 
an be treated as a 
losed end be
ause a soni
 �ow is present at the throat at all timesand no information 
an travel upstream through the nozzle.Equation (4.2) identi�es, beside the du
t length, the speed of sound as a determining parameterof the du
t resonan
e. The mean Ma
h number is subsoni
 in the 
ase of a normal sho
k. Meier etal. [94℄ estimated the downstream mean Ma
h number by a 1-D approa
h that 
an be found in thework of Jungowski [75℄. The speed of sound has been determined from tables of adiabati
 �ow. Theexperimentally measured frequen
ies and the theoreti
ally predi
ted frequen
ies of the base pressureos
illations are plotted in Figure 4.33 (b) as a fun
tion of the pressure ratio τ for a du
t of length
L = 0.08. The theoreti
al frequen
ies 
ompare well with the measured ones indi
ating a 
oupling ofsho
k os
illation and longitudinal du
t modes.For the simulated 
ase, the mean Ma
h number M̄e and the mean sound velo
ity c̄e are 
omputedusing an average de�ned by

M̄e =
1

L

xs+L∫

xs

M̄y=0 dx, c̄e =
1

L

xs+L∫

xs

c̄y=0 dx,where the quantity xs is the sho
k position and M̄y=0, c̄y=0 are the 
enterline distribution of the meanMa
h number and sound speed, given in Figure 4.28 (b) and 4.29 (b) respe
tively. The 
omputedfrequen
y and the theoreti
al predi
ted frequen
y are given in Figure 4.33. First, the frequen
y of the
omputed result 
ompare well with the measured frequen
y. Se
ond, the theoreti
al frequen
y 
omparewell with the du
t mode frequen
y given by equation (4.2). This indi
ates that the sho
k os
illationsare 
ontrolled by longitudinal du
t modes.
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tra of pressure signals re
orded along the upper wall; - - - designates the dominantfrequen
y at f = 710 Hz; (b) Frequen
ies of base pressure os
illations as a fun
tion of the pressureratio τ for a du
t of length L = 0.08 m; △ experimental values [94℄ ▽ theoreti
ally predi
ted valuesfor the �rst longitudinal du
t mode n = 1 using equation (4.2) [94℄; + the 
omputed values ×theoreti
al predi
ted values using equation (4.2)4.5 Con
lusionThe numeri
al algorithm is able to reprodu
e in a satisfying way the expansion of a transoni
 �owin a du
t for various pressure ratios and du
t geometries. First, the expansion of a transoni
 �owin a re
tangular du
t is 
omputed for a pressure ratio leading to an entirely supersoni
 �ow. Theaerodynami
 �eld is found to be in good agreement with experiments. Se
ond, several simulationsof the same 
on�guration for di�erent pressure ratios, where 
oupling between normal sho
k motionand longitudinal du
t modes are likely to o

ur, are presented. An investigation of the in�uen
e ofpressure ratio on the mean �ow �eld shows that the present numeri
al algorithm is able to reprodu
ethe main �ow patterns in a satisfying way. The abrupt swit
h from symmetri
al to asymmetri
al �owpattern is well predi
ted and follows the hysteresis bran
h obtained for de
reasing pressure ratios.The asymmetri
 �ow pattern is the preferred 
on�guration of the numeri
al simulation. In agreementwith experiments, no aeroa
ousti
al 
oupling is observed for the asymmetri
al �ow pattern. Third,a simulation were 
ondu
ted where the symmetri
 �ow pattern is 
aptured. As observed by theexperiments 
oupling between the sho
k os
illations and longitudinal du
t modes o

urs.



General 
on
lusionIn the present work, a high-order algorithm based on 
entered �nite-di�eren
e s
hemes has been de-veloped for dire
t 
omputation of aeroa
ousti
 phenomena in 
omplex geometries.The �rst 
hapter is dedi
ated to the des
ription of the numeri
al algorithm SAFARI (SimulationAéroa
oustique de Fluides Ave
 Resonan
es et Intera
tions). The governing equations, the Euler andNavier-Stokes equations, are solved with high-order optimized �nite-di�eren
e s
hemes. In order totreat 
ompressible �ows, a �rst-order Jameson-like sho
k-
apturing �lter has been used. The �lter isapplied lo
ally in the vi
inity of sho
ks. The sho
k lo
ation is dete
ted with a Jameson sensor. Ahigh-order overset-grid approa
h is used in order to treat 
omplex geometries with stru
tured grids.The 
omplex data stru
ture is provided by a grid assembly software ogen, part of the freely availablelibrary Overture, that has been interfa
ed with SAFARI. The solver is parallelized using the standardMPI library and ea
h grid 
an be 
omputed on an arbitrary number of pro
essors for the purpose ofload balan
e. High-order Lagrangian polynomials are used for grid boundaries where the grid points donot 
oin
ide. The solver is portable on several massively parallel platforms. Computations involving
50 × 106 grid points with 250 pro
essors have been 
arried out.In the se
ond 
hapter, the multi-domain ability and the in�uen
e of the implemented sho
k-
apturing �lter are validated with typi
al test 
ases found in the litterature. The 
onve
tion of avortex through an interpolation zone has been �rst examined. In parti
ular, the generation of spurioussound when a vortex passes through an interpolation zone has been 
onsidered as a fun
tion of thepolynomial order used for interpolation. The di�ra
tion of a monopolar pressure sour
e by a 
ylinderhave been 
omputed on a single-blo
k grid and on an overset grid. These two test 
ases reveal that thea

ura
y of the high-order �nite-di�eren
e s
heme 
an be re
overed when Lagrangian polynomials ofsu�
iently high-order are used. The 
omputation of entropy/sho
k wave intera
tion and the 
ompu-tation of the sound/sho
k wave intera
tion problem reveal an impa
t of the sho
k-
apturing �lter onthe small s
ale perturbations. The dissipation 
an be minimized using a modi�ed Jameson sensor thatis based on high-order dissipation terms. Furthermore, the 
omputation of a low Reynolds number�ow and a 3-D 
ir
ular sho
k tube demonstrate that SAFARI is able to treat geometries involving gridsingularities and 
omplex overset-grid stru
tures.In the third and fourth 
hapter, SAFARI has been applied to two 
on�gurations typi
al for in-dustrial appli
ations of EDF. The two planar 
on�gurations have been solved in 3-D with periodi
boundary 
onditions in spanwise dire
tion.The �rst appli
ation is the du
ted 
avity at low Ma
h number regime. In the experiments a strong
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oupling between the 
avity modes and the transverse du
t modes has been observed. In order to showthe numeri
al eviden
e of the 
oupling, 
omputations with varying Ma
h numbers have been 
arriedout. This 
oupling has been su

essfully reprodu
ed by the algorithm. Despite some dis
repan
ies inamplitude, the frequen
ies have been very well retrieved.The se
ond test 
ase is the 
omputation of a suddenly expanded transoni
 �ow in a re
tangulardu
t. The �ow regime is governed in parti
ular by the pressure ratio. For very low pressure ratios,the �ow in the planar du
t is entirely supersoni
. The 
omputation exhibits good agreement withthe �ow visualizations and wall pressure measurements. Furthermore the in�uen
e of the pressureratio on the �ow regimes has been examined. For higher pressure ratios, two �ow regimes have beenobserved in the du
t: a symmetri
al and an asymmetri
al �eld. The observed regime depends whetherthe pressure ratio in
reases or de
reases, showing a hysteresis phenomenon. In the experiments, onlythe symmetri
al �ow regime has produ
ed strong aeroa
ousti
 
oupling between sho
k os
illationsand longitudinal resonan
e modes. From an industrial point of view, it is therefore 
ru
ial to knowwhether the symmetri
al or the asymmetri
al �ow regime is stable. Numeri
ally the hysteresis andthe abrupt swit
h between the two regimes have been well reprodu
ed. Then, the 
oupling for asymmetri
 �ow regime is 
omputed using a du
t 
on�guration where the hysteresis is less dominant.The sho
k os
illations have been well reprodu
ed. The frequen
ies measured in the du
t indi
ate thatthe longitudinal a
ousti
 du
t modes are ex
ited.The 
omputation of these two industrial 
ases demonstrates that SAFARI is able to reprodu
eaeroa
ousti
 phenomena in di�erent �ow regimes using a�ordable 
omputer resour
es. The presentwork has shown that �ows with industrial relevan
e 
an be 
omputed using high-a

ura
y numeri
alte
hniques.OutlookSAFARI has been applied to 3-D �ows using periodi
 boundary 
onditions in the third dire
tion. Thenext step should be to take into a

ount the entire 3-D geometry of the real gate valve, presented inFigure 1 (b).In this work, the solver has been developed for stati
 grids. In the future, the solver shouldbe extended in order to ta
kle with overlapping grids that move relative to ea
h other. The main
on�gurations of interest are aeroelasti
 vibrations of turbine low pressure blades. For this purpose,the interfa
e between Overture and SAFARI has to be developed be
ause interpolation data has to beupdated at ea
h time step.Another point that should be 
onsidered in the future is the use of multi-time stepping methodsin order to over
ome the 
onstraining CFL 
ondition of expli
it time stepping for wall-bounded �ows.This development should be quite easy due to the multidomain stru
ture of SAFARI.



Appendix AConservativity aspe
ts of �nite-di�eren
es
hemesIn CAA, �nite-di�eren
e s
hemes are more popular than �nite-volume methods as its order of a

ura
y
an be in
reased easily. Additionally, they 
an be tuned in order to have minimum dispersion anddissipation over a 
ertain wave-number range. However, �nite-di�eren
e methods are non 
onservative,
ompared to �nite-volume methods that ensures 
onservation of mass, momentum and energy per
onstru
tion.In the following, a �nite-volume formulation of a 
entered �nite-di�eren
e s
heme is presented, whenthe governing equations are solved in 
onservation from. Furthermore, using 
onservative operators�nite-di�eren
e operators ensure 
onservativity for �ows 
ontaining sho
ks.Finite-volume formulation of �nite-di�eren
eThe �nite-volume formulation of �nite-di�eren
e s
hemes is 
onsidered in 1-D, using the followingmodel non-linear equation in 
onservation form:
∂u

∂t
+

∂f(u)

∂x
= 0,where u = u(x, t). On a uniform gird with grid spa
ing ∆x, the spatial derivative is dis
retized in the�nite-di�eren
e approa
h by the following expression:

∣∣∣∣
∂f(u)

∂x

∣∣∣∣
i

≈ 1

∆x

n∑

r=−n

arfi+rConservative �nite-volume approa
hes are based on the integral 
onservation law of a grid elementlimited by xi−1/2 ≤ x ≤ xi+1/2 su
h as shown in Figure A.1 whi
h leads on the semi-dis
rete form:ddt xi+1/2∫

xi−1/2

u dx + fi−1/2 − fi−1/2 = 0.The �uxes at the interfa
e fi−1/2 are 
omputed via interpolation of the points at the 
ell 
enters xi.This step is also known as re
onstru
tion step. The interpolation 
an be expressed in terms of a
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xixi−1 xi+1

fi−1/2 fi+1/2

Figure A.1: Denotations used for the �nite-di�eren
e and �nite-volume approa
h.�nite-di�eren
e approximation as:
fi−1/2 =

n∑

j=1

bj(fi−1+j + fi−j), fi+1/2 =

n∑

j=1

bj(fi+j + fi+1−j),where bj are the 
oe�
ients for a interpolation. The �nite-di�eren
e form 
an be re
asted in a �nite-volume like form su
h as
n∑

r=1

ar(fi+r − fi−r) =

n∑

r=1

br(fi+r + fi+1−r − fi−1+r − fi−r)

=

n∑

r=1

br(fi+r − fi−r) +

n∑

r=1

brfi+1−r −
n∑

r=1

brfi−1+r

=

n∑

r=1

br(fi+r − fi−r) +

n−1∑

r=0

br+1fi−r −
n−1∑

r=0

br+1fi+rFinally, the re
ursive formula is obtained:
n∑

r=1

ar(fi+r − fi−r) =

n∑

r=1

br(fi+r + fi+1−r − fi−1+r − fi−r)For j = n, an = bn and for 1 ≤ j ≤ n − 1 the aj 
an be 
omputed via aj = bj − bj+1. Kim and Lee[78℄ writes this
bj =

n∑

l=j

al.For example, for a 
lassi
al fourth-order �nite-di�eren
e s
heme the 
oe�
ients for ar are:
∣∣∣∣
∂f(u)

∂x

∣∣∣∣
i

≈ a1(fi+1 − fi−1) + a2(fi+2 − fi−2), a1 = 8/12, a2 = −1/12and the 
oe�
ients for br are:
∣∣∣∣
∂f(u)

∂x

∣∣∣∣
i

≈ b1(fi+1 + fi) + b2(fi+2 + fi−1) − b1(fi + fi−1) − b2(fi+1 + fi−2)with b1 = 7/12 and b2 = −1/12.In 
on
lusion, 
entered �nite-di�eren
e s
hemes on uniform Cartesian grids 
an be written on
onservation form whi
h is a ne
essary 
ondition to deal with strong gradients [88℄. This 
onservativeproperty is still veri�ed on orthogonal 
urvilinear grids provided some metri
s relation are respe
ted[130℄.



Appendix BEstimation of the Ma
h numberdownstream of an abruptly expandedtransoni
 �owThe simpli�ed �ow model is sket
hed in Figure B.1. A normal sho
k is situated in the du
t and the�ow downstream of the normal s
ho
k is subsoni
. In this se
tion the model su
h as proposed in thework of Jungowski [75℄ is derived.In order to estimate the Ma
h number behind the sho
k the equations of mass, momentum andenergy are used. The momentum equation writes
h(ph + u2

hρh) + (H − h)pw − H(pe + ρu2
e) = 0.Mass 
onservation gives

hρhuh − Hρeue = 0.Assuming adiabati
 walls, the energy 
onservation gives:
cpTh +

1

2
u2

h − cpTe +
1

2
u2

e = 0.In terms of the lo
al Ma
h number M = u/c and c2 = γp/ρ the momentum equation writes:
hph(1 + γM2

h) + (H − h)pw − pe(H + hγM2
e ) = 0.This 
an be rearranged su
h as

Φph(1 + γM2
h) + (1 − Φ)pw − pe(1 + γM2

e ) = 0,Using the fa
t that the �ow in the throat is soni
 (Mh = 1) the quantity ph/p0 = ((γ + 1)/2)−γ/(γ−1)
an be introdu
ed:
(1 + γ)

(
2

γ + 1

) γ
(γ−1)

+
(1 − Φ)

Φ

pw

p0
− 1

Φ
(1 + γM2)

pe

p0
= 0.
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pw h H ue, Te, peuh, Th, ph

Figure B.1: Simpli�ed model of the expansion of a 
on�ned �ow; box bounded with - - - is the 
ontrol volumefor the appli
ation of the 
onservation equations.Now, the quantities pe/p0 and Φj 
an be estimated using the mass 
onservation and energy 
onservationequations. These 
an be written in terms of lo
al Ma
hnumber following Candel [34℄ with cp =

γR/(γ − 1)

Th(1 +
γ − 1

2
M2

h) = Te(1 +
γ − 1

2
M2

e ).A relation between the temperatures and the exit Ma
h number is found with Mh = 1

Th

Te
=

(1 + γ−1
2 M2

e )

(γ+1
2 )The mass 
onservation equations gives using the perfe
t gas law p = ρRT :

ph

pe
=

1

Φ
Me

√
Th

Te
.Using the relation for the temperature gives

ph

pe
=

1

Φ
Me

√√√√(1 + γ−1
2 M2

e )

(γ+1
2 )

.Introdu
ing the relation for ph/p0 = ((γ + 1)/2)−γ/(γ−1)

p0

pe
=

1

Φ
Me

(
γ + 1

2

) γ
γ−1

√√√√(1 + γ−1
2 M2

e )

(γ+1
2 )

,giving
p0

pe
=

1

Φ
Me

(
γ + 1

2

) γ+1
2(γ−1)

√
1 +

γ − 1

2
M2

e .Finally, one obtains the relation between pw/p0 and Me:
(1 + γ)

(
2

γ + 1

) γ
(γ−1)

+
(1 − Φ)

Φ

pw

p0
−
(

2

γ + 1

) γ+1
2(γ−1) 1 + γM2

e

Me

√
1 + γ−1

2 M2
e

= 0,and gives the equation obtained by Jungowski [75℄.
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Développement d'un algorithme d'ordre élevé multi-domaines pour l'aéroa
oustique numérique:Appli
ation aux é
oulements 
on�nés en régimes subsonique et transoniqueUn nouvel algorithme de simulation numérique pour l'aéroa
oustique, SAFARI (Simulation Aéroa
oustique desFluides Ave
 Résonan
es et Intera
tions), a été développé pour le 
al
ul dire
t du bruit. Il s'appuie sur la résolution deséquations de Navier-Stokes 
ompressibles en 
oordonnées 
urvilignes. Des s
hémas aux di�éren
es �nies d'ordre élevésont implémentés. La solution est 
al
ulée sur des maillages re
ouvrants (méthode Chimère) pour traiter des géométries
omplexes. L'interpolation entre les maillages est e�e
tuée par des polyn�mes de Lagrange également d'ordre élevé. Deplus 
haque maillage est dé
oupé en blo
s pour permettre l'exé
ution du 
al
ul sur des ma
hines parallèles. Le solveurest parallélisé à l'aide de la bibliothèque MPI. A�n d'assurer la 
apture des 
ho
s forts, un �ltre non linéaire de typeJameson est utilisé.SAFARI est d'abord 
onfronté à des 
as-test simples: par exemple en 1-D l'é
oulement dans une tuyère 
onver-gente/divergente ou en 2-D l'é
oulement à bas nombre de Reynolds autour d'un 
ylindre. Les 
as tests montrent quel'algorithme produit des résultats de haute pré
ision et est bien adapté pour des 
al
uls aéroa
oustiques.Ensuite, les simulations en 3-D de deux 
as d'intérêt industriel sont présentées. D'abord un é
oulement à nombrede Reynolds élevé et à nombre de Ma
h modéré a�eurant une 
avité 
on�née a été simulé. Pour des 
avités 
on�néesles modes de 
avité peuvent se 
oupler ave
 les modes de résonan
e de la veine et produire des os
illations de grandeamplitude. Le 
al
ul met 
lairement 
e 
ouplage en éviden
e.La deuxième appli
ation industrielle traitée dans le 
adre de 
e travail est la simulation d'un é
oulement transsoniqueau travers d'un élargissement brusque dans un 
onduit plan. En fon
tion de la pression en aval, di�érents régimesd'é
oulements s'établissent dans le tuyau. Pour des pressions faibles, l'é
oulement est supersonique dans le tuyau et unsystème de 
ho
s obliques s'établit. Pour des pressions plus élévées, un 
ho
 droit os
illant apparaît dans l'é
oulement.Les os
illations de 
e 
ho
 se 
ouplent ave
 les modes a
oustiques longitudinaux du tuyau. Pour des pressions en avalen
ore plus élevées , le jet re
olle sur une des parois inférieure ou supérieure et des 
ellules des 
ho
 sont observées. Lesrésultats présentés dans 
e travail reproduisent tous les aspe
ts de 
e type d'é
oulement.Development of a multidomain high-order algorithm for 
omputational aeroa
ousti
s:Appli
ation to subsoni
 and transoni
 
on�ned �owsA new algorithm for 
omputational aeroa
ousti
s, SAFARI (Simulation Aéroa
oustique des Fluides Ave
 Résonan
eset Intera
tions) is proposed for the dire
t 
al
ulation of noise. The 
ompressible Navier-Stokes equations are solved usinghigh-order �nite di�eren
e s
hemes on stru
tured 
urvilinear grids. To ta
kle with 
omplex geometries, a high-orderoverset grid approa
h is implemented that 
onsists in de
omposing the geometry in grids that overlap. Communi
ationbetween grids is 
omputed by high-order multidimensional Lagrangian polynomials. Ea
h grid is divided into blo
ks forallowing the use of parallel 
omputing. The 
ode has been parallelized using MPI-library and has been validated onmassively parallel platforms. In order to a

urately 
apture sho
ks, a Jameson-like dissipation has been implemented.For validation, several 
anoni
al test 
ases have been 
omputed that are typi
al for Computational Fluid Dynami
sand Computational AeroA
ousti
s (CAA): for example a 2-D low Reynolds number �ow around a 
ylinder and thetransoni
 �ow in a 
onvergent-divergent nozzle. The test 
ases demonstrate that the solver is able to provide high-ordera

urate solutions on 
omplex geometries and the sho
k-
apturing strategy is well adapted to CAA problemsThe �rst industrial appli
ation presented in this work is the simulation of a high-Reynolds number �ow at low Ma
hnumbers past a du
ted 
avity. For the 
hosen �ow regime, the 
avity modes 
ouple with resonan
e modes of the du
t,leading to high pressure levels. The 
oupling phenomenon is well reprodu
ed by the 
omputation.As se
ond industrial appli
ation, a soni
 �ow in a plane du
t passing an abrupt in
rease in 
ross-se
tion is numer-i
ally studied by solving 3-D 
ompressible Navier-Stokes equations. Di�erent �ow patterns are likely to appear in su
h
on�guration. For a very low downstream pressure, the �ow is entirely supersoni
. For higher pressures, unstable �owpatterns emerge. One of these patterns features a normal sho
k, that os
illates due to a self-ex
iting me
hanism. Asthe du
t is open at the out�ow, aeroa
ousti
 
oupling o

urs when the sho
k os
illations get in resonan
e with thelongitudinal a
ousti
 modes of the du
t. The simulated �ow has been found to be in good agreement with availableexperimental data.


