Formation of Columnar Structure in Rotating Turbulence

Y. Kaneda K. Yoshimatsu, M. Midorikawa, Nagoya University

Colloquium in honor of Geneviève Comte-Bellot Fifty Years of Research on Turbulence and Acoustics Ecole Centrale de Lyon, 29th & 30th October, 2009

What is responsible for the formation?

Taylor-Proudman theorem

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} = -\frac{1}{\rho}\boldsymbol{\nabla}p - 2\boldsymbol{\Omega} \times \boldsymbol{u} + \nu \Delta \boldsymbol{u}$$
$$\nabla \times \boldsymbol{\downarrow}$$
$$2\boldsymbol{\Omega}\frac{\partial}{\partial z}\boldsymbol{u} = \frac{\partial}{\partial t}(\nabla \times \boldsymbol{u}) + \nabla \times (\boldsymbol{u} \cdot \nabla \boldsymbol{u}) - \nu \nabla^2 (\nabla \times \boldsymbol{u})$$
In the limit of large $\boldsymbol{\Omega} \rightarrow \frac{\partial}{\partial z}\boldsymbol{u} = 0$

The steady flow is two-dimensional, i.e. no variation in the direction parallel to the rotation axis (// z-zxis)

Two Key Elements of the Dynamics

Nonlinear dynamics due to the convection of fluid

... selective energy transfer/decay in spectral space

Linear dynamics due to the Coriolis force ... anisotropic linear effects due to inertial waves

Nonlinear (advection and Coriolis terms)

The nonlinear energy transfer under the existence of the Coriolis force gives rise the concentration of energy close to the plane $k_3=0$

Claude Cambon Eur. J. Mech. B - Fluids 20 (2001) 489-510

- Cambon and Jacquin (J. Fluid Mech., 202, 295-317)
- Waleffe (1993 Phys. Fluids A 5)
- Cambon, Mansour and Godeferd (1997 J.Fluid Mech. 337, 303-332)
- Bellet, Godefeld, Scott and Cambon (2006 J.Fluid Mech. 562, 83-121)

4

Linear Davidson et al: inhomogeneous turbulence $Ro \approx 1$

isolated compact eddy

The axial components of its linear impulse and angular momentum disperse only along the rotation axis.

 C_g Group velocity of inertial wave

- Davidson, Staplehurst and Dalziel (2006 J.Fluid Mech. 557, 135-144) (inhomogeneous rotating turbulence)
- Staplehurst, Davidson and Dalziel (2008 J. Fluid Mech. 598, 81-105) (homogenous rotating turbulence)

The role of Nonlinear dynamics & Linear dynamics=Coriolis force

• governing equations

CASE 1

"Formation of Columnar Structure"

"Elongation" along ...

Quantification ? -- Length Scale

The answer depends on the definition of the length scale

Case 1

Dynamics = Linear & Inviscid at t=0, a periodic array of compact eddies

Initially Compact Gaussian-like eddy in a periodic box

Linear — Gaussian-like eddy in a periodic box

Linear – Gaussian-like eddy in a periodic box

Quantification of the elongation:

Integral length scales in the β -th direction

$$L^{\beta}(\zeta) = \frac{\int_{0}^{\pi} \langle \bar{\zeta}(\boldsymbol{x}, t) \bar{\zeta}(\boldsymbol{x} + r\boldsymbol{e}_{\beta}, t) \rangle dr}{\langle \bar{\zeta}(\boldsymbol{x}, t)^{2} \rangle}$$

$$\bar{\zeta} = \zeta(\boldsymbol{x},t) - \langle \zeta(\boldsymbol{x},t) \rangle$$

spatial average

 $\zeta = \omega_i, u_i$

second-order moment one-time two-point correlation

(Cambon and Jacquin (1989), Bartello, Metais and Lesieur(1994))

Linear: integral scale of \mathcal{O}_1 (vorticity component perpendicular to Ω)

The integral scale in the axial direction does not grow in contrast to the intuitive impression obtained from the visualization.

Integral length scales in the β direction

$$L^{\beta}(\zeta) = \frac{\int_{0}^{\pi} \langle \bar{\zeta}(\boldsymbol{x},t) \bar{\zeta}(\boldsymbol{x}+r\boldsymbol{e}_{\beta},t) \rangle dr}{\langle \bar{\zeta}(\boldsymbol{x},t)^{2} \rangle}$$

dose not grow in time within the linear dynamics, as far as ζ is linear in the velocity or vorticity

$$\zeta = \omega_1, \ \omega^2$$

 $L^{\beta}(\omega_{1})$: second-order moment $L^{\beta}(\omega^{2})$: fourth-order moment

Linear integral scale of ω^2

- The difference is due to the difference in the definitions of the length scale: L^β(ω₁) L^β(ω²)
- \rightarrow the importance of
 - 1) the specification of the length scale
 - 2) the proper choice of the definition of the length scale for quantitative discussion of the elongation.

CASE 2

Freely decaying homogeneous rotating turbulence

Dynamics: Navier Stokes Dynamics with Coriolis force

at t=0: Homogeneous developed turbulence,

Case 2: Homogeneous rotating turbulence

• governing equations

$$\begin{cases} \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} = -\frac{1}{\rho}\boldsymbol{\nabla}p - 2\boldsymbol{\Omega} \times \boldsymbol{u} + \nu \Delta \boldsymbol{u} \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \end{cases}$$

• boundary condition : periodic box

• alias-free Fourier spectral method

• removal of alias error :
phase shift method + spherical cut

$$k < \sqrt{2N/3}, N = 256$$

 $2\pi \times 2\pi \times 2\pi$

Coordinate system subjected to constant rotation

time marching : 4th order Runge-Kutta method

Run Conditions:

DNS of freely-decaying homogeneous rotating turbulence

	Ω	Initial field	$R_L(t=0)$	$R_{\lambda}(t=0)$	$Ro^{\omega}(t=0)$	$R_{0}^{L}\left(t=0\right)$
Run2-1	2.0	Ini1	93.2	48.0	4.48	0.24
Run5-1	5. <mark>0</mark>	Ini1	93.2	48.0	1.79	$9.65 imes 10^{-2}$
Run10-1	10 .0	Ini1	93.2	48.0	0.90	$4.82 imes 10^{-2}$
Run5-2	5.0	Ini2	56.6	33.5	1.92	0.148

TABLE 1. The constant angular velocity Ω and initial Reynolds and Rossby numbers of freely-decaying homogeneous rotating turbulence.

$$Ro^{\omega} = \omega'/(2\Omega)$$
 and $Ro^L = \langle \epsilon \rangle/(2\Omega E)$

Run Conditions:

DNS of freely-decaying homogeneous rotating turbulence

	Ω	Initial field	$R_L(t=0)$	$R_{\lambda}(t=0)$	$Ro^{\omega}(t=0)$	$R^L(t=0)$
Run2-1	2.0	Ini1	93.2	48.0	4.48	0.24
Run5-1	5.0	Ini1	93.2	48.0	1.79	9.65×10^{-2}
Run10-1	10.0	Ini1	93.2	48.0	0.90	4.82×10^{-2}
Run5-2	5.0	Ini2	56.6	33.5	1.92	0.148

TABLE 1. The constant angular velocity Ω and initial Reynolds and Rossby numbers of

freely-decaying homogeneous rotating turbulence.

$$Ro^{\omega} = \omega'/(2\Omega)$$
 and $Ro^L = \langle \epsilon \rangle/(2\Omega E)$

Initial filed: 3D homogeneous isotropic turbulence (forced)

TABLE 3. DNS parameters and characteristics of homogeneous isotopic turbulence at t = 8.

Iso-surfaces of modulus of vorticity

Ini1

 $\mathbf{\Omega}$

$$\omega \models m + 2\sigma$$

$$\omega \models m + 3\sigma$$

Isotropic turbulence

• Iso-surfaces of modulus of vorticity $\Omega t = 10$

 $\Omega = 5$, Ini1

 $|\omega| = m + 3\sigma$

Vortices becomes elongated along the rotational axis. ²³

• Iso-surfaces of modulus of vorticity $\Omega t = 20$

 $\mathbf{\Omega}$ $|\omega| = m + 2\sigma$

integral scale of \mathcal{O}_1 (vorticity component perpendicular to Ω)

The growth of $L^3(\omega_1)$ in the axial direction is much faster than $L^2(\omega_1)$ \rightarrow selective growth

The growth rates averaged over an appropriate time interval are similar, and linear in t.

This is in agreement with the collapse of corresponding correlation function reported by Staplehurst et al. (2008 J. Fluid Mech. 598, 81-105).

integral scale of ω^2

Run2-1	
Run5-1	
Run10-1	
Run5-2	

Asymmetry between cyclonic and anti-cyclonic vortices

Computational Surgery/Experiment

(Thought Experiment)

Remove a certain effect/term \rightarrow some idea on the effect/term

Computational Surgery 1

Computational Surgery 2

$$\begin{cases} \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} = -\frac{1}{\rho}\boldsymbol{\nabla}p - 2\boldsymbol{\Omega} \times \boldsymbol{u} + \nu \boldsymbol{\Delta}\boldsymbol{u} \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \end{cases}$$

Initial field R^{ω}

A Run5-1 at
$$\Omega t_n = 5$$
 0.975

B Run5-1 at $\Omega t_n = 10$ 0.581

C Run5-1 at $\Omega t_n = 15$ 0.407

• Iso-surfaces of modulus of vorticity $\Omega t = 0$

Isotropic turbulence

 $\Omega = 5$, Ini1

• Iso-surfaces of modulus of vorticity $\Omega t = 10$

Vortices becomes elongated with the rotational axis.

• Iso-surfaces of modulus of vorticity $\Omega = 5$, Ini1 at $\Omega t = 10$,

• Iso-surfaces of modulus of vorticity $\Omega t = 11$

• Iso-surfaces of modulus of vorticity

 $\Omega t = 20$

 $\mathbf{\Omega}$

Anisotropy is sustained, but vorticity structure seems to be fragmented,

after the removal of the nonlinear term.

 $|\omega| = m + 2\sigma$

 $|\omega| = m + 3\sigma$

Linear integral scale of ω^2

the Coriolis force, if it is without the nonlinear convection effect, cannot sustain the increase of the length scale i.e., the formation of the columnar structure

Linear but with the viscous term

Conclusions

We considered 2 cases:

Case 1: Linear dynamics,

initially an array of compact eddies

Case 2: Nonlinear Dynamics,

Homogeneous, freely decaying homogeneous turbulence

Case 1

 $L^{3}(\omega_{1})$ doesn't grow in contrast to the impression by the visualization, $L^{3}(\omega^{2})$ does grow.

→ the answer depend on the definition, or on what we are talking.
 we need aware of the difference depending on the definition
 of the length scale for quantitative discussion of the elongation.

Case 2

the Coriolis force, if it is without the nonlinear convection effect, cannot sustain the increase of the length scale

i.e., the formation of the columnar structure