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Introduction

Flows generate noise, and noise often interacts with flows through a feedback loop. These complex
mechanisms raise many questions of fundamental, technical and industrial interests. Since the 50’s and
the development of turbojet engines for commercial aircrafts, the need to deal with these problems has
spread to other industrial fields: ground transportation, energy production, ...

Aeroacoustics is considered as a branch of fluid mechanics. But the nature of acoustics fluctuations
that are compressible, propagative and of small amplitude takes a special place in the field of fluid
mechanics that usually deals with incompressible, convective, turbulent fluctuations draining a signif-
icant percentage of the main flow energy. Here lies the difficulty of aeroacoustics which is devoted to

flow induced noise and more generally to flow acoustics phenomena.

Industrial background

In the industrial field of interest for EDF, strong aeroacoustic phenomena are often generated when
pipe flows are disturbed by flow control devices. That is the case, for example, downstream control
valve at small aperture such as shown in Figure 1 (a). The pressure ratio is very high and the flow is
then transonic. In such shocked configurations, flow patterns are very sensitive to instabilities and this
can lead to strong pressure oscillations when they are in resonance with acoustic modes |95, 6]. Other
examples are given by diffuser flows where oscillations are generated due to the interaction of a normal
shock with a separating shear or boundary layer |24, 23|. Self-sustained oscillations of the shock wave
can couple with longitudinal acoustic duct modes [143] and can lead to high amplitude oscillations.
That is also the case in subsonic flow when shear layers or jets impinge on downstream obstacles.
It is well know that in such situations, self-sustained oscillations can appear. The flow above a shallow
cavity is a typical illustration of this phenomenon. An industrial example is given in Figure 1 (b)
showing a gate valve with a cavity located at the bottom of the valve. Due to confinement, coupling
can occur with transverse duct modes when the frequency of cavity oscillations matches the resonant
frequency of the duct. This leads to high amplitude pressure fluctuations even at low Mach numbers
whereas for open cavities, no considerable noise generation is observed. The same phenomenon can
even be found in nearly incompressible flow such as high pressure water flow through orifices [129]. The
consequence of these phenomena is the generation of large amplitude acoustic tones that are undesirable
as regards vibrations of pipe structures and protection of nearby workers from high acoustic levels.

All these aeroacoustic phenomena exhibit the same physical behavior: they occur when a self-



Flow

Figure 1: Examples of flow control devices: (a) Strioscopy of the flow in a control valve; (a) gate valve.

sustained oscillation due to a flow instability (shock, jet, shear layer) is coupled with an acoustic

resonator. They also clearly emphasize feedback loops from the acoustics to the aerodynamics.

Computational issues

Since the beginning of the 50’s and the birth of aeroacoustics as a new scientific field through the
publication by Lighthill of its founding papers, the problem is mainly how to use the information coming
from the aerodynamics and especially how to link aerodynamics and aeroacoustics in a modeling point
of view. Although acoustics and aerodynamics are two branches of fluid mechanics, classical methods
used in Computational Fluid Dynamics (CFD) can not be applied easily. This is due to the disparity
of scales and dynamics between the aerodynamic field and the acoustic field. For example, for a free
jet at Mach M = 0.9, the pressure fluctuations of the acoustic field is about 100 times smaller than
the pressure fluctuations of the aerodynamic field. The disparity is even greater between the velocity
fluctuations of the acoustic field and the aerodynamic field. An error of 1% in the computation of
the aerodynamic field therefore produces an error of 100% for the acoustic field. As a result, two
approaches have been developed in the past.

The first approach is based on the so-called hybrid methods that consist of a two-step procedure.
First, the incompressible mean flow field is calculated, then a source term is defined and at last an
acoustic solver gives the propagation field generated by the source. That is the principle of Lighthill’s
or Ffowcs-Williams’s analogies that use integral methods as the acoustic solver but that is also the
principle of the methods based on the computation of Linearized Euler Equations (LEE). In this
first approach, the flow is obtained from classical incompressible low-order flow solvers giving steady
(Reynolds Averaged Navier-Stokes (RANS) models) or unsteady (Unsteady RANS (URANS), Large-
Eddy Simulation (LES)) results. The source term expression can be either statistical [17, 10|, stochastic

[16, 12, 91, 11, 52| or temporal [14, 41].



It has been shown above that in many issues, the acoustic field interacts with the flow field.
Particularly in ducted configurations, strong acoustic feedback mechanisms are involved. For those
problems, the hybrid approaches are no longer valid and it is necessary to use the second modeling
approach which implies to solve flow and acoustic fields at once [54, 29| . This approach is called
Direct Noise Computation (DNC). In this case, standard low-order CFD techniques are difficult to use
because they are too dissipative and too dispersive so they can not preserve the amplitude and the
phase of the acoustic fluctuations. Large efforts have been carried out to develop numerical techniques
suitable to Computational AeroAcoustics (CAA) [123, 40]. An important step was made with the
Dispersion Relation Preserving schemes introduced by Tam and Webb [128]. These schemes are based
on high-order accurate finite differences, optimized in order to minimize the dispersion error. Although
they are restricted to structured computational grids and despite of the impressive rise in computing
power, their computational efficiency compared to finite volume methods such as spectral volume or
discontinuous Galerkin methods made them very popular. Following this principle, Bogey and Bailly
[30] proposed improved schemes which have proved their efficiency on jet noise computations [29]. In
order to treat more complicated geometries, Marsden [92] applied these schemes on curvilinear meshes
around bodies such as cylinders or a NACAQ012 profile. The present work is on the same path and

aims to be able to deal with configurations close to industrial applications.

Objectives of the thesis

The objectives of the thesis are to develop a high-order finite-difference algorithm for Euler and Navier-
Stokes equations for the simulation of aeroacoustic phenomena in complex geometries and to apply
it on flow configurations that are typical of industrial applications. The flows to be addressed are
subsonic, transonic and supersonic.

In order to apply high-order finite-difference schemes in complex geometries, an overset-grid ap-
proach is chosen. Classically used for acoustic propagation problems, this approach [43] has recently
been adapted for the Direct Noise Computation approach and LES [116, 92, 45, 134]. In order to
avoid algorithmic developments that are not in the scope of this work, it is necessary to use available
tools dealing with overset grids. For example, the freely available Quwerture library developed by the
Lawrence Livermore National Laboratory seems to be a good candidate for the creation of overset grids
in complex geometries. In this work the applicability of such tools will be studied. In particular, the
crucial problem of the communication between grids through interpolation will be examined because
interpolation must be of high-order to preserve the accuracy given by the numerical schemes.

Another disadvantage of finite-difference schemes is that they exhibit stability problems due to
their minimized dissipation. In general, high-order finite-difference schemes fail to simulate flows with
strong shocks. Shock-capturing filters have therefore been developed in the literature for high-order
accurate computation of transonic and supersonic shock-containing flows. In this work, we will verify
that they are suitable to model aeroacoustic phenomena and will adapt them if necessary.

After having validated the algorithm on classical test cases for CAA, its application on two complex



configurations that are typical of the industrial problems of EDF will be tested: first the case of a
subsonic confined cavity and second the case of an abruptly expanded transonic flow. The simulations
can be validated with available experimental data. In particular, the acoustic coupling of self-sustained

oscillation and duct resonance modes is to be considered in this work.

Organization of thesis

The thesis is organized as follows. First, the numerical algorithm is explained in detail and the chosen
numerical schemes are detailed. The implemented shock-capturing filter is discussed. The overset-grid
approach is explained and some performance aspects of the parallelized solver are given.

In the second chapter, classical validation test cases are presented. Those test cases, involving
the diffraction of a monopolar pressure source by a cylinder, the convection of an inviscid vortex, the
1-D shock/sound interaction problem in a convergent divergent nozzle, the 1-D shock/entropy wave
interaction problem, a 2-D compressible plane Couette flow, a low-Reynolds number flow and the
computation of a 3-D shock tube, are reported.

In the third chapter, a first industrial application is presented. The configuration consists in a
low Mach number flow over a ducted cavity. The flow at high Reynolds number is computed in 3-
D and compared to available experimental data. In order to demonstrate the numerical evidence of
the coupling mechanism, a series of computations with different Mach numbers are carried out. For
particular values of the incoming velocity, the amplification of the pressure is maximum, showing the
coupling of the cavity modes and the duct modes.

In chapter four, the sudden expansion of a transonic flow is computed for different pressure ratios.
The study consists first in a computation of a pressure ratio where the flow is entirely supersonic and
features a system of crossing oblique shocks. Then, the influence of the pressure ratio on the flow is
examined. Finally, a configuration is presented where the oscillations of the shock are coupled with

longitudinal duct modes.



Chapter 1

Governing equations and numerical

algorithm

1.1 Governing equations

The governing equations used in this work are the curvilinear Euler and Navier-Stokes equations,
written in conservative form. In this section, the derivation is first established for the Euler equations.
The derivation of the curvilinear Navier-Stokes equations is given in section 1.7.

The system of equations can be derived starting from the Fuler equations written in Cartesian

coordinates

oU_ OB _OF 0G
ot dr Oy 0Oz

The unknown vector U contains the conservative variables

= 0. (1.1)

p
pu
U= pv ,
pw
pet
where p is the density, u, v and w are the velocity components in x, y and z-direction and pe; is the

specific total energy. For a perfect gas, pe; is defined such as

1 2

where v is the ratio of specific heats and p designates the pressure. The vectors E, F, G contain the

1
per = % + =p(u? + v+ w?),

Eulerian flux terms

pu pv pw
pu2 +p puU pwU
E= puv F = pv2 +p ,G = pwv . (1.2)
pUwW pow pw2 +p

(per + p)u (pet + p)v (per + p)w
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In the following, the coordinate transformation of the Euler equations (1.1) from Cartesian coordinates
(x,y, z) to curvilinear coordinates (§,n, () is sketched. Only time-invariant grids are considered in this

work resulting in curvilinear coordinates which are only functions of (x,y, 2):

T=t, §:§(x,y,z), 77277(957%2)7 CZC(wayvz)’ (13)

Further details can be found in the work of Vinokur [136] and Pulliam and Steger [102].

Chain rule expansions are used to represent the Cartesian derivatives in terms of the curvilinear

derivatives
Oy & M Co ¢
Oy | =& m G Oy |- (1.4)
0. & n: G O¢

Solving the metric equations leads to the following expressions:

§e = YnZc — YcZns N = YcZe — Yeze,  Co = Yezy — YnZe,

~ ~
A

Ey = 2nT¢ — 2¢Ty, Ty = 2cTg — 2¢T¢, Gy = 2¢Ty — 2y, (1.5)

& = TpYe — TcYns Nz = TeYe — Teye, Co = TelYy — Ty,

where fx =&/, éy = ¢,/J, ... and J stands for the determinant of the transformation Jacobian

matrix that is determined using

1
5 = BeUnFc T TYean T TyYcze — Telcrn — TyYedc — Tlne-
Applying the transformation (1.4) to the governing equations (1.1), the weak conservation form of the

curvilinear equations is obtained:
U; + &Ee + 0By 4+ GEe + §Fe +nyFy 4+ GFe +£.Ge + .Gy + (G¢ = 0.

The strong conservation form is recovered by dividing by the Jacobian J and by using the product

rule. For example we have:

éﬂcEf = (émE)f - (gac)fE

Thus the Euler equations become for curvilinear coordinates

1 . . . . . .

FUt + (GE+§F +&G)e + (1B + 0y F +17:G)y + (GE + ¢ F +¢.G)¢ (1.6)
E (60 + (a)g + (G| + F [(€)e + )y + Q)] + G |(Ee + Gy + (G| = 0.

The terms in brackets are known as the metric invariants of the transformation. If the equations for
the metric relations (1.5) are introduced, they vanish and the strong conservation form of the governing
equations is finally derived:

oU  OE  oF  0G

ov o or O 1.
8t+8§+8n+8§ 0, (1.7)
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L. L.

z 3
Figure 1.1: 2-D transformation from Cartesian coordinates (z,y) in the physical domain to curvilinear coordi-

nates (£,7) in the computational domain.

The unknown vector U = U/J contains the conservative variables weighted by the inverse of the
Jacobian, proportional to the volume of a grid cell in 3-D. The new flux vectors E, F, G contain the

Eulerian flux terms

pU pV oW
o pUu + p&, o pVu + pn, o pWu + pC,
E:j pUv + pg, ’F:j pVv + pny ’G:j pWo + p¢,
pUw + p&. pVw + pn. pWw + pC.
(pes + p)U (pes +p)V (pet + p)W

The quantities U, V, W are the contravariant components of the velocity, defined by
U=&u+&u+&Lw, V=nu+nv+nw and W = Gu+ (v + Gw.

The resolution of the Euler equations on a curvilinear grid is then similar to the resolution of the
equations on Cartesian mesh. The computation of the flux terms is more computationally demanding,
as the contravariant velocities have to be computed first. The grid spacing in the computational domain

is taken uniform with A =1, Ap =1 and A = 1.

1.2 Spatial Differentiation

The inviscid non-linear flux terms govern the propagation of acoustic waves and their interaction with
the aerodynamic field. In aeroacoustics, acoustic waves are propagated over long distances that requires
low dispersion and low dissipation errors of the numerical scheme. This makes the use of high-order
accurate schemes necessary.

Many high-order accurate schemes have been proposed in the literature for the purpose of CAA and
LES. An overview on high-order accurate schemes can be found in the review article of Ekaterinaris
[50]. Either based on the integral form or on the differential form of the Euler equations, two approaches

can be found in the literature: the finite-volume and the finite-difference approaches.
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The finite-volume approach is based on the integral form of the Euler equations and the flow
field is computed via surface integrals of the fluxes through a control volume. Finite-volume methods
are used in commercial CFD codes because they can be applied to unstructured grids and are by
construction conservative. Traditionally finite-volume methods are low-order accurate. In the last
decade, high-order accurate finite volume-approaches have been developed. For example Barth et
al. [13| pioneered the use of an arbitrary high-order reconstruction method to compute the flux at
the control volume boundary. Other methods like the Discontinuous Galerkin (DG) methods that
have been developed by Cockburn et al. [36] shows promise for high-resolution simulations on fully
unstructured meshes. Another method based on the finite-element framework are spectral element
methods developed recently by Wang [141]. ADER (Arbitrary high-order schemes using DERivatives)
finite-volume methods developed by Schwartzkopff et al. [115] and DG methods have been proposed
in the literature [49]. Although these methods allows a maximum flexibility in grid generation, high-
order finite volume methods on unstructured grids remain computationally intensive and very few 3-D

applications, in general at low Reynolds numbers, can be found in the literature [50].

The finite-difference approach is based on the differential form of the Euler equations. Those
methods do not require a reconstruction of the flux around a control volume and the derivatives are
approximated by finite-differences. High-order accuracy can be obtained very easily by enlarging the
finite-difference stencil and by eliminating low-order terms by a certain choice of the stencil coefficients.
As large stencils of grid points are needed to reconstruct the derivatives with high accuracy, the finite-
difference approach is in general restricted to structured grids with reduced grid flexibility. For non-
linear problems the finite-difference approach allows to access to high Reynolds number applications
and are often used for DNS and LES. In combination with high-order overset-grid approach, complex

geometries can be taken into account and the finite-difference method has been used in this work.

Several finite-difference based schemes exist in the literature. Among those the compact schemes
of Lele |86], the Dispersion Relation Preserving (DRP) scheme of Tam and Webb [128], high-order
implicit compact MacCormack-type scheme such as developed by Hixon et al. |70] and the explicit
11-point optimized explicit finite-difference scheme of Bogey and Bailly [30] can be mentioned at this

point.

In order to simplify the domain decomposition in a parallel approach, the explicit centered 11-point
finite-difference scheme developed by Bogey and Bailly [30] has been implemented in this work. This
scheme is optimized in wave number space and is able to resolve accurately perturbations with only
four points per wavelength. For example, the derivative of B in &-direction at (i,7,k) is computed

using the expression

5
| =D arBlivrjik — Bliorsn).
bk =1

The coefficients a, of the scheme are given in Table 1.1.
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apg = 0.

a; = 0.872756993962667

az = —0.286511173973333

a3 = 9.032000128000002 x 10~2
ay = —2.077940582400000 x 10~2
as = 2.484594688000000 x 1073

Table 1.1: Coefficients of the interior centered spatial differencing scheme [30].

1.3 Time integration scheme

A low-storage explicit Runge-Kutta scheme has been implemented in the solver to update the flow

variables at the new time instance U"!. The algorithm can be summarized as follows:

U0 = O
U0 = U —o At FOUDY forl=1,..,p,
Untl — fj(p)7

where U contains the flow variables computed at the sub stage [, a; are the coefficients of the Runge
Kutta scheme given in Table 1.3, At is the time step and F is given by
00 .
— +F(U) =0.
o )
RK(p—4) RKo(p-6)
o 1/4 0.11797990162882
o9 1/3 0.18464696649448
a3 1/2 0.24662360430959

gy 1 0.33183954273562
(07 — 1/2
(675 — 1

Table 1.2: Coefficients oy of standard (RK) and optimized Runge Kutta (RKo) scheme [30].

In this work, either four-stage or an optimized six-stage Runge-Kutta scheme such as proposed by
Bogey and Bailly [30] are used. The six-stage scheme has been optimized in the frequency domain
in order to reduce the dispersion and dissipation errors. Both schemes are fourth-order accurate for

linear problems and are second-order for non-linear problems.

1.4 Selective filtering

Centered finite-difference schemes have no built-in dissipation such as upwind schemes. Non physical
grid-to-grid oscillations that are generated at boundary conditions, geometrical singularities, non-linear

energy cascade and strong gradients such as shocks can accumulate in the computational domain,
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ending up with a divergence of the solution. In order to ensure numerical stability, an explicit 11-point
low-pass filter has been implemented. The filter, optimized in the wave-number space [30], removes
all high frequency waves resolved with less then 4 points per wavelength. Thus the cut-off frequency
matches with the maximum resolution of the finite-difference schemes. The filter is separately applied
once after every time iteration in each coordinate direction. The algorithm for filtering in &-direction

can be written such as
d
Woiik = Woijk — o(D¢ + Dy + D)
where
5 5 5
De= 3 dWo e Du= 3 dWpjpp De= 3 W,
r=-—>5 r=-—>5 r=-—>5

The filtering coefficient ¢ has to be chosen between 0 and 1. If not otherwise indicated a coefficient

of 0 = 0.2 is used. The filter is applied to the primitive variables W = (p,u,v,w,p)’. The stencil

coefficients d,, = d_, are given in Table 1.3.

dy = 0.2150448841109084

dy = —0.1877728835894673

do = 0.1237559487873421

d3 = —5.922757557574387 x 1072
dy = 1.872160915720372 x 1072
ds = —2.999540834788787 x 103

Table 1.3: Coefficients of the centered filtering [30] for interior points.

In order to preserve accuracy near the wall boundaries, the optimized 11-point non-centered finite-
difference schemes such as developed by Berland et al. [21] are used. The associated non-centered
filters exhibit stability problems, when the mesh is stretched, contains discontinuities or for strongly
compressible flows. Centered filters with reduced order can be therefore optionally applied at boundary

conditions.

1.5 Computation of the metrics

The solution of the transformed Navier-Stokes equations require the evaluation of the Jacobian matrix

J:

f:c X C:L‘

j_deno [0
T Aryz) |0

Ez U Cz

and its determinant J. Only the mapping function x = (x,y,2)T = x(&,1,¢) is a priori known
and therefore only its inverse J~! can be determined directly from x. The Jacobian matrix J can
be computed from equation (1.5). When solving the transformed Navier-Stokes equations grid with

finite-difference schemes, Pulliam and Steger [101] and Thomas and Lombard [130] highlighted then
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the following relations,

( 50)5 + (7750)77 + ( :c)C =0,
(éiy)f + (ﬁy)n + (Ay)c =0, (1.8)

must be verified numerically to ensure an effective conservative form. The metric relations are the

first part of the Geometric Conservation Law (GCL). An additional equation comes into play when

the mesh is time-variant. The equation writes [130]
Je+ (&)e + () + (G)e = 0.

However being evaluated with finite-differences, the first metric relation becomes for example:

(&x)e + (a)n + (Ca)e = (Wnzc)e — (Yezn)e + (Ycze)n — (Yezc)n + (Yezn)e — (Ynze)c # 0

due to the numerical failure of the product rule as noticed by Hixon [69]. Therefore Thomas and

Lombard [130] proposed to compute the metric coefficients in a conservative form such as:

bo=(m2)e — We2)ns 1o = We2)e — We2)es  Co = (Wez)n — (Un2)e,
&y = (z@)c — (2ca)y, Ty = (2cx)e — (2e2)e, Gy = (2¢@)y — (29,

~

&= (@py)c — (@Y N = (@cYe — (@eY)e, G = (Tey)n — (TnY)e-

(1.9)

This form is analytically identical to the metric terms in equations (1.5). Substituting this in the first

metric invariant gives

(5z)§ + (ﬁm)n + (Cm)( = (ynz)C£ - (yCz)nf + (yﬁz)fn - (yfz)Cn + (yfz)nC - (ynz)&“ =0

because the order of differentiation can be interchanged numerically as also explained by Hixon [69].

This is demonstrated by using a {-derivative and 7-derivative defined by

ke L
(@ig)e = Y @k@ivnjs (@ighy = Y b,

k=ks I=ls

where kg, s and ke, [, denote the number points on the left and right side of the stencil respectively

and a; and b; the stencil coefficients. Note that the index for the third direction is omitted. The

quantity xg, is computed as:

I ke
(@e)nliy = D bi| D anitrjti (1.10)
=l \k=ks
le ke
= Z Z b1k Ttk j+1 (1.11)
1=l ks
ke Lo
= Z Zakbl$i+k,j+l (1.12)
——)

= [(zn)eliy (1.13)
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This holds as long as the & derivative stencil has no n dependence and vice-versa. Near boundaries
along 1 = const., for instance, the n derivative stencils vary in n-direction but not in £-direction and
the cancellation of the metric relations are conserved.

For 2-D problems the cancellation of the metric invariants is always ensured numerically. For 3-D
problems, all metric derivatives must be computed using the same differencing stencils. For example
when working with Mac Cormack schemes using a forward based and backward based stencil, the met-
rics have to be computed twice using a forward and a backward based stencil respectively. The method
fails also for finite-difference schemes based on a Weighted Essentially Non-Oscillatory (WENO) recon-
struction. As WENO schemes adapt the computational stencil for the derivative approximation locally
to the flow field, a numerical cancellation of the metric invariants can not be ensured. Implementations
of the WENO schemes in a more computationally expensive finite-volume approach are therefore more

common and recommended.

1.6 Shock-capturing filtering

In regions with strong shocks, additional numerical dissipation is introduced in order to avoid the
divergence of the numerical solution and to reduce the overshoots that occurs around the shock. Several
shock-capturing schemes have been developed for that purpose. Among those the Jameson scheme [73],
the Total Variation Diminishing (TVD) [65], Monotone Upstream-Centered Scheme for Conservation
Laws (MUSCL) [135] and (Weighted) Essentially Non-Oscillatory ((W)ENO) [74] schemes are often
used for aeronautical applications.

However for aeroacoustic problems classical shock-capturing schemes are less suitable due to an
excessive dissipation and dispersion error. Also for Large-Eddy Simulations, those schemes written in
the classical form are too dissipative and mask the diffusion provided by the subgrid scale model |55].
In the last decade, much work has been done to adapt shock-capturing schemes for the purpose of
LES and CAA of transonic flows. Most of the approaches are based on a local increase of dissipation
provided by the shock-capturing scheme, whereas dissipation is minimized in smooth regions. This
makes the detection of the shock location to be a very important point for LES and CAA of transonic
and supersonic flows.

In this section, first some recent developments of shock-capturing schemes towards CAA and LES
found in the literature are summarized. Second, the implementation of the shock-capturing scheme

used in the present work is explained. Third, the shock detection procedure is described.

1.6.1 Shock-capturing for LES and CAA

Originally Jameson et al. |[73| proposed to discretize the Euler equations using a second-order finite-
volume scheme. Second- and fourth-order dissipation terms with coefficients that depend on the local

pressure gradient are added on the right hand side of the equations. The scheme writes in 1-D as
ou (DH—% -D;1

)
_ L= — 2
5|+ F O, —
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where F(U)|, is the discretized flux term and the terms on the right have the form:

2 4
Di—i—% = EZ(_’_)% (Ui—i-l — UZ) - EZ(_’_)% (UZ‘+2 - 3Ui+1 + 3UZ' - Ui—l)
@ @
i+37 Titd
determined using a smoothness detector applied to the pressure field:

The weights e of the smoothing terms are functions of the considered equations and are

O, — [pi+1 — 2pi + pi—1|
" piy + 2pi +pica|

(1.14)

The weighting functions are defined as

@2 _

egi)% = max [0, </£(4) - efﬁ;)] 5

where k® and k) are adjustable problem dependent values. In smooth regions of the flow, the

(2)1. In
+3
regions of strong pressure gradients, the smoothness detector reduces to first-order and the low-order

Z)max(@i, D,1q)

and

smoothness detector is of second-order and the low-order dissipation is switched off thanks to e

dissipation dominates.

It has been observed by Jameson |73] that the low-order dissipation terms do not avoid some small
high-frequency oscillations, which prevent the complete convergence of the solution to steady state.
The fourth-order dissipation term is therefore introduced, which is switched on through the whole
computational domain where the solution is smooth. In regions with strong gradients, the fourth-order
dissipation term has shown to generate overshoots that are associated to the Gibbs phenomenon and
are typical for high-order finite-difference schemes. This term is therefore switched off in shock regions
thanks to Ez(j—)l'

Following the idea of a locally introduced dissipation, Yee et al. [142] proposed to isolate the
dissipative part of classical shock-capturing schemes and to apply it like a filtering operator in regions
with strong non-linearities. They used those characteristic based filters in combination with high-order
centered finite-difference schemes. Thus, in smooth regions where no non-linear filtering is applied, the
accuracy of the high-order schemes can be maintained. Yee et al. [142] developed those filters for the
TVD, MUSCL and ENO schemes. Garnier et al. |56, 57| applied characteristic based filter based on
WENO schemes successfully for shock/turbulence and shock/boundary layer interactions.

Visbal and Gaitonde [137] developed a hybrid compact-Roe method, where a compact finite-
difference scheme is used in smooth regions. In shock regions, the compact scheme is replaced by
a third-order MUSCL based upwind-biased Roe scheme. The scheme performs very well in various test
cases and has been used for a LES of a supersonic flow over a compression ramp |106].

Tam and Shen [125] proposed to use the DRP scheme [128| for the simulation of a non-linear
acoustic pulse and to use a variable damping algorithm which introduces more numerical viscosity
in regions with strong gradients. The shock regions are detected using ustencit = |Umax — Umin|; the

difference between the maximum velocity, umax, and the minimum velocity, tmin, in the stencil. The
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numerical viscosity is provided by a 7 point centered filter weighted by ustencil/ Rstencil/Ax, where the
constant stencil Reynolds number Rgiencii =~ 0.06 has been introduced.

Kim and Lee [78] have shown that this formulation does not fulfill conservativity and explain why
the shock propagation velocity is not well predicted. Basing on the lecture notes of Leveque [88], they
recasted the centered selective filter into a conservative form similar to the Jameson filter. Details
about this can be found in appendix A. Additionally, Kim and Lee [78] combined this filter with the
low-order shock-capturing term of the Jameson scheme. Furthermore, they proposed a self-adapting
procedure determining automatically the problem depending parameters €@ and €® of the original
Jameson scheme. The scheme has been validated for 1-D and multi-dimensional CAA benchmark test
cases.

Except the Jameson scheme, shock-capturing schemes exploit the hyperbolic nature of the Euler
equations, making them more suitable for flows at very high Mach numbers. On the other hand,
it is difficult to quantify the error as a function of the wave-number such as it is often done with
schemes dedicated to LES and CAA. The error made by the Jameson scheme, that adds explicit
selective smoothness terms to the governing equations, can be quantified using a linear error analysis.
Furthermore, the Jameson type schemes are very simple in implementation and are computationally
very efficient. The method used here follows the Jameson-type dissipation model and is similar to the

dissipation model proposed by Kim and Lee |78].

1.6.2 Implementation of the shock-capturing filter

A shock-capturing filter based on the adaptive non-linear artificial dissipation model of Kim and Lee
[78] has been implemented in the solver as follows. Only the low-order shock-capturing filter is applied
to the conservative variables, that have already been filtered using the selective filter presented in

section 1.4. The filtering operator writes in conservative form:

Uijk = Uijr = AtD;p1 55 =Dyt 55),

where

Al s‘tenci'l
| i+3.0.k (2)

€
1 L 5
3 (Jirrgk + Jige) 2k

D1k =

Similar to Swanson and Turkel [121], Kim and Lee uses the stencil eigenvalue A\ ifﬁ‘/célj ,, that denotes

the difference between the maximum and the minimum eigenvalue

P — [ ¢2 2 2
|)‘|Z7],k <|U| +c Em + gy + gz)i,j i

)

within a stencil of variable size. The quantities U and ¢ designate the contravariant velocity U =

stencil

uéy + v€y + w, and the speed of sound respectively. According to Kim and Lee, AJA o172,

le

computed using a stencil width of 7 points:

il 3 4
AN, = e (Nismia) — min (Nismo)
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In order to maintain the accuracy of the numerical scheme, the second-order filter may only be
applied locally in the shock region. This is performed by the adaptive non-linear dissipation function
given by

@) — . 3 o
€it1/2,,k = Fik MAX (Pitmjk)
where ®; ;. is Jameson shock detector defined in equation (1.14) and r;j is the adaptive control

constant. The latter is given by

1 ik — 1+tanh (0, —1)
Fjk = L+ (06— 1) tanh (52— 1)] <\/ @j,kﬂj,k> :

Tk J:k
where
max max
pj, 5.k
o) = - o = -
Js min ’ 75 A\min ’
J:k J:k

max
A
NGNS ik
Bi,j = :

N min ’
<\/£%+£§+£§> ik
ikt Bik . aj+1
Rjp= 52", G = [7J
2005185 k ik —
; Bjk +1
e [
! Bk —1

The superscripts min and max are expressed in 3-D as

] tanh (o ),

| ot 536 1)

. % max .
min max ¢ max

jk = Win fige, o fikT = maxf .
The paper of Kim and Lee [78| lacks in detailed derivations of each term. Following their paper,
most of the terms have been implemented on the basis of various numerical tests and flow conditions.

The validation of the test cases shows that the self-adapting procedure works well and provides stable

and accurate results.

1.6.3 Detection of the shock location

Besides the Jameson-type dissipation switch |73 introduced in equation (1.14), other approaches has
been used in the literature. Yee et al. [142] use an artificial compression method proposed by Harten
(ACM) [64]| and Visbal and Gaitonde [137] a WENO-type smoothness criterion based on a weighted
sum of a first and second derivative operator that measures the slope and the curvature of the pressure
field.

In this work, the shock position is detected by the Jameson sensor. Actually this sensor has shown
to be too sensitive to pressure fluctuations. As a consequence, excessive filtering of turbulent structures
has been observed by Ducros et al. |48] for instance. Those authors developed a modified sensor which
is able to separate turbulent fluctuations from shocks. This is done by multiplying the Jameson sensor

by a second sensor, that is
div(ui,j7k)2
div(u; j ;)% + rot(u; k)%’

:‘Z‘7j7k =
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Figure 1.2: Generalized Jameson detector strength @f of a plane wave p = exp (—ikx) as a function of the wave
number kAz for different orders of the dissipation term: second-order (classical Jameson);

~~~~~~~ fifth-order, - — - — -— tenth-order, - - - - - 11-point selective dissipation.

where u the velocity vector containing the Cartesian velocity components. This sensor has been
applied in various applications in combination with the Jameson scheme [48] and with characteristic
based filters [57]. The computation of the divergence and the rotational field is numerically expensive
and is not used in this work.

An improvement of the detection procedure can be achieved by generalizing the Jameson detector
using high-order selective filter operators instead of using the second derivative. The generalized

Jameson detector can be written as:

N

N
Z drpi+r,j7k
N

r=—

N
> drPijirk
N

r=—

Ay i j ktr
N

no_ =

) i7j7k -

b

_ ¢ _
i7j7k o ’ ®Z7J7k o

)

N N N
Pigk — 2. drDitrjk Dijk — 2. drDijtrk Pijk — 2. drDijk+r
r=—N r=—N r=—N
where d, are the coefficients for a filter of arbitrary order 2N. The detector is first analyzed in 1-D,

using a plane wave ansatz p = exp (—ikx), where k is the wavenumber, which yields:

N
> dyexp (—irkAz)
r=—N

S (kAx) =

)

N
1— > drexp(—irkAx)
r=—N

where Az the grid spacing width. Figure 1.2 gives the sensor strength <I>§ as a function of the wave-
number for different filtering operators: the standard second- (classical Jameson filter N = 1), fourth-
order (N = 2) and tenth-order (N = 5) ones and the 11-point optimized filter (N = 5). Figure 1.2
shows that using the high-order detectors leads to lower values in the low wave-number range whereas,
for the high frequencies, the detector behaves as the classical Jameson detector ensuring the shock-
capturing property of the scheme. A similar approach has been proposed by Lockard and Morris [90]

using only the sixth-order filter operator, without the normalizing term in the denominator.
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Figure 1.3: Model problem involving a discontinuity and a harmonic signal containing (a) high-frequency case

(4 points per wave length); (b) low-frequency case (7 points per wave length).

In order to study the behavior of the generalized Jameson filter when a discontinuity and linear per-
turbations are present, the following test problem is considered. A signal of a shock-sound interaction

problem is modeled as follows

1+0.1 sin(kzx), <0
p(x) = .
24 0.1 sin(kjz), «>0.

where k; is the wave number of the linear signal. Two wavenumbers are considered k; = 7/(2Ax) and
k; = 2w /(7Az) corresponding to a wave that contains 4 and 7 grid points respectively. Note that 4
points per wave length is the accuracy limit of the present spatial differencing scheme and is the cut-off
wave-length of the optimized low-pass filter. The two signals are plotted in Figure 1.3 (a) and (b).

The computed sensor values are given in Figure 1.4 (a) and (b) respectively. All of the sensors
reach their maximum at the shock position. In the linear region the detector value decreases of about
one order of magnitude for the classical second-order detector, whereas for the 11-point detector the
value drops four orders of magnitude. For the high-frequency case, all detectors have their maximum
at the shock location and the curve has a similar shape as for the low-frequency case. The detectors
of order 2 and 5 perform very poorly in the linear region. Their magnitude is of the same order
as for the shock and would lead to an excessive damping. For the tenth-order filter, a value being
one order of magnitude smaller is reported and for the 11-point optimized sensor, the detector is two
orders of magnitude smaller, showing the benefit of the optimization. For the high-order filters, the
peaks around the discontinuities are slightly more extended but more smooth. This is due to the large
extension of the eleven-point stencils, that could be prevented by using compact stencils [86]. As Hixon
|71| recommends a smooth introduction of the low-order Jameson dissipation term |71], this is rather
a favorable property of the high-order detectors.

The behavior of the modified Jameson filter is studied in the following when shocks and turbulent
perturbations are present. Since a vortex features a minimum in pressure located in its core, the

classical second-order detector does not well distinguish a vortex and a shock wave as Ducros et al.
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Figure 1.4: Computed detector <I>f values for different filtering order: second-order N = 1; x fourth-

order N = 2; o tenth-order N = 5; O optimized N =5 (a) high-frequency case (4 points per wave
length); (b) low-frequency case (7 points per wave length); See Figure 1.3.

[48] notice. Figure 1.5 (a) gives an example of a transonic confined jet such as presented in chapter
4. The flow field is visualized by the contours of the density gradient and exhibits a typical jet-like
structure with three shock cells. The jet is attached to the upper wall. The detector strength fields
computed using the second-order and 11-point optimized filter are plotted in Figure 1.5 (b)-(e). The
same trend as for the 1-D case can be observed. The low-order detector identifies regions without shocks
as non-linear regions, whereas the high-order detector is limited principally on the shock regions. Even
worse, the second-order detector detects instability waves developing in the shear layer, which can
influence the development of instabilities seriously.

The modified Jameson detector based on the 11-point selective filter term are tested using 1-D
cases such as for the convergent-divergent nozzle and the entropy wave/shock wave interaction in the
validation chapter 2. Due to stability and computational limits, the 3-D transonic flow presented in

chapter 4 are computed using a sensor with maximum fourth-order dissipation terms.
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Figure 1.5: Test of generalized Jameson detector applied to a instantaneous pressure field of a flow that con-

tains turbulent fluctuations and shocks. The flow field is visualized in (a) by the iso contours of
the density gradient |V,p|. Detector values log (@f,j’k) computed in ¢-direction using the classical
Jameson detector (b) and using detector based on the 11-point optimized filter (¢). Detector values

log (@7

i ;.x) computed in j-direction using the classical Jameson detector (d) and using the detector

based on the 11-point optimized filter (e). Color scales from —5 to 0.
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1.7 Consideration of viscous and heat conduction effects

When a viscous fluid is considered, the governing equations are the curvilinear Navier-Stokes equations.
In 3-D they write:

%—Ij i 8% {% (6o (E = Ev) +&(F — Fy) +&(G — GV)]}
+ (9377 {% [%(E — Ev) +77y(F — Fv) + nZ(G _ Gv)]}
+ a% {% [(E—Ey) + G(F —Fy) + (G - Gv)]} —0,

where the inviscid fluxes are given by equation (1.7) and the viscid fluxes write

0 0
Trx Txy
Ev = Txy 5 Fv = Tyy ’
Trz Tyz
UTgy + VTgy + WTaz — Qg UTgy + UTyy + WTy — qy

0
Trz
G, = Tyz
Tzz

UTgy + VTyz + WTzz — G2

The viscous stress terms are given by

2
Taw = g H[2(Eate + sty + Catig) — (§yve + 11Uy + Gyue) — (Exwg +nwy + Gue)],

2
Tyy = gM[Q(Sy’U& + 1yvy + CyUC) - (fxui + Nty + Cqu) - (fzwﬁ + nawy + Csz)]v
2
Tzz = §N[2(§zw§ + nawy + Csz) - (quﬁ + MUy + CIUC) B (Syvf +1yvn + Cyvc)]’
Tey = N(Syui + nyuy + CyuC + SJL‘UE + Ny + CxUC)r
Toz = N(&zuﬁ + Ny + Czuc + gacwﬁ + Nxwy + CﬂcwC),
Tyz = /‘(fwa + nywy + Qe + §xve + vy + CzUC),

where 4 is the dynamic viscosity of the fluid. The heat fluxes are provided by the Fourier’s law

HCp
A
q P?" xr+
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where ¢, is the specific heat capacity at constant pressure, Pr the Prandtl number and T the temper-
ature. The temperature is computed with the equation of state for a perfect gas, T'= p/(pr), with the
specific gas constant for air r = 287.05 J.kg LK1

The temperature gradient V,1T = (Tm,Ty,TZ)T is computed using

T, = EmTf + ann + <$T<7
Ty = &Te + nyTy + GT¢,

T, = EZTE + 772T17 + <2T<7

in the physical domain. The dynamic viscosity is classically a function of the temperature and is

T1+TQ
T) = poy) 7 —22., 1.15
w(T) = po To11C (1.15)

where Tj is a reference temperature [K|, o = p(7p) is the dynamic viscosity at the reference tempera-

determined by Sutherland’s law:

ture and C'is a fluid dependent parameter. Viscous and heat conduction terms are computed like the

Eulerian fluxes and metric terms using the finite-difference schemes, presented in section 1.2.

1.8 Stability criteria

The time step At is governed by stability criteria that can be found for the convective, viscous and

conductive terms.

For a curvilinear grid, the stability criterion for the convective terms is given by the Courant-

Friedrichs-Lewy (CFL) number

Ul+e\/&+&+8 VIteyni+mg+n2 [Wite/G+¢+¢

FL =
C At max A , A , AC

<0.9.

At low Reynolds numbers, when viscous effects dominate, the stability criterion for the viscous fluxes
is given by
vV v Vv
CV = At max <—2, 5 —2> < 2.
Te Yn 2
The criterion for the thermal conduction terms is connected to the viscous terms criteria via the Prandtl

number:
C,
Cr=—
T P’I"7

For high Reynolds number flows such as considered in this work convective terms will dominate and

the time step is governed principally by the CFL-criterion.
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1.9 LES strategy

Solving Navier-Stokes equations implies to capture an energy cascade from larger scales roughly char-
acterized by the integral length scale Ly to smaller ones. This technique is called Direct Numerical
Simulation (DNS). The cascade ends at the Kolmogorov scale [, when turbulent energy is dissipated
by the molecular viscosity. For isotropic homogenous turbulence [9], the disparity between Ly and [,
can be estimated using /
%f ~ Rei/;l, where Rep, = UTLf,

with ' being the scale of the velocity fluctuations in the flow. For 3-D applications, the total number of
grid points required to simulate a volume of O(Li’c) therefore varies with Rei/;l. Due to computational
limits, only for flows at moderate Reynolds number, DNS can be applied. For Reynolds number
higher then Rer, > 10%, only the largest flow scales can be computed whereas the effect of smaller
scales that are not supported by the grid have to be modeled. This approach is called Large-Eddy
Simulation (LES). In order to capture the principal physics of the flow, the flows are supposed to
be rather characterized by the largest scales than by the smallest ones that are supposed to have a
quasi-universal character.

In this section, the filtered Navier-Stokes equations are first presented. Then, the effect of the cut-

off wave-number in LES is discussed and modeling approaches are recalled. Finally, the LES strategy

adapted in this work is presented.

1.9.1 Filtered Navier-Stokes equations

To separate the large from the small scales, LES is based on the definition of a filtering operator. In
practice, the discretization of a computational domain acts like a low-pass spatial filter applied to the
Navier-Stokes equations which introduces extra terms describing the interaction between the resolved

and the non-resolved scales. A filtered variable is obtained by convolution
700 = [ )Gt~ X
D

where D is the computational domain, Ga is the filter kernel and A = Ax the cut-off scale of the
filter. By definition of the convolution operator, the filter ¥ : f — f is linear. Classically, it is admitted
that the filter commutates with the time and spatial derivatives, for more details refer to Sagaut [111],
Lesieur et al. [87|, Geurts [59]. The discretization of a computational domain means an irreversible
loss of information about scales smaller than the cut-off scale of the filter.

In compressible flows, it is convenient to use Favre-filtering to avoid the introduction of a subgrid
scale term in the equation of mass conservation. The Favre-filtered variable is defined as

F=2L
D

where p is the density of the flow. In the following, f” denotes the unresolved flow features and is
defined as " = f — f.
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The filtered equations for mass and momentum write then in tensor form such as

% + div (ﬁ\?) —0,

DV, v (59 &V +57-7) = div (2+T - 7)),

where V is the velocity vector and the Z the identity tensor and

1 2
T =2u(T)S, where S = 3 [gradV + grad(V)T — gldivV] ,

~ o . ~ - 2 -
T =2u(T)S, where S = [gradV + grad(V)T — gldivV} ,

N —

T=pVeV_3VaV
The term T, called subgrid stress tensor, describes the effects of the unresolved scales and can not be
determined using the resolved flow field. This term must therefore be modeled.

Following Vreman et al. [140], the filtered equation for the energy can be derived such as

Jpe; . < . A : S PG
%%—div (pet—i—ﬁ)V—l—q—T@V} = —divQ+ V -divT + pe + p7

+div (TeV-TeV) - div@-a),

where

—~ ﬁ 1_~2
_ 5V
per = ~ 1 2/) )

T
q= %()grad(T),

T

cp,“(f)

q= Tgrad(f),
V - pV
Q=2Y—P¥
v—1

pe=T:gradV — T : gradV,
77 = pdivV — pdivV.

The quantity € is the total energy of the resolved flow field. Q is the vector of the pressure-velocity
subgrid correlation, pe corresponds to the turbulent subgrid dissipation and p7 is the pressure dilatation
subgrid correlation.

The filtering of the Navier-Stokes equations adds terms that have to be modeled. Those terms
are the subgrid stress tensor T which is present both in the momentum and energy equations and the
two other terms Q and p7. According to Vreman et al. [138], the other terms are neglected. Most of

subgrid scale models are based on the isotropic homogenous turbulence context as the subgrid scales

are supposed to have an isotropic behavior [111, 87].
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1.9.2 Overview over the subgrid-scale models

Many subgrid scale models have been proposed in order to model the effect of the unresolved scales.
In the following, the most popular models are recalled and the classification of the LES strategy real-

ized in this work is given at the end of this section. For further lecture, refer to the book of Sagaut [111]
Models based on the subgrid viscosity

Most of the models are based on the energetic interpretation of the effect of subgrid scales. This
is the reason why the subgrid viscosity concept is introduced to model the subgrid stress tensor. This
concept has an analogy to the turbulent viscosity of Boussinesq for the Reynolds-Averaged Navier-

Stokes (RANS) equations.

Introducing v, the subgrid viscosity in order to model the subgrid stress tensor.
T = 20,8 — Zphagal, with  phisgs = 2pV" V"
= 2pVtO — gp sgsd, Wit PRsgs = §p :

where kg is the subgrid kinetic energy. This term can be modeled, but is often neglected as Erlebacher
et al. [51] states. Finally, the problem reduces to the estimation of the subgrid viscosity.

Smagorinsky was one of the first to propose a model for ;. For incompressible flows, across a tube
bundle in nuclear applications for example |7, 19|, the Smagorinsky model is well adapted. However,
this model introduces in general too much dissipation in laminar zones as it assumes the presence of
turbulence when the flow has a velocity gradient. At the example of the development of a mixing
layer, Vreman et al. [139] demonstrated that the Smagorinsky subgrid-scale model is less suited for
transition problems. An improved approach of this model is the dynamic Smagorinsky model proposed
by Germano et al. |58] which adapts the constant of the model locally to the flow field. The model
reproduces transitional flows in a satisfying way but are computationally expensive [27].

For the terms Q and p7 in the energy equation, a turbulent heat flux can be introduced through

the subgrid viscosity concept introduced previously
—divQ + pr = —div Q,

with

where Pry is the turbulent Prandtl number. Finally, with this approach the filtered Navier-Stokes
equations are similar to the classical Navier-Stokes equations with the addition of pv; to its molecular
counterpart [96]. The models based on the subgrid viscosity risk therefore to increase artificially the
viscosity of the fluid. In conclusion, the effective Reynolds number of the flow is modified [47], which

can play an important role for jet noise computations for example |27].

Model based on deconvolution
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An alternative way to determine the subgrid terms is to compute them directly from the filtered
field. This is obtained by a deconvolution of the filtered field for wave-numbers up to the grid cut-off
wave-number. This takes into account non-linear interactions between scales beyond the accuracy
limit of the numerical scheme and up to the cut-off wave-number of the grid. This method are known
under the name of Approximate Deconvolution Method (ADM) and has been proposed by Stolz and
Adams [120]. Furthermore, the energy transfer from resolved to non-resolved scales is modeled by a
relaxation term that drains energy of the non-resolved scales preventing an accumulation of energy in

the high-frequency range.
Implicit LES

For the implicit LES, the numerical dissipation is used to model the effect of the subgrid scales. In
fact, the numerical dissipation provides the damping effect of the non-resolved scales: the subgrid stress
tensor have not to be computed. The numerical dissipation is provided classically by a shock-capturing
scheme [31]. Garnier et al. [55] have been observed that shock-capturing schemes introduces too much
dissipation even for large scales. Additionally, the damping effect of dissipation is not sufficiently se-

lective and can not be controlled due to the numerical complexity of the shock-capturing schemes.
LES based on explicit selective filtering

In this work, the selective filter used to remove grid-to-grid oscillations such as presented in section
1.4 plays the role of a eddy viscosity model by removing properly the fluctuations at wavenumbers
greater than the scheme resolution. This method bears some similarities to the Approximate Decon-
volution Model (ADM) [120]. As demonstrated by Mathew et al. [93], the effect of convolution with
an explicit selective filter is similar to the effect of ADM. Moreover, the selective filtering induces a
regularization similar to that used in the ADM procedure. This approach has been applied successfully
in various applications |93, 105, 26, 20|

The equations to be solved write
% +div(pV) =0
2(pV)

t

p]
8(3)?) + div [(ﬁa LV Ha-T® ﬂ —0,

+div(p\7®\7+m—?) —0

where

~ o~

T =2u(T)S

~ ~ ~ 2 ~
S = [gradV + grad(V)T — gIdivv]
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T -
q=— %(T)gradT

Those equations are identical to the non-filtered ones. Therefore, they are written under strong con-
servation form which is suitable to deal with discontinuities. For simplification, notations associated

with the filtering are dropped in the following.

1.10 Non reflective boundary conditions

Due to computational limitations the computational domain involving open domain boundaries has
to be kept as small as possible and special boundary conditions have to be used in order to take into
account the truncated domain. This is not a trivial task in particularly in CAA where perturbations
have to leave properly the computational domain without generating non-physical perturbations [38].

In CAA there exist two families of non-reflective boundary conditions: the characteristic based
boundary conditions and conditions based on far-field expressions of the governing equations. Both

have been used in this work and are presented in the following.

1.10.1 Characteristic-based boundary conditions

The first one is based on characteristics developed by Thompson [131, 132] and by Poinsot and Lele [99].
The idea is to recast the Euler equations in the characteristic form projected on the direction normal
to the boundaries of the computational domain. For a boundary perpendicular to the z-direction, the

characteristic form writes:

( B P 9
%+ L Lo+ L(Ls+L)] = 0 Li = (u—C)(a—i—pCa—ﬁ)
dp 0
%—g—{—%pc(Lg)—Ll) = 0 Ly = u<628—£—8—§>
%—i—Lg = 0 WheI‘e L3 e u%
4Ly = 0 Ly = ud
24 i(Ls+L) = 0 Ls = W 4 pedu
o T 2(Ls 1 | Ls = (u+c) (5 +pcgy) -

The quantities L;, ¢ = 1..5 are called invariants of the Euler equations system. They remain constant
when they are propagated in the flow. Ly, Ly describe the upstream and downstream traveling acoustic
modes, Lo the convected entropy mode and Lg and L4 the convected vortical mode. For a non-reflective
boundary condition in z-direction, all invariants that propagate into the computational domain are
set to be zero. The invariants that leave the computational domain are computed with non-centered
finite-difference schemes. The characteristic equations have been implemented in Cartesian coordinates
and applied only to 1-D flows. Formulations for generalized coordinates can be found in the work of

Kim and Lee [77, 79| for instance.
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1.10.2 Far-field boundary conditions

The second approach consists in designing boundary conditions for far-field radiation such as proposed
by Bayliss and Turkel [15]. Tam and Webb developed radiation conditions by using far-field asymptotic
expressions of the Euler’s equations linearized around a uniform mean flow [128]. Tam and Dong [127]
extended this approach to arbitrary mean flows. A 3-D formulation is given by Bogey and Bailly [28].

The set of equations solved on the last three points of the computational domain writes

P — Po
U U — ug
L9 + +1 0
= oo [ = + = _ =0,
V4 Ot v I\Nor r v %
w w — wo
p P —"Po

where v, is the speed of wave propagation given by
vg=(0+C)- e

The radius can be computed once a reference point (xg, Yo, 20) is determined. Thus r computes

r=/(z—20)2+ (y — y0)% + (z — 20)2

In the curvilinear domain the derivatives in r-direction are computed by
0 _00E oo 9o
or  0£0r  Onor  OCOor
The quantities 0¢/0r, dn/Or and 9¢/Or are computed by
¢
or

on_ or @+ 9z
ar oy ”ya ”Za’

_gm +£y +£z -

gE_Cm +<ya +<z -
where
dr  x—xo
o r
9% _y—wo
or r
0z z—x
o r

This formulation takes into account only acoustic perturbations. A similar formulation can be
found for vortical and entropic modes but is not used in this work [128].

Due to their mono-dimensional character, characteristic based boundary conditions are preferred
when perturbations impinge normally to the boundary condition. In general far-field radiation bound-
ary condition behave better in the multidimensional case. As they are based on linearized Euler

equations, a drawback is that they require a good guess of the mean quantities.
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1.10.3 Sponge zone

Both approaches perform very poorly as outflow boundary condition, when vortical structures exit
the computational domain. Thanks to a sponge zone vortical structures are damped out before they
reach the boundary. The sponge zone used in this work consists of a strong grid stretching and of the
application of an explicit Laplacian filter, introduced smoothly in order to avoid reflections. The filter
is separately applied in each coordinate direction after each time iteration. A sponge zone applied at

a outflow boundary perpendicular to the z-direction writes

3

ximj’k B xieujvk 1

l%dk:=thdk-—0f<——————————> [—(lh-ka%—lhd—Lk%-lhdx—ﬂ
Tiy gk = Tig,jk 4

3
—5 Uik

1
+Z(Ui+1,j,k +Uijrie +Uijrs)|

where the parameters o = 0.3 and = 1.5 ensure a smooth introduction of the filter [28]|. The integers
iy, and i, designate the beginning and the end of the sponge zone respectively.
Finally a relaxation term as proposed by Poinsot and Lele [99] is applied in order to avoid numerical

drift of the mean flow. For instance the pressure is updated such as
Uijk = Uijk + (U — Uy), (1.16)

where Uy is the target value of the boundary condition. The term is applied to the pressure and the
density at radiation and outflow boundaries. Near inflow boundaries this term is also applied to the
velocity field. The coefficient @ = 0.005 has to be kept small in order to avoid reflections of acoustic

waves.

1.11 Solid wall boundary

In this work, arbitrary bodies are discretized using body-fitted grids. Body-fitted grids are structured
grids where the body boundary alines with a line in 2-D (or a surface in 3-D), characterized by a
constant curvilinear coordinate. A 2-D body-fitted grid is shown in Figure 1.6 (a) for n = const. As
indicated in the sketch, the slip wall conditions used in this work do not require orthogonal meshes
and are valid for any arbitrary curvilinear grids.

In the following the solid wall boundary conditions are presented for inviscid flows where the
flow slips around the solid body. Then, the wall boundary condition for Navier-Stokes equations are

presented where the flow must satisfy the adherence condition and appropriate thermal conditions.

1.11.1 Slip wall conditions

A flow around an inviscid, non-moving and solid wall has to satisfy the condition u.n = 0 where

n designates the vector normal to the wall as Figure 1.6 (a) illustrates for a wall, expressed by
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§

Figure 1.6: Body fitted grid for n = const. The contravariant velocity V' = 0 for the condition for a slip wall.

For a no slip condition the flow velocity field has to satisfy u = 0 at the wall.

n = const. In general, the normal vector n coincides with the normalized gradient of 7, defined by

Vaen = (77907 My 772)T>
V.n

|Vl

Thus, the slip wall condition can be expressed by the contravariant velocity such as
V=Vnu=0.

Different implementations of slip wall conditions are proposed in the literature |68]. Most of the
approaches, in particular finite-volume methods, require an estimation of the pressure gradient dp/0n at
the wall in order to determine the pressure at the wall. For a 3-D inviscid flow, dp/9n can be computed
by projecting the momentum equations onto the wall normal direction. For that, the momentum
equations are recasted in primitive form by using the chain rule, the mass conservation equation and

the metric invariants (1.8):

ou ou ou ou 8
p8t+pUa§+pV—+pW8C+§xa§ +Cxa€ 0,
ov ov ov ov Op
pat+pUa§+pV—+p 8C+§ya§+ Yoy +CyaC 0,
ow ow ow ow Op Z?p
p8t+ U8§+V +W8C+£zaS N m +C23C 0.

These equations are projected on the wall normal direction and leads to:

(9V °)% (9V 2%

dp dp 0
+(Eane + Eymy + 5277,2)85 (Cama + Cymy + CZT}Z)@C (77x + 775 + 772)8_2

O 8ny on.
)+ pV(u 877+ 8n+ n

Mg | Ony on.
+ =2 4w
& 7/3 7/3

“ac TV TV ac

our any on. )

— [pU(u ) + pW (u
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Figure 1.7: Update of velocities at a 3-D slip wall ( = const). The fluid is forced to be tangential to wall.

All terms multiplied by V or its derivative in &-direction OV/O€ vanish at the wall. The derivative
of the pressure along 7 can be expressed by terms that only contain derivatives in the £-direction and

(-direction:

0 — 0 0

5_2 Veo = nzé_,_nyﬁl_,_nzﬁ (gwnm + gyny + fznz)a_lg + (gwnm + <y77y + Cznz)a_lg
OMa 9 oz g 9 oz

—pU(uFg +vg¢ + wi) — pW (uFGe + v +w8—’z7)] :

The first two bracket terms would vanish for (curvilinear) orthogonal grids, as V,£.V,n = V(. V,n =
0. The last two bracket terms relate the pressure gradient to the fluid velocity and to the curvature
of the wall. Those terms also vanish when the fluid is at rest or the wall is plane. Finally, the
determination of g—ﬁ is quite complicated and a simplified wall treatment has been adapted in this

work.

For the wall n = const., the fluxes in the & and (-direction are solved by centered schemes. The
flux in n-direction is computed first by setting V' = 0 and derivated by applying non-centered (or
by applying centered with reduced stencils) finite-difference schemes. Additionally, the velocities are
updated after every time step, by subtracting from the velocity vector u the normal velocity vector

component uy:

Uyall = U — Up = Uy,

where u; is the tangential vector such as represented in Figure 1.7.

The no-slip boundary condition is successfully applied in purely acoustic test cases (with fluid in

rest) as well as the computation of a 3-D transonic inviscid flow in a convergent divergent nozzle.
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1.11.2 No-slip wall conditions with heat flux

A viscous flow around a solid body has to fulfill the adherence condition uya = 0. The additional

viscid fluxes of the Navier-Stokes equations contribute to the pressure gradient g—z such as:

R { 2[1 }
8"__5Uvz@+ﬁi+n§+n§ B¢ 7 (&aTaw + EyTay + E:Taz)
0 |1
oy, [j(nxrxy + 1y Ty + nyTyz)}
v 2L
"5 | 7

The pressure derivative in the n-direction is not required since the momentum conservation equations

(Cmez + CyTyz + Cszz):| } .

are not needed to be solved for wall points. Only the mass and energy conservation equations are

solved. The wall flux term for the n-direction becomes:

pan (%)
0
or_ 0
on -
0

%pa% (%) - a%[%(??xEm + 0y Fos +10:Gus)]

Note that the total energy pe; at the wall is proportional to the pressure p as the velocities vanish
per = p/(y —1). Advancing the energy equation in time gives directly the pressure at the wall.

For isothermal walls the imposed temperature is prescribed and p can be computed by the ideal
gas law using the pressure p, obtained by the energy equation. When a heat flux ¢ is imposed, the
)T

components of the vector q = (¢z,qy,q.)" are expressed as follows:

q=gn

For adiabatic walls the latter term is set to be zero. The temperature is not predicted correctly
by setting the heat flux normal to the wall equal ¢ for long time simulations and the solution tends to
diverge. Therefore the temperature is updated in a such a way that the identity q.n = ¢ is fulfilled.
In this work only, adiabatic walls are considered and the gradient of the temperature writes using

Fourier’s law

V., T.V,1 = 0.
Now, 0T/9n can be determined explicitly using

or 1

3 = v LV Van + T Va( Vo)

Finally, the temperature at the wall is updated such as

N-1
1 (or
T = CL_O (3_77 - Z arTi,j-‘rnk) )

ivjvk r=1
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where a, are the coefficients of a non centered finite difference scheme of stencil width N. For strongly
non-linear problems the use of high-order non-centered finite-difference schemes exhibited stability

problems. In this work only first-order approximations are therefore used:

oT
Tijjk =Tij+1he = 5~
Z"j7k
The adiabatic wall boundary conditions are validated in chapter 2 for a plane Couette flow as well as

for the flow around the cylinder.

1.12 Multidomain approach for complex geometries

Due to the complexity of industrial configurations and the requirement to handle moving body prob-
lems, the overset or Chimera grid approach is used in this work. First introduced by Benek et al. [18]
this approach uses a set of overlapping structured grids to decompose the domain of interest.

The Chimera grid scheme offers the following advantages: a) the use of structured grids allows
the use of efficient block structured flow solvers and the associated boundary conditions; b) the use of
interpolation for communication between overlapping grids allows grids to be moved relative to each
other. Although the communication between overlapping grids must be reestablished whenever a grid
is moved, this is computationally less expensive than the recomputation of the whole grid as it is often
done for unstructured grids. The process of establishing communication between overlapping grids is
referred to as grid assembly. The Chimera approach was originally developed for second-order accurate
solvers. Delfs [43] who was the first using the overset grid technique for CAA concluded that high-
order interpolation has to be used in order to maintain the global accuracy of the high-order schemes.
As high-order interpolation involves larger stencils and therefore larger overlap regions, the order of
interpolation is a very important parameter in the generation of overset grids and its complex data
structure is done by a so called grid assembly software.

There exists several teams working about this problem since the last two decades. A nice review
can be found in [100]. The first and more widely used code is called PEGASUS5 [109]. The grid
assembly has been automated and a minimum amount of user input is required to generate overset grids.
PEGASUSS5 is used by Sherer to generate high-order overset grids using a preprocessing tool called
BELLERO [116]. A recent software is the SUGGAR code which stands for Structured, Unstructured,
Generalized overset Grid AssembleR. SUGGAR illustrates that the Chimera grid approach is not
restricted to structured grids any more. This shows the new trend to combine structured grids with
unstructured grids resulting in so called hybrid grids. Schwartzkopff et al. |114| work on this methods
mixing ADER methods for the unstructured grids and DRP schemes for the structured grids.

Another assembly software mentioned here is Ouverture. OQuerture is an object-oriented code frame-
work for solving partial differential equations developed by W. Henshaw [35] at the Center for Applied
Scientific Computing of the Lawrence Livermore National Laboratory (LLNL). The library is written
in C++ and has Fortran kernels for computationally intensive tasks. The Owerture software consists

of the grid generator ogen, the flow solver overBlown and the visualizer plotStuff.
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The grid generator is able to create overlapping grids in 2-D and 3-D for interpolation of arbitrary
order. An example of an overset topology is given in Figure 1.12 showing a cylinder embedded in
a Cartesian grid. The grid has been generated by Owerture for fourth-order explicit finite difference
schemes requiring a 5 point stencil. In order to recover overall fourth-order accuracy, fourth-order
interpolation polynomials involving a 4 point stencil have to be used. In order to avoid an interpolation
stencil to extend into the zone where the block receives interpolated data from other grids, a sufficiently
large overlap region has to be generated as shown in Figure 1.12. Additionally, Overture features the
useful task of hole cutting, cutting out useless points that are cut by the cylindrical grid. To make
Overture to cut holes in the grids of demand a hierarchy between the component grids have to be
specified by the user. Owerture prepares a mask array marking all interpolation, computational and

hole points which can be exploited by the solver.

Contrary to the first two softwares, Ouverture is freely available and can be downloaded without
restrictions from the LLNL homepage. Although Owverture is not as optimized as PEGASUSS5, its
well defined algorithms are very stable [100]. Overture is well documented and effort is done for the

generation of grids starting from CAD-files in order to minimize the user input.

Since no stable parallel version of Ouverture exists, only the grid assembly abilities are exploited
in this work. A new code, called SAFARI (Simulation Aéroacoustique de Fluides Avec Resonances et
Interactions), has been developed that prepares an overset grid, generated by Ouwerture, for parallel
computation. SAFARI has been written in Fortran90 in order to benefit of derived types like structures
in order to handle more complex data structures. The programming model used for SAFARI is referred
to single process multiple data (SPMD). This means that the same source is compiled and executed

on each processor while manipulating its own data. Communication between the processors is realized

by using functions issued from the MPI-library.

The box bounded by the solid line in Figure 1.13 illustrates schematically the tasks that can be
done by SAFARI such as it is developed in this work. First an overset grid is created by the user
in form of a script file with the extension .cmd. This file contains informations about the geometry
of each component grid, their hierarchy, the order of interpolation between the component grids and
the order of discretization used on each component grid. In order to create an overlapping grid the
.cmd file has to be compiled by ogen, that creates and saves the geometry and the interpolation data
in a .hdf file (HDF4). SAFARI reads the .hdf file using functions provided by Owerture. Each single
component grid is then subdivided into blocks that are distributed to a single processor. It distributes
the interpolation data computed by ogen according to the domain decomposition in order to parallelize

this computationally expensive operation.

To treat Fluid Structure Interaction (FSI) problems, SAFARI will be able to tackle with grids that
move relative to each other due to moments and forces that act on solid bodies. For that it will be
necessary to call grid assembler functions during the time integration loop. This task should be easy

to implement thanks to the conception of Ouerture as library.
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Figure 1.8: Example of an overset grid generated by ogen. The cylindrical grid is embedded in a Cartesian grid.
The black squares designate where information has to be exchanged in order to compute a solution.

Those values have to be interpolated as the grid points do not coincide in general.

1.13 Communication between processors

The solver for viscid and inviscid flows developed in the previous sections uses an explicit single-
time stepping algorithm. Therefore grid points on each processor may be updated to the next time
level simultaneously. In order to calculate the spatial derivatives via explicit finite-difference schemes
only near processor domain boundaries data must be exchanged. For inviscid computations the flow
variables (p, pu, pv, pw, pe;)T must be transfered. Viscous computations require additionally the viscous
terms and the heat conduction terms to be passed by MPI. As double precision is needed a fairly amount
of data has to be transfered.

There are two kinds of communications implemented in the code: Inter-grid communication that
consists of an interpolation procedure and a MPI send-receive procedure. Inter-block communications

are handled by MPI routines only, since the points at the block boundaries coincide.

1.13.1 Inter-Grid communication

Inter-grid communication is affected by high-order interpolation schemes. Sherer and Scott [116] tested
high-order interpolation methods. They considered a generalized Lagrangian polynomial method con-
sisting of optimized or non-optimized methods in explicit and compact form. Furthermore they com-

pared them with interpolation methods using B-splines. They concluded that classical Lagrangian
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Figure 1.9: Schematic diagram of SAFARI: box bounded by —— describes the state of SAFARI such as developed
in this work; box bounded by - - - describes the future state of SAFARI when FSI problems are
addressed.

explicit interpolation methods offer the best compromise between accuracy, robustness and complexity
in implementation. Although B-Splines methods can be constructed independently from the interpola-
tion stencil size for arbitrary orders of accuracy, they are not preferred by Sherer and Scott as for those
methods derivatives at the interpolation stencil extremities have to be specified. Interpolation schemes
optimized for higher wave number were proposed by Tam [124]| and Sherer and Scott [116]. The latter
stated that optimized Lagrangian interpolation performs well in the high wave number range but can
decrease in accuracy for lower wave number. Therefore high-order explicit Lagrangian polynomials are
used in this work.

Lagrangian polynomials are implemented in SAFARI as follows. At a point P, the value ¢p of a
function ¢¢ , which is known in the curvilinear coordinate system (§,7) is given in 2-D by

Ne—1N,—1 Ne N,

O — Op —
6p= > > RIRS brppispe; where R; =[] (0 = m) : ™ and R =] (8 —m) ! m),
m £ i m#j

where N¢ and N, are the number of interpolation points in the directions £ and 7 respectively, as
displayed in Figure 1.10 (a). The point (Ip,Jp) is the first point at the lower, left corner of the
interpolation stencil. The quantities ¢ and ¢, are the curvilinear coordinates of the point P relative
to the point (Ip,Jp). The interpolation coefficients R? and R§ are computed before entering in the
time integration loop and are stored in a 1-D array of length N¢ + NN,

In the literature the quantities d¢ and 9, are often called offsets. The accurate computation of
these offsets is crucial for the overall accuracy of the interpolation. Owerture computes the offsets
with second-order accuracy, when it does not know the inverse mapping function &€ = &(x) explicitly.
Since the test cases computed in the validation chapter 2 of this work involve grid geometries with
moderately skewed grids or simple geometries like cylinders and uniform grids, the high-order accurate

computation of the offset have not been implemented in this work. If high-order accurate offsets are
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(a) (b)

Figure 1.10: Example of a 2-D interpolation stencil in (a) physical space and (b) computational space. The

point P on the grid — — — needs to be updated via interpolation using data of the grid
. In computational space the interpolation stencil is uniform. (I, J,) is the lower left point of the
interpolation stencil, N¢, IV, is the stencil width in §- and n-direction and d¢, ¢, are the curvilinear

distances between the point P and (I, J,), the lower left stencil point.

required, Sherer [116] extended the inverse mapping problem for high-order schemes proposed by Benek
et al. |18]. Another method has been proposed by Guénanff [63].

Note, that the maximum formal order of Lagrangian polynomials is related directly to the length
of the interpolation stencil N¢. A multidimensional analysis of Lagrangian polynomials is given, for
example by Tam and Hu [124] and Guénanff [63].

All data necessary for the interpolation are computed by Owverture in a preprocessing step and are
associated to the receiver grid. However interpolation should be done by the donor grid in order to
minimize the amount of data to be transfered between the processors. Thus, the receiver grid sends
all necessary data to the donor grid before time integration is started. This is not a trivial task since
a grid is divided in a arbitrary number of blocks. This task is parallelized in SAFARI, resulting in a

minimized computational overhead.

1.13.2 Inter-Block communication

SAFARI divides a component grid evenly in each coordinate direction &, 7, in blocks of grid points
Nylock,£5 Nolock,ns NVblock,¢- Figure 1.12 shows an example of a 2-D grid subdivided in Nyjoek e = 3 blocks
in {-direction and Npjock,; = 2 blocks in n direction. Periodic boundary conditions are also handled
with inter-block communications routines.

The number of blocks per grid is estimated by a simple algorithm that requires as input the
maximum number of grid points that should be computed on one processor. Under the assumption
that all points need the same amount of operations, the algorithm determines the number of blocks

needed for one grid in order to not exceed the maximum number of grid points and by minimizing the
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Figure 1.11: Example of a 2-D cylindrical grid subdivided in Npigek,e X Nplock,y = 2 X 2 blocks. Interpolation
points receive data from blocks belonging to the background grid (not represented in this Figure).
block; 2 and blocks 5 also have to interpolate data and send it to the blocks of the background

grid. block; ; and blocks ; do not contribute to the grid communication.

number of communication points determined by

Acom = (Nblock,ﬁ - 1) : NT? ’ NC + (Nblock,n - 1) ’ N§ ’ NC + (NblOCk7C - 1) ’ Nf ’ N77’

where N¢, N, N¢ are the total number of grid points in each direction of component grid.

Figure 1.12 gives a schematical view of the layout on a local computational block used by a single
processor. This shows that there are overlap regions on each side of the local domain where information
must be obtained from neighboring processors. Likewise, this processor would also need to send some
data to these neighbors. For the finite difference solver used in this work, where the spatial operators
are applied in each direction separately no update of data at the corners is necessary. However it is
possible that a multidimensional interpolation stencil lies within the corner region as shown in Figure

1.13. If this is the case, SAFARI also updates in the corner region.
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Figure 1.12: Inter-block communication in a 2-D grid with periodic boundary condition in n-direction subdivided

in Nblock,g X Nblock,n = 3 x 2 blocks.
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Figure 1.13: Detail of a block corner: Update of corner region when interpolation stencil includes points of this

region.
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Figure 1.14: Scalability of SAFARI. Ty denotes the time needed to perform the task using N procesors. Speed-
up curve for the case with constant total number of grid points Ny.¢: o update only regions normal

to boundaries; + additional update of corner regions.

1.13.3 Scaling test for inter-block communication

In this section scaling tests of the parallelization is provided for the examples of a cubic grid containing
Niot = 100 x 100 x 100 = 1 x 10% grid points. The grid is generated by Overture and computed by
SAFARI, using Nproes = 3,4 = 1,2,3 processors. This scaling test is very demanding because the
ratio between the number of communication points and the number of computation points becomes
very constraining and gives an idea of the limit of grid points per processor not to exceed. The results
were obtained on the cluster Tantale of the CEA (CP 4000 DL 585 quadri processors AMD Opteron
1.8 GHz, Network Infiniband with a latence 5us, 1 GByte.s™!). The time of one iteration required for

one grid point on a single processor is 8.6 x 1076 s.

Figure 1.14 shows the parallel performance of the code compared with the ideal linear speedup
curve for the first test case. Up to ten processors the code performs well. For cases with more than
ten processors the actual performance deviates from the ideal because a large amount of data has to
be exchanged due to the use of large 11-point computational stencils. For 3-D computations, using

less then 1 x 10° per processor should be avoided.

As already mentioned only data normal to the communication boundaries have to be exchanged
as displayed in Figure 1.14. However if a interpolation point is situated near a corner so that the
interpolation stencil involves points in the corner regions data has to be updated. Figure 1.14 illustrates
that for the 3-D case the parallel code performs very poorly due to a large communication overhead
when the corners are updated. Therefore the update of the corners has to be avoided whenever it is

possible.

The scaling test reveals that communications has to be minimized and optimized in the future
especially for massively parallel computations. This can be achieved by non-blocking communications
and a more sophisticated load balancing taking into account boundary conditions. Anyways the mul-
tidomain approach permits to access applications with a very large number of grid points. SAFARI is

portable on several massively parallel platforms like HP Proliant, Bull 3045 and BlueGene.
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1.14 Conclusion

The numerical algorithm SAFARI has been presented in this chapter. The associated flow solver is
a high-order finite difference solver for the purpose of solving Euler and Navier-Stokes equations on
structured grids. The implemented selective filter removes grid-to-grid oscillations. When solving
Navier-Stokes equations, the selective filter plays the role of a sub-grid model by removing properly
the not well resolved turbulent scales. In order to treat flows with shocks, a Jameson-type dissipation
model has been implemented in the code. The associated wall boundary conditions and non reflective
boundary conditions have been specified in this chapter.

To tackle with complex geometries using a structured grid solver, a high-order accurate overset
grid approach has been implemented in the code. The code is parallelized using the MPI library and

allows to access to high-Reynolds applications.



Chapter 2

Validation of SAFARI

In the following, several validation test cases are reported. These test cases involve classical problems
encountered in computational aeroacoustics as well as in computational fluid dynamics. The test cases
are destinated to check if the multi-domain approach and the shock-capturing technique implemented
in this work are able to recover the accuracy of the high-order finite-difference schemes. Since the test
cases involve also walls and open domain boundary conditions, the implemented boundary conditions

are also validated in this chapter.

2.1 Convection of a vortex through interpolation zones

The passage of the wake generated by a cylinder through an overlap region generates spurious acoustic
waves as it has been observed by Desquesnes et al. [45]. In this work, a strong influence of the
polynomial order on the accuracy and on the generation of spurious acoustic waves have been observed
when vortical structures are involved. The convection of a vortex by an inviscid uniform mean flow
through a overset region is therefore considered first. By varying the interpolation order, the minimum
order that is required to recover the accuracy of the optimized finite-difference schemes is determined
in the following.

The overlapping grid, generated by ogen, is displayed in Figure 2.1. It is composed of three uniform
grids connected by two overlap regions. The left and the right grids contain Ng x N, = 51 x 51 points.
The center grid consists of Ng x N, = 51 x 52 and is shifted by half a grid size length in z-direction
such as displayed in Figure 2.2 (a). This avoids interpolation points to coincide with grid points in
the zone where the vortex passes.

The vortex is defined by the initial conditions using dimensionless variables:
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Figure 2.1: Overlapping grid generated by ogen. The grid is composed of three uniform grids connected by two

overlap regions of variable width.

1 1
per = % + §p(u2 +v?),

where M = 0.5 is the freestream Mach number, ¢ = 0.01 is the vortex strength and o = 3Axz the
Gaussian half width. The Fourier transform of the swirl velocity (the transversal velocity component

along the z-axis at y = 0) is given by:

R Tk k>
(k) = —21\/;@ exp [—@],

where a = log (2)/a? contains the Gaussian half width. The normalized power spectral density is
plotted in Figure 2.2 (b). A dominant peak at kAx = v/2a ~ 27/16 is observed. Most of the spectral
content is located within the well resolved wave-number domain of the optimized finite-difference
schemes.

The radiation boundary conditions of Tam and Dong [127] are applied to all boundaries. For
all computations the CFL number is fixed to CFL = 0.25. The simulations are carried out for 800
iterations, the time required to convect the vortex 100Az.

Five simulations are done varying the order of interpolation Nyyger = 2,4, ...10. Figure 2.3 displays
a sequence of the instantaneous pressure field when the vortex, characterized by a pressure minimum,
meets the first overlap region. Figures 2.3 (a), (b) and (c¢) are obtained using Lagrangian polynomials
of order Nyrger = 2,6 and 10 respectively. The acoustic wave just leaving the computational domain
at the first and second instant is due to an adaptation of the pressure field to the velocity field at
the beginning of the simulation. It is a transitional artefact and was also observed by Bogey [25].
The sequence (a) using the second-order interpolation, strong acoustic disturbances are generated and
contaminate the physical solution. Those parasite waves are significantly reduced when using sixth-
order Lagrangian polynomials (sequence (b)) and disappears when a tenth-order interpolation scheme
is used (sequence (c)).

In order to quantify the generation of spurious acoustic perturbation the residual pressure for the
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PSD(v)

Figure 2.2: (a) Detail view of the center of an overlapping region (y = 0). The interpolation points do not
match with the interpolation data. (b) Normalized spectral contents of the transversal velocity
component of the initial vortex; --------- dominant wave length, — — — maximal resolution of

optimized 11-points finite difference schemes kAz ~ 7/2 [30].

left grid is computed using the Lo norm:

1 Ng,Ny
b= RN, 2t

The residual obtained for the left grid is plotted in Figure 2.4 (a) as a function of the number of
iterations. The solid line representing the pressure residual obtained with the single block computation
is considered as a reference solution. The symbols in Figure 2.4 (a) represent the pressure residual
obtained with the overlapping grid for varying polynomial orders. The first peak observed during
the first 200 iterations for all setups is associated to the transitional pressure pulse. The decrease
of the residual pressure, indicates that the pressure pulse leaves the computational domain without
any spurious reflections. When the vortex hits the overlap zone, the residual pressure obtained with
second-order polynomials shows a significant increase and confirms the generation of acoustic waves
observed in Figure 2.3 (a). Using fourth-order polynomials the reflection are only visible in a zoom on
the last 600 iterations given in Figure 2.4 (b). For orders higher than 6 the residual pressure evolves
like in the single-block computation and the reflections are negligible.

The error of the aerodynamic field is estimated by computing the Lo norm of the difference be-
tween the exact swirl velocity and the swirl velocity when the vortex has reached its final position at

x = 100 Az. The error is computed along the z-axis at y = 0 such as:

The values for L, are given in Table 2.1 and are plotted in Figure 2.5, normalized by the single-block
result. Figure 2.5 reveals that for polynomial orders higher than 6 the accuracy of the numerical

algorithm is governed by the spatial and time integration errors and the interpolation error becomes
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Figure 2.3: Iso-contours of the instantaneous pressure fields computed the left grid during the passage of the

vortex through the overlapping region using Lagrangian polynomials of order (a) Nyrder = 2; (b)
Novder = 6 and (¢) Norder = 10.

Norder 2 4 6 8 10 single block
Ly x 10* 7.637 1.630 1.164 1.104 1.097 1.096

Table 2.1: Lo norm of error in swirl velocity after IV;; = 800 iterations.

negligible. In order to reduce the effort in CPU and storage, the order of interpolation polynomials is

limited to eighth-order for 2-D problems and to sixth-order for 3-D problems in this work.

2.2 Diffraction of monopolar acoustic source by a cylinder

This test case is issued from the second CAA workshop [1| and serves to check if sixth-order Lagrangian
polynomials are sufficient to recover the accuracy of the high-order finite-difference schemes when only
acoustic perturbations are involved. The numerical setup is represented in Figure 2.6. The test case
solves the 2-D Euler equations in non-dimensional form. The reference length scale is the diameter of

the cylinder d. A Gaussian shaped source, applied to the pressure after each Runge Kutta iteration,
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Figure 2.4: (a) Time evolution of the residual pressure L,, in left grid. (b) Detailed view on residual pressure
Ly;
grid using interpolation of order + Norder = 2, o Norder = 4, O Norder = 6,
& Norder = 8, v Norder = 10

L, of single block computation as reference solution; solution obtained with overset

order

Figure 2.5: Ly norm of the error of the swirl velocity normalized by the Lo obtained for the computation on a

single block.

is placed at (zs,ys) = (4,0):

(x - ws)z + (y B ys)2
b2 ’

S = esin (wt) exp |In (2)

where the frequency is given by w = 87 and the Gaussian half-width by b = 0.2. Originally, the test case
proposes to solve the linearized Euler equations. For the non-linear Euler equations a sufficiently small
source strength € has to be introduced, in order to avoid non-linear effects. In this work e = 1. x 1076
has been chosen. For initial conditions air at rest at the pressure pg = 1/ and with the density py = 1
is taken. The wave length associated to the source is A = ¢y/4 = 0.25. Since the wave length is of the
same order as the source, the source is considered to be non compact.

A first simulation is done using a single cylindrical grid in order to validate for acoustic problems
the slip wall condition developed in section 1.11. The grid consists of N, x Ng = 781 x 751 = 5.9 x 10°

grid points and is spaced uniformly in 7- and 6-direction. The number of points in azimuthal direction
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Figure 2.6: Configuration for the diffraction test cast: the time harmonic monopolar source is placed at point
S. The directivity D(#) will be measured on a arc at r/d = 7.5, 7/2 < 0 < 7.

Ny is chosen to ensure a wave to be resolved by 7 points at r/d = 7.5. The number of points in radial
direction N, is taken to respect a ratio Ar/Af = 1.5 at the cylinder wall.

Figure 2.7 (a) shows the simulated fluctuating pressure field. The acoustic waves coming from the
non compact source generate a diffraction field. A silent zone behind the cylinder can be observed.
The detailed view on the cylinder near region is given in Figure 2.8 (a).

The directivity given by
T

D(0,r) = 7‘% /p'(@,r)2 dt

is computed on a arc with r/d = 7.5 and 7/2 < § < 7 and is compared to the analytical solution of
the problem [1]. In Figure 2.9 the directivity D(6,r) obtained by computation is compared with the
analytical solution. The computed curve and the analytical curve compare well.

In a second simulation, the same test case will be done using the overset-grid approach. By making
several computations with different order of interpolation, the optimum interpolation order for the
present numerical algorithm is determined.

The overset grid is composed of 2 grids: one cylindrical grid and one uniform grid. The uniform
grid is generated to resolve acoustic wave with 7 points per wavelength Az = Ay = \/7 = 1/28. The
uniform grid is extended —10 < z,y < 10. The cylindrical grid is spaced uniformly in azimuthal and
radial direction and is limited by the outer radius r,/d = 1.5. In the radial direction the grid length
is chosen to be A\/13 and the number of grid points in azimuthal direction is taken to ensure that
the aspect ratio of the radial and azimuthal grid spacing is Ar/Af = 1.1. The overset grid contains
3.2 x 10° grid points, 45% less grid points than used for the single-block computation.

Figure 2.7 (b) shows the fluctuating pressure field for the overset grid using eighth-order interpo-
lation polynomials. The diffracted field is very similar to the single-block computation. The detailed
view on the cylinder near region is given in Figure 2.8 (b). The acoustic waves propagates through
the overlap region without generating spurious reflections.

In Figure 2.10 the quantity D(6,r) along a line defined by # = 7/2 and 0.5 < r/d < 10 is compared
with the analytical solution for the interpolation order of 2 and 6. Using second-order polynomials
leads to large discrepancies in the near cylinder region. For polynomial orders higher than six, the

error made by the interpolation procedure tends to zero.



o1

Figure 2.7: Diffraction of pressure source by cylinder: pressure fluctuations field (color scales < 1071° Pa) (a)
obtained by single block computation; (b) obtained using overset grid approach and sixth-order

interpoltion polynomials.

Figure 2.8: Diffraction of pressure source by cylinder: Detailed view pressure fluctuations field around the cylin-
der (color scales < 1071% Pa) (a) obtained by single block computation; (b) obtained using overset
grid approach and sixth-order interpolation polynomials. The solid line presents the boundary of

the cylindrical grid.

In this section, the overset approach has been successfully applied and the results compare very
well with the analytical solution. The test cases reveals that sixth-order Lagrangian polynomials are
sufficient when acoustic perturbations are involved in order to maintain the global accuracy of the

11-point finite-difference scheme.
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Figure 2.9: Directivity D(0) = r < p? > at r/d = 7.5:

(b)

Figure 2.10: Directivity D(0,r) at 0.5 < r/d < 10 and § = 7/2 for different order of interpolation: (a) 2 order

(b) 8 order; computed solution; + analytical solution.
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Figure 2.11: Sketch of the plane couette flow setup: the lower wall is adiabatic and at rest and the upper wall

moves with a velocity u, and is isothermal. — — — Linear velocity profile for incompressible flows

Velocity profile for compressible flow with temperature dependent viscosity.

2.3 Plane compressible Couette flow

Following Gloerfelt [60] who computed a Poiseuille flow in 2-D, a compressible plane couette flow is
considered. The test case allows to validate the implementation of the viscous and heat conduction
terms as well as thermal boundary conditions, reported in section 1.11. At the same time this test
case introduces some physical concepts encountered in compressible viscous flows.

The flow configuration is shown in Figure 2.11. Air flows between two parallel plates, where the
upper plate moves at a constant velocity u, relative to the lower plate. The other boundary conditions
are as shown. The temperature at the upper and lower plate are designated T, and T),, respectively. A
heat flux is imposed at the lower wall and the upper wall is isothermal. The 2-D flow is fully developed
in a-direction so that 9/0x = 0 and is steady 0/0t = 0. The continuity equation writes

9(pv)
— =0.
dy
The momentum equations give
Oy _ 0 ()
oy Oy M@y -
dp
8_y =0.

Thus, shear stress and pressure in wall normal direction are constant. For incompressible flows, the
viscosity is often taken to be constant [119] and integration leads to a linear profile. For compressible
flows, variations in temperature produce variations in viscosity. The temperature distribution needs
therefore to be known in order to integrate the momentum equation. This temperature is determined

by means of the energy equation that reduces to

showing that for the Couette flow the diffusion of kinetic energy and heat conduction are in equilibrium.
The equation is integrated from the lower wall outwards:

ou ucpa_T B

Moy T Pray T M
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By noting that the shear stress is constant and by assuming a constant Prandt]l number, the equation

is recasted in

0 1 Guw OU
—(C, T+ =Pru?) =—Pr 22—
8@/(” i ru) " T Oy
and is integrated to obtain a relation between the temperature and the velocity distribution.
C 1 2 quw
(T —Ty) + =Pru” =—Pr —u.
2 Tw

The lower wall is taken adiabatic (g, = 0) which allows to determine the temperature at the lower

wall directly by the expression

1 Pr u?
Tw="1T,+ = c.

The adiabatic wall temperature is called the recovery temperature and is for the stationary wall equal

to the total temperature. When the Prandtl number is not equal to 1 the total temperature of the
outer flow is not recovered entirely at the lower wall in form of heat. The momentum and energy
equations are integrated numerically from the lower wall outwards to the upper wall leading to an
exact temperature and velocity distribution. The temperature dependency of the viscosity is taken
into account by Sutherland’s law given by (1.15).

In order to study the grid convergence, three computations on a 2-D uniformly spaced grid are
carried out with different numbers of grid points. The number of grid points in z-direction is kept
constant N, = 10, whereas the grid points in y-direction are taken N, = 21,50 and 100. Note that
for the coarsest grid, only ten points are computed with the centered finite-difference scheme. The
boundary points are computed using the non-centered finite-difference schemes and selective filters
proposed by Berland et al. [21].

The conditions at the upper wall are taken to be ambient p, = 1.0 x 10° Pa and p, = 1.2kg.m™3.
A Reynolds number based on the height H and the upper velocity u., and the viscosity measured at
the upper wall is Re = 800. The Mach number is taken to be M, = 2.33. Adiabatic no-slip boundary
conditions and constant temperature conditions reported in section 1.11 are applied at the lower wall
and upper wall respectively. Periodic boundary conditions are applied in z-direction.

The computation is initialized using the linear incompressible velocity profile and a constant pres-
sure and temperature profile at ambient conditions. The computations are carried out until the density

ntl_p|/p™ < 107, The convergence rate for the three cases are provided in Figure

residual reaches |p
2.12 (a). Note for all computations, the time step is equal and is governed by the constant grid size
in the z-direction.

The computed velocity profiles are given in Figure 2.12 (b). In agreement with the exact solution,
the computed velocity profiles exhibit a difference due to the variation of viscosity. The coarse grid
solution reveals some discrepancies. By refining the grid, the computed solution converges to the exact
solution. The same tendency can be observed for the temperature profiles given in Figure 2.13 (a). It
increases and converges to the recovery temperature near the wall. The error, defined by the absolute

difference between the exact and computed recovery temperature, are plotted in Figure 2.13 (b) as a

function of the grid size. The error scales with the grid size at the power of 6.2.
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Figure 2.12: (a) Time evolution of density residual; (b) Comparison of velocity profiles computed with different
grid sizes (— — — Ay =1/20, — -— - Ay =1/50, ~------- Ay = 1/100) with the exact solution

. The straight line u/U. = y represents the linear velocity profile for the incompressible

case.
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Figure 2.13: (a) Comparison of temperature profiles computed with different grid sizes (— — — Ay = 1/20,
— = Ay =1/50, -------- Ay = 1/100) with the exact solution . The upper solid lines

represents the distribution of the total temperature Ty = T + 0.5u?/C,; (b) Difference between

computed and exact adiabatic wall temperature T,.

The computation of the plane Couette flow demonstrates that compressible viscous and thermal
interactions governed by the Prandtl number are predicted correctly by the numerical code. The
implementation of the adiabatic boundary conditions is robust and predicts the recovery temperature

correctly.

2.4 Flow around cylinder at low Reynolds and low Mach number

In this section, the simulation of a 2-D flow around a cylinder at low Reynolds and Mach number is

presented. This flow configuration has been studied by Marsden et al. and Inoue and Hatakeyama
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[92, 72| using a single cylindrical grid. The flow is solved using the overset-grid approach and compared
with the computed solution of the literature |72].

The diameter of the cylinder is D = 2.0 x 107 m and the flow Mach number is M, = 0.33. For
air at ambient conditions ps, = 1.0 x 10° Pa and p = 1.2 kg.m 3 the Reynolds number based on the
cylinder diameter is computed Rep = 150. In the experiments, no transition and no 3-D effects are
observed |144]| for this Reynolds number and the problem can be simulated using a 2-D mesh.

The grid generated by ogen is shown in Figure 2.14. It consists of 5 component grids: the grid
around the cylinder, the grid in the wake of the cylinder, a highly stretched grid at the outflow boundary
and a far-field grid in order to propagate the acoustic field. The minimum grid size is governed by the
boundary layer that develops along the cylinder wall. A grid size in radial direction of Ar = D/36
is used. With this grid resolution the boundary layer near the stagnation contains 4 grid points. In
azimuthal direction 251 uniformly spaced grid spacing are used. The grid size of the wake grid has been
adapted to cylindrical grid in order to avoid great variation of cell sizes in the wake of the cylinder.
The wake grid spreads in y-direction and matches the height of outflow. The outflow grid is highly
stretched with exponential functions provided by ogen.

The grid size for the acoustic grid is determined as follows. A Strouhal number of Stp = f D/Uy, =
0.18 is expected, giving a wavelength of A, = (1/My — 1)/St D = 11.3D for upstream traveling
perturbations. The 11-point optimized scheme is able to propagate perturbations over far distances
with 7 points per wavelength imposing a grid size of Ax = \,/7 = 1.6D. The dimensions of the far-
field grid are chosen such as 5 wavelengths fit between the cylinder and the computational boundaries
in upstream direction.

Additionally, one intermediate grid is used in order to avoid large variation of grid sizes in the
overlap zones due to the large disparity between the grid around the cylinder and its wake and the
coarse far-field grid. A detailed view on the near cylinder region provided in Figure 2.15 shows the
cylindrical grid and the wake grid embedded in the intermediate grid. The grid characteristics are
detailed in Table 2.2.

At the wall adiabatic non-slip conditions are applied and a simulation time corresponding to 100
vortex shedding periods is affected. The chosen CFL = 0.4 results in a time step of At = 4.28 x 1010

S.

Ny Ny Niot  Nprocs
Cylinder grid 251 60 7530 2
Wake grid 945 164 14089 11
Outflow grid 359 235 10545
Far field grid 168 168 9408 3
Intermediate grid 429 133 11411

Table 2.2: Grid characteristics for the computation of the flow around a cylinder. The total number of 3.4 x 10°

grid points have been computed by Njiocs = 29 processors.

Figure 2.16 shows the instantaneous plot of the pressure fluctuation field p — ps. The dipole
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Figure 2.14: Overset grid generated by ogen. The grid is composed of 5 component grids: cylindrical grid

(magenta), wake grid (red), outflow grid (blue), intermediate grid (green), acoustic grid (blue).

character of the noise source is observed. The presence of a mean flow leads to the compression of
acoustic wave length in the upstream direction, similar to the Doppler effect. Figure 2.17 shows the
instantaneous vorticity field. The Von Karman vortex street is visible.

The mean pressure coefficient defined by

_ P~ P
P 1/2p00v2,
is compared to the solution obtained by Inoue et al. |72] in Figure 2.18. The solution compares well
with the solution obtained by Inoue. Some discrepancies can be observed in the stagnation point and
on the forward facing cylinder side where the flow separates.

The drag coefficient based on the pressure forces is computed such as Cy = 1.25 and compares well
with the experimental values Cy = 1.32. The error is 5.3% and is associated to the coarse grid used
for the grid in the computation. Slight deviation of 5% can be observed for the Strouhal number that
is found to be 0.193 which is caused to by the underresolution of the flow.
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Figure 2.15: Overset generated by ogen. The detailed view on the cylinder region shows cylindrical grid embed-
ded in the wake grid. Additionally, an intermediate grid is added in order to avoid large changes

in grid size. Black markers visualize interpolation points.
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Figure 2.16: Instantaneous pressure fluctuations field (gray scales [p’| < 200 Pa).
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Figure 2.17: Instantaneous vorticity fluctuations field (color scales 0.1 < |w| < 6.6 x 106 s_l).

Figure 2.18: Pressure coefficient along the cylinder surface: —— solution provides by Inoue et al. [72]; - - - -

computed solution.
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2.5 1-D Shock/Entropy Wave Interaction

The next example considers the 1-D inviscid flow proposed by Shu and Osher [117] as a model problem
for shock-turbulence interaction. This test case, which incorporates both fine-scale and strong nonlinear
features, consists of a moving Mach 3 shock wave interacting with a density fluctuation. The domain

extends from —5 < x < 5. The initial condition is specified as follows.

[3.857143,2.629369, 10.333333] for z= < —4,

o, u,p] =
[1+ 0.2sin (5x),0,1]] for z>—4

The solution is advanced in time until £ = 1.8 and the density distribution obtained with the present
numerical algorithm on a 1601 point mesh is displayed in Figure 2.19 as well as the initial condition.
A courant number of CFL = 0.1 is used in order to minimize the error form the Runge-Kutta scheme.
This solution is considered as the reference solution.

Figures 2.20 (a) and (b) show the solution obtained on a 401 points mesh and 201 points mesh
respectively. Three computations have been carried out with different filtering strategies. One compu-
tation is done using the centered selective filter scheme alone. Two further computations are carried out
applying the shock capturing filter presented in section 1.6 after each time iteration with the Jameson
detector and with the modified Jameson detector based on the 11-point selective filter.

The solution computed with the selective filtering only compares well with the reference solution
on both grids even if a small dispersion error is observed. The use of the shock-capturing filter leads to
a slight underestimation of the density perturbations which becomes more obvious for the coarse mesh
computation. The solution obtained with the modified Jameson detector leads to lower amplitude
error due to a smaller peak value of the detector in the shock region.

This test case shows that the numerical scheme is able to treat problems with strong non-linearities.
Using the selective filter is sufficient to ensure stability and to provide an high-order accurate solution.
An influence of the shock-capturing filter can be observed, but can be minimized by using the modified
Jameson detector. Comparisons with computations found in the literature show that the implemented
scheme is competitive with more sophisticated shock-capturing filters based on MUSCL or WENO
schemes for example considered recently by Visbal and Gaitonde [137] or Lo et al. [89].
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Figure 2.19: 1-D entropy wave/ shock interaction problem: — — — initial condition and solution at

t = 1.8 obtained on 1601 point mesh.

Figure 2.20: 1-D entropy wave/shock interaction problem at ¢ = 1.8: (a) 401 point mesh; (b) 201 point mesh;

reference solution, — — — selective filtering, --------- selective filtering + shock capturing,

— -— -selective filtering + shock capturing + modified Jameson detector.
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2.6 1-D shock/sound interaction in a convergent divergent nozzle

The flow in a convergent-divergent nozzle is simulated. The test case is taken from the third CAA
workshop [2] and proposes to solve the 1-D Euler equations with variable cross-section. The equations
in conservative form can be written as
0(4Q) | I(AE)
ot Ox

+H=0, (2.1)

where the vector Q = [p, pu, pe]’ contains the unknowns, E = [pu, pu® + p, (pe + p)u]” is the flux
vector and H = dA/dzx x [0,p,0]” is the source vector that takes into account the variation of the
cross-section area. The equations are non-dimensionalized by the flow properties at the duct inflow.

In the same way, the cross-section area A(z) is scaled by its value at the inflow and is given by:

1.0 — 0.661514 exp [—(In2)(x/0.6)2], 2 <0
Alz) =
0.536572 — 0.198086 exp [(—(In 2)(2/0.6)2], x> 0.

The equations are solved on a uniform grid that contains 351 points and the solution is advanced in
time with CFL=0.1 in order to make the error of the time integration scheme negligible. Non-reflecting
boundary conditions are implemented using characteristic boundary conditions at the inflow and the
outflow. The Mach number is fixed at the inflow of the duct (M;, = 0.2006533). Imposing weakly
the pressure at the outflow (pout = 0.6071752) using using a relaxation term given in equation (1.16),
leads to a normal shock in the divergent part of the duct.

Three simulations are carried out using the selective filter only, using the selective filter in combina-
tion with the shock capturing filter with the classical Jameson detector and using the modified Jameson
detector based on the 11-point selective filter. Figure 2.21 gives the mean flow quantities for the three
computations. Using no shock-capturing terms generates overshoots around the discontinuities. They
are associated with the classical Gibbs phenomenon, which is typical for high-order methods. The use
of the shock-capturing filter removes the overshoots and the shock is well captured. The overshoots for
the modified Jameson detector are more present than with the classical Jameson detector indicating
that less dissipation is introduced.

Once the mean field is converged after about 100000 iterations, a harmonic acoustic perturbation
(1075 order of magnitude, w = 0.67) is superimposed at the inflow in order to study shock-sound
interaction. Figure 2.22 displays the fluctuating pressure field for the three cases. All solutions compare
well with the solution given by Hixon [2|. The overshoots observed in the mean flow profile when no
shock-capturing scheme is used have no impact on the acoustic signal. Furthermore, no influence
of the low-order shock-capturing terms can be observed. This is not surprising because the acoustic
perturbations are resolved with about 25 mesh points per wavelength.

Pushing the test case to its limits reveals the influence of the shock-capturing term. For that,
the computations are repeated involving a signal which contains only 7 points per wavelength. The
fluctuating field is given in Figure 2.23. Provided that 4 points per wavelength are the accuracy limit of

the finite-difference scheme, the solution obtained without shock-capturing is considered as a reference
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Figure 2.21: Acoustic wave/shock interaction problem in a convergent divergent nozzle: mean properities
(p,p,u) obtained (a) with selective filter, (b) with selective filter + shock capturing filter, (c)

with selective filter + shock capturing filter + modified Jameson detector.
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Figure 2.22: Acoustic wave/shock interaction problem in a convergent divergent nozzle: fluctuating pressure
obtained (a) with selective filter, (b) with selective filter + shock capturing filter, (¢) with selective
filter + shock capturing filter + modified Jameson detector.

solution. Applying the shock-capturing leads to the damping of the signal downstream of the shock.
The computation using the shock-capturing filter with the modified Jameson filter gives a slightly less
damped signal thanks to less dissiption that is introduced in the shock region.

The computation of sound/shock wave interactions in a 1-D divergent convergent nozzle has shown

that the present algorithm is able to deal with problems involving several orders of magnitude.
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Figure 2.23: Acoustic wave/shock interaction problem in a convergent divergent nozzle: fluctuating pressure

field for the high frequency case obtained (acoustic wave is resolved with approximately 7 points

per wave length) (a) with selective filter, (b) with selective filter + shock capturing filter, (¢) with

selective filter + shock capturing filter + modified Jameson detector.
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2.7 Inviscid flow in 3-D circular shock tube

The transonic flow of section 2.6 is now studied in a 3-D circular duct. The grid generated by ogen is
represented in Figure 2.24 (a). For cylindrical grids a singular point arises in the center (r = 0). The
overset-grid approach can easily avoid such singularity problems by decomposing the geometry in two
component grids.

A first axis-symmetric grid with varying cross-section is generated. The centerline at r = 0 is
omitted by this grid. The external radius is given by re;(z) = \/A(z)/m and internal radius by
Tin = 0.37¢2(0). A second Cartesian is embedded at the centerline of the cylindrical grid as displayed
in Figure 2.24 (b). The overlap is built for a interpolation of order 6. The cylindrical grid contains
301 x 50 x 80 ~ 1.2 x 10°% points and the Cartesian grid 301 x 31 x 31 ~ 0.3 x 10° points. At wall the
slip condition of section 1.11 is applied and characteristic boundary conditions are applied at the in-
and outflow.

The simulation is carried out for 1 x 10° iterations with a CFL number of CFL = 0.9. The non-
linear shock-capturing filter described in section 1.6 is applied, in order to maintain numerical stability.
The computation is performed on 30 processors.

The Mach number field computed in a « — r plane is represented in Figure 2.25. The iso-contours
of the Mach number match very well in the overlap region. The normal shock passes the overlap region
without any spurious oscillations. The mean flow properties u, p, p along the centerline are compared
in Figure 2.26 with the analytical solution of the 1-D problem given by Hixon [2|. They are in good
agreement. In particular, the shock location is correctly predicted indicating the good conservativity

of the scheme.
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Figure 2.24: Grid of the circular convergent divergent nozzle: (a) Side view; (b) Sectional view at © = —5 :

black and gray squares indicate the interpolation points of the Cartesian grid and the cylindrical

grid respectively; (c¢) Grid of the circular convergent divergent nozzle: 3-D view

Figure 2.25: Mach number profile in a x — r plane for —2 < x < 2. Iso-contours of the Mach number

M>1,———M=1, ——— M<1.
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Figure 2.26: Centerline profiles of u, p p (top down). The symbols correspond to the numerical solution and

the solid line to the analytical solution.

2.8 Conclusion

In this chapter, SAFARI has been validated with various classical test cases given in the literature.

The test case of the convection of a vortex through an overlap region has shown that the accuracy of
the optimized finite-difference scheme can be recovered using at least sixth-order or better eighth-order
Lagrangian polynomials. The case of the diffraction of the monopolar source by a cylinder demonstrates
that sixth-order polynomials are sufficient when only acoustic perturbations are involved. Using ogen
the user is able to specify polynomial order for each inter-grid communication, this study allows to
minimize communication costs due to interpolation by using very high-order interpolation in non-linear
zones such as wakes or shock regions and to use smaller interpolation stencils linear regions without
passing vortical structures.

The second part of validation is concerned to the shock treatment. For that a Jameson-type
dissipation model has been implemented. This scheme has very good shock-capturing properties. The
example of a 1-D entropy/ shock wave interaction reveals that the nonlinear filtering terms risk to damp
out small scale perturbations. The same is observed for acoustic/shock wave interaction problems. The
dissipation can be minimized by using a modified Jameson detector based on high-order dissipation
terms. The computational efficiency of the Jameson-type filter schemes have made them to the prefered
shock treatment in this work.

Using the overset-grid approach complex geometries can be treated now in a autmated manner.
In this work, the grid assembler package ogen has been used to generate the complex data structure
required for the overset-grid approach. This is demonstrated for the 2-D low Reynolds number flow as
well as for the computation of a 3-D circular shock tube. The latter example shows the grid flexibilty

that SAFARI offers now.
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Chapter 3

Aeroacoustic simulation of a ducted cavity

flow

The configuration of the present ducted cavity has been studied in the context of an industrial appli-
cation. Tonal noise has been measured on the power steam line of a nuclear power station and the
cavity located at the bottom of a gate valve, as shown in Figure 1 (b), has been identified as the main
noise source. This cavity has two specific characteristics from more classical cavities studied in the
literature: it is confined in a duct and partially covered.

Due to the geometrical complexity of the cavity, a simplified planar model has been first studied
numerically and experimentally by Lafon et al. [81]. The retained geometry is reported in Figure 3.1.
The cavity is a shallow cavity since the aspect ratio is L/h = 2.5 > 1 [112].

Confined cavities can not be only found in pipe systems with flow control devices but also in organ
pipes or flutes for instance. They generate discrete tones that can be either disturbing when they
excite the natural modes of pipe structure or desirable for musical instruments.

In this chapter the simulation of a confined cavity is presented. First, the physics of the cavity flow
is summarized and the experimental results of the studied cavity configuration are discussed. Then,

the results of the simulation are presented and validated with the experiments.

3.1 Introduction to cavity flow

Cavity flow can be found in many applications and many experimental studies about the self-sustained
oscillations of cavity flow have been carried out in the last 50 years. Review articles are provided by
Rockwell and Naudascher |108], Komerath et al. [80], Colonius [37] and Tadeka and Shieh [122].

The self-sustained oscillations is based on a feedback mechanism that can be decomposed in two
phases. First vortical structures are triggered at the upstream angle of the cavity. Due to Kevin-
Helmholtz instability, vortical structures develop and grow in the turbulent or laminar shear layer
above the cavity.

Vortices are convected over the cavity and interacts with the downstream angle. The impact of the

eddies on the downstream angle leads to perturbations that trigger further instabilities at the upstream
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Figure 3.1: Ducted cavity: sketch of the geometry and notations h = 0.02 m, d = 0.05 m, H = 0.137 m,
L =0.073 m and W = 0.16 m. The aspect ratio of the cavity is L/D = 2.5. Uy is the free stream

velocity.

cavity angle resulting in phase-locked frequencies. Note that for incompressible flows (water or air at
small Mach number M < 0.3) the feedback loop closes rather via a hydrodynamic mechanism. Using
the Biot and Savart law, vortex deformation can be associated with a perturbation at the upstream
cavity angle |9]. For compressible flows (M > 0.3), the wavelength of acoustic perturbations is of the
same order as the cavity length L. The instability is triggered by an acoustic wave that is generated
by the impact of the vortical structure on the downstream angle. The emission of acoustic waves have

been visualized by Karamcheti |76].

Many models have been designed to predict the frequencies of the self-sustained oscillations. Mod-
els for the estimation of the amplitude are rare due to the number of parameters that comes into
play. For example, Karamcheti [76] found that self-sustained oscillations occur for cavities exceed-
ing a characteristic length L and that the frequencies scale with the reciprocal of the cavity length
L. Furthermore the incoming boundary layer thickness has an influence on the sound pressure level.
For laminar boundary layers, the amplitude of the resonance frequencies are increased. For turbulent
boundary layers, the spectral content features more peaks. Sahoria [112] found that oscillations of
cavity flows occur above a certain value of the ratio L/dg, where dp is the momentum thickness of the
incoming boundary layer. The influence of width W has been examined by Ahuja and Mendoza |3]
and found small influence of the width on the pressure spectra. However Tracy and Plentovich [133]
confirm this only for deep cavities with L/D < 2. For shallow cavities L/D > 2, they observed an
increase of peak levels for small width W. The same authors found that for subsonic cavity flows the
broadness of the peak of the pressure spectra increases which is due to a decrease of flow coherence.
Cavity flow at supersonic speeds are not considered in this work. For further lecture refer to the work

of Heller and Bliss [66] and Larchevéque [85] for example.

In the past, several analytical investigations about cavities have been done. The most important
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Figure 3.2: Vortex convection and acoustic wave propagation in the cavity at two different times ¢ = 0 and
t=1t.

model is the one proposed by Rossiter [110] which is the basis of many more sophisticated models.

Rossiter model:

Rossiter [110] was the first to propose a model to estimate the frequency of the self-sustained
oscillations. The observation that the peaks in the pressure spectra are not related harmonically, gave
the motivation for this model. A relation for the frequencies can be found by considering separately

the two components of the feedback mechanism at two different time instants ¢t = 0 and ¢t = t'.

Figure 3.2 shows the vortex convected with the speed xUj in the shear layer and the acoustic wave
traveling in upstream direction with the speed of sound ¢, in the cavity. At instant ¢ = 0, a pressure
wave is emitted when the vortex impacts on the downstream edge. Introducing arbitrarily a time lag
between the impact of the vortex and the emission of sound, the vortex has thus been convected over
a distance of y,A, from the cavity leading edge. At instant ¢ = 0, the length between the pressure
wave that is located nearest to the upstream angle and the downstream angle contains m, acoustic
wave lengths \,. At instant ¢t = t/, this pressure wave has reached the upstream angle and triggers the
development of a new vortex. The length between the new vortex triggered at the leading edge and
the vortex that has been emitted the acoustic wave at t = 0 is m,\,, where ), is the distance between

two vortices.

Two relations can be found in order to determine the characteristic wavelengths of the vortex
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convection and the acoustic wave propagation:
MouXy = L + Y\ + Ut

and

L = mghg + cot’.

Eliminating ', leads to

My — L =Xy L —mgAa
HU() N Co ’
Defining a characteristic frequency for the vortical mode and the acoustic mode f = kUy/\, = ¢/
gives
o % my + Mg — Yo
L My +4

K

f

For subsonic cavities, the sound celerity in the cavity and in the free-stream are nearly the same
(co = ¢q). Defining a mode number such as ng = m, + m,, gives the Rossiter’s formula:

_UO =Yy

f_fMo—i-% (3-1)

The Rossiter’s formula is a very efficient way to estimate the resonance frequencies of cavities in
subsonic and transonic regime. The formula contains two parameters k and ~,; k = U./Up represents
the dimensionless convection velocity and 7, is the time lag between the impact of the vortex and the
emission of an acoustic wave, a parameter that is difficult to access experimentally.

The fact that the feedback cycle is closed with an upstream traveling acoustic wave is not valid for
incompressible and low Mach number flows where the feedback is rather based on a pure hydrodynamic
phenomenon. Experiences have shown that for the present cavity flow at M ~ 0.2, the Rossiter’s model
is well adapted to predict the peak frequencies. A short overview over some extensions of the Rossiter’s

model are given in the following.
Classical Extension:
More sophisticated models have been proposed in the literature for the supersonic and subsonic

regime. Block [22] includes the effects of the cavity depth L/D as a model parameter and proposes a

value for A,. The frequencies can be estimated by the formula

o=
TL MO+ )+t

Tam and Block [126] propose to include the analytical developments of a finite shear layer in order
to take into account the excitation mechanism at the separation point. The model works well for low
Mach number regimes from 0.2 < M < 0.4.

The model of Sahoria [112] takes into account the theory of instabilities of a thickening mixing
layer and derives a criteria to determine the dominant mode. Rockwell [107] refines the model in order

to predict the resonance frequencies based on the characteristics of the mixing layer.
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Numerical Simulations

Many numerical studies have been carried out since the first simulation in 1977 of Borland [32]
based on the resolution of the 2-D Euler equations. Further simulations including turbulent effects
using Reynolds Averaged Navier-Stokes equations in 2-D [145] and 3-D [104] followed. Sinha [118]
notices that the use of averaged equations lead to an underprediction of the sound pressure levels due
to an overestimation of the turbulent viscosity that damps pressure oscillations.

This observation initiated the use of Large Eddy Simulation for cavity flows. The first Very Large
Eddy Simulation (VLES) has been made by Sinha [118]. Other computations followed using zonal
hybrid methods that combine RANS methods to model the incoming boundary layer and LES methods
for the shear layer zone [8].

A further way to simulate cavity flow is the Direct Numerical Simulation (DNS) of the Navier-Stokes
equations. Being very demanding in computation power and storage, DNS is limited to small Reynolds
number flow and have been simulated in most of the cases in 2-D [39, 62| and more recently in 3-D by
Brés and Colonius [33]. Cavity flow simulations have also been carried out using the Lattice Boltzmann
method [103] for subsonic flows for the purpose of automotive applications. Another numerical example
is the use of 2-D Euler equations for the computation of the flow over deep cavities |44].

Larchevéque et al. |85, 84| demonstrates that LES is a very promising way to recover the physics
of cavity flow at higher Reynolds numbers. Several computations of cavities flows with different
aspect ratios L/D have been computed and reproduce the experimental results of Forestier [53] in an
impressive way. In the same way, LES can reproduce the passive control of cavity flow using a spanwise
rod such as demonstrated by Daude [42].

The confined and partially covered cavity considered here has already been studied in 2-D by using a
second-order TVD-Euler code [81, 83|. Rossiter frequencies have been recovered, but turbulent aspects
could not be considered due to the inviscid 2-D simulation. Gloerfelt [61] computed the flow using
2-D Navier-Stokes equations. He also could recover the frequencies and demonstrated the evidence
of the aeroacoustic coupling between cavity and duct modes. Discrepancies in amplitude have been
explained by artefacts due to the resolution of 2-D Navier-Stokes equations for this high-Reynolds

number application.

3.2 Experimental observations

In the following, the results of experiments are recalled. The experimental data have been provided
by the Institut Aérotechnique [81, 5] for the partially covered and ducted cavity, shown in Figure 3.1.
3.2.1 Influence of the upper wall

For unconfined cavities, the self-sustained oscillations remain weak for flows at low Mach numbers. For

ducted cavities, the possible coupling between Rossiter Modes (RM) and acoustic Duct Modes (DM)
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Figure 3.3: Frequency of dominant pressure spectra peaks (A, o) measured inside the cavity compared to
theoretical ones as a function of the Mach number Uy/co: theoretical Rossiter mode for ng =
1,2,3,4; —— acoustic transverse duct modes np = 1,2 based on duct height H ; - - - - acoustic

transverse duct modes np = 2 based on duct height and cavity height H + h.

can lead to high amplitude oscillations even at low speeds.

Pressure signals have been measured by using a microphone located at the bottom center of the
cavity [81, 5]. The measured spectra exhibit peaks that can be associated with cavity modes. Plots
of frequency and pressure level of these peaks as functions of the nominal Mach number My = Uy/c
where ¢y denotes the sound velocity at reference conditions (pg = 1.0 x 10° Pa and py = 1.2 kg.m™3),
are shown in Figure 3.3 and 3.4 respectively.

The theoretical cavity modes can be estimated by Rossiter’s formula given by equation (3.1), where
Yo = 0.25, Up/U. = k = 0.57. They are plotted in Figure 3.3 for ng =1, 2, 3, 4. The transverse DM
are given by

d npc d
Sty = fg— = — —
d deo S5, Uy

where np is the DM number and Hy the height of the wave guide. The DM frequencies are plotted in
Figure 3.3 for np = 1, 2 and for the duct height, H; = H. Additionally, the frequency of the second
tranverse DM based on the sum of the duct height and the cavity height, H; = h + H, is plotted in
Figure 3.3.

The lock-in phenomenon can be observed when the frequencies of the cavity modes stops to scale
with the theoretical RM evolution and continues to scale with the DM frequency. When lock-in occurs,
the amplification of the pressure oscillations is maximum. This can be always observed when the RM
approaches the DM. At My = 0.13, the third RM locks with the first DM and at My = 0.18, the second
RM locks with the first DM. At My = 0.23, the third RM locks with the second DM. In this case, the
measured frequencies collapse with the frequencies of the second DM, based on the sum of the cavity

and the duct heights.

3.2.2 Influence of the cover plates

The influence of the neck has been studied experimentally by the Institut Aérotechnique [4]. By filling

the cavity under the edges with material, a noise reduction of 20 dB has been observed.
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Figure 3.4: Level of pressure oscillations of dominant pressure spectra peaks (A, o) measured inside the cavity

as functions of the Mach number .

Ny Ny N: Nprocs
Duct 542 149 41 39
Neck 126 39 41 3
Cavity 180 61 41

Table 3.1: Grid statistics for the ducted cavity. The case has been computed by Nprocs = 47 processors. The

total number of grid points is 4 x 105. The neck is the region located between the cover plates.

A numerical study of a open cavity with cover plates has been carried out by Heo and Lee |67| and
Gloerfelt [61]. They observed a change in directivity. The non-covered cavity emits noise in upstream
direction. The covered cavity tends to emit less directive noise but with higher amplitudes.

The directivity is due to the destructive interference of noise emitted by the cavity directly when
the vortex impacts at the downstream angle and the noise reflected at the cavity walls. For the
covered cavity, the acoustic waves remain confined in the cavity and noise reduction via destructive
interference does not occur. This is probably amplified by the resonance mechanism observed in the
present configuration and explains the significant noise production of 20 dB. In the present work, only

the cavity with cover plates is considered.

3.3 Simulation parameters

The entire overset grid generated by ogen is displayed in Figure 3.5. It consists of seven component
grids. As the grid points of the communication interfaces coincide, no interpolation has to be used.
The grid spacing is kept constant inside the cavity (Az =4 x 107% m and Ay = 2 x 10~% m) and in
the boundary layer (Ay = 2 x 107* m). In the duct, the grid is stretched in the y-direction near the
upper wall with 3.0%. Upstream and downstream of the cavity, the grid is stretched in the x-direction
with 1.0%.

The Reynolds number based on the duct height H and the velocity Uy = Mycg is Rep ~ 5.6 x 10°.

The crucial point in cavity simulations is the boundary layer upstream the cavity, whose shape controls
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Figure 3.5: Overset grid generated by ogen. Every tenth line is represented.

the vortex shedding and the convection of the eddies in the shear layer. The boundary layer profile
that has been measured experimentally is fitted by a 1/n profile (Schlichting [113]) :

1

w [ (2 ves

0 1, y>0

where 6 = 8.8 mm and n = 8.5. For the power law the momentum thickness of the boundary layer
computes such as:
n
0pg = —————0 = 0.75 mm.
T r )2+ n)

The displacement thickness 0* of the boundary layer is given for the power law by:

0 = L(S = 0.92 mm.
14+n

The form factor gives H = 6*/dp = 1.24 mm.

The friction velocity can be estimated by the universal law of friction that is given by equation
(20.30) of reference [113]:

1 9l0g (Ud dHﬁ) —0.8,
A v

where A = 8(uys/Uy)?, Uy = 52.5 m s7! [4] is the flux velocity and dp is the hydraulic diameter. The
latter is given by dg = 2WH/(W + H) = 0.148 m. This equation has to be solved by a Newton
solver and gives A = 0.013. Finally, the friction velocity gives uy = 2.1 m s~!. The Reynolds number
based on 0* and Uy = 0.18¢q is thus Reg« = 3771. The grid size in wall units normal to the wall is
computed Ay™ = Ayuyg/p = 28. In order to avoid excessive filtering of the inflow velocity profile,
only the fluctuating quantities are filtered. Upstream the cavity, the initial mean flow field is preserved
during the whole simulation run.

The inflow velocity profile, density and the pressure are imposed in a weak manner to prevent
possible numerical drift due to numerical diffusion and truncation effects of the inflow. As the flow
Mach number lies in the low subsonic domain, the mean density and the mean pressure are taken
constant over the whole height of the inflow and outflow (pin = Dowt = Do, Pin = Pout = po). During

the simulation, the inflow mean quantities are recalled along the inlet boundary condition with the
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Figure 3.6: Computed instantaneous vorticity modulus field (w,= 25 x 103 s71, w,= —25 x 10% s71) for My =

0.18; the instantaneous pressure field is shown in the background; gray scales —100 < p—pg < 100 Pa.

relaxation term of equation (1.16). In a similar way, the pressure and the density at the outflow are
recalled. A sponge zone combining grid stretching and a Laplacian filter at the outflow are used to
avoid reflections.

As the influence of the boundary layer on the upper duct wall can be neglected, slip conditions are
applied. Otherwise no-slip adiabatic conditions have been implemented along the wall boundaries. In
the spanwise direction, periodic conditions are applied.

The time step is At = 4.5 x 107" s. A number of 500000 iterations have to be run in order to
pass the transition phase and obtain sufficiently long time signals for an accurate frequency domain

analysis.

3.4 Results

First the results of the configuration with My = 0.13, My = 0.18 and My = 0.23 are presented. The
aerodynamic field of the computation with My = 0.18 is considered in more detail. Then the results
of a series of computation with different Mach numbers M, are presented in order to demonstrate the

numerical evidence of the coupling mechanism between the RM and DM.

3.4.1 Aerodynamic field for M, =0.18

Figure 3.6 shows the iso-surface of a snapshot of the vorticity modulus inside the cavity obtained for
My = 0.18. The incoming unperturbed boundary layer breaks down and generates coherent structures.
Two coherent structures convected in the shear layer can be observed and indicate the dominance of
the second Rossiter’s mode. Secondary longitudinal vortex rolls can be observed.

A plot of the streamlines is given in Figure 3.7. Two main circulation zones can be observed. Two

additional circulation zones can be found under the cover plates.
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Figure 3.7: Computed streamlines for the Mach number M, = 0.18.
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Figure 3.8: Dimensionless turbulent fluctuations: (a) u;ms color scales between 0 and 0.11; (b) vy color scales

between 0 and 0.08 ; (¢) wrms color scales between 0 and 0.04.

The turbulent fluctuations of uyms, Vrms and wymg are given by

Vi Vi VP

Urms = 707 Urms = 70 and Wyms = TO

and are plotted in Figure 3.8 (a), (b) and (c¢). The u,nyg field features a double peak typical for excited
shear layers [97] or for cavities with high values of L/dg [53]. The origin of the double peak has been
explained by Ziada and Rockwell [146] by the presence of Stuart vortices. The maximum value of
Urms and vyms reaches a maximum value of 0.11 and 0.08 respectively. Those values are lower than the
values of a mixing layer that are typically 0.16 < uyys < 0.18 and 0.12 < vy < 0.14 [60].

The values of v,,s reach a saturation state. The two peaks merges near the downstream angle of the
cavity. The fluctuations vppmg show a maximum at the downstream vertical wall indicating the presence
of a plane jet in vertical direction. At the position where the jet reattaches, a maximum in u;y,g can
be observed. The jet is formed due to the impact of the coherent structures on the downstream angle
and induces the recirculation zone in the cavity.

1-D frequency spectra of the velocity components and pressure are given at the location (z,y,z2) =

(2h,0,0) in Figure 3.9. A dominant frequency in the spectra of pressure signal and of streamwise
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Figure 3.9: 1-D spectra of (a) u-velocity component [m.s~!] ; (b) v-velocity component [m.s™!]; (¢) w-velocity

component [m.s~!]; (d) p-velocity component [Pa].- - - - designates the cut-off frequency.

velocity component signal can be observed at around 1200 Hz corresponding to the resonance frequency
of the cavity. The cut-off frequency of the selective filter is found behind the beginning of the energy
cascade. This indicates that the largest structures of the cavity flow are captured. No accumulation
of energy can be observed in the high frequency domain of the simulation so that the energy of not
well-resolved scales are removed properly by the selective filter.

The pressure spectrum obtained for a signal recorded at the cavity bottom is compared with the
measured pressure spectrum in Figure 3.10. The computed spectrum is globally overestimated of about
10 dB. For cavity flow simulations this discrepancy is non typical since in general the pressure levels
are not recovered due to excessive damping of the numerical algorithm. Preliminary 2-D computations
have also given overestimations of broad-band noise |81, 61|. This might be an indication that a wrong
scaling of the sound pressure levels has been affected on either the side of the experimental results
or of the present simulation. Cavity flow measurement are very sensitive. Even small geometrical
irregularities can influence its resonance properties and lead to large changes in sound pressure level.
Furthermore the dynamic gap between the peak frequency and the broad-band noise, found in the

experiences is surprisingly large.
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Figure 3.10: Sound pressure level [dB] measured at the bottom of the cavity: computation; - - - - experi-

ments.



81

(a)
X
0.02
> 0
(b)
-0.02
-0.02 0 0.02 0.04 0.06 0.08 0.1
X
)|\ o—r—
0.1 A L
>
0.05 1 L
(c)
0, .
-0.2 -0.1 0 0.1 0.2
X
002 1 1 1 1
2
> 0
(d)
-0.02 T .
-0.02 0 0.02 0.04 0.06 0.08 0.1
X

01%/U MM /
(e) >0'OZ @ m m fa )

-0.1 0 0.1 0.2

-0.

-0.02

-0.02 0] 0.02 0.04 0.06 0.08 0.1
X
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modulus in the cavity for different Mach: (a) (b) My = 0.13, (c) (d) My = 0.18, (e) (f) My = 0.23.
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3.4.2 Acoustic data for M, = 0.13, My =0.18 and M, = 0.23

The acoustic fields of three selected computations with Mach numbers My = 0.13, My = 0.18 and
My = 0.23 are examined in the following. For those Mach numbers, maximum amplification of pressure
oscillations due to coupling between RM and transverse DM have been observed experimentally.

An instantaneous plot of the pressure fluctuation field and the associated vorticity field for the
three different Mach numbers are given in Figure 3.11 (a), (¢) and (e). The presence of the first
transverse DM that propagates in upstream and downstream direction can be observed for My = 0.13
and My = 0.18. For the My = 0.23 case, higher transverse DMs superposed to the first transverse DM
are observed.

The pressure signals for the three Mach numbers have been recorded in the bottom of the cavity
and on the upper wall at * = L/2 and are given in Figure 3.12. For My = 0.18 and M, = 0.23, the
numerical solution converged fast. For ¢ > 0.02 s, after only 4 x 10% iterations, regular oscillations
can be observed in the duct and in the cavity. The My = 0.13 case converges after 4 x 10° iterations
(t = 0.2 8). For all computations, the pressure fluctuations are regular and the amplitude at the upper
wall are lower than in the cavity due to the absence of hydrodynamic pressure fluctuations. For time
signals obtained with My = 0.23, low-frequency modulations can be observed.

The spectra of the signals at the cavity bottom and the upper wall computed with My = 0.18 are
compared in Figure 3.13. The amplitude difference of the two spectra is about 5 dB in the peaks and
can be up to 12 dB in the broad-band noise range. The experience measured a difference of 15 dB
between the peaks of the two signals.

The cross power spectral density of the two signals obtained for the three Mach numbers have
been computed. Its phase and coherence are given in Figure 3.14 (a), (b) and (c) respectively. For
My = 0.13 the two signals are correlated with a phase shift of 7 at the frequency of the first transverse
DM. This confirms the observation made for the instantaneous pressure field. For My = 0.18 the first
DM is also dominant as expected. For the flow at My = 0.23, maximum coherence can be observed
at three frequencies corresponding to the first and to second DM and to the frequency of the second
RM. The first DM is shifted by 7 and the second DM is not shifted in phase confirming the presence
of the first and second transverse duct modes respectively. As already observed in the snapshot of the

pressure fluctuations field for My = 0.23, the first and second transverse DMs are present in the duct.

3.4.3 Amplification of the cavity modes

In order to demonstrate the numerical evidence of the coupling between the RMs and DMs, further
calculations have been carried out for several nominal Mach numbers My: 0.13, 0.16, 0.18, 0.20, 0.21,
0.23 and 0.25.

The numerical spectra obtained from signals recorded at the bottom center of the cavity (as for the
experiments) provides the frequency and the amplitude of the peaks associated with the second and
third cavity modes. Figure 3.15 compares the evolution of the computed and measured frequencies of

the modes. The frequency of the different modes are well retrieved. At My = 0.13, lock-in between
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Figure 3.12: Pressure signals [Pa| recorded at + = L/2 and z = 0: —— on the cavity bottom;
upper wall for different Mach numbers: (a) My = 0.13 (b) My = 0.18 and (¢) My = 0.23.

the third RM and the first DM, at My = 0.20, lock-in between the second RM and the first DM
and at My = 0.23, lock-in between the third RM and the second DM occurs. In agreement with
the experiments in the latter case, it is observed that the lock-in phenomenon occurs rather with the
second DM mode based on the sum of the duct and cavity height. The frequency of third Rossiter
mode computed for My = 0.16, 0.18 and 0.20 is invariant. The origin of this numerical artefact is
under consideration.

Figure 3.16 shows the evolution of the computed and measured amplitudes of the cavity modes.
The comparison is qualitatively good. The second RM remains too high after lock-in having occurred at
My = 0.20. The amplitude of the third RM is overpredicted for low Mach numbers and underpredicted

for higher Mach numbers. As a consequence, the crossing of the amplitude curves of the second RM
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Figure 3.13: Sound pressure level [dB| measured at the bottom and at the upper wall

and third RM at My = 0.2 is not reproduced and no dominance of the third RM can be detected at
higher Mach number such as My = 0.23 .

Figure 3.11 (b), (d) and (f) show snapshots of the instantaneous vorticity field in the cavity for
three different Mach numbers My = 0.13, My = 0.18 and My = 0.23 respectively. At My = 0.18, two
eddies appear very distinctly in the shear layer. This confirms the second RM to be dominant. In
Figures 3.11 (b) and (f), no dominant third RM can be detected, because for these two Mach numbers,
the second RM and third RM have similar amplitudes.

3.5 Influence of the simulation parameters

Preliminary 2-D computations [61] using a similar grid resolution have overestimated the broad-band
noise as well as the second RM at My = 0.23. The similar behavior found for the present 3-D
computation with periodic conditions in spanwise direction suggests that 2-D artefacts might be the
cause of the discrepancies. The number of points in spanwise direction have therefore been tripled
(N, = 121). The results of this computation did not influence the broad band noise as well as the
peak levels and the third RM has not become dominant.

Therefore a second grid has been generated. In this case the grid size length have been halved
in the cavity region which is a very easy task using the overset grid approach. The computation at
My = 0.23 is currently running. Figure 3.17 shows a snapshot of the vorticity modulus, reveal the

dominance of a third RM.

3.6 Conclusion

Quantitative discrepancies, in particular the absence of a dominant third cavity mode at high Mach
numbers and the overestimation of the broad band-noise, are currently under examination. The use
of a finer grid shows very promising results and makes the third RM to emerge. The examination of
the influence of a realistic turbulent boundary layer as the inflow condition should be considered in

the future. However, the present numerical study shows the capability of the numerical algorithm to
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and (c¢) My = 0.23; A designates the second Rossiter mode.

reproduce the coupling phenomenon between the cavity modes and the duct modes with affordable

computational resources. In particular, frequencies are well retrieved by the computation.
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Figure 3.17: Spanwise averaged vorticity modulus in the cavity obtained for My = 0.23 on a fine grid.



Chapter 4

Aeroacoustic simulation of the sudden

expansion of a transonic flow

4.1 Introduction

Strong interactions between shock oscillations, internal aerodynamic noise and acoustic duct modes
are often observed in confined flows but are undesirable to prevent excitation of structural vibrations

and fatigue. Numerous examples can be found in the review of Meier et al. [95].

In the present work, a transonic flow passing a sudden expansion in a duct is studied. This kind of
flow can be found downstream of control devices such as valves encountered in pipe systems of power
plants, and has been investigated experimentally by Meier et al. |94, 6]. These authors studied a
transonic flow in a rectangular duct such as displayed in Figure 4.1. Air at atmospheric conditions
(denoted by subscript a) passes through a convergent nozzle. The flow in the nozzle throat is expanded
abruptly by passing in the expansion duct of larger cross-section. The flow is driven by the exit pressure
Pe in the reservoir downstream of the expansion duct. Different transonic and supersonic flow regimes
have been investigated as a function of the pressure ratio defined by 7 = p./p,.

For very low pressure ratios, the flow in the upstream part of the test duct is entirely supersonic.
The flow regime for 7 = 0.15 is visualized by means of Mach-Zehnder Interferometry [94] in Figure
4.2 (a). A system of crossing oblique shock waves is observed. Increasing the exit pressure leads to
a flow separation and to a breakdown of the shock cell structure. Shock pattern oscillations are then
observed. In this work, this flow regime has not been considered. Details can be found in the work of
Meier et al. [94].

If the downstream pressure is further increased, the oblique shock wave system disappears and the
supersonic expansion ends up behind a single normal shock such as presented in Figure 4.2 (b) for
7 = 0.364. In this case, a strong coupling between the self sustained oscillations of the normal shock
and the longitudinal acoustic modes of the duct is found. The observed oscillation frequencies are low,
typically f ~ 10% Hz.

For lower pressure ratios, the flow regime is symmetrical. For higher pressure, ratios 7 = 0.377
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Figure 4.1: Transonic flow passing sudden expansion: sketch of the geometry and notations: H and L are the
height and the length of the expansion duct respectively, h designates the height of the inflow nozzle
and b = 0.1m is the width of the nozzle and the expansion duct in spanwise direction; p, and T,
are the pressure and temperature of air at ambient conditions; p. is the pressure in the downstream

reservoir imposed by the pressure ratio 7 = p./pa. pw is the pressure in the corner region.

for instance, asymmetric flow pattern occurs and one side is entirely separated from the wall such as
shown in Figure 4.2 (c¢). For those flows, having a more jet like structure, a coupling mechanism similar

to the normal shock configuration, is only observed for longer ducts.

The flow regime depends also whether the pressure ratio is increasing or decreasing. For increasing
pressure ratios, the symmetrical oscillating flow pattern is maintained even for pressure ratios where
asymmetrical non-oscillating flow regimes are observed when the pressure ratio is decreasing. This
hysteresis needs to be accurately captured by the simulations to reproduce the coupling between the

shock oscillations and the longitudinal duct modes.

Meier et al. [94] provide time sequence visualizations of the different flow regimes based on Mach-
Zehnder Interferometry. Static wall pressure data, frequency spectra and cross correlations of the
pressure fluctuations along the walls are also available, making possible a quantitative validation of

the numerical results.

This flow configuration involving turbulence, shocks, interaction with boundary layers and aeroa-
coustic resonances is a real challenge for computational aeroacoustics [123]. Devos and Lafon [82]
studied numerically this configuration using a second-order TVD finite-volume scheme for solving 2-D
Euler equations. The main flow patterns were captured but the coupling of the shock oscillations with

the resonance modes of the duct was not considered.

The chapter is organized as follows. In section 4.2, the supersonic flow at a low pressure ratio is
presented. In section 4.3, four simulations are presented for pressure ratios involving a normal shock
flow pattern in order to demonstrate the influence of the pressure ratio on the flow field. In section 4.4

a simulation is presented where the shock oscillations couple with longitudinal duct modes.
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Figure 4.2: Mach-Zehnder interferometry visualizations at pressure ratios: (a) 7 = 0.151 (b) 7 = 0.364 and (c)
7 = 0.377 for a expansion duct length L = 0.24 m and aspect ratios L/H = 7.23 and h/H = 0.3.|94]

4.2 Supersonic flow at low pressure ratio (7 = 0.15)

4.2.1 Simulation parameters

The entire overset grid generated by ogen is represented in Figure 4.3 (a). It consists of three parts:
the nozzle, the expansion duct and the reservoir. Note that the convergent part of the nozzle is not
modeled in this work. The inflow conditions are determined assuming the flow to be isentropic in the
convergent part. The grid points in the nozzle and in the expansion duct are spaced uniformly in each
direction. The reservoir grid is stretched in z-direction on the last 30 points and in y-direction on the
last 50 points with a ratio of 3% and 1% respectively. The grid in the spanwise z-direction is also
spaced uniformly.

For the low pressure ratio case, shocks interact with the boundary layers developing along the walls
of the expansion duct and a fine grid resolution in these regions is required. This can be accomplished
easily by the overset grid approach that allows to patch grids of arbitrarily refinement in the regions
of interest as shown in Figure 4.3 (b). Refined grids has been used to mesh the nozzle and the near
wall zone of the expansion duct. Two simulations have been carried out using two different grids: a
coarse grid where the grid spacing in the wall region is halved relatively to the center grid and a fine
grid where the grid spacing in the wall region is quartered relatively to the center grid. More details
about the coarse and fine grid and its grid sizes in wall units are given in Table 4.1 and 4.2.

The pressure and temperature of air at rest in the upstream reservoir (not considered in the
simulation) is provided by the experiments p, = 101325 Pa and 7, = 293 K. The sonic conditions

imposed at the nozzle inflow are computed using isentropic relations |34]:
M, = win/Cin = 1.01, vin =0, pin = 0.5221 po, Tin = 0.8306 T

The velocity profile at the nozzle inflow is kept uniform. By applying no-slip adiabatic wall conditions,
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Figure 4.3: Grid generated by ogen for the computations at the the pressure ratio 7 = 0.15 (z — y plane).
The geometric parameters are L = 0.24 m, L/H = 7.23 and h/H = 0.3. Every eighth line is
represented. Figure (a) shows the complete computational domain: the nozzle, the expansion duct
and the outflow reservoir. Figure (b) is a detailed view on the nozzle and the expansion duct. The

walls are refined using overlapping grids.

N, N, N, Azt Ayf. Azt Npocs
Nozzle 58 98 41 12 8 24 2
Expansion duct 744 127 41 24 16 24 22
Near wall grid 1439 47 41 12 8 24 2x9
Reservoir 180 398 41 24 16 24 16

Table 4.1: Characteristics of the coarse overset grid for the low pressure ratio case 7 = 0.15. The total number
of 14 x 10 grid points have been distributed over Nprocs = 98 processors. The length scales are given
in wall units: y* = yuy/v. The friction velocity us = 4.3 m.s™! is determined near the outflow at

r=0.2 m.

a laminar velocity profile develops along the nozzle. Its development is reported in Figure 4.4 that
shows the velocity profile at 3 positions in z-direction of the nozzle computed on the fine grid. The
thickness of the boundary layer is 0.4 x 1072 m and the developing boundary is resolved by 8 points
using the fine grid. No further details about the boundary layer are given in the experiments.

The Reynolds number based on the nozzle height h and the inflow velocity u;, is Rej, = 2.1 x 10°.

Along the walls of the expansion duct, adiabatic no-slip boundary conditions are imposed.
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N, N, N. Azl Ayb. Azh. ' Npoes

min min
Nozzle 1491 41 6 4 24 2
Expansion duct 744 127 41 24 16 24 22
Near wall grid 3052 121 41 6 4 24 2x9
Reservoir 180 398 41 24 16 24 16

Table 4.2: Characteristics of the fine overset mesh for the low pressure ratio case 7 = 0.15. The total number
of 46 x 10° grid points have been distributed over Nprocs = 253 processors. The length scales are
given in wall units: y™ = yuy/v. The friction velocity us = 4.3 m.s™! computed for the coarse grid
has been used, see Table 4.1.

1.2
AN
1 | OCOOOEEOEEEEEE000s A

08 ©A
c
= o
S 06 )
OA
0.4
0.2 %

Vi

0 £
38 4 42 44 46 4.8
y x107°

Figure 4.4: Velocity profiles of the laminar boundary layer in the nozzle of length L,, = 9.1 x 1073 m at three
positions: * at x = —L, , 0 at x = —L, /2 and A at x = 0.

The pressure in the downstream reservoir p, = 17225 Pa is fixed by the pressure ratio 7 = 0.15. The
temperature in the downstream reservoir is given by T, = T, = 293 K. The non-reflective boundary
conditions of Tam and Dong [127], extended to 3-D by Bogey and Bailly [28|, are used along the
reservoir boundaries. The turbulent flow leaves the computational domain without spurious acoustic
reflections thanks to a sponge zone |28]. Periodic boundary conditions are used in spanwise direction.

The simulation has been carried out with the four stage Runge-Kutta scheme and the classical
Jameson detector. A number of 5 x 10* iterations has been run for the coarse grid computation in
order to obtain a converged mean flow field. For the fine grid simulation, a number of 6 x 104 iterations

has been carried out.

4.2.2 Results

Mean flow

Mach Zehnder Interferometrie like plots showing the mean density iso-contours computed on the
coarse and on the fine grid are represented in Figure 4.5 (a) and (b) respectively. Qualitatively the
results correspond well to the experiments presented in Figure 4.2 (a). A divergent supersonic jet
formed by the expansion waves that are generated at the nozzle edges is observed. A first oblique

shock wave appears when the expansion waves are reflected by the upper and lower wall. In the
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Figure 4.5: Mean density p for pressure ratio 7 = 0.15: (a) computed on coarse grid (see Table 4.1) using
a Mach-Zehnder Interferometrie like colormap; (b) computed on fine grid (see Table 4.2) using a

Mach-Zehnder Interferometrie like colormap; (c¢) visualized by Mach-Zehnder Interferometrie [94].

computation, the density maximum observed downstream of the jet reattachement is less extended in
both computations. However, the fine grid computation reproduces the first interaction zone better
than the coarse grid computation. A zoom on this zone is provided in Figure 4.6. The density maximum

is slightly detached from the wall indicating more complex interactions.

The computed and measured static mean pressure p, normalized by p,, along the lower wall are
displayed in Figure 4.7 (a) for the coarse grid computation and in 4.7 (b) for the fine grid computation.
The computed and experimental curve compare well qualitatively. The first pressure peak caused by
the jet reattachement is accurately predicted even though the peak is too narrow for the coarse grid.
The fine grid computation seems to capture the pressure peak very well. The subsequent expansion
fits very well with the experimental pressure curve for both computations. A second compression
indicating the reflection of the oblique shock is also well predicted in its amplitude but is located too
far downstream and deviates about 10% for the coarse grid and about 2% for the fine grid from the
experimental location. For the coarse grid, this deviation is attributed to a difference of 2% of the
computed and experimental pressure in the corner regions. This pressure indeed determines the entire
flow regime in the downstream part of the expansion duct. In general, higher corner pressures lead to
smaller expansion angles and more inclined shock waves are generated when the jet reattaches. The

reason for the overpredicted pressure is not clear but might be attributed to an underresolution of the
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Figure 4.6: Zoom on the reattachement zone of the abruptly expanded jet: mean density is visualized by the

Mach Zhender Interferometrie colormap.
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Figure 4.7: Static pressure distribution along the duct wall, obtained by: the present computation; o

experiments [94]: (a) coarse grid computation (b) fine grid computation.

flow in the corner region, the reattachement region and of the incoming boundary layer.

Further downstream, the shock waves are reflected on the lower and upper wall respectively and
form a symmetrical cell structure. Figure 4.5 (b) represents the mean pressure of the flow. The pressure
in the corner regions does not match the pressure of the expanding supersonic jet. The mismatch is
compensated by a normal shock near the nozzle edges. This can also be observed experimentally. The
mean Mach number field, displayed in Figure 4.5 (c¢), confirms that the jet core is entirely supersonic
and reaches its maximum speed upstream the first shock crossing location. The boundary layer thickens
significantly at the shock reflection points. The flow in the corner region between the jet boundaries
and the duct walls remains subsonic.

The existence of a universal law is examined. For incompressible equilibrium, zero-pressure-

gradient, turbulent boundary layers, the mean velocity profile has a linear behavior u{CD = y* for

y™ <5 and a logarithmic behavior in the overlap layer ui,, = 0.42log (y*) + 5.2 for 10 < y™ < 30.

This law is validated for compressible flows when the van Driest transformation is applied [119].
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Figure 4.8: Computed mean flow properties for pressure ratio 7 = 0.15: (a) iso-contours of mean density p using
a Mach-Zehnder Interferometrie like colormap; (b) mean pressure field (scale from 2000 Pa to 10000
Pa); (c) mean Mach number field (scale from 0 to 3.7).

The correction takes into account the variation of the viscosity through the boundary layer due to tem-
perature variations. This transformation makes to collapse zero pressure gradient turbulent boundary
layer data at Mach numbers up to M = 12, and the constants in the logarithmic law appear unchanged

from their subsonic values. The van Driest transformation can be written as:

uy
Uvp :/\/Eduar,
) P

The van Driest transformed velocity profiles are given in Figure 4.9 for the fine grid computation at
two different positions x = 2 H and « = 3.5 H. The linear behavior is well captured by the compu-
tation. The mean flow profiles miss the logarithmic law. Propabely Further grid refinement would be

necessary but is not affordable due to an excessive small time step.
Unsteady flow aspects

A boundary layer develops along the duct walls where the jet reattaches and interacts with the
impinging oblique shock waves. Complex phenomena occur in such configurations as described in
the review article of Dolling [46]|. Instantaneous numerical Schlieren visualization of the entire com-
putational domain is given in Figure 4.10 (a) for the fine grid computation. In the following, some
interesting aspects will be discussed. As no unsteady data is given by the experiments for this pressure
ratio, only qualitative comparison with similar cases issued from the literature can be carried out.

A zoom on instantanenous numerical Schlieren visualization in the jet reattachement region is
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Figure 4.9: Van Driest transformed velocity profile at the positions z = 2H (A) and x = 3.5H (o) for fine grid

Mean velocity profile for incompressible equilibrium, zero-pressure-gradient,

turbulent boundary layers: linear behavior uy,, = y* for y* < 5; logarithmic behavior in the

overlap layer ui, = 0.421og (y*) + 5.2 for 10 < y* < 30.

computation;

given in Figure 4.10 (b). The shear layer that represents a contact discontinuity limits the expanding

jet.

Small compression wave are emitted from the shear layer into the jet. Those are generated by

instablities that develop and grow in the shear layer. For supersonic shear layers, the growth rate is

small and the development of turbulent structures is retarded. When the shear layer impinges on the

wall, mixing is enhanced making the rattachment zone to shift. Behind the jet reattachement zones,

coherent structures that are sheded at low frequencies can be observed and might be linked to the

instability development in the free shear layer further upstream.
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Figure 4.10: Instantaneous numerical Schlieren field Vp (a) view on entire computational domain; (b) jet reat-
tachement region; (c) first shock wave/ boundary layer interaction zone (d) second shock wave/
boundary layer interaction zone (e) Third shock wave/ boundary layer interaction zone with flow

separation at the end of the duct.
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Figure 4.11: Detail view of the first shock wave/ boundary layer interaction: (a) computed mean pressure

contours (31 contours spaced between 2000 and 10000 Pa); (b) iso contours of the turbulent kinetic

2

energy k ranging from 0 < k < 25 m%.s™2 ; (c) iso contours of the shear stress 7,,/p ranging from

0 < 7uy/p < 100m%.s72.

Visualizations of the instantaneous numerical Schlieren field of the first and second oblique shock-
wave boundary layer interaction are given in Figure 4.10 (¢) and (d). The incoming boundary layer
seems to be transitional. Shock wave/ boundary layer interactions are observed and the downstream

boundary layer is more turbulent. This mixing enhancement is typical for such interactions [119].

A detailed view on the first shock-wave boundary layer interaction on the lower wall is given in
Figure 4.11 (a) representing the iso-contours of the time averaged pressure p. The data is issued
from the coarse grid simulation as the second order quantities for the fine grid computation are not
converged up to this point. The incident shock is deviated towards the wall when entering the boundary
layer and the reflected shock originates well upstream of the nominal impingement point due to the
viscous interaction mechanism. A thickening of the boundary layer and small separation bubble can

be observed.

The iso-contour lines of specific turbulent kinetic energy k = (w2402 +w2)/2 and of 7., /p = [u/v'],

the turbulent shear stress, are represented in Figure 4.11 (¢) and (d) respectively. The plot shows that
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Figure 4.12: 1-D frequency spectra at (x,y) = (3.5 H,15Ay™);- - - - designates the cut-off frequency.

the turbulent kinetic energy k takes its maximum near the point of separation as observed by Pirozzoli
et al. [98]. The turbulent shear stress reaches its maximum in the vicinity of the shock foot of the

incident shock wave.

Figure 4.10 (e) shows the shock/boundary layer interaction near the outflow. The shock is normal
and features a lambda shock. The boundary layer separates at the vicinity of the upstream foot leg.

Turbulent mixing is enhanced.

1-D frequency spectra have been recorded at a position (z,y) = (3.5 H,15Ay™") and are given in
Figure 4.12. The beginning of an energy cascade can be observed before the selective filter cuts off the

high frequencies.

Beside these discrepancies, the present code is able to capture viscous as well as inviscid features
of the flow. The passage of the oblique shock through the interpolation zone along y/H = 0.3 happens
without creating spurious oscillations as they normally emerge when Lagrangian polynomials of higher-
order come into play. The selective filter and the non-linear filter seems to eliminate those spurious
modes efficiently. In the following, the expansion of a transonic flow for higher pressure ratios is

presented.
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Figure 4.13: Static mean pressure measured in the corner region (o upper wall e lower wall) as a function of
the pressure ratio 7: in black experimental values [94]; in red and blue the computed values for a
duct of length L = 0.16 m and L = 0.24 m respectively.

4.3 The influence of the pressure ratio in the transonic regime

4.3.1 Experimental observations

The influence of the pressure ratio on the mean flow field has been investigated by Meier et al. for
various duct geometries. Due to computational limitations, the following numerical study is done using
the same duct as in the previous section, but with a reduced length L = 0.16 m. Figure 4.13 shows
the normalized time averaged pressure p,, at the bottom and top corner region as a function of the
pressure ratio 7, where p,, denotes the base pressure.

The mean base pressure p,, remains constant for low pressure ratios 7 < 0.25. Its values on both
sides of the duct are the same and the flow is therefore symmetrical. The supersonic flow presented
in section 4.2 is an example of this flow pattern. The computed base pressure is marked with a blue
dot obtained for the longer duct. Above 7 = 0.25 the corner pressure increases on both sides. For
this pressure ratio range, the oblique shock system has completely broken down. In the range from
0.305 < 7 < 0.352 a large amplitude oscillation in the corner region can occur. Those large oscillations
are associated with the coupling of the shock motion with the longitudinal duct modes such as described
in the introduction. When these oscillations exist, the base pressure on both sides are low and of the
same order of magnitude. The symmetrical flow is shown in Figure 4.2 (b).

With pressure ratios 0.316 < 7 < 0.352 an additional flow pattern may occur in which the flow is
asymmetrical and attached either to the top or bottom wall of the duct. In contrast to the symmetrical
case, for the asymmetrical flow pattern no base pressure oscillations occur for the duct length L = 0.16
m. Figure 4.13 shows that two different base pressure values exist for the asymmetrical flow pattern: a
lower value for the attached side and a higher value for the unattached side. No preferred attachment
location to either the top or the bottom side has been observed experimentally.

The existence of the symmetrical, oscillating flow pattern or the asymmetrical, steady flow pat-

tern depends whether the flow is driven with an increasing or a decreasing downstream pressure. In
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Figure 4.14: Visualization of the grid in the  — y plane used for the cases of higher pressure ratios 0.30 < 7 <
0.348. The geometric parameters are L = 0.16 m, L/H = 5.23 and h/H = 0.3. Every eighth grid

line is represented.

the experiments the symmetrical oscillating flow pattern exists for an increasing pressure ratio until
7 = 0.352 and switches to an asymmetrical flow pattern. When the pressure ratio decreases the asym-
metrical flow pattern switches to the oscillating flow pattern at 7 = 0.316. This hysteresis is indicated
in Figure 4.13 by the arrows.

Four simulations with pressure ratios 7 = 0.30, 7 = 0.31, 7 = 0.32 and 7 = 0.348 have been carried
out in order to check if it is possible to capture the symmetric flow pattern. As observed experimentally
for this duct geometry aeroacoustic coupling between the shock motion and longitudinal duct modes

occurs only with a symmetrical flow.

4.3.2 Simulation parameters

The grid is presented in Figure 4.14 that models a duct of length L = 0.16 m. Due to numerical
limitations, no grid refinement near the duct walls are used for this study. The grid spacings are the
same as in section 4.2 and are summarized in Table 4.4. The boundary conditions are applied as in the
previous section. The same sonic inflow conditions as in section 4.2 are used. For the following cases,
slip wall conditions are applied along the nozzle walls. This ensures that the boundary layer remains
thin at the nozzle outflow.

The pressure ratios 7 = 0.30, 7 = 0.31, 7 = 0.32 and 7 = 0.348 impose exit pressures of p, =
30398 Pa, p. = 31411 Pa, p. = 32424 Pa and p. = 35261 Pa respectively. The temperature in the exit
reservoir is given by T, =T, = 293 K.

4.3.3 Mean flow properties

The results of the four different computations are gathered in this section:
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N, N, N, Azt Ayt Azl Npoces

min min
Nozzle 29 49 21 24 16 24 1
Expansion duct 490 161 21 24 16 24 15
Reservoir 180 398 21 24 16 24 16

Table 4.3: Grid parameters for the high pressure ratio cases 0.30 < 7 < 0.348. All these cases have been

computed using Nproes = 32 processors. The total number of grid points is about 5.0 x 106.

o 7 =0.30:

A rendered 3-D visualization of iso-surfaces of instantaneous numerical Schlieren and vorticity
(spanwise component w,) is given in Figure 4.15 (a). The flow features a strong normal shock
wave. The flow is symmetrical and the normal shock interacts with the attaching jet by forming
a bifurcating or lambda shock on the lower and upper wall. The front leg of the bifurcation is the
oblique shock wave that is generated when the supersonic jet is deflected by the duct walls. The
upstream leg must exist to give proper continuity of the flow direction. Supersonic layers start
at the lambda shock and are attached to the upper and lower duct wall. In the vortex sheet,
separating the supersonic near wall layers and the subsonic flow in the duct center, 2-D instability
rolls develop. These instabilities give rise to turbulent 3-D structures near the duct outflow. The
plot of mean Mach number in the z—y plane in Figure 4.17 (a) confirms that the flow downstream
the normal shock is subsonic. The flow downstream the lambda shock remains supersonic up
to #/H ~ 3. The averaged shock position is smeared, due to large shock motions. Figure 4.16
(a) shows the iso contours of the time averaged density, using a Mach-Zehnder Interferometrie
like colormap. The normalized static mean pressure computed along the lower and upper wall
is plotted in Figure 4.20. The wall pressure curves show a symmetrical behaviour. The pressure
is constant in the base region and increases in the reattachement zone. The pressure exhibits its
maximum further downstream at xz/H =~ 2 and matches the downstream reservoir pressure at
the end of the duct. The pressure in the base region at x = 0 is plotted in Figure 4.13 and is in

very good agreement with the experimental values.

e 7=0.31:

An increase of the reservoir pressure p, leads to an asymmetrical flow as Figure 4.15 (b) illustrates.
A slightly inclined normal shock can be observed. At the lower wall the normal shocks ends up
with a lambda structure situated more upstream than in the 7 = 0.30 case. The 2-D vortex rolls
develop further downstream. 3-D turbulent structures can already be observed at x/H =~ 3.4.
On the upper wall the jet is separated from the wall. The jet shear layer is thickened thanks to
instability development. The mean Mach number field displayed in Figure 4.17 (b) shows the
inclined normal shock configuration. The upper supersonic layer is separated from the wall, is
more extended in downstream direction and thicker than the lower one. The turbulent character
of the this flow is illustrated in Figures 4.18 (a) and (b) showing the turbulent kinetic energy

k= (u? +v2 +w?)/2 and the turbulent shear stresses 7,,/p = |[u/v'| respectively. High levels
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are localized along the upper jet shear layer. They reach a maximum in the interaction zone
with the normal shock. Less turbulent energy is produced on the lower side. The turbulent level
grows near the walls and along the vortex sheets and reaches a saturation in the last quarter of
the duct. The mean pressure computed along the upper and lower wall are given in Figure 4.20
(b). The pressure in the lower corner region reaches a value similar to the one obtained for lower
pressure ratios. The subsequent compression is caused by the shock that is located slightly more
upstream as in the upper case. The pressure in the upper corner region is increased and the
compression takes place further downstream. The base pressures are also plotted in Figure 4.13
and agree well with the experiment. This kind of asymmetry was observed in the experiments

only for longer ducts.

T =0.32:

Figure 4.15 (c) shows the flow pattern obtained for 7 = 0.32. The flow is asymmetric and is
separated entirely from the lower duct wall. The iso-surfaces of vorticity shows how the jet cross-
section is initially intact and how it begins to break up and mix more efficiently at the middle of
the first shock cell. On the lower wall regularly spaced strong perturbations that travel upstream
can be observed. The Mach number field given in Figure 4.17 (¢) exhibits two shock cells and a
reversed flow is found on the lower duct wall. The jet reattaches after the end of the second shock
cell. No major jet spreading can be observed such as observed for free jets. Turbulence data
given in Figure 4.19 (a) and (b) show high turbulent kinetic energy production along the upper
and lower shear layers. On the attached side turbulent production is endorsed by the presence
of the wall. On the lower wall, the turbulent energy has reached its maximum downstream the
first shock and drops to a constant stagnant value up to the end of the duct. This indicates a
transition to a fully turbulent flow. The static mean pressure along the upper and lower wall are
plotted in Figure 4.20 (c¢). The pressure at the duct end on the upper wall matches the reservoir
pressure after the sequence of expansion and compression waves. The pressure curve at the lower
duct wall does not feel the presence of the shock and increases slowly and ends up to match the
reservoir pressure. Figure 4.13 reveals the excellent agreement of the normalized base pressures

with the upper branch of the experimentally measured curve.

T = 0.348:

The flow pattern of this pressure ratio is very similar to the case with 7 = 0.32. The jet is
attached on the upper wall. The jet expansion angle is smaller due to the increased pressure
ratio. As shown in Figure 4.13, the pressure computed in the corner region are slightly over

estimated compared to experiments.
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Figure 4.15: Rendered 3-D view of iso-surfaces: red and blue surfaces represent instantaneous spanwise vorticity
field for w, = +150000 s~ ! and w, = —150000 s~! respectively, green surfaces represent numerical
Schlieren with Vp = 200 kg.m~* for different pressure ratios: (a) 7 = 0.30, (b) 7 = 0.31 and (c)
T =0.32.
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Figure 4.16: Iso-contours of the mean density p for different pressure ratios: (a) 7 = 0.30, (b) 7 = 0.31, (c)
T =0.32.
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Figure 4.17: Mean Mach number field M = |a|/¢ for different pressure ratios: (a) 7 = 0.30, (b) 7 = 0.31, (c)
7 = 0.32; the color scale lies in the range 0 < M <2.1.

represents the sonic line M = 1.
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Figure 4.18: Turbulent data for the pressure ratio 7 = 0.31: (a) turbulent kinetic energy: the color scale range
from 0 < k < 20 m2.s7%; (b) turbulent shear stresses: the color scale range from 0 < sz/ﬁ <

90 m?2.s72.
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Figure 4.19: Turbulent data for the pressure ratio 7 = 0.32: (a) turbulent kinetic energy: the color scale range
from 0 < k < 25 m%s™%; (b) turbulent shear stresses: the color scale range from 0 < 7,,/p <
100 m2.s~2.
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Figure 4.20: Static mean pressure measured on the lower (- - - - - ) and upper (———) wall for different pressure

ratios: (a) 7 = 0.30, (b) 7 = 0.31, (¢) 7 = 0.32.
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4.3.4 Unsteady flow aspects

The pressure signals recorded along the upper wall are examined for the flows computed for the pres-

sure ratios 7 = 0.31 and 7 = 0.32.

e 7=0.31:

The signal on the upper wall at the corner (z = 0) and at the duct end (x = L) are plotted in
Figure 4.21. Regular small amplitude oscillations in the base region are observed. At the duct
end, broadband noise dominates. Sound pressure levels are provided in Figure 4.22 (a) at three
positions (z = 0, z = L/2 and x = L). Low frequency components, at x = 0 and at 2 = L/2, are
observed. Those components are not present at the end of the duct. The pressure spectra reveal
a high frequency component at f =~ 4500 Hz. This frequency is associated to the transverse duct

modes that are excited by the turbulent broadband noise.

During the simulation run a switch to a symmetrical flow pattern has been observed. The time
history is given in Figure 4.23 (a). When this happens, strong pressure oscillations occur which is
consistent with experimental observations. The pressure spectra obtained for a signal, when the
flow is symmetrical is given in Figure 4.23 (b). The pressure signals exhibit a high amplitude, low
frequency peak at f ~ 350 Hz. The reason for this switch that has random nature is not clear up
to now. However, this phenomenon underlines the importance of the presence of a symmetrical

flow pattern, for the computation of transonic resonance.

e 7=0.32:

For 7 = 0.32, no low frequency oscillations can be observed. A frequency f ~ 1500 Hz is

dominant. A high-frequency mode at f ~ 5000 Hz is also observed for this pressure ratio.

For this computation, the influence of the shock capturing is considered. As observed for the
validation test cases, the shock capturing can be minimized by the use of a high-order Jameson
detector. Two computations have been carried out: one using the Jameson filter and one using
the modified detector based on the selective 11-point filter. The obtained 1-D spectra are given
in Figure 4.24. Using the classical detector leads to slightly lower amplitudes especially for w,
the velocity component in spanwise direction. This might be an indication that the transition
to a turbulent state of the shear layer might be retarded due to higher dissipation introduced
by the low order shock capturing filter. Using the classical Jameson detector, an energy cascade
is well captured and can be observed for the velocity component u over one frequency decade.
Using the modified Jameson detector, the signal is disturbed by high frequency components. The
origin of these high frequency components is propably due to the reduced low-order dissipation

in the shock regions leading to a higher aliasing error.
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Figure 4.21: Pressure signals recorded at the upper wall for different pressure ratios for 7 = 0.31, 7 = 0.32.

No areoacoustic coupling is detected by the present simulation when the flow is asymmetrical. This
is consistent with the experiments that does not exhibit aeroacoustic coupling when the asymmetric
transonic flow regime is established in the duct. The dominance of the asymmetric flow pattern can be
caused by the application of periodic boundary conditions in the spanwise direction. The pressure in
the upper and lower corner regions cannot be kept in balance as it would be the case when the lateral

walls are present: the jet destabilizes and attaches to one duct side more easily.
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Figure 4.22: Spectra of pressure signals recorded on the upper wall at three positions x =0,
x=1L/2, x = L for different pressure ratios (a) 7 = 0.31, (b) 7 = 0.32.
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Figure 4.23: (a) Time history of the pressure measured in the corner region at 2 = 0 on the lower ( -) and

upper - wall; (b) Pressure spectrum of a signal, when symmetrical flow pattern dominates.
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Figure 4.24: 1-D spectra for the pressure ratio 7 = 0.32 using the Jameson detector (- - - -) and the modified

Jameson detector based on 11-point selective filter ( -).
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4.4 'Transonic resonance

A new grid has been built using the approximately the same number of grid points as in the previous
section but taking a duct length of L = 0.08 m and an aspect ratio ¢ = 0.4. This has two advantages:
(a) the Reynolds number is decreased and (b) the new aspect ratio prefers a more symmetric flow
regime as it is shown in Figure 4.27 (b). The plot shows the pressure in the corner p,, measured as a
function of the outflow pressure p.. The hysteresis region for this duct length is much smaller than for

the longer duct case L = 0.16 m such as given in Figure 4.13.

N, N, N, Azt. Ayt Azl Npoces

min min
Nozzle 29 65 21 12 8 12 6

Expansion duct 490 161 21 12 8 12 7

Reservoir 180 398 21 12 8 12 82

Table 4.4: Grid parameters for L = 0.08 m, L/H = 5.33 and ¢ = 0.4 for 7 = 0.42. All these cases have been

computed using Nprocs = 165 processors. The total number of grid points is about 5 x 106.

The computation is carried out using a pressure ratio of 7 = 0.41, where transonic oscillations have
been observed experimentally. In the following, the aerodynamic properties of the mean flow field are
presented. Then, unsteady flow aspects are considered and the coupling of the shock oscillations with

longitudinal duct modes is explained.

4.4.1 Aerodynamic field

Mean properties

Figure 4.25 shows the computed field of the mean number of the flow including the reservoir. The flow
is symmetrical. A normal shock can be observed in the upstream part of the duct. The mean shock
position is slightly smeared indicating that the shock oscillates. The flow downstream the normal shock
is subsonic and layers with higher speeds can be observed near the upper and the lower duct wall. The
subsonic jet downstream of the duct spreads as it is observed for free jets.

The Mach-Zehnder interferometrie like plot of the time averaged mean density in Figure 4.26 (a)
compares qualitatively well with an instantaneous visualization for a similar flow regime observed with
a longer duct with L = 0.16 m, ¢ = 0.3 and 7 = 0.364 in Figure 4.26 (b).

The corresponding computed time averaged static pressure distributions along the upper and lower
duct walls are given in Figure 4.27 (a). After the expansion, the compression zone indicates the location
of the strong normal shock. Further downstream, the static pressure on the upper and the lower duct
converges to a value that is close to the downstream pressure p. = 0.41p,.

The time averaged pressures in the upper and lower corner region p,, obtained by computation are
compared to the experimental values given as a function of the pressure ratio 7 = p,/po in Figure
4.27 (b). The mean pressure computed in the upper and lower corner is in excellent agreement with

the measured corner pressure.
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Figure 4.25: Computed time averaged Mach number field for 7 = 0.41 for a expansion duct length L = 0.08 m
and aspect ratios L/H = 5.33 and h/H = 0.4. Color scales from 0 to 2.3.

A relation between the corner pressure and the Mach number downstream is given in the Meier et

al. |94]: .

1— ¢pw 2\ -0 1+ yM? 2\ 1

Lore (2 ) ey (25)7 (4.)
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where M, is the Mach number behind the shock. Its derivation is has been reproduced in the Appendix
B.

This relation is plotted in Figure 4.28 (a) for different nozzle aspect ratios 0.1 < ¢ < 1.. The
Mach number behind the shock increases with increasing aspect ratios ¢. This is due to an increased
acceleration of the flow and increased Mach numbers upstream the normal shock. For the computed
pressure a Mach number of M, = 0.51 can be computed by equation (4.1) and is in good agreement
with the computed Mach number along the centerline y = 0 of the duct, given in Figure 4.28 (b). The

mean pressure and the time averaged speed of sound are given in Figure 4.29 (a) and (b) respectively.
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Figure 4.26: Mach-Zehnder interferometry visualizations of the time averaged density at pressure ratios: (a)
computed for 7 = 0.41 for a expansion duct length L = 0.08 m and aspect ratios L/H = 5.33 and
h/H = 0.4. (b) visualized experimentally for 7 = 0.364 for a expansion duct length L = 0.24 m
and aspect ratios L/H = 7.23 and h/H = 0.3 |94].
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Figure 4.27: (a) Time averaged static mean pressure computed along the upper and lower wall — —
— ; (b) Time averaged static mean pressure measured in the corner region (o upper wall e lower
wall) as a function of the pressure ratio 7: in black experimental values [94]; in red the computed

values for a duct of length L = 0.08 m.
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Figure 4.28: (a) Corner pressure as a function of the Mach number downstream of the shock for increasing
aspect ratios ¢; ¢ = 0.4; (b) Local time averaged Mach number along the centerline y = 0;

————— theoretically predicted Mach number using equation (4.1).
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Figure 4.29: Time averaged quantities along the centerline (y = 0): (a) pressure; (b) speed of sound.
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Figure 4.30: View on numerical Schlieren |Vp| in a 2 — y-plane of the entire computational domain.

Instantaneous flow visualizations

Figure 4.30 shows the instantaneous numerical Schlieren field of the entire computational domain.
The jet is exhausted at the outflow of the expansion duct. The jet is received by the sponge layer and
fine scale vortical structures are dissipated without generating spurious sound. Thus the sponge layer
is well suited. The acoustic waves that originate at the outflow of the test duct leave the computational

domain without spurious reflections.

4.4.2 Shock oscillations

Figure 4.31 (a) and (b) compare two instants of the shock-oscillation cycle for the experiment and
the computation by visualizing the iso-density contours. The flow visualizations show two extreme
positions of the shock during a shock oscillation cycle. When the shock is closest to the nozzle, the
subsonic center flow is more extended to the walls. In the second visualization the shock reaches its
position farthest from the nozzle. The subsonic region is more narrow. The computed density field
compares well with the experiments.

In the following, the self-exciting mechanism of the base pressure oscillations is explained. For that
a sequence of the instantaneous Mach number field is given in Figure 4.32. The mechanism corresponds
to the explanations of Meier et al. [94].

In frame 1, the dead-air region is connected to the downstream region by a subsonic layer on both
sides of a central supersonic flow near the nozzle exit. The supersonic flow ends with a strong normal
shock which is followed by subsonic flow in the central part of the field. Supersonic regions are formed
downstream of the extremities of the normal shock. A pressure drop in the corner region makes the jet
to spread and to reattach on both duct walls (frame 2). Meier et al. [94] noticed that the pressure drop
is caused by an entrainment of air by the jet and a subsequent evacuation of the corner region. This
causes an expansion and an acceleration of the transonic jet. The entrainment of air is increased and

the expansion is therefore a self-amplifying process. Once the jet reattaches, the reattachement point
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Figure 4.31: Time sequence of shock oscillation cycle: (a) the experiments for a longer duct (L = 0.16 m,
L/H =4.82, ® = 0.3); (b) computed results are visualized by a Mach-Zehnder-interferometrie-like

colormap.

moves in upstream direction (frame 2 and 3). The expansion angle of the jet increases and the normal
shock is moving upstream and reaches a position closest to the nozzle (frame 3). The jet velocity is
increasing and the pressure therefore increases behind the shock. The pressure rise downstream of
the reattachement zone makes the boundary layer to separate. The jet separates completely from the
upper and lower duct wall (frame 4). The pressure rises in the corner region due to a compression
wave that travels through the slit between the separated jet and the duct wall. In the experiments
the pressure is amplified by a strong back flow in the corner region. The height of the normal shock
reduces (frames 4-7) and the pressure behind the shock decreases. The shock moves downstream until
reaching the most downstream position in frame 7. In frame 8, an expansion of the jet is observed.

The jet begins to reattach to the duct wall and the loop is closed.
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Figure 4.32: Time sequence of shock oscillation cycle: local Mach number (color scales from 0 to 3).
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4.4.3 Aeroacoustic coupling

The self-exciting mechanism such as explained in the previous section exists without a coupled res-
onator. In this case, the pressure oscillations are irregular and weak. Coupling takes place only when

the oscillation frequency of the shock is close to the longitudinal duct resonance frequencies.

The spectral densities of signals recorded along the upper duct wall are given in a 3-D plot of Figure
4.33 (a). A peak can be observed at f = 710 Hz. The amplitude diminishes when approaching the

duct end. This indicates the presence of a standing acoustic wave in the duct.

The natural frequencies can be estimated in order to show that the base pressure oscillations are

controlled by duct resonance. Assuming a 1-D flow the frequencies can be estimated by

Fauetn = (20 — 1)(1 — M?) :—z, forn=1,2,3 etc. (4.2)
where n is the duct mode number. This expression gives the frequencies of (2n —1)x quarter standing
waves which are supported by a duct that is closed at one end (' = 0) and that is open at the other
end (p' = 0). The term (1 — M2) takes into account the mean Mach number M, of the subsonic flow
behind the normal shock. The mean sound speed of the flow is denoted by ¢.. Note that the upstream
part of the duct can be treated as a closed end because a sonic flow is present at the throat at all times

and no information can travel upstream through the nozzle.

Equation (4.2) identifies, beside the duct length, the speed of sound as a determining parameter
of the duct resonance. The mean Mach number is subsonic in the case of a normal shock. Meier et
al. |94| estimated the downstream mean Mach number by a 1-D approach that can be found in the
work of Jungowski [75]. The speed of sound has been determined from tables of adiabatic flow. The
experimentally measured frequencies and the theoretically predicted frequencies of the base pressure
oscillations are plotted in Figure 4.33 (b) as a function of the pressure ratio 7 for a duct of length
L = 0.08. The theoretical frequencies compare well with the measured ones indicating a coupling of

shock oscillation and longitudinal duct modes.

For the simulated case, the mean Mach number M, and the mean sound velocity ¢, are computed

using an average defined by

zs+L rs+L

_ 1 _ 1

M, = I / My—q dx, ¢ = 7 / Cy—0 d,
Ts Ts

where the quantity z is the shock position and My:(], Cy—o are the centerline distribution of the mean
Mach number and sound speed, given in Figure 4.28 (b) and 4.29 (b) respectively. The computed
frequency and the theoretical predicted frequency are given in Figure 4.33. First, the frequency of the
computed result compare well with the measured frequency. Second, the theoretical frequency compare
well with the duct mode frequency given by equation (4.2). This indicates that the shock oscillations

are controlled by longitudinal duct modes.
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Figure 4.33: (a) Spectra of pressure signals recorded along the upper wall; - - - designates the dominant

frequency at f = 710 Hz; (b) Frequencies of base pressure oscillations as a function of the pressure
ratio 7 for a duct of length L = 0.08 m; A experimental values [94] V theoretically predicted values
for the first longitudinal duct mode n = 1 using equation (4.2) [94]; 4+ the computed values X

theoretical predicted values using equation (4.2)

4.5 Conclusion

The numerical algorithm is able to reproduce in a satisfying way the expansion of a transonic flow
in a duct for various pressure ratios and duct geometries. First, the expansion of a transonic flow
in a rectangular duct is computed for a pressure ratio leading to an entirely supersonic flow. The
aerodynamic field is found to be in good agreement with experiments. Second, several simulations
of the same configuration for different pressure ratios, where coupling between normal shock motion
and longitudinal duct modes are likely to occur, are presented. An investigation of the influence of
pressure ratio on the mean flow field shows that the present numerical algorithm is able to reproduce
the main flow patterns in a satisfying way. The abrupt switch from symmetrical to asymmetrical flow
pattern is well predicted and follows the hysteresis branch obtained for decreasing pressure ratios.
The asymmetric flow pattern is the preferred configuration of the numerical simulation. In agreement
with experiments, no aeroacoustical coupling is observed for the asymmetrical flow pattern. Third,
a simulation were conducted where the symmetric flow pattern is captured. As observed by the

experiments coupling between the shock oscillations and longitudinal duct modes occurs.



(General conclusion

In the present work, a high-order algorithm based on centered finite-difference schemes has been de-
veloped for direct computation of aeroacoustic phenomena in complex geometries.

The first chapter is dedicated to the description of the numerical algorithm SAFARI (Simulation
Aéroacoustique de Fluides Avec Resonances et Interactions). The governing equations, the Euler and
Navier-Stokes equations, are solved with high-order optimized finite-difference schemes. In order to
treat compressible flows, a first-order Jameson-like shock-capturing filter has been used. The filter is
applied locally in the vicinity of shocks. The shock location is detected with a Jameson sensor. A
high-order overset-grid approach is used in order to treat complex geometries with structured grids.
The complex data structure is provided by a grid assembly software ogen, part of the freely available
library Owerture, that has been interfaced with SAFARI. The solver is parallelized using the standard
MPT library and each grid can be computed on an arbitrary number of processors for the purpose of
load balance. High-order Lagrangian polynomials are used for grid boundaries where the grid points do
not coincide. The solver is portable on several massively parallel platforms. Computations involving
50 x 10 grid points with 250 processors have been carried out.

In the second chapter, the multi-domain ability and the influence of the implemented shock-
capturing filter are validated with typical test cases found in the litterature. The convection of a
vortex through an interpolation zone has been first examined. In particular, the generation of spurious
sound when a vortex passes through an interpolation zone has been considered as a function of the
polynomial order used for interpolation. The diffraction of a monopolar pressure source by a cylinder
have been computed on a single-block grid and on an overset grid. These two test cases reveal that the
accuracy of the high-order finite-difference scheme can be recovered when Lagrangian polynomials of
sufficiently high-order are used. The computation of entropy/shock wave interaction and the compu-
tation of the sound/shock wave interaction problem reveal an impact of the shock-capturing filter on
the small scale perturbations. The dissipation can be minimized using a modified Jameson sensor that
is based on high-order dissipation terms. Furthermore, the computation of a low Reynolds number
flow and a 3-D circular shock tube demonstrate that SAFARI is able to treat geometries involving grid
singularities and complex overset-grid structures.

In the third and fourth chapter, SAFARI has been applied to two configurations typical for in-
dustrial applications of EDF. The two planar configurations have been solved in 3-D with periodic
boundary conditions in spanwise direction.

The first application is the ducted cavity at low Mach number regime. In the experiments a strong
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coupling between the cavity modes and the transverse duct modes has been observed. In order to show
the numerical evidence of the coupling, computations with varying Mach numbers have been carried
out. This coupling has been successfully reproduced by the algorithm. Despite some discrepancies in
amplitude, the frequencies have been very well retrieved.

The second test case is the computation of a suddenly expanded transonic flow in a rectangular
duct. The flow regime is governed in particular by the pressure ratio. For very low pressure ratios,
the flow in the planar duct is entirely supersonic. The computation exhibits good agreement with
the flow visualizations and wall pressure measurements. Furthermore the influence of the pressure
ratio on the flow regimes has been examined. For higher pressure ratios, two flow regimes have been
observed in the duct: a symmetrical and an asymmetrical field. The observed regime depends whether
the pressure ratio increases or decreases, showing a hysteresis phenomenon. In the experiments, only
the symmetrical flow regime has produced strong aeroacoustic coupling between shock oscillations
and longitudinal resonance modes. From an industrial point of view, it is therefore crucial to know
whether the symmetrical or the asymmetrical flow regime is stable. Numerically the hysteresis and
the abrupt switch between the two regimes have been well reproduced. Then, the coupling for a
symmetric flow regime is computed using a duct configuration where the hysteresis is less dominant.
The shock oscillations have been well reproduced. The frequencies measured in the duct indicate that
the longitudinal acoustic duct modes are excited.

The computation of these two industrial cases demonstrates that SAFARI is able to reproduce
aeroacoustic phenomena in different flow regimes using affordable computer resources. The present
work has shown that flows with industrial relevance can be computed using high-accuracy numerical

techniques.

Outlook

SAFARI has been applied to 3-D flows using periodic boundary conditions in the third direction. The
next step should be to take into account the entire 3-D geometry of the real gate valve, presented in
Figure 1 (b).

In this work, the solver has been developed for static grids. In the future, the solver should
be extended in order to tackle with overlapping grids that move relative to each other. The main
configurations of interest are aeroelastic vibrations of turbine low pressure blades. For this purpose,
the interface between QOuverture and SAFARI has to be developed because interpolation data has to be
updated at each time step.

Another point that should be considered in the future is the use of multi-time stepping methods
in order to overcome the constraining CFL condition of explicit time stepping for wall-bounded flows.

This development should be quite easy due to the multidomain structure of SAFARI.



Appendix A

Conservativity aspects of finite-difference

schemes

In CAA, finite-difference schemes are more popular than finite-volume methods as its order of accuracy
can be increased easily. Additionally, they can be tuned in order to have minimum dispersion and
dissipation over a certain wave-number range. However, finite-difference methods are non conservative,
compared to finite-volume methods that ensures conservation of mass, momentum and energy per
construction.

In the following, a finite-volume formulation of a centered finite-difference scheme is presented, when
the governing equations are solved in conservation from. Furthermore, using conservative operators

finite-difference operators ensure conservativity for flows containing shocks.

Finite-volume formulation of finite-difference

The finite-volume formulation of finite-difference schemes is considered in 1-D, using the following

model non-linear equation in conservation form:

Ou , 9f(w)

ot ox

where u = u(x,t). On a uniform gird with grid spacing Az, the spatial derivative is discretized in the

=0,

finite-difference approach by the following expression:

‘ Of (u) -

1
N — ar fi+
; sz TJITT

r=—m

ox

Conservative finite-volume approaches are based on the integral conservation law of a grid element

limited by z;_1/2 < o < ;417 such as shown in Figure A.1 which leads on the semi-discrete form:

Tit1/2

/ wdr+ fi_1/2 — fi—12 = 0.

Ti—1/2

4
dt

The fluxes at the interface f;_;/, are computed via interpolation of the points at the cell centers z;.

This step is also known as reconstruction step. The interpolation can be expressed in terms of a
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Figure A.1: Denotations used for the finite-difference and finite-volume approach.

finite-difference approximation as:

fici2 =D bi(ficres + fis)s fisrpp = D 0i(firs + firay),

=1 j=1
where b; are the coefficients for a interpolation. The finite-difference form can be recasted in a finite-

volume like form such as

Y arlfirr = fice) = D belfirr + fivror = fimrr = fir)
r=1

r=1

= Z br(fi-H” - fi—?“) + Z b?“fi-i—l—r — Z b?“fi—l-i—r
r=1 r—1 —1

n n—1 n—1
- Z br(fi—f—r - fi—r) + Z br-i-lfz'—r - Z br-i-lfi—f—r
r=1 r=0 r=0

Finally, the recursive formula is obtained:

n

Zar(fi-i-r - fi—r) = Z br(fi—f—r + fi-i-l—r - fi—l-i—r - fi—r)
r=1

r=1
For j = n, a, = b, and for 1 < 5 < n — 1 the a; can be computed via a; = b; — bj;1. Kim and Lee

|78] writes this
n
bj == Z aj.
I=j
For example, for a classical fourth-order finite-difference scheme the coefficients for a, are:

‘ 0f (u)

5|~ ai(fix1 — fi—1) + a2(fiz2 — fi—2), a1 =8/12, ag = —1/12

i
and the coefficients for b, are:

‘ 0f (u)
Ox

R b1(fixr + fi) + b2(figo + fic1) = bi(fi + fic1) — ba(fig1 + fiz2)

i
with by = 7/12 and by = —1/12.

In conclusion, centered finite-difference schemes on uniform Cartesian grids can be written on
conservation form which is a necessary condition to deal with strong gradients [88]. This conservative
property is still verified on orthogonal curvilinear grids provided some metrics relation are respected
[130].



Appendix B

Estimation of the Mach number
downstream of an abruptly expanded

transonic flow

The simplified flow model is sketched in Figure B.1. A normal shock is situated in the duct and the
flow downstream of the normal schock is subsonic. In this section the model such as proposed in the
work of Jungowski [75] is derived.

In order to estimate the Mach number behind the shock the equations of mass, momentum and

energy are used. The momentum equation writes
h(pn + uhpn) + (H — h)pw — H(pe + pul) = 0.

Mass conservation gives

hphuh - Hpeue =0.

Assuming adiabatic walls, the energy conservation gives:
1 1
CpTh + 511% — CpTe + Eug = 0

In terms of the local Mach number M = u/c and ¢? = yp/p the momentum equation writes:
hpn(1+ M) + (H = h)pw — pe(H + hyMZ) = 0.
This can be rearranged such as
®pn(1+ Y M) + (1= @)py — pe(1+ 7M7) = 0,

Using the fact that the flow in the throat is sonic (M), = 1) the quantity p,/po = ((y + 1)/2)77/0~1

can be introduced:

.
2 -0 (1-®)p, 1 9\ Pe

147) (—— + Do _ — (14 y02)Ee <.
( ’Y)<’Y+1> o po ‘I’( 7 )po
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Figure B.1: Simplified model of the expansion of a confined flow; box bounded with - - - is the control volume

for the application of the conservation equations.

Now, the quantities p./po and ®; can be estimated using the mass conservation and energy conservation

equations. These can be written in terms of local Machnumber following Candel [34] with ¢, =

YR/(y —1)

—1 —1
Th(1+ T5= M) = T.(1 + T5—=M).

A relation between the temperatures and the exit Mach number is found with M, =1

T, (1+37M2)

- +1
T (*37)
The mass conservation equations gives using the perfect gas law p = pRT"

@:1M Th
pe © VT,

Using the relation for the temperature gives

Ph _
Pe

Introducing the relation for py,/pg = ((y +1)/2)~/0—1
.
1 1\~1
Po_ Zap (X227
DPe @ 2

Y41
1 1\ 26-D —1
?ZEMG<%> ! 1o = e
&

Finally, one obtains the relation between p,,/p0 and M,:

giving

=0,

: Y’”+u—@mw (= >%% 1ty
v+1 M,

P Y+ 1 / y—1
Po 1 5 7\162

and gives the equation obtained by Jungowski |75].
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Développement d’un algorithme d’ordre élevé multi-domaines pour 1’aéroacoustique numérique:

Application aux écoulements confinés en régimes subsonique et transonique

Un nouvel algorithme de simulation numérique pour l'aéroacoustique, SAFARI (Simulation Aéroacoustique des
Fluides Avec Résonances et Interactions), a été développé pour le calcul direct du bruit. Il s’appuie sur la résolution des
équations de Navier-Stokes compressibles en coordonnées curvilignes. Des schémas aux différences finies d’ordre élevé
sont implémentés. La solution est calculée sur des maillages recouvrants (méthode Chimeére) pour traiter des géomeétries
complexes. L’interpolation entre les maillages est effectuée par des polynomes de Lagrange également d’ordre élevé. De
plus chaque maillage est découpé en blocs pour permettre 'exécution du calcul sur des machines paralléles. Le solveur
est parallélisé a ’aide de la bibliothéque MPI. Afin d’assurer la capture des chocs forts, un filtre non linéaire de type
Jameson est utilisé.

SAFARI est d’abord confronté a des cas-test simples: par exemple en 1-D ’écoulement dans une tuyére conver-
gente/divergente ou en 2-D 'écoulement & bas nombre de Reynolds autour d’un cylindre. Les cas tests montrent que
I’algorithme produit des résultats de haute précision et est bien adapté pour des calculs aéroacoustiques.

Ensuite, les simulations en 3-D de deux cas d’intérét industriel sont présentées. D’abord un écoulement & nombre
de Reynolds élevé et & nombre de Mach modéré affleurant une cavité confinée a été simulé. Pour des cavités confinées
les modes de cavité peuvent se coupler avec les modes de résonance de la veine et produire des oscillations de grande
amplitude. Le calcul met clairement ce couplage en évidence.

La deuxiéme application industrielle traitée dans le cadre de ce travail est la simulation d’un écoulement transsonique
au travers d’'un élargissement brusque dans un conduit plan. En fonction de la pression en aval, différents régimes
d’écoulements s’établissent dans le tuyau. Pour des pressions faibles, I’écoulement est supersonique dans le tuyau et un
systéme de chocs obliques s’établit. Pour des pressions plus élévées, un choc droit oscillant apparait dans I’écoulement.
Les oscillations de ce choc se couplent avec les modes acoustiques longitudinaux du tuyau. Pour des pressions en aval
encore plus élevées | le jet recolle sur une des parois inférieure ou supérieure et des cellules des choc sont observées. Les

résultats présentés dans ce travail reproduisent tous les aspects de ce type d’écoulement.

Development of a multidomain high-order algorithm for computational aeroacoustics:

Application to subsonic and transonic confined flows

A new algorithm for computational aeroacoustics, SAFARI (Simulation Aéroacoustique des Fluides Avec Résonances
et Interactions) is proposed for the direct calculation of noise. The compressible Navier-Stokes equations are solved using
high-order finite difference schemes on structured curvilinear grids. To tackle with complex geometries, a high-order
overset grid approach is implemented that consists in decomposing the geometry in grids that overlap. Communication
between grids is computed by high-order multidimensional Lagrangian polynomials. Each grid is divided into blocks for
allowing the use of parallel computing. The code has been parallelized using MPI-library and has been validated on
massively parallel platforms. In order to accurately capture shocks, a Jameson-like dissipation has been implemented.

For validation, several canonical test cases have been computed that are typical for Computational Fluid Dynamics
and Computational AeroAcoustics (CAA): for example a 2-D low Reynolds number flow around a cylinder and the
transonic flow in a convergent-divergent nozzle. The test cases demonstrate that the solver is able to provide high-order
accurate solutions on complex geometries and the shock-capturing strategy is well adapted to CAA problems

The first industrial application presented in this work is the simulation of a high-Reynolds number flow at low Mach
numbers past a ducted cavity. For the chosen flow regime, the cavity modes couple with resonance modes of the duct,
leading to high pressure levels. The coupling phenomenon is well reproduced by the computation.

As second industrial application, a sonic flow in a plane duct passing an abrupt increase in cross-section is numer-
ically studied by solving 3-D compressible Navier-Stokes equations. Different flow patterns are likely to appear in such
configuration. For a very low downstream pressure, the flow is entirely supersonic. For higher pressures, unstable flow
patterns emerge. One of these patterns features a normal shock, that oscillates due to a self-exciting mechanism. As
the duct is open at the outflow, aeroacoustic coupling occurs when the shock oscillations get in resonance with the
longitudinal acoustic modes of the duct. The simulated flow has been found to be in good agreement with available

experimental data.



