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Motion of suspended nanoparticles in a field of peri odic obstacles*

Michael Karweit
Johns Hopkins University

*  From Herrmann, John, Michael Karweit, and German Drazer, “Separation of suspended particles
in microfluidic systems by directional locking in periodic fields”, Phys. Rev. E, 79 (2009)
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50 years of fluid mechanics research
= 50 years of celebrating
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Nanoparticle manipulation and separation

Manipulation

Optical tweezers
Acoustic tweezers

Separation

Magnetic (link nanomagnets to organic molecules)
Electrophoresis
Capillary electrophoresis (separates species

based on size to charge ratio)
Size

Wedge
Periodic lattice

hard obstacles
potential wells
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(A) Origin of Fscat and Fgrad for high index sphere  displaced from TEM00 beam axis

Ashkin A PNAS 1997;94:4853-4860

©1997 by The National Academy of Sciences of the USA

Optical tweezers
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* S.M. Stavis, E.A. Strychalski and M.Gaitan. 
Nanofluidic structures with complex three-
dimensional surfaces. Nanotechnology Vol. 20, 
Issue 16 (online March 31, 2009; in print April 

22, 2009)

“ Coin sorter” separator:

An electric field E drives nanoparticles
through a multi-step wedge.
Wedge thickness restricts motion.
Green spheres are 100nm diameter.
Spherical coil is a strand of DNA.
Elongated coil is stretched DNA.
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Morton, Keith J., et al, “Hydrodynamic metamaterials: Microfabricated arrays
to steer, refract, and focus streams of biomaterials”, PNAS, 105 -21, May 27, 2008.
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LEGO Board

Plexiglas TankSteel Ball

Glycerol
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Trajectories for 3mm and 6mm spheres 

showing their directional locking in the 

[1,2] at a forcing angle of 30.0º
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3.0 mm

6.0 mm

7.1 mm

Directional Locking (Devil’s Staircase) and Separation
LEGO Experiments
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Motion of a Brownian particle traversing a periodic force field
is the Langevin equation, which in the limit of high friction is
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is the periodic force field
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≡ is the external driving force (in this case, constant)
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is a fluctuating, Gaussian Langevin force exerted by the fluid
on the particle with

aπµγ 6= is the friction constant, where a is the particle diameter,
and µ is the viscosity
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Periodic force defined from
a potential field
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Piecewise smooth potential
composed of repulsive centers
of size R with lattice spacing
L>2R
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Deterministic transport: exact solutions

Outside parabolic obstacles:  uniform flow

Inside parabolic obstacles (in dimensionless form):
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= driving force/maximum repulsive force

uc = Fmax / γ = characteristic velocity
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Dimensionless variables
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b0 = y coord when particle enters cell
bm= y coord where particle skirts parabolic region
bc= y coord where particle enters parabolic region, exits

before x = 0, and skirts region up to x = 0.
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Poincare map of the incoming 
collision parameter onto itself 
for different forcing angles

b1
*= region of irreversible collisions

b2
*= fixed point with b0=bc

b3
*= region of reversible collisions

b4
*= fixed point at bifurcation angle

θ = θb= sin-1(R/(f L))

(l = 2.5; f = 2.0; bm = √3/2; bc = 0.6;
βb = 0.5; θb = 11.54o)

Trajectory with a periodicity of
q = 9.

b0

increasing θ
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Poincare map of the incoming collision parameter b0 onto itself
after passing through q unit cells. (β = 0.55 > βb; l = 2.5;
f = 2.0; bm = √3/2; bc = 0.6; βb = 0.5; θb = 11.54o)
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Migration angle α as a function of forcing angle θ.
Critical forcing angle causing tangent bifurcation is bb

*

α
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Stochastic transport:  High Peclet number

Fokker-Planck equation for probability density
for stochastic motion of colloidal particles
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Steady-state solution P
∞
(X) of Fokker-Planck

equation on a unit cell

l = 4.0
f = 1.0
θ = 8.53o
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Average migration angles α for different forcing angles θ
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Migration angle α as a function of forcing angle θ.
(l = 4, f = 1)
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Application to microfluidic devices

Example of particle separation

Bifurcation angle is θb =sin-1 (R/(fL))

Particle size affects R = R0 + a  R0 = radius of the obstacle
a = radius of the particle

For a1 = 4µm a2 = 6µm
R0 = 5µm L = 25µm
U ≈ 10µm/s f ~ 1

Bifurcation angles are θb1 = 21.1o θb2 = 26.1o

Therefore for θb1 < θ < θb2 particles will separate with
α1 = 26.56o (lattice direction [2,1]) and α2 = 0o


