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ABSTRACT
Results obtained for a Taylor-Green vortex at a Reynolds

number of 3000, using Large-Eddy Simulation (LES) based
on Relaxation Filtering (RF), are presented in order to assess
the quality of the RF-LES methodology. The RF is applied
every time step to the velocity components, using a standard
filters of ordersk ≥ 4 at a fixed strengthσ , to relax subgrid
energy from scales at wave numbers close to the grid cut-off
wave number. Various combinations ofk andσ are consid-
ered, fork ranging from 4 to 14 andσ from 0.15 to 1. Error
landscapes are obtained by comparing the 643 LES results,
filtered in post-processing to an effective resolution of four
points per wavelength, to 3843 Direct Numerical Simulation
data, filtered at identical resolution. For filters of orderk ≤ 6,
the LES accuracy is found to be rather poor and varies sig-
nificantly with the filtering strengthσ . However, for higher
order filters,i.e. for k > 6, the accuracy is good and nearly
independent of the strengthσ .

INTRODUCTION
In Large-Eddy Simulation (LES) of a turbulent flow, the

most significant scales of motion, i.e. the largest and most sig-
nificant scales of motion in the energy-containing range and
inertial range, are resolved in order to obtain a statistically
sufficiently accurate prediction of the flow. Since the small
scales in the dissipation range are not resolved, their effects
must be accounted for by an artificial dissipation mechanism,
in order to avoid a pile-up of energy at the cut-off wavenumber
imposed by the computational grid. This is usually done by re-
placing the residual stress tensor in the filtered Navier-Stokes
equations with an eddy-viscosity model, or by applying dis-
sipative numerical discretization schemes for the convective
terms as in Implicit LES methods. We refer to the reviews by
Lesieur and Ḿetais (1996), Grinstein and Fureby (2002), and
Domaradzki (2010), and to the books by Geurts (2004) and
Sagaut (2005). The amount of dissipation, as well as its spec-

tral distribution, may, however, be difficult to control in these
methods as pointed out in Domaradzki et al. (2000, 2002,
2003) and Bogey and Bailly (2005, 2006b). This has led to
the development of alternative LES methodologies relying on
high-order dissipation mechanisms, such as hyper-viscosity
models (Passot and Pouquet 1988, Dantinne et al. 1998) or
the relaxation term in the Approximate Deconvolution Model
(Stolz et al. 2001).

In recent years, an LES approach based on a Relaxation
Filtering (RF) to account for the subgrid dissipation, has been
proposed, and applied successfully to various flow configu-
rations by Visbal and Rizzetta (2002), Rizzetta et al. (2003),
Mathew et al. (2003) and Bogey et al. (2006a, 2009, 2011),
among others. In order to relax the turbulent energy from
the small scales at wave numbers close to the grid cut-off
wavenumber, a low-pass filter is applied to the components
of the velocity field, everynth time step in each Cartesian di-
rection, as follows

ũ(x, t) = u(x, t)−σ
n

∑
j=−n

d ju(x j, t) (1)

where ˜u andu denote respectively the filtered and unfiltered
variables, andd j represents the weighting coefficients that de-
termine the dissipative contribution of the(2n+1)-point sym-
metric filter. The filtering strengthσ is between 0 and 1.
To obtain the necessary energy dissipation, criteria could be
developed to adjust dynamically the filtering frequency and
strength to the flow features,e.g. in Tantikul and Domaradzki
(2010). For practical reasons, however, the filtering is usu-
ally applied every time step at a constant strengthσ (typically
σ ≃ 1). The results of the RF procedure depend in this case
on the shape of the filter and the filtering strength. Since the
selected filter must provide sufficient dissipation to the small-
est resolved scales while leaving the largest scales mostly un-
affected, the influence of the filter-shape, determined by the
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filter-order, is expected to be dominant, whereas the influence
of the filtering strengthσ should be minimal. In particular,
the amount of energy dissipated by the RF should be nearly
independent ofσ . Such behaviour has been found previously
by Bogey and Bailly (2006, 2006b) in LES of turbulent jets,
in which the dissipation rates were nearly unchanged when
decreasing the RF frequency, which is equivalent to reducing
σ for a fixed filtering frequency. Nevertheless, there is still
a need for systematic quantitative assessments of the valid-
ity of the RF-LES approach, as pointed out in recent work of
Berland et al. (2011) on mixing layers.

For this purpose, the RF-LES methodology is applied
in the present paper to the Taylor-Green vortex case, which
has been solved over the last years in a series of studies
on LES methods,e.g. by Drikakis et al. (2006), Faucon-
nier et al. (2009), Chandy and Frankel (2009) and Johnsen
et al. (2010). The Taylor-Green vortex is at a Reynolds num-
ber of Re= 3000, which is large enough so that natural tran-
sition into small-scale turbulence occurs. The reference solu-
tion is obtained from a Direct Numerical Simulation (DNS) on
a 3843 computational grid, and compared to the DNS results
on a 2563 grid as in Brachetet al. (1983). Furthermore, 36 RF-
LESs of the Taylor-Green vortex are performed on a 643 com-
putational grid, using various combinations of standard filters
of order k and filtering strengthσ . In order to assess the
LES accuracy, comparisons are made with the DNS data. En-
ergy spectra, as well as time evolutions of the dissipation rate,
kinetic energy and integral length scales, based on the data
filtered in post-processing to an effective resolution of 323,
are considered. A two-parameter study is also performed, in
which the discrepancies between the LES and DNS solutions
filtered at identical resolution are represented as function of
the filtering order and strength in an error-landscape frame-
work, following Meyers et al. (2007) for example. This will
allow us to investigate the sensitivity of the LES results to
the RF parameters. More importantly, we aim to examine the
a priori expectations that the results should not vary signifi-
cantly provided that the order of the filter is sufficiently high.

SIMULATION PARAMETERS
Direct Numerical Simulations

The Taylor-Green vortex at Reynolds number Re=
1/ν = 3000 is first computed by DNS on a computational
grid of 3843 nodes yielding a maximum wave numberκmax =
192, using a pseudo-spectral solver (Fauconnier et al. 2009)
combined with (anisotropic) 2/3-de-aliasing, and a six-stage
low-dissipation Runge-Kutta time stepping (Bogey and Bailly
2004). The time step is∆t = 0.005, yielding a maximum CFL
number of 0.3. The flow is simulated up tot = 20, requiring
4000 time steps. The DNS is performed on 96 cores, and the
total simulation time is about 300 hours.

As illustrations of the DNS results, energy spectra are
represented in figure 1 at increasing timest. The broaden-
ing of the spectra during the transition from a well-organized
large-scale flow to a developed turbulence characterized by
a wide range of small-scale structures can be observed. The
time evolutions of the kinetic energy and dissipation rate are
displayed in figure 2. The kinetic energy is decaying, as ex-
pected in the absence of external forcing. The dissipation rate
is seen to reach a peak aroundt = 9, time at which the energy
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Figure 1. DNS of a Taylor-Green vortex at a Reynolds num-
ber of 3000: time evolution of energy spectra.

spectrum also tends to have a smallκ−5/3 initial range.
The 3843 DNS results are found in figure 2 to compare

well with the solutions determined by Brachet et al. (1983)
using a 2563 DNS for the same flow. However, the kinetic en-
ergy is slightly higher and the dissipation rate is visibly lower
in the 3843 DNS. To discuss the origin of these discrepancies,
the results obtained from a 2563 DNS, carried out using our
pseudo-spectral solver, are shown in figure 2. They nearly col-
lapse with the data of Brachet et al. (1983). This agreement
demonstrates the validity of our DNS solver while suggesting
that a 2563 node resolution may not be fully sufficient for the
DNS of the Taylor-Green vortex at Re= 3000. Therefore, the
3843 DNS results will be used as reference solutions in the
following sections.

To perform relevant comparisons with the LES,i.e. over
the same wave-number range, the DNS data are filtered in
post-processing to an effective resolution of 323 computa-
tional nodes, using a sharp Fourier filter. The time evolutions
of the kinetic energy and dissipation rate thus obtained (here-
after referred to as the resolved kinetic energy and dissipation
rate) are represented in figure 2 as dotted lines. The resolved
kinetic energy is close to the total kinetic energy, whereas the
resolved dissipation rate is very small with respect to the to-
tal dissipation rate. This simply indicates that most of the
energy-containing scales here are at wave numbers lower than
κ = 16, whereas most of the energy-dissipating scales are at
higher wave numbers.

Large-Eddy Simulations
For the Taylor-Green vortex at Re= 3000, 36 LES com-

putations are performed, each using a different standard ex-
plicit filter with a different filtering strengthσ . The Relax-
ation Filtering of the velocity components is applied every
time step. The different LESs are determined by the 6× 6
combinations of filter ordersk = 4,6,8,10,12,14 with the fil-
tering strengthsσ = 0.15,0.2,0.4,0.6,0.8,1, as reported in ta-
ble 1. Each LES is performed on a 643 computational grid,
leading to a grid cut-off wave number ofκmax = 32, using the
same pseudo-spectral solver as the DNS. Dealiasing is not ap-
plied explicitely, because the relaxation filtering is expected to
take this into account. To minimize numerical errors, spectral
differentiation is used to evaluate spatial derivatives, and a six-
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Figure 2. Time evolution of the dissipation rate (top) and ki-
netic energy (bottom) for a Taylor-Green vortex at Re= 3000:
� 2563 DNS by Brachet et al. (1983), present 3843

and 2563 DNS, present 3843 DNS low-
pass filtered to an effective resolution of 323.

stage low-dissipation Runge-Kutta algorithm is implemented
for time integration with a time step∆t = 0.025, yielding a
maximum CFL number of 0.25. Each simulation is performed
on 16 cores and takes about 4 hours.

For relevant comparisons with the DNS results, as men-
tioned previously, the LES data are low-pass filtered in post-
processing to an effective resolution of 323 nodes. The quality
of the LES is thus examined for the turbulent scales at wave
numbersκ ≤ 16, which are discretized at least by four points
per wavelength.

Table 1. Relaxation Filtering parameters in the LES of the
Taylor-Green vortex: filter orderk and filtering strengthσ .

σ \ k 4 6 8 10 12 14

0.15 × × × × × ×

0.2 × × × × × ×

0.4 × × × × × ×

0.6 × × × × × ×

0.8 × × × × × ×

1 × × × × × ×

RESULTS
Energy spectra

Energy spectraE(κ) obtained by RF-LES using filters
of order 4, 8 and 14, at timet = 9 when the peak dissipation
rate is reached, are shown in figure 3. They are compared to
the filtered DNS spectrum. The LES spectra determined using
the 4th-order filter are seen to vary strongly with the filtering
strengthσ , and especially to differ from the DNS spectrum.
More precisely, the energy components are underestimated
for the small scales at wave numbers 0.1κmax ≤ κ ≤ κmax,
whereas they are overestimated for the large scales atκ ≤
0.1κmax, discretized by more than 20 points per wavelength.
The 4th-order filtering therefore appears both to excessively
damp the turbulent fine scales, and to affect the larger scales
of the flow. Fortunately, these unwanted effects gradually dis-
appear when filters of higher order are used. For the filter
at orderk = 8 for instance, the LES spectra are nearly inde-
pendent of the filtering strength, and they correspond well to
the DNS spectrum up toκ ≃ κmax/2, that is around 4 points
per wavelength. A similar agreement between LES and DNS
spectra is noticed for the filter at orderk = 14.

Time evolutions of turbulence quantities
To characterize the turbulence features in the LES dur-

ing the flow transition from the initial Taylor-Green vortex
to isotropic small-scale structures, the time evolutions of the
resolved kinetic energykr(t) and dissipation rateεr(t), calcu-
lated as

εr(t) =
1

8π3

∫ κmax

0
2νκ2ELES(κ , t)dκ (2)

and

kr(t) =
1

8π3

∫ κmax

0
ELES(κ , t)dκ (3)

are considered fromt = 0 to t = 20. They are represented re-
spectively in figures 4 and 5, for relaxation filters of order 4,
8 and 14. As expected from the energy spectra, the depen-
dency on the filtering strength is strong in case of the filter
of order 4. The excessive damping of large and small scales
due to the low-order Relaxation Filtering results in a signifi-
cant underestimation of the kinetic energy with respect to the
DNS reference solution. The resolved dissipation rate is also
much lower than that in the DNS, indicating that the large
scales at wave numbersκ ≤ 16 are mainly dissipated by the
Relaxation Filtering rather than by molecular viscosity. As
a consequence, their dynamics are most probably controlled
by the subgrid dissipation model, and the effective Reynolds
number of the flow may be artificially lowered.

In the LES using filters of order 8 and 14, the decay of
the resolved kinetic energy agrees satisfactorily with that from
the DNS. More interestingly, the resolved dissipation rates do
not vary much with the filtering strength, and they are very
similar to the DNS data. These results demonstrate that the
Relaxation Filtering has here a quite limited impact on the
large resolved scales. A small overestimation ofεr(t) can fi-
nally be noted for the filter at order 14, which may suggest
that the subgrid dissipation is slightly insufficient in this case.
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Figure 3. Energy spectra obtained att = 9 in the
DNS, and in the LES using RF of order 4, 8 and 14 (from top
to bottom) at strength� σ = 0.15, △ σ = 0.2, ▽ σ = 0.4,
⊲ σ = 0.6, ⊳ σ = 0.8, and◦ σ = 1. The dotted lines represent
a κ−5/3 decay.

Error landscapes
To quantify the LES accuracy, and its sensitivity to the

Relaxation Filtering parameters, error landscapes are com-
puted as function of the filtering orderk and strengthσ . They
show the norm of the differences between DNS and LES re-
sults, for the resolved longitudinal integral length scale, ki-
netic energy, and dissipation rate. These error norms are de-
fined respectively as

∆L11(t) =
3π
4

∣

∣

∣

∣

∫∫∫ κmax

0
κ−1

[

EDNS(κ, t)
kDNS(t)

−
ELES(κ, t)

kLES(t)

]

dκ
∣

∣

∣

∣

(4)
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Figure 4. Resolved kinetic energy obtained in the
DNS, and in the LES using RF of order 4, 8 and 14 (from top
to bottom) at strength� σ = 0.15, △ σ = 0.2, ▽ σ = 0.4,
⊲ σ = 0.6, ⊳ σ = 0.8, and◦ σ = 1.

∆k(t) =
1

8π3

∣

∣

∣

∣

∫∫∫ κmax

0
[EDNS(κ , t)−ELES(κ, t)]dκ

∣

∣

∣

∣

(5)

and

∆ε(t) =
1

8π3

∣

∣

∣

∣

∫∫∫ κmax

0
2νκ2 [EDNS(κ, t)

−ELES(κ, t)]dκ|

(6)

Figure 6 shows the error landscapes for∆L11, ∆k and∆ε
at timet = 9, i.e. at maximum dissipation rate, as function of
the filtering order and strength. The use of low-order filters
leads to errors that depend on the filtering strength. For the
filter of order 4, the errors are significant forσ = 0.15, and
become higher when increasingσ . By replacing the 4th-order
filter by the 6th-order filter, the errors are strongly reduced, but
they are still significant forσ ≥ 0.6, i.e. for practical values
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Figure 5. Resolved dissipation rate obtained in
the DNS, and in the LES using RF of order 4, 8 and 14 (from
top to bottom) at strength� σ = 0.15,△ σ = 0.2,▽ σ = 0.4,
⊲ σ = 0.6, ⊳ σ = 0.8, and◦ σ = 1.

of filtering strength. Finally, when the filter order is larger
or equal tok = 8, good LES accuracy is obtained whatever
σ between 0.15 and 1. Therefore the value of the filtering
strength does not appear as a crucial parameter in this case.

Remark that the error landscapes exhibit optimal error-
valleys, located at 8≤ k ≤ 10, that depend only weakly on
the filtering strength but strongly on the filter order. Conse-
quently, the use of 8th or 10th-order filters seems optimal in
the present LES. The use of high-order filters in the Relaxation
Filtering procedure leads to a slight reduction of the accuracy.
Since the high-order filters are only effective near the grid-
cutoff wave number, the reduced accuracy stems most likely
from the increased contribution of aliasing errors.
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Figure 6. Error landscapes as function of filtering orderk
and strengthσ for the resolved longitudinal integral length
scale, kinetic energy and dissipation rate, from top to bottom,
at t = 9.

CONCLUSION
In this work, a quantitative assessment of the LES

method based on Relaxation Filtering has been conducted by
solving the Taylor-Green vortex test case at a Reynolds num-
ber of 3000. Comparisons with DNS data show that the ac-
curacy of the LES results depends essentially on the choice
of a sufficiently sharp filter. Considering only standard filters
in the present study, good agreement with the DNS solutions
is in particular found for filter ordersk ≥ 8, nearly indepen-
dently of the filtering strength. The use of filters of order 8
or 10 appears also optimal.

In further work, a comparative investigation of the con-
tributions of molecular viscosity and subgrid dissipation in
spectral space, as done for instance in Bogey et al. (2011),
and an analysis on the influence of the numerical discretiza-
tion and de-aliasing will be carried out. The latter may lead
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again to error landscapes, since a two-parameter study could
be performed for various combinations of the filter order and
the order of the spatial discretization.
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