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SELF-EXCITED OSCILLATIONS IN HOT JETS:
Mode Il

Monkewitz & Sohn (1988) Monkewitz et al. (1990)



SELF-EXCITED OSCILLATIONS IN HOT JETS

Onset of absolute instabilityc&0.72
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NONLINEAR GLOBAL MODE IN HOT JETS

RO =20 Re=3750 M=0.1 S$=0.60
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Lesshafft, H., Sagaut & Terracol (2006)



Outline

Local Parallel Flow Results
Nonlinear Global Modes in Hot Jets

Sound Radiation by Global Modes in Hot Jets



LOCAL PARALLEL FLOW RESULTS



LINEAR IMPULSE RESPONSE:
ABSOLUTE/CONVECTIVE INSTABILITY

1D model equation

Green’s function or impulse response
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Briggs (1964) Bers (1983)



ABSOLUTE FREQUENCY

Convective instability : a‘bi <O

Absolute instability : a‘bi >O



GLOBAL MODE ONSET & CU/AU ONSET
Re=3750 M=0.1
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NONLINEAR CONVECTIVE VERSUS
ABSOLUTE INSTABILITY
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Couairon & Chomaz (1997)



NONLINEAR GLOBAL MODES IN HOT JETS



Spatially developing flows
In a semi-infinite domain




NONLINEAR GLOBAL FREQUENCY SELECTION
CRITERION IN PARALLEL SEMI-INFINITE FLOWS
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FREQUENCY SELECTION CRITERION
R/ =10 Re=1000 M=0.1
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SOUND RADIATION BY GLOBAL MODES IN
HOT JETS



LIGHTHILL EQUATION
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Reynolds stresses “excess density”
and viscosity fluctuations
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Source terms are known from DNS.

> individual contributions may be evaluated
by solving the Lighthill equation.



LIGHTHILL EQUATION

Possible to construct a formal solution for far field pressure,
based on free space Green'’s function:

observer
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SOLUTION TO LIGHTHILL EQUATION

Radially compact sources

A kg vk T T i T 2 77
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* Reynolds stresses and viscosity: quadrupoles

1° = Jo(a) T (k, cosV,w) cos?
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antenna quadrupole
factor

o = —k,sinv



SOLUTION TO LIGHTHILL EQUATION

Radially compact sources

e ki Lk T T T 15 ‘ x
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* excess density: arbitrary shape (formally monopole)

I7 = Jy(a) pl(k, cos?,w)
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SOUND FIELD OF GLOBAL MODE IN HOT JETS

Choose a case without vortex pairing (thick shear layer):

RO =10 Re=2000 M=0.1 S$=0.40

Lesshafft, H. & Sagaut (2009)




SOUND FIELD OF GLOBAL MODE IN HOT JETS
RO =10 Re=2000 M=0.1 S=040
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SOUND FIELD OF GLOBAL MODE IN HOT JETS

DNS : far field pressure amplitude

20

40

180

Acoustic directivity

[P(6)] = |cos 6

10

Dipole sound directivity -

What is the acoustic source mechanism?

Lesshafft, H.& Sagaut (2009)



DIRECTIVITY PATTERN OF RADIATED SOUND

Dissection of the “excess density” term (Lilley 1974):

kinetic energy: P |?I|2 monopole
enthalpy: p?f(hs — hm) dipole
dissipation: VT, T U dipole

> plug in source term distributions from DNS

Lesshafft, H. & Sagaut (2009)



DIRECTIVITY PATTERN OF RADIATED SOUND
Compare enthalpy dipole source (Lilley 1974) and DNS:

sound pressure level [dB]
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Excellent agreement:

Acoustic field of this self-excited hot jet is dominated by
enthalpy-related dipole source term.

Lesshafft, H. & Sagaut (2009)



CONCLUSIONS

Self-excited synchronised states in hot jets mamtagpreted as
nonlinear global modes which « live » on an underh\stepdy basic
flow displaying a region of absolute instability .

The wavemaker responsible for the onset of thdlasons is located
at the AU upstream boundary ( criterion for flosemi-infinite
streamwise extent).

Global modes in hot jets give rise to a dipole-kiceind field due to
the streamwise acceleration of enthalpy fluctuationthe axial
direction.

Superdirectivity features are found to be mild sigtobal mode
envelope is non-Gaussian and Mach number is low.



DIRECTIVITY PATTERN OF RADIATED SOUND
Dissection of density term (continued)

82p, 1 92 1 5 1 52
. K(x,t) — H;(x,t) — D;(x.t
gz~ @ e @) - gy i@ ) - —aa Dt
v —1 2

Monopole K(x,t) = ; plul

Dipole y—1

Hi(z,t) = ——pui(hoo — hs)
. v —1
Dipole Di(x,t) = ——(7i;u; — ¢)

Coo

Lilley ( (1974, 1996)



