

New issues in LES of turbulent flows: *multiphysics and uncertainty modelling*

Pierre Sagaut

Institut Jean Le Rond d'Alembert Université Pierre et Marie Curie- Paris 6, France http://www.lmm.jussieu.fr/~sagaut

Thanks to: J.C. Jouhaud, D. Lucor, J. Meyers, M. Meldi

Ecole Centrale de Lyon October 30th, 2009

An example of complex flow

Outline

- 1. Response surface via Polynomial Chaos
- 2. Uncertainty in subgrid model calibration
- 3. Putting error/uncertainty bars on LES results

Uncertain system description

What is the space of solutions spanned by uncertain parameters?

$$f = f(t, Z; x_1, x_2, ..., x_n) \qquad \frac{df}{dt} = G(t, Z; x_1, ..., x_n)$$

• Wiener (1938) : Homogeneous Chaos Theory

• Solution with uncertain random parameter

Seudo-spectral Galerkin projection of spanned solutions

Generalized Polynomial Chaos (cont'd)

Distribution	Optimal polynomial basis		
Gaussian	Hermite		
Gamma	Laguerre		
Beta/uniform	Legendre		
Binomial	Krawtchouk		

gPC post-processing

$$\langle u(x,t) \rangle = u_0(x,t)$$

 $Var(u(x,t)) = \sum_{i=1,N} \left[u_i^2(x,t) \langle \psi_i^2 \rangle \right]$

Uncertain subgrid model calibration

(Lucor, Meyers & Sagaut, J. Fluid Mech, 2007)

Classical Smagorinsky-Lilly model

$$\mathbf{v}_{t} = C_{\infty}^{2} \Delta^{2} \left\langle 2\bar{S}_{ij}\bar{S}_{ij} \right\rangle^{1/2} \quad C_{\infty} = \frac{1}{\pi} \left(\frac{2}{3K_{0}}\right)^{3/4} \sim 0.17 - 0.18$$

• Exact Smagorinsky constant expression (Meyers & Sagaut, J. Fluid Mech, 2007)

$$C(L/\Delta, Re_L) = \frac{C_{\infty}}{\gamma} \Phi^{-3/4} \sqrt{1 - \left(\frac{\gamma\eta}{C_{\infty}\Delta}\right)^{4/3} \Phi}$$

Case-dependent parameters

$$\Phi(L/\Delta, Re_L) = \frac{4}{3} \frac{1}{(\gamma \pi L/\Delta)^{4/3}} \int_0^\infty x^{1/3} G^2(x/L) f_L(x) f_\eta(x Re_L^{-3/4}) dx$$
$$\gamma = \frac{\Delta}{\pi} \left(\frac{4}{3} \int_0^\infty x^{1/3} G^2(x) dx\right)^{3/4}$$

Decaying HIT with uncertain Cs

TKE decay

Final TKE spectrum

Cs as a stochastic variable

12

Meyers-Meneveau spectrum shape

$$E(k) = C_K \varepsilon^{2/3} k^{-5/3} (kl)^{-\beta} f_L(kL) f_\eta(k\eta)$$

$$f_{\eta}(k\eta) = \exp(-\alpha_{1}k\eta) \left(1 + \frac{\alpha_{2}(k\eta/\alpha_{4})^{\alpha_{3}}}{1 + (k\eta/\alpha_{4})^{\alpha_{3}}}\right)$$
$$f_{L}(kL) = \left(\frac{kL}{[(kL)^{p} + \alpha_{5}]^{1/p}}\right)^{5/3 + \beta + 2}$$
Uncertain parameters!

Cs as a stochastic variable

Constrained problem with

$$\int_{0}^{+\infty} x^{-5/3-\beta} C_{K} f_{L}(k\eta) f_{\eta}(k\eta Re^{-3/4}) d(k\eta) = 1$$

$$\int_{0}^{+\infty} x^{1/3-\beta} Re^{-3\beta/4} C_{K} f_{L}(k\eta Re^{3/4}) f_{\eta}(k\eta) d(k\eta) = 1/2$$

$$\int_{0}^{+\infty} x^{7/3-\beta} Re^{-3\beta/4} C_{K} f_{L}(k\eta Re^{3/4}) f_{\eta}(k\eta) d(k\eta) = -\frac{7S_{3}}{12\sqrt{15}}$$

Pdf of Cs

 $Re_{\lambda} = 732$

Stochastic Cs analysis

Cs statistical moments	$\Delta/\eta = 10$	$\Delta/\eta = 30$	$\Delta/\eta = 50$	$\Delta/\eta = 100$	$\Delta/\eta = 200$	$\Delta/\eta = 400$
mean value	0.083158	0.12272	0.13368	0.13905	0.14495	0.15761
variance	$5.21e^{-4}$	$3.33e^{-4}$	$3.77e^{-4}$	$2.79e^{-4}$	$1.88e^{-4}$	$1e^{-4}$
partial variances						
α_2	$5.19e^{-4}$	$1.06e^{-4}$	$2.64e^{-5}$	$8.93e^{-6}$	$4.55e^{-6}$	$1.42e^{-6}$
α_3	$1.39e^{-6}$	$1.95e^{-4}$	$2.94e^{-4}$	$2.26e^{-4}$	$1.56e^{-4}$	$8.69e^{-5}$
α_4	$8.79e^{-34}$	$1.76e^{-33}$	$2.19e^{-33}$	$2.51e^{-33}$	$2.84e^{-33}$	$2.77e^{-33}$
$\alpha_2 \alpha_3$	$4.71e^{-7}$	$3.21e^{-5}$	$5.71e^{-5}$	$4.41e^{-5}$	$2.74e^{-5}$	$1.2e^{-5}$
$\alpha_2 \alpha_4$	$3.96e^{-35}$	$1.14e^{-35}$	$4.19e^{-36}$	$6.32e^{-37}$	$5.35e^{-37}$	$3.3e^{-36}$
$\alpha_3 \alpha_4$	$5.85e^{-37}$	$1.27e^{-35}$	$4.11e^{-35}$	$5.55e^{-36}$	$2.38e^{-35}$	$1.56e^{-35}$
deterministic mean value	0.07857	0.1252	0.14042	0.1475	0.15173	0.16211

Break: uncertain grid turbulence decay

$$\begin{array}{rcl} A & \propto & 1 \\ L(t) & \propto & t^{2/(3+s)} \\ K(t) & \propto & t^{-2(1+s)/(3+s)} \\ Re(t) & \propto & t^{(1-s)/(3+s)} \end{array}$$

Break: uncertain grid turbulence decay

	s = 1	s = 2	s = 3	s = 4	$s = +\infty$
$\mathcal{K}(t)$	$\propto t^{-1}$	$\propto t^{-6/5}$	$\propto t^{-4/3}$	$\propto t^{-10/7}$	$\propto t^{-2}$
$\varepsilon(t)$	$\propto t^{-2}$	$\propto t^{-11/5}$	$\propto t^{-7/3}$	$\propto t^{-17/7}$	$\propto t^{-3}$
L(t)	$\propto t^{1/2}$	$\propto t^{2/5}$	$\propto t^{1/3}$	$\propto t^{2/7}$	Cste
$Re_L(t)$	Cste	$\propto t^{-1/5}$	$\propto t^{-1/3}$	$\propto t^{-3/7}$	$\propto t^{-1}$

Saturation effect (bounded physical domain):

$$\begin{array}{cccc} A & \propto & 1 \\ L(t) & \propto & 1 \\ \mathcal{K}(t) & \propto & t^{-2} \\ Re(t) & \propto & t^{-1} \end{array}$$

EDQNM/gPC analysis (Saffman spectrum)

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Break: uncertain grid turbulence decay

Isotropic turbulence decay exponent:

$$n = \begin{cases} -\frac{(s+1)}{2} & Re \ll 1\\ -2\frac{(s+1)}{(s+3)} & Re \gg 1 \end{cases}, \quad (1 \le s \le 4)$$

Corresponding parameter tuning (k- ε model):

$$C_{\varepsilon_2} = \begin{cases} 1 + \frac{2}{(s+1)} & Re \ll 1\\ 1 + \frac{(s+3)}{2(s+1)} & Re \gg 1 \end{cases}, \quad (1 \le s \le 4)$$

Putting error bars on LES data

• In complex configurations:

• optimal values of subgrid models are not known

- best tuning of artificial viscosity parameter not known
- ➡ these two parameters are considered as uncertain parameters

⇒ comparison with experimental data should account for possible numerical result variability

Response surface via Kriging

- Optimal linear unbiaised statistical predictor
- Based on sampling points (1 sample = 1 usual simulation)
- Several variants have been developed (cokriging, ...)
- Kriging methods also provide an estimation of the interpolation error
- Sampling points can be generated dynamically to minimize the interpolation error (adaptive refinement)

Basic Kriging Method

a priori covariogram function: $Cov(y,z) = \sigma^2 \exp(-|y-z|)$

23

Mean flow predicted by LES

24

PARISUNIVERSITAS

SCIENTIFIQUE

Mean temperature field

Defining the best LES solution

Which solution is the best LES solution ?

If some experimental data are available:
Some error functions can be defined
Solutions with the lowest error norm can be identified
⇒ « clean » definition of the best LES solution(s)

• « best » LES a priori depends on the error measure

Kriging-based response surface of error at X/D=8

Error map

L₁ norm

 L_2 norm

Error map (cont'd)

Kriging-based response surface of global error at both locations X/D=8 and X/D=1

 L_1 norm

 L_2 norm

Best LES solution

29

PARISUNIVERSITAS

⁰ ه

Best LES solution

0.2

0.1

0.3

Χ

0.4

0.5

- Validation/certification not trivial !
- Uncertainties are ubiquitious in almost all application fields
- Mathematical tools do exist !
- Computational ressources now available
- ⇔Next step in modelling !

