The Importance of Hot-Wire Measurements in Aeroacoustics

Philip J. Morris

Boeing/A. D. Welliver Professor Department of Aerospace Engineering Penn State University

Geneviève Comte-Bellot Fifty Years of Research on Turbulence and Acoustics

Ecole Centrale de Lyon October 28-29, 2009

Outline

- A little history
- Noise source modeling
- Hot-wire measurements and analysis
- Role in high speed jet noise
- Summary

- Comte-Bellot and Mathieu (1958) "Sur la détermination expérimentale des coefficients de sensibilité aux fluctuations de vitesse et de temperature des anémomètres à fil chaud," C. R. Acad. Sci., 246(23): 3219-3222.
- Comte-Bellot & Corrsin (1966) "The use of a contraction to improve the isotropy of grid-generated turbulence," JFM, 25(4): 657-682.
- Comte-Bellot & Corrsin (1971) "Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated 'isotropic' turbulence," JFM, 48(2): 237-337.

Hot-Wire Sensitivity

en bas à gauche pour $\Theta = 3\pi i, 5^{\circ} K;$

en bas à droite pour $\Theta = 325,0^{\circ}$ K.

Comte-Bellot & Mathieu (1958)

Hot-Wire Measurements (1960's)

Issues:

- Making the wires
- Electronic multiplication
- Space-time correlations
- Minimizing wake interference effects
- Spectral analysis

Instrumentation

- Hot-wires
 - Platinum-rhodium (3.5µm x 0.4mm) soldered to the tips of jewelers' broaches
- Electronic multiplication by "quarter-square" principle

$$\overline{u_i u_j} = \frac{1}{4} \left[\overline{\left(u_i + u_j \right)^2} - \overline{\left(u_i - u_j \right)^2} \right]$$

- Time delay for cross-correlation
 - Moving head on Sangamo 284RB tape recorder
- Spectral analysis
 - Hewlett-Packard 302A (constant bandwidth) wave analyzer

Hewlett-Packard Wave Analyzer

Johns Hopkins University, Maryland

L A little history

- Noise source modeling
- Hot-wire measurements and analysis
- Role in high speed jet noise
- Summary

"Source Terms"

Lighthill (1952)

$$\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}; \quad T_{ij} = \rho u_i u_j + (p_{ij} - a_o^2 \rho \delta_{ij})$$

• Lilley (1974)
$$\frac{D}{Dt} \frac{\partial^2 (u_i u_j)}{\partial x_i \partial x_j} - 2 \frac{\partial U}{\partial x_i} \frac{\partial^2 (u_i u_j)}{\partial x_i \partial x_j}$$

Goldstein (2003)

$$T'_{ij} = -\left(\rho v''_{i} v''_{j} - \overline{\rho} \widetilde{v}''_{i} v''_{j}\right)$$

Cross Correlations

Second Order

$$R_{ij}(\mathbf{x},\mathbf{\eta},\tau) = \overline{u_i(\mathbf{x},t)u_j(\mathbf{x}+\mathbf{\eta},t+\tau)}$$

• Fourth-Order (I) $P(\mathbf{x}, \mathbf{n}, \tau) = \overline{\mu \mu} (\mathbf{x}, t) \mu \mu (\mathbf{x} + \mathbf{n}, t + \tau)$

$$R_{ijkl}(\mathbf{x}, \mathbf{\eta}, \tau) = u_i u_j(\mathbf{x}, t) u_k u_l(\mathbf{x} + \mathbf{\eta}, t + \tau)$$

$$r_{ijkl}(\mathbf{x}, \mathbf{\eta}, \tau) = \frac{K_{ijkl}(\mathbf{x}, \mathbf{\eta}, \tau)}{\sqrt{\left(\overline{u_i u_j}\right)^2 (\mathbf{x}) \left(\overline{u_k u_l}\right)^2 (\mathbf{x} + \mathbf{\eta})}}$$

Fourth-Order (II)

$$C_{ijkl}(\mathbf{x},\mathbf{\eta},\tau) = \left(u_i u_j - \overline{u_i u_j}\right)(\mathbf{x},t) \left(u_k u_l - \overline{u_k u_l}\right)(\mathbf{x}+\mathbf{\eta},t+\tau)$$

$$c_{ijkl}\left(\mathbf{x},\mathbf{\eta},\tau\right) = \frac{C_{ijkl}\left(\mathbf{x},\mathbf{\eta},\tau\right)}{\sqrt{\left(u_{i}u_{j}-\overline{u_{i}u_{j}}\right)^{2}}\left(\mathbf{x}\right)\left(\overline{u_{k}u_{l}-\overline{u_{k}u_{l}}}\right)^{2}}\left(\mathbf{x}+\mathbf{\eta}\right)} \quad \text{PENNSTATE}$$

2nd and 4th Order Statistics

 $i = j = k = l = \alpha$

 $r_{\alpha\alpha\alpha\alpha}(\mathbf{x},\mathbf{0},0) = \overline{u_{\alpha}^{4}}(\mathbf{x}) / \left[\overline{u_{\alpha}^{2}}(\mathbf{x})\right]^{2} = T_{\alpha}(\mathbf{x})$: Flatness factor

$$c_{\alpha\alpha\alpha\alpha}(\mathbf{x},\mathbf{\eta},\tau) = \frac{r_{\alpha\alpha\alpha\alpha}(\mathbf{x},\mathbf{\eta},\tau) - 1}{\sqrt{\left[T_{\alpha}(\mathbf{x}) - 1\right]\left[T_{\alpha}(\mathbf{x}+\mathbf{\eta}) - 1\right]}}$$

Quasi-normal approximation

$$R_{ijkl} = R_{ik}R_{jl} + R_{il}R_{jk} + R_{ij}R_{kl}$$

Lighthill (1993)

$$c_{\alpha\alpha\alpha\alpha}(\mathbf{x},\mathbf{\eta},\tau) = r_{\alpha\alpha}^{2}(\mathbf{x},\mathbf{\eta},\tau)$$
 Eqn. (11)

$$r_{\alpha\alpha\alpha\alpha} = 1 + (T_{\alpha}(\mathbf{x}) - 1) r_{\alpha\alpha}^{2}$$

Cross Spectral Density and Cross Coherence

Cross spectral density

$$S_{ijkl}(\mathbf{x}, \mathbf{\eta}, \boldsymbol{\omega}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} C_{ijkl}(\mathbf{x}, \mathbf{\eta}, \tau) e^{i\boldsymbol{\omega}\tau} d\tau$$
$$C_{ijkl}(\mathbf{x}, \mathbf{\eta}, \tau) = \int_{-\infty}^{\infty} S_{ijkl}(\mathbf{x}, \mathbf{\eta}, \boldsymbol{\omega}) e^{-i\boldsymbol{\omega}\tau} d\tau$$

 $-\infty$

Complex cross coherence

$$s_{ijkl}(\mathbf{x},\mathbf{\eta},\boldsymbol{\omega}) = \frac{S_{ijkl}(\mathbf{x},\mathbf{\eta},\boldsymbol{\omega})}{\sqrt{S_{ijkl}^{2}(\mathbf{x},\boldsymbol{\omega})S_{ijkl}^{2}(\mathbf{x}+\mathbf{\eta},\boldsymbol{\omega})}}$$

Experimental Facility

- Nominal exit velocity: 285 ft/sec
- Jet exit diameter: 2 inches

Cross Correlation Coefficients

 $x / D_i = 5, r / D_i = 0.5$

Spatial Cross Correlation

$$x / D_j = 5, r / D_j = 0.5$$

Complex Cross Coherence: Phase

$$x / D_j = 5, r / D_j = 0.5$$

 $\frac{u_c(St)}{U_i} = \frac{2\pi St}{\left| d\phi / d\xi \right|}$

Phase Velocity: Frequency Dependence

$$x / D_j = 5, r / D_j = 0.5$$

Complex Cross Coherence: Amplitude

$$x / D_j = 5, r / D_j = 0.5$$

Radial Variation: Convection Velocity

 $x / D_{j} = 5$

Flatness Factor

 $x / D_i = 5$

PENNSIAIE

Spatial Cross Correlations

$$x / D_j = 5, r / D_j = 0.0$$

Length Scales

$$L = k^{3/2} / \varepsilon$$

Length scale on lip line:

•Larger than overall length scale

- •Less than length scale for second order fluctuations at low frequencies
- •Equal to length scale for fourth order fluctuations at low frequencies

High Speed Jet Noise Models

Doty & McLaughlin (2005)

Broadband Shock-Associated Noise

Problem: Predict the component of noise due to presence of shocks and expansions contained in supersonic jets operating off-design Only know:

Need to know:

Far-field spectral density of fluctuating pressure

Present Approach

- Equations are separated into a linear operator (the linearized Euler equations: LEE) and interaction terms (sources)
- Solution for the far field pressure written in terms of the vector Green's function for the LEE
- Pressure autocorrelation and spectral density are obtained
- Model introduced for turbulence statistics
- Shock cell represented in terms of its wavenumber content
- Expression obtained for spectral density in terms of quantities provided by a RANS CFD solution with a two-equation turbulence model

Final Prediction Formula

Model for turbulent velocity cross correlation,

$$R^{\nu}(\mathbf{y},\mathbf{\eta},\tau) = K \exp\left[-\left|\tau\right|/\tau_{s}\right] \exp\left[-\left(\xi-\overline{u}_{c}\tau\right)^{2}/l^{2}\right] \exp\left[-\left(\eta^{2}+\zeta^{2}\right)^{2}/l_{\perp}^{2}\right]$$

where, $\eta = (\xi, \eta, \zeta)$

Final formula for spectral density,

$$S(\mathbf{x},\omega) = \frac{1}{\pi\sqrt{\pi}a_{\infty}^{4}x^{2}} \int_{-\infty}^{\infty} L \int_{-\infty}^{\infty} \left\{ \frac{Kl_{\perp}^{2}}{l\tau_{s}} p_{s}(\mathbf{y}) \mathcal{P}_{s}(k_{1},y_{2},y_{3}) \exp(ik_{1}y_{1}) \right. \\ \left. \times \frac{\omega^{2}\tau_{s}^{2} \left\{ \exp\left[-l^{2}\left(k_{1}-\omega\cos\theta/a_{\infty}\right)^{2}/4-\omega^{2}l_{\perp}^{2}\sin^{2}\theta/4a_{\infty}^{2}\right] \right\}}{\left[1+\left(1-M_{c}\cos\theta+\overline{u}_{c}k_{1}/\omega\right)^{2}\omega^{2}\tau_{s}^{2}\right]} \right\} dk_{1}d\mathbf{y}$$

Rectangular Jet Operating Conditions

M_d	M_j	NPR	TTR	D_e (m)	D_{ej} (m)	f_c	β	T_j (K)	$u_j (m/s)$
1.50	1.30	2.77	1.00	0.01778	0.01693	22888	0.748	219.1	385.7
1.50	1.70	4.94	1.00	0.01778	0.01896	24499	0.800	185.8	464.5
1.50	1.30	2.77	2.20	0.01778	0.01693	33792	0.748	482.0	572.1
1.50	1.70	4.94	2.20	0.01778	0.01896	36334	0.800	408.7	688.9

Rectangular Jet $M_d = 1.5 M_j = 1.7 TTR = 1.0$

Summary

- Hot-wire measurements have played an important role in noise source modeling
- Other instrumentation clearly has a role
- Use of RANS to determine scales is problematic
- BBSAN can be predicted using an acoustic analogy and RANS

PENNSTATE

Mean Flow Similarity

Convection Velocity

$$x / D_j = 5, r / D_i = 0.5$$

Spatial Cross Correlations

$$x/D_{j} = 9, r/D_{j} = 0.5$$

Cross Correlation Coefficients

 $x / D_i = 5, r / D_i = 0.0$

Power Spectral Density

$$x / D_j = 5, r / D_j = 0.0$$

41

PENN<u>STATE</u>

.....

Dimensional Cross Correlation

$$x / D_j = 5, r / D_j = 0.0$$

Downstream Centerline Measurements

$$x / D_j = 9, r / D_j = 0.0$$

PENN<u>State</u>

Present Approach

- Based on the Euler equations in terms of the logarithm of pressure and velocity
- Variables separated into four components*
 - Long time average
 - Shock cell structure
 - Coherent turbulent fluctuations
 - Fluctuations associated with the interaction of the turbulent fluctuations with the shock cells – this is the Broadband Shock-Associated Noise (BBSAN)

*This follows Tam's general formulation

Two Cross-Wires

Cross Correlation Coefficients

 $x / D_i = 5, r / D_i = 0.5$

8

Cross Correlation Coefficients

 $x / D_i = 5, r / D_i = 0.5$

49