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• I- Formalism of incompressible large-eddy simulations (LES).

• II- Isotropic turbulence decay.

• III- Channel (with spanwise rotation).

• IV- Mixing in incompressible coaxial jets.

• V- Subsonic and supersonic jets.
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LIMITS OF DIRECT NUMERICAL SIMULATIONS (DNS)

• One considers motion equations for a monophasic Newtonian fluid (Navier-Stokes
and energy equations). We assume existence and uniqueness of solutions.

• Dissipative scale lD = k−1
D , such that smaller wavelenghts are damped by molecular

viscosity (Kolmogorov scale away from walls).

• Direct-numerical simulation : it is a deterministic solution of Navier-Stokes and
related equations. Thanks to an apropriate projection on a spatio-temporal grid of
the various partial-differential operators, one advances with time starting from a
given initial state, with prescribed spatial boundary conditions. The typical grid
mesh ∆x must be smaller than lD.

• Numerical schemes should be precise enough (high order if possible). Depends on
the domain complexity.

• In developed turbulence, and if L characterizes large scales, the number of spatial
grid points necessary for a well-resolved DNS is ≈ (L/lD)3. One finds ≈ 1015 points
for a commercial-plane wing (DNS possible in 30 ≈ 50 years), 1018 points for the
atmospheric boundary layer, more for a fast-breader reactor core.

• LES allow to reduce drastically the number of collocation points.



INCOMPRESSIBLE LES : PHYSICAL SPACE

• ρ = ρ0, ∆x fixed length characterizing the spatial grid mesh (lD < ∆x < L).
G∆x(

−→x ) is a low-pass spatial filter of width ∆x, chosen in order to eliminate subgrid
scales of wave length < ∆x. We pose

f̄(−→x , t) = f ∗ G∆x =
∫

f(−→y , t)G∆x(
−→x −−→y )d−→y .

The filter commutes with spatial and temporal partial derivatives (if the grid is
uniform).

• Navier-Stokes equations (NS) :
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• filtered NS :
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(ūiūj) = −

1

ρ0

∂p̄

∂xi
+

∂

∂xj
(2νS̄ij + ūiūj − uiuj)

• Tij = ūiūj − uiuj , subgrid-scale tensor.

• Eddy-viscosity assumption : Tij = 2νt(
−→x , t) S̄ij + (1/3)Tll δij .



• NS/LES equations
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• Modified pressure (“macro-pressure") : P̄ = p̄ − (1/3)ρ0Tll.

• Continuity : ∂ūj/∂xj = 0 .

• Mixing of a scalar satisfying a Lagrangian heat Fourier equation
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(molecular diffusivity κ). Problem crucial in combustion modelling and in geophy-
sical turbulence. Eddy-diffusivity assumption κt , determined thanks to a turbulent
Prandtl (resp. Schmidt) number νt/κt .
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• Smagorinsky’s model (Mon. Weath. Rev., 1963) : V∆x ∼ ∆x
√

S̄ijS̄ij . Improvements
by Germano, Piomelli, Moin & Cabot, (Phys. Fluids, 1991), with a local dynamic
evaluation of the constant by double filtering.



INCOMPRESSIBLE LES : FOURIER SPACE

• We assume turbulence in an infinite domain, statistically homogeneous. Spatial
Fourier transform (FT)
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• The chosen filter is a sharp cutoff low-pass filter :

f̂ = f̂ for k = |
−→
k | < kC =

π

∆x
; f̂ = 0 for k > kC .

• Kinetic-energy spectrum E(k, t) (isotropic turbulence) : E(k, t)δk is the mean
kinetic energy per unit mass in a spatial frequency band [k, k + δk] (Mean, in the
sense of a statistical average on an ensemble of realizations <>).

• NS in Fourier space. Pressure is eliminated by projection in the incompressibility

plane (plane perpendicular to
−→
k ) of the advection term, that is ikj FT {uiuj} . We

have FT {dissipative term} = −νk2ûi(
−→
k , t).

• Non-linear interactions involve triads such that
−→
k = −→p + −→q . Sub-grid modelling

turns out to evaluate transfers such that k < kC , p or q > kC.



• NS/LES in Fourier space : a spectral eddy viscosity νt(k|kC) is added to ν. It is
evaluated thanks to kinetic-energy transfers across kC given by a turbulence two-
point statistical closure (EDQNM, not to be confused with RANS one-point closure
models) :
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assuming kC belongs to an inertial Kolmogorov range E(k) = CKǫ2/3k−5/3. Plateau-
peak model of Chollet & Lesieur (J. Atmos. Sci., 1981). X(k/kC) ≈ 1 for k/kC < 1/3.





• Spectral dynamic model (Lamballais, Métais & Lesieur, Theor. Comp. Fluid. Dyn.,
1998) : accounts for a k−m spectrum at the cutoff.

• Application to the decay of isotropic turbulence at zero molecular viscosity in
a periodic box. Gaussian initial velocity field. Pseudo-spectral numerical methods,
initial peak at ki = 4. Formation and evolution of spaghetti-type vortices, visualized
by iso-surfaces at a positive threshold of

Q = (1/2)(ΩijΩij − SijSij) = ∇2p/2ρ

(Q criterion of Hunt, Wray & Moin, 1988).

• It is possible that the existence of these vortices is responsible for turbulence
multifractal character at small scales (Frisch, Cambridge Univ. Press, 1995).

KINETIC-ENERGY DECAY

“Academic" problem, interesting for isotropic turbulence theory (Batche-
lor,Cambridge Univ. Press, 1953), grid-turbulence experiments (Comte-Bellot &
Corrsin, J. Fluid Mech., 1966 ; Warhaft & Lumley, J. Fluid Mech., 1978), valida-
tion of CFD codes, physics of liquid helium (Stalp, Skrbeck & Donnelly, Phys. Rev.
Let., 1999), cosmology (decay of early universe ?).
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• Batchelor predicts theoretically αE = 1 .

• Lesieur & Schertzer’s relation (Journal de Mécanique, 1978)

E(k, 0) ∝ ks , T (k, t) ∝ k4, E(k, t) = Cons tγ(s)ks for k → 0.

Assuming a self-similar decaying kinetic-energy spectrum

E(k, t) = v2l F (kl), l =
v3

ǫ
, ǫ = −
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where F is a dimensionless function, one finds

αE = 2
s + 1 − γ(s)

s + 3
.

γ(s) = 0 for s < 4. For s = 4, an E.D.Q.N.M. calculation gives γ = 0.16 and
αE = 1.38.

• Comte-Bellot & Corrsin (1966) perform an experiment of grid turbulence and
measure αE = 1.26 (Warhaft-Lumley, αE = 1.34). Theoretically, Geneviève assumes
a time-invariant k4 infrared spectrum, a k−5/3 decaying ultraviolet spectrum and
finds αE = 10/7 = 1.43.

• Same result as Kolmogorov (1941-b) assuming the time invariance of Loitzianskii
integral I(t) =

∫

r2Uii(r, t)d
−→r , whith Uij(r, t) =< ui(

−→x , t)uj(
−→x + −→r , t) >, which



is proportional to tγ(4).

• Landau & Lifchitz (Fluid Mechanics) show this invariance assuming angular-
momentum conservation in the flow. Problems due to viscous-dissipation and
boundary-conditions effects (they assume the flow in a compact domain with zero
velocity at the wall).

• LES of Ossia & Lesieur (Journal of Turbulence, 2000) confirms the permanence
of large eddies with s = 2, yielding αE ≈ 1.2 = 6/5 (Saffman, 1967). With s = 4
an inviscid LES with 2563 collocation points using pseudo-spectral methods gives
asymptotically αE = 1.40. Loitzianskii integral still increases slightly at the end of
the computation.

• Very high resolution DNS (10243 points, same pseudo-spectral methods) by Ishida,
Davidson & Kaneda (J. Fluid Mech., 2006) with a k4 infrared spectrum shows even-
tually the saturation of I(t) to a constant, with αE = −10/7. May be too influenced
by high molecular viscosity.

• Eyink & Thompson (Phys. Fluids, 2000) consider non-integer values of s, following
Burgers equation study of Gurbatov, Frisch et al. J. Fluid Mech., 1997).





Weakly-compressible non-rotating channel with 2 spanwise grooves

• Periodic channel with 2 small spanwise square cavities on one wall (Dubief &
Delcayre J. Turbulence, 2000). Reynolds number h+ = h/δv = 160 in wall units,
with δv = ν/v∗. One recalls

ρv2
∗ = µ dū/dy

at the wall.

• Weakly-compressible flow (Mach 0.3, based on bulk velocity and sound speed at the
wall). Numerical code of Grenoble MOST team COMPRESS (4th order MacCormack
method, Normand & Lesieur,Theor. Comp. Fluid. Dyn., 1992). Résolution 200×128×
64. Propagation of longitudinal hairpin vortices and associated low-and high-speed
streaks (see movie). LES is 3 times faster than DNS.

• Pioneering experimental work on the incompressible channel carried out by Gene-
viève in Grenoble during the sixties. Measured the longitudinal velocity fluctuation
u′ skewness factor, with a positive value at the wall. Associated to a predominance of
high-speed streaks upon the low-speed ones. Geneviève measured also Favre space-
time correlations in the channel,





Non-rotating incompressible plane channel

Lamballais’ LES (1998) at h+ = 395 agree very well statistically (first and second-
order velocity moments) with Kim’s DNS (1992). First grid point at y+ = 1 with a
stretched grid. LES is 70 times faster than DNS.

Plane channel rotating about a spanwise axis

Ω

y

z
xO

2h

• With rotation (Coriolis acceleration in Navier-Stokes, centrifugal accélération in
the pressure gradient), problem important in industry (turbomachinery in hydraulics
and aerospace engineering) and environment (meteorology, oceanography, internal
geophysics).

Local Rossby number Ro(y, t) = −
1

2Ω

dū(y, t)

dy
, initial Rossby Ro(0, 0) = −

3

Rot

• The flow evolves to create a range of local Rossby equal to -1 in the anticyclo-



Fig. 1 – Local Rossby number distribution in DNS (left) and LES (right). From top to bottom, minimal Rossby : -18, -6 and -2.



nic range (pressure side), which replaces and extends the logarithmic range. Found
experimentally by Johnston et al. (J. Fluid Mech., 1972).

• Corresponds to a longitudinal alignment of the absolute vorticity −→ω + 2
−→
Ω .

• Holds also for anticyclonic mixing layers. Here, primary KH vortices are replaced by
strong longitudinal vortices (analogy with centrifugal instabilities). See 3D instability
studies and numerical simulations (DNS and LES) of Flores, Métais, Riley & Yanase
(Phys. Fluids, 1993, J. Fluid Mech., 1995).

LES MODELS IN R3

• For industrial applications in more complex geometries, spectral LES have been
adapted approximately in physical space : eddy viscosity computed thanks to a local
kinetic-energy spectrum, determined with the aid of the second-order velocity struc-
ture function (structure-function model, Métais & Lesieur, J. Fluid Mech., 1992).
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‖
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local statistical average between −→x and 6 (or 4) closest points. Extension to irregular
grids by extrapolation (Kolmogorov 2/3 law). But bad behaviour at the walls as
Smagorinsky...

• For shear flows, two excellent models which eliminate the eddy-viscous damping



Fig. 2 – Absolute vortex filaments in DNS of a rotating mixing layer (R
(i)
o = −5), courtesy O. Métais).



due to large-scale velocity gradients : selective structure-function model and filtered
structure-function model (cf Lesieur & Métais, Ann. Rev. Fluid Mech., 1996). Models
incorporated in CEA and ALSTOM codes for the development of nuclear reactors,
with velocity-temperature coupling. They are also in FLUENT.

MIXING IN INCOMPRESSIBLE COAXIAL JETS

Flows very important for aircraft turbojets to reduce the emitted noise (with low out-
side velocity). Exist in rocket engines (with high outside velocity), under two phases.
LES study of the latter case in monophasic incompressible conditions with passive-
scalar transport (Balarac, 2006). Basic upstream velocity (Michalke & Herman J.
Fluid Mech., 1982)
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perturbed by a weak white noise. LES (filtered structure-function model) at Rey-
nolds number 30000 and 50 million collocation points. Vorticity norm coloured by
tangential vorticity and four cross sections of passive-scalar distribution.





LES OF COMPRESSIBLE ROUND JET (IDEAL GAS)

• NS equations under a flux form (mass, linear momentum, total energy) are still
filtered with the “bar-filter". The problem is much simplified by introducing Favre
filters weighted by density, and analogous to Favre averaging in turbulence (Favre,
C.R.Acad.Sci., 1958)

ρf = ρ̄f̃ .

We introduce also a “macro-température", which turns out to be related to the macro-
pressure through the ideal-gases law. Eddy coefficients are not changed.

• “Free" round jet (Reynolds 36000, Mach 0.7 and 1.4). Filtered structure-function
model. Numerical code COMPRESS (with characteristics methods+ sponge zone).
Q coloré par ωx. The supersonic jet is much more focused than the subsonic (Maidi
& Lesieur, J. Turbulence, 2005), with an increased potential-core length (book by
Gatski & Bonnet, Elsevier, 2009).

• Forced jet (Maidi et al. J. Turbulence, 2006).





CONCLUSIONS

• LES have to be assessed by comparison with good laboratory experiments (such
as those done by Geneviève and collaborators) and real DNS. They are exceptional
tools to study vortex dynamics and statistics. They have revealed part of turbulence
misteries.

• Compared with DNS, LES are faster by a factor of 3 (low Reynolds) to 70 (high
Reynolds).

• LES models parameters do not need any adjustment to forcings or external actions
such as separation, ensemble rotation, heating, compressibility.

• LES give deterministic informations on kinematic and thermal fluctuations, essen-
tial for systems safety.

• The coupling of LES and unstationary RANS methods (which are in fact weakly-
resolved LES) gives rise to decisive advances for the simulation of more complex
industial systems.

• The huge increase of computer ressources might eventually suppress the need for
RANS methods.


