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Motivation (1)
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Shock-turbulence interaction is central to high-speed propulsion systems
yet its current models are quite inaccurate
Examples: scramjet engine; supersonic inlets

e  Control of shockwave-turbulent boundary interactions in supersonic aircraft inlets
(bleed system) causes a 15-20% performance penalty;

o  Stability of the shock-train system limits the operability of a scramjet engine
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Motivation (2)
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e Interactions between strong shocks and interfaces lead to flow instabilities, which drive
turbulent mixing
* Accurate prediction of shock-induced turbulent mixing remains an open problem
« Examples: Rayleigh-Taylor mixing, Richtmyer-Meshkov mixing
* Applications: inertial confinement fusion, supernova explosions
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The key challenge:

e ———————— _—
e Simulation of broadband turbulence requires numerical methods with minimum numerical
dissipation
e Capture the widest range of resolvable scales on a given grid
e Spectral methods; high-order methods

e Simulation of flows with shocks requires numerical dissipation for shock capturing

 The key challenge:

How to design a numerical method that handles these conflicting requirements?



Assessment of Numerical Algorithms:

(for shock-turbulence interaction simulations)
e ——— -

e Broad range of high-resolution algorithms

e  High-order WENO (7th order)

e High-order compact differences with selective artificial viscosity (STAN; STAN-I)
Cook & Cabot, 2007, and modified Kawai & Lele, 2008;
Mani, Larsson & Moin, 2009, Bhagatwala & Lele, 2009

e  Hybrid (8th order central differening + WENO) Larsson & Gustavsson, 2008

* High order central difference + Wavelet sensor based artificial dissipation
ADPDIS3D (Yee & Sjogreen, 2007)

* Broad range of benchmark test cases
e Noh problem (strong implosion)
e Shu-Osher problem
e Interaction of vorticity/Entropy wave with normal shock
e Taylor-Green problem
e Compressible isotropic turbulence

Details in paper by Johnsen et al. to appear in J. Comput. Phys, 2009




Numerical Algorithm Assessment:

Compressible Isotropic Turbulence (with eddy shocklets)
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Figure 11: Temporal evolution of the variance of different quantities for the isotropic turbulence problem on 643 grid. The
reference is the solution on a 256° grid spectrally filtered to a 64% grid (circles).
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Code Color Line style
Reference black varying

Stan red dashed

Stan-I magenta  dashed (thin)
Hybrid blue solid

WENO cyan solid (thin)
ADPDIS3D  green dashed-dotted
Shock Fit black dotted

Table 2: Color and line legend for the plots.




Numerical Algorithm Assessment:

Compressible Isotropic Turbulence (with eddy shocklets) '
e ——————————————————————— s =
Algorithm comparison

Code Color Line style
Reference black varying

Stan red dashed
Stan-I magenta  dashed (thin)
Hybrid blue solid

WENO cyan solid (thin)

ADPDIS3D  green dashed-dotted
Shock Fit black dotted

k k Table 2: Color and line legend for the plots.

(c) Dilatation. (d) Density.

Figure 13: Spectra at t/7 = 4 for the isotropic turbulence problem on a 643 grid. The reference is the solution on a 256° grid. 7




Numerical Algorithm Assessment:
Effective Bandwidth
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Code Color Line style
Reference black varying
» Use compensated spectra E(k)/E,, . (K) S vl duhed
. . . Stan-I magenta  dashed (thin)
to define effective bandwidth B b soid
WENO cyan solid (thin)

ADPDIS3D  green dashed-dotted
Shock Fit black dotted

Algorithm comparison

Table 2: Color and line legend for the plots.
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(a) Taylor-Green vortex at ¢ = 5. (b) Isotropic turbulence at ¢/7 = 4.

Figure 15: Compensated spectra on a 64° grid. As a reminder, Stan is dashed red, Stan-I is dashed magenta (thin), Hybrid is
solid blue, WENO is solid cyan (thin), and ADPDIS3D is dash-dotted green.




Canonical shock/turbulence interaction

e |sotropic turbulence passing through a normal shock in a perfect gas
* |solates the core interaction between turbulence and shock
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Some past work on canonical shock/turbulence interaction

e — T ——— ——
e Theoretical

 Ribner (NACA 1953, NACA 1954, AIAA J 1987), Moore (NACA 1954).
linear interaction analysis including Rankine-Hugoniot relations

e Lele (PhysFl 1992).
turbulent shock relations using RDT, predicted modified mean shock jumps

e Experimental: wind tunnels

e Barre et al (AIAA J 1996):
grid turbulence passing through a Mach 3 shock, hot-wire and LDV measurements

e Experimental: shock tubes

e Hesselink & Sturtevant (JFM 1988):
found “peaked” and “rounded” instantaneous pressure profiles in random medium

e Computational (DNS):

e Leeetal (JFM 1993):
resolved viscous shock structure, M = 1.2, Re, =20, M, = 0.1, found modified
instantaneous profiles of dilatation

e Leeetal (JFM 1997):
captured shock up to M = 3, found good agreement with Ribner’s linear theory

 Mahesh et al (JFM 1997):
influence of entropy fluctuations

e Ducros et al (2000): LES; Jamme et al (FTC 2002)




Post-shock Kolmogorov length scale: Scaling Estimate
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 From the (incompressible) definition of the Kolmogorov length scale
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Difference compared to previous studies
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« Past studies: Re, =20 on 129*642 grids (Lee et al, 1993, 1997)
* Present: Re, =40 on 1040*3842 grids; Re, =60 on 1675*5122 grids

e Return to local (small-scale) isotropy in present DNS, but not in past work
» Vorticity redistribution is a nonlinear process

« Past work did not fully capture this due to lack of grid resolution

* Has led to persistent misunderstanding of vorticity evolution at shock

Vorticity variances at (M,Mt)=(1 .87,0.22) Lee et al (1 997)
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Anisotropic post-shock turbulence
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Reynolds stresses: amplification across the shock vs Mach number
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Amplification of kinetic energy at Mt=0.22 Amplification of u,u, at Mt=0.22
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Complex shock structure in nonlinear regime

X-momentum at (I\/I,Mt)=(1 .50,0.38)

e Shock no longer a simple object
e Qualitative agreement with Zank et al (PhysFI 2002)




Extracting “extreme” interaction events
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» Define shock-dilatation as  Osnock (Y, 2) = min(z, y, 2)

e Study instantaneous profiles through the shock at extreme values of shock-
dilatation:

o “Strong” interactions: most compressive events
 “Weak” interactions: least compressive events

PDF of shock dilatation
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Unsteady shock motion
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Mean velocity at (M,Mt)=(1 .50,0.22)
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“Strong” events: over-compression and post-shock expansion
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“Weak” events: smooth profiles in nonlinear (high M,) regime
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Hesselink & Sturtevant (JFM 1988)
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 “Peaked” and “rounded” pressure traces for shock propagating through a
random mixture of He and R12 at M = 1.007 - 1.1




Summary -- what we've learned so far

?— -

Direct numerical simulations of canonical shock/turbulence interaction that truly
resolves the post-shock turbulence

Disagreements with linear theory and past computations:

e Vorticity components return to isotropy

e Qualitatively different, and much larger, stress anisotropy
Agreement with linear theory and past computations:

» Kinetic energy amplification -- governed by linear processes

Instantaneous shock/turbulence interaction dynamics:

o Shock weakens (to the point of disappearing!) locally -- smooth profiles
through shock in nonlinear regime

o “Strong” shock events with up to twice the average compression




A more complex flow with shock-turbulence interaction
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JISC with Turbulent Crossflow
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Time-Averaged Flowfields
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Animation
Norm of density gradient

Sideview at z/D=0
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Jet fluid (scalar)

Topview at y/D=1
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Closure ...
 ———————————————— -

» Reuvisit to canonical shock-turbulence interaction (DNS)

e Other studies (DNS/LES) of shock-turbulent BL interaction, compression
ramp..

 More complex engineering flows involving injection, mixing and combustion in
high-speed flows

These are good laboratories for improving our understanding of turbulence
behavior, its engineering modeling (RANS & LES), and for studies of
aeroacoustics and flow control.

What will the next 50 years bring ?

Exciting science and collaborative research for sure. Happy 50 ! And Thanks.




Additional slides

28



Summary -- new and unanticipated questions

e ————————————————

Effect of turbulent Mach number on amplification of turbulence -- viscous
effects make conclusions difficult

* New Re, =60 runs should clarify this

Why is peak shock-motion at larger length scales than peak turbulence
energy?

e Theory suggests shock-motion “enslaved” to incoming turbulence
* Need runs with higher k, to allow for deeper analysis

What is the relation between shock-motion and Reynolds number? Or is the
shock-motion dependent on some unknown parameter that was not matched?

What is the turbulence structure behind the shock -- statistics show elongation
in streamwise direction, but what does it look like?

 More, and more intelligent, visualization needed




Unsteady shock motion
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Interesting finding: spectrum of shock motion seems to scale with ratio of
turbulent pressure fluctuation to shock-induced pressure jump: M2 / (M?2-1)

Puzzle #1: turbulence has peak energy at k=4, but shock motion has peak at
k=1-2

 Puzzle #2: thickness of averaged shock increases with Re

Spectrum of shocklocation X

Thickness of averaged shock
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Mean profiles
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e Turbulence modifies the Rankine-Hugoniot relations (Lele, PhysFI 1992):
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Numerical Algorithm Assessment: Taylor-Green Problem ¢
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e |nviscid problem with strong vortex-stretching
Kinetic energy conservation
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Figure 1: Mean quantities for the Taylor-Green vortex on a 64° grid. The zero subscript denotes the initial value.




Numerical Algorithm Assessment: Taylor-Green Problem

* Kinetic Energy Spectrum
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Figure 2: Velocity spectra for the Taylor-Green vortex on 64 grid at ¢ = 5.




Direct numerical simulation (DNS)
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e Solve the Navier-Stokes equations without modeling

 Numerical challenges:
e Shock-capturing requires numerical dissipation to smear shock
* Numerical dissipation kills turbulence

Numerically captured shock Temperature variance
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