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Motivation (1)

Shock-turbulence interaction is central to high-speed propulsion systems
yet its current models are quite inaccurate

Examples: scramjet engine; supersonic inlets
• Control of shockwave-turbulent boundary interactions in supersonic aircraft inlets

(bleed system) causes a 15-20% performance penalty;
• Stability of the shock-train system limits the operability of a scramjet engine

Shock-Boundary layer interaction Scramjet engine
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Motivation (2)

• Interactions between strong shocks and interfaces lead to flow instabilities, which drive
turbulent mixing

• Accurate prediction of shock-induced turbulent mixing remains an open problem
• Examples: Rayleigh-Taylor mixing, Richtmyer-Meshkov mixing
• Applications: inertial confinement fusion, supernova explosions

Inertial confinement fusion by shock-induced
implosion of a deuterium/tritium capsule

Source: lasers.llnl.gov/programs/nic/icf/

Source: flash.uchicago.edu

Supernova explosion
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• Simulation of broadband turbulence requires numerical methods with minimum numerical
dissipation

• Capture the widest range of resolvable scales on a given grid
• Spectral methods; high-order methods

• Simulation of flows with shocks requires numerical dissipation for shock capturing

• The key challenge:

        How to design a numerical method that handles these conflicting requirements?

The key challenge:



5

• Broad range of high-resolution algorithms
•   High-order WENO (7th order)
•   High-order compact differences with selective artificial viscosity (STAN; STAN-I)
           Cook & Cabot, 2007, and modified Kawai & Lele, 2008;
           Mani, Larsson & Moin, 2009, Bhagatwala & Lele, 2009
•   Hybrid (8th order central differening + WENO) Larsson & Gustavsson, 2008
•   High order central difference + Wavelet sensor based artificial dissipation
          ADPDIS3D (Yee & Sjogreen, 2007)

• Broad range of benchmark test cases
• Noh problem (strong implosion)
• Shu-Osher problem
• Interaction of vorticity/Entropy wave with normal shock
• Taylor-Green problem
• Compressible isotropic turbulence

Details in paper by Johnsen et al. to appear in J. Comput. Phys, 2009

Assessment of Numerical Algorithms:
(for shock-turbulence interaction simulations)
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Algorithm comparison

Numerical Algorithm Assessment:
 Compressible Isotropic Turbulence (with eddy shocklets)
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Numerical Algorithm Assessment:
 Compressible Isotropic Turbulence (with eddy shocklets)

Algorithm comparison
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Numerical Algorithm Assessment:
 Effective Bandwidth

• Use compensated spectra E(k)/Eexact (k)
      to define effective bandwidth

Algorithm comparison
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Canonical shock/turbulence interaction

• Isotropic turbulence passing through a normal shock in a perfect gas
• Isolates the core interaction between turbulence and shock

Eddies visualized by Q-
criterion, colored by vorticity.
Shock visualized by dilatation
contour.
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Some past work on canonical shock/turbulence interaction

• Theoretical
• Ribner (NACA 1953, NACA 1954, AIAA J 1987), Moore (NACA 1954):

linear interaction analysis including Rankine-Hugoniot relations
• Lele (PhysFl 1992):

turbulent shock relations using RDT, predicted modified mean shock jumps
• Experimental: wind tunnels

• Barre et al (AIAA J 1996):
grid turbulence passing through a Mach 3 shock, hot-wire and LDV measurements

• Experimental: shock tubes
• Hesselink & Sturtevant (JFM 1988):

found “peaked” and “rounded” instantaneous pressure profiles in random medium
• Computational (DNS):

• Lee et al (JFM 1993):
resolved viscous shock structure, M = 1.2, Reλ = 20, Mt = 0.1, found modified
instantaneous profiles of dilatation

• Lee et al (JFM 1997):
captured shock up to M = 3, found good agreement with Ribner’s linear theory

• Mahesh et al (JFM 1997):
influence of entropy fluctuations

• Ducros et al (2000): LES; Jamme et al (FTC 2002)
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Post-shock Kolmogorov length scale: Scaling Estimate

• From the (incompressible) definition of the Kolmogorov length scale

where we used

• Across the shock, assume that the vorticity changes as the density ratio; gives

in terms of Rankine-Hugoniot relations

Post-shock Kolmogorov Scale determines
the resolution requirement for turbulence
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• Past studies:  Reλ = 20 on 129*642 grids (Lee et al, 1993, 1997)
• Present:  Reλ = 40 on 1040*3842 grids;  Reλ = 60 on 1675*5122 grids

• Return to local (small-scale) isotropy in present DNS, but not in past work
• Vorticity redistribution is a nonlinear process

• Past work did not fully capture this due to lack of grid resolution
• Has led to persistent misunderstanding of vorticity evolution at shock

Difference compared to previous studies

Lee et al (1997)
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Anisotropic post-shock turbulence

Eddies visualized by Q-criterion, colored by angle between vorticity vector and x-axis.
Shock visualized by dilatation contour.
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• Amplification of kinetic energy agrees very
well with Ribner’s linear theory (and Lee97)
• Kinetic energy must be governed

largely by linear processes
• DNS (and experiment) yields much larger

anisotropy
• Nonlinear redistribution processes must

be important

Reynolds stresses: amplification across the shock vs Mach number
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• Shock no longer a simple object
• Qualitative agreement with Zank et al (PhysFl 2002)

Complex shock structure in nonlinear regime
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Extracting “extreme” interaction events

• Define shock-dilatation as

• Study instantaneous profiles through the shock at extreme values of shock-
dilatation:
• “Strong” interactions: most compressive events
• “Weak” interactions: least compressive events
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Unsteady shock motion

Shock visualized by dilatation contour,
colored by streamwise momentum.
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“Strong” events: over-compression and post-shock expansion

High MtLow Mt

Density

Dilatation
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“Weak” events: smooth profiles in nonlinear (high Mt) regime

High MtLow Mt

Velocity

Dilatation
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Hesselink & Sturtevant (JFM 1988)

• “Peaked” and “rounded” pressure traces for shock propagating through a
random mixture of He and R12 at M = 1.007 - 1.1
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Summary -- what we’ve learned so far

• Direct numerical simulations of canonical shock/turbulence interaction that truly
resolves the post-shock turbulence

• Disagreements with linear theory and past computations:
• Vorticity components return to isotropy
• Qualitatively different, and much larger, stress anisotropy

• Agreement with linear theory and past computations:
• Kinetic energy amplification --  governed by linear processes

• Instantaneous shock/turbulence interaction dynamics:
• Shock weakens (to the point of disappearing!) locally -- smooth profiles

through shock in nonlinear regime
• “Strong” shock events with up to twice the average compression
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A more complex flow with shock-turbulence interaction

Expt. By Santiago & Dutton, 1997, JPP; Ben Yakar et al. 2006, PoF

LES by Kawai & Lele, AIAA 2009-3995
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JISC with Turbulent Crossflow
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Time-Averaged Flowfields

Mach number

Turbulent kinetic energy Jet fluid (passive scalar)

3.70.0 1.85
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Animation

Topview at y/D=1
Sideview at z/D=0

Norm of density gradient Jet fluid (scalar)
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3D Flow Structures
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Closure …

• Revisit to canonical shock-turbulence interaction (DNS)

• Other studies (DNS/LES) of shock-turbulent BL interaction, compression
ramp..

• More complex engineering flows involving injection, mixing and combustion in
high-speed flows

These are good laboratories for improving our understanding of turbulence
behavior, its engineering modeling (RANS & LES), and for studies of
aeroacoustics and flow control.

What will the next 50 years bring ?

      Exciting science and collaborative research for sure. Happy 50 ! And Thanks.
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Additional slides
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Summary -- new and unanticipated questions

• Effect of turbulent Mach number on amplification of turbulence -- viscous
effects make conclusions difficult
• New Reλ = 60 runs should clarify this

• Why is peak shock-motion at larger length scales than peak turbulence
energy?
• Theory suggests shock-motion “enslaved” to incoming turbulence
• Need runs with higher k0 to allow for deeper analysis

• What is the relation between shock-motion and Reynolds number? Or is the
shock-motion dependent on some unknown parameter that was not matched?

• What is the turbulence structure behind the shock -- statistics show elongation
in streamwise direction, but what does it look like?
• More, and more intelligent, visualization needed
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Unsteady shock motion

• Interesting finding:  spectrum of shock motion seems to scale with ratio of
turbulent pressure fluctuation to shock-induced pressure jump: Mt

2 / (M2-1)

• Puzzle #1:  turbulence has peak energy at k=4, but shock motion has peak at
k=1-2

• Puzzle #2:  thickness of averaged shock increases with Re
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• Turbulence modifies the Rankine-Hugoniot relations (Lele, PhysFl 1992):

Mean profiles
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Numerical Algorithm Assessment: Taylor-Green Problem

• Inviscid problem with strong vortex-stretching
          Kinetic energy conservation
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Numerical Algorithm Assessment: Taylor-Green Problem

• Kinetic Energy Spectrum

Algorithm comparisonGrid Convergence
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Direct numerical simulation (DNS)

• Solve the Navier-Stokes equations without modeling
• Numerical challenges:

• Shock-capturing requires numerical dissipation to smear shock
• Numerical dissipation kills turbulence

Temperature varianceNumerically captured shock


