Can PIV bring something to turbulence understanding and modelling?

M. Stanislas Also : J.M. Foucaut, S. Coudert, J. Lin, S.Herpin...

> *Ecole Centrale de Lille Laboratoire de Mécanique de Lille*

Colloquium in honor of Pr Geneviève Comte-Bellot

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

 \Box , $R_{\theta} = 11500$; \blacktriangle , $R_{\theta} = 14800$; \bigcirc , $R_{\theta} = 20600$; ——, Van Driest profile.

UMR CNRS 8107

E.C. LILLE E.N.S.A.M.

Question 1 :

is there today a measurement technique comparable to HWA to characterize statistically turbulence?

SPIV?

Stereo PIV problems :

- limited field of view
- IW averaging
- stereo calibration
- data rate
- recording parameters
- •...

PIV Spectrum

PIV Spectrum

"PIV optimization for the study of turbulent flow using spectral analysis."

J.M. FOUCAUT, J. CARLIER, M. STANISLAS

Meas. Science & Tech. 15-6, 1046-1058, June 2004.

Mean velocity

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

Reynolds stresses

Turbulence intensity components in a flat plate turbulent boundary layer, obtained from HWA. Re_{θ} = 20 800, + Klebanoff (1955), x Erm & Joubert (1991), —DNS Spalart (1988).

Reynolds stresses

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

Reynolds stresses

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

Reynolds stresses

Turbulence intensity components in a flat plate turbulent boundary layer, obtained from HWA. $Re_{\theta}=20\ 800$, + Klebanoff (1955), —DNS Spalart (1988).

Reynolds stresses

SPIV (\diamond) $Re_{\theta} = 7800$ HWA (Carlier, 2001, $\blacksquare \bullet \bullet$) 7800 < $Re_{\theta} < 15000$ DNS (Spalart, 1988, -) $Re_{\theta} = 1400$ Van Driest, 1978 (.....)

Dissipation of TKE

$$\varepsilon = 2\nu < s'_{ij}s'_{ij} > \qquad \varepsilon = 15\nu < \left(\frac{\partial u'_1}{\partial x_1}\right)^2 > \qquad \left(\frac{\partial u'_1}{\partial x_1}\right)^2 = 2\frac{u'^2_1}{\lambda_1^2}$$

$$R_{11}(\Delta x_1) = \frac{\langle u_1'(x_1)u_1'(x_1 + \Delta x_1) \rangle}{\langle u_1'^2 \rangle}$$

$$R_{11}(\Delta x_1)|_{\Delta x \to 0} = 1 - \frac{\Delta x_1^2}{\lambda_1^2}$$

$$\lambda_1 = \sqrt{\frac{-2}{\frac{\partial R_{11}(\Delta x_1)}{\partial \Delta x_1}}}_{\Delta x_1}$$

Dissipation of TKE

"Study of the influence of the Reynolds number on the organization of wall-bounded turbulence." HERPIN S. (PhD in english) EC Lille N°95, 20 avril 2009.

> LABORATOIRE de LILLE UMR CNRS 8107

Kolmogorov scales

 $\eta = \left(\frac{\nu^3}{\epsilon}\right)^{1/4}$

Stereo Macro PIV

Stereo Macro PIV

LABORATOIRE de MECANIQUE de LILLE UMR CNRS 8107

Question 2 :

is SPIV able to bring extra quantitative information on turbulence?

Near wall BL Zoo

BLACKWELDER & KAPLAN (1976)

« Animals »

•Streaks (low & high speed)

- Ejections & sweeps
- Vortices

Questions

- Shape and size of coherent structures?
- Role of coherent structures?

. . .

- **Relations and interactions between them?**
- Contribution to turbulence production and dissipation?

Buffer layer

FIGURE 5. Profiles of longitudinal mean velocity U obtained with HWA: \blacklozenge , $R_{\theta} = 8100$; \Box , $R_{\theta} = 11500$; \blacktriangle , $R_{\theta} = 14800$; \bigcirc , $R_{\theta} = 20600$; ——, Van Driest profile.

Buffer layer

Streaks

 $F_d = f(u'(m, n, y^+), \sigma_u(y^+)) = \frac{u'(m, n, y^+)}{\sigma_u(y^+)}$

Statistical characteristics

Measured parameters :

- Frequency of occur. (N)
- Transverse angle (φ)
- Width (*W*)
- Length (L)
- Area (A_c)
- Transverse spacing (d)

Statistics :

- Mean
- RMS
- Histogram
- Median
- Variance
- Skewness & flatness

• • • •

J. Lin (2006)

Mean spanwise angle

RMS of spanwise angle

Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence. Part 1: streaks. J. Lin, J. P. Laval, J. M. Foucaut, M. Stanislas *Experiments in Fluids V: 45-6, pp 999-1013, Dec 2008.*

Low speed streaks/vortices

High speed streaks/vortices

Relations between CS

J. Lin (2006)

UMR CNRS 8107

de LILLE

Tools

Signed swirling strength

Velocity gradient tensor :

 $\partial u'_i / \partial x_j$

 $\lambda_s = \lambda_{ci} \omega_1 / \omega_1$ with λ_{ci} img. part of complex Eig. Val.

• Oseen vortex model :
$$\underline{u}(\underline{r}) - \underline{u}_0(\underline{x}_0) = \frac{\Gamma_0}{2\pi r} \left[1 - \exp \left(\frac{r}{r_0}\right)^2 \right] \cdot \underline{e}_{\theta}$$

gives :
$$\underline{u}_o, \Gamma_o, r_o$$

Tools

Radius

Scales with Kolmogorov r ~ 8 η

Scales with Kolmogorov $\omega_0 \cdot \tau \sim 1.5$

Vorticity

Vorticity equation

[1] convection[2] turb. diff.[3] production[4] stretching[5] stretching[6] production[7] viscous diff.[8] dissipation

Vorticity equation

$$0 = \overline{\omega_1' \omega_2' \overline{s}_{12}} + \overline{\omega_i' \omega_j' s_{ij}'} - \nu \left(\frac{\partial \omega_i'}{\partial x_j}\right)^2$$
[4] [5] [8]

[4] stretching [5] stretching [8] dissipation

TBL structure

FIGURE 5. Profiles of longitudinal mean velocity U obtained with HWA: \blacklozenge , $R_{\theta} = 8100$; \Box , $R_{\theta} = 11500$; \blacktriangle , $R_{\theta} = 14800$; \bigcirc , $R_{\theta} = 20600$; ——, Van Driest profile.

New scaling

$R_{\theta} = 8000 - 20\ 000$

Mean velocity

M. Stanislas, L. Perret, J.M. Foucaut Journal of Fluid Mechanics, Volume 602 (2008), pp 327-382.

New scaling

 $R_{\theta} = 8000 - 20\ 000$

Turbulence

de LILLE UMR CNRS 8107

Large scales

Multiple PIV system

Large scales

Multiple PIV system

3D Two points correlations

Large scales

$$R_{ij}(\overrightarrow{x}, \overrightarrow{dx}) = \frac{\overline{u_i(\overrightarrow{x}).u_j(\overrightarrow{x} + \overrightarrow{dx})}}{\sqrt{\overline{u_i(\overrightarrow{x})^2}}.\sqrt{\overline{u_i(\overrightarrow{x} + \overrightarrow{x})^2}}}$$

Large scales

Hot Wires rake

E.C. LILLE E.N.S.A.M.

HR SPIV

Velocity

HR SPIV

R₁₁ correlation

Summary

- Large scales are accessible with multi-SPIV
- Synchonized SPIV + HW → 4D3C?

Conclusions

• Progress of PIV in the last 10 years

Question 1 :

- SPIV turbulence statistics
- SPIV turbulence spectral content

Question 2 :

• SPIV coherent structures \implies l,v

Can PIV bring something to turbulence understanding and modelling?

Thank you

and

Congratulation to Geneviève!

