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 A B S T R A C T

A two-dimensional mode-matching technique is developed to compute the scattering of an 
acoustic wave by a cascade of staggered and cambered vanes in subsonic regime, such as those 
encountered in axial-flow fan stages. Apart from the need to reproduce a more realistic geometry 
in analytical modeling, introducing vane camber is a relevant way of retrieving the global 
evolution of the mean flow away from the vanes, simply by mass-flow conservation through 
the expanding inter-vane channels. This prevents mean-flow discontinuity and introduces a 
realistic variation of the equivalent dipole sources along the vane chord. The expansion of 
the cross-section along the inter-vane channels, induced by curvature, is taken into account by 
multiple-scale analysis, assuming slow variations of the geometry. The validity of the model is 
assessed by extensive comparisons with high-fidelity numerical results, with and without flow. 
The assumptions used in the analytical model are found to be suited to modern geometries of 
outlet guide vanes.

. Introduction

Understanding and predicting how noise propagates inside parts of aircraft engines is of crucial importance to reduce aircraft 
oise pollution. Engine manufacturers keep working on new technologies to meet important milestones, such as the European 
050 long-term strategy to achieve climate neutrality. Aircraft engines will need to drastically reduce their emissions, relying on, 
or example, increased bypass ratios, the open-fan concept and hydrogen as a sustainable alternative to petroleum-based fuels. 
long with the reduction of greenhouse gases, noise pollution must still be reduced. Regardless of the chosen engine architecture, 
ompressor stages remain a major noise contributor, especially the fan stage in turbofan engines [1]. The present work focuses on 
he modeling of sound scattering by staggered and cambered vanes to better understand sound transmission and reflection in fan 
nd compressor stages.
The basis for the mathematical approach is a mode-matching technique, formulated for a periodic array of bifurcated waveguides. 

his technique is believed to have promising capabilities for application to modern turbofan engines, where high solidity and 
verlap are encountered in the fan stage; it could also be used for in-duct low-pressure compressor noise in open fan architectures. 
ode-matching was first used in the context of electromagnetic fields by Whitehead [2] and later described in details by Mittra 
nd Lee [3]. In the context of cascade aeroacoustics, alternative mathematical approaches seem to have been preferred in the 
970s, such as the acceleration potential [4] and the Wiener–Hopf technique [5] for instance; a review can be found in the paper
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Nomenclature

Abbreviations

FEM Finite Element Method
LE/TE Leading/Trailing Edge
MMBCW Mode Matching for Bifurcated Curved Waveguides
MMBW Mode Matching for Bifurcated Waveguides
PML Perfectly Matched Layers
SDT Source Diagnostic Test
Greek characters
𝛼𝑗,𝑝,𝑞 transverse wavenumber
𝛽 Prandtl–Glauert factor
𝛿 Kronecker delta
𝜖 slow expansion parameter
Γ vector of conservative variables
𝜇 slowly-varying axial wavenumber
𝜔 angular frequency
𝜙 velocity potential
𝜓 normalized mode shape
𝛹 , 𝛹𝑠 camber angle and stagger angle
𝛶 stream-wise channel variation function
Latin characters
J,Y Bessel function of the first and second kind
𝐮∗,𝐔,𝐮 total, mean and fluctuating velocity
,  projection coefficients between straight and curved channel modes
𝑗,𝑞,𝑝 staggered axial wavenumber
𝑖,𝑟,𝑡 acoustic power
I𝑞,𝑝 inner product of the annular and channel modal bases
𝜌∗, 𝐷, 𝜌 total, mean and fluctuating density
𝑎 = 𝑏 cos𝛹 vane spacing normal to the vanes LE
𝐴𝑞 , 𝐵𝑞 downstream and upstream channel modal coefficients
𝑏 vane spacing
𝑐∗, 𝐶, 𝑐 total, mean and fluctuating sound speed
ℎ inter-vane height
ℎ𝑠 scale factor for the coordinate 𝑠
i imaginary unit
𝑘 = 𝜔∕𝐶 acoustic wavenumber
𝑘𝑗,𝑝,𝑞 axial wavenumber
𝑙𝑐 inter-vane channel length, from interface BC to TE
𝐿𝑐 = 𝜖𝑙𝑐 inter-vane channel length expressed in the slow coordinate
𝑀 = 𝑈∕𝐶 Mach number
𝑁 slowly-varying mode amplitude
𝑝∗, 𝑃 , 𝑝 total, mean and fluctuating pressure
𝑅, 𝑅𝑐 radius of the unwrapped cut, and vane curvature radius
𝑅𝑝, 𝑇𝑝 reflected and transmitted modal coefficients
𝑠, 𝑛, 𝑧 curved-channel system of coordinates attached to interface BC
𝑆 = 𝜖𝑠 slow curvilinear coordinate
𝑉 number of vanes
𝑥, 𝑦, 𝑧 annular system of coordinates attached to LE
𝜁, 𝜂, 𝑧 vane system of coordinates attached to LE
𝑥′, 𝑦′, 𝑧′ annular system of coordinates attached to TE
𝑍 acoustic impedance
2 
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Subscripts and superscripts
()± relative to a mode propagating downstream (+) or upstream (-)
()0,1,2 relative to the order in the power series
()±∞ relative to the downstream/upstream annular domain
()𝑖,𝑟,𝑑,𝑢,𝑡 relative to the incident annular, reflected annular, downstream-propagating channel, upstream-

propagating channel, or transmitted annular field
()𝑗,𝑝,𝑞,𝑙 relative to a given incident, reflected/transmitted, straight-channel, or curved-channel mode order
()𝑥,𝑦,𝑠,𝑛 relative to the component associated with the given coordinate

by Bouley et al. [6]. The mode-matching technique received renewed interest with the works of Roger et al. [7–10], applying the 
method to centrifugal compressors. This approach accounts for a fully three-dimensional annular duct geometry without resorting 
to strips, and therefore naturally accounts for the radial scattering. More recently, Bouley et al. [6] developed a two-dimensional 
model of acoustic generation and transmission for axial-flow turbofan engines. The model has been extended to three dimensions 
for wake-interaction noise by Bouley et al. [11], and for turbulence impingement noise by Fraçnois et al. [12]. In the meantime, an 
alternative mode-matching approach was developed, relying on the edge-dipole theory to recover the sound otherwise produced by 
the impingement of vortical gusts [13]. The edge-dipole formalism was also used to model trailing-edge noise in Refs. [14,15].

In each of the aforementioned papers, the vanes are considered as infinitely thin flat plates with zero stagger, sweep and 
lean. Returning to two dimensions, some extensions have been made to consider more realistic vane geometries. Stagger angle 
was introduced by the use of Green’s second identity in Ref. [16], following Mittra and Lee [3]. Roger et al. [14] were the first 
to include vane camber in the mode-matching technique. To do so, the inter-vane channels were modeled as straight channels 
with a slowly varying cross-section, which is equivalent to a low-frequency approximation of the camber effects. Good qualitative 
agreements have been obtained by Roger and Moreau [17] when applying the mode-matching technique with cambered vanes 
compared to the results of Hixon [18] produced with the NASA Glenn Research Center BASS code, which solves the fully nonlinear 
Euler equations. A comparative study of two-dimensional sound transmission models in realistic turbomachinery cascades, involving 
the mode-matching technique [14] and the Wiener–Hopf method [19], is also found in Ref. [20]. Again, a good agreement is shown 
between the mode-matching and numerical solutions up to a certain frequency. In addition, Roger et al. [14,16] resorted to the 
use of Ovenden’s solution for the velocity potential [21] to highlight the effect of cut-on/cut-off transition of modes in cambered 
inter-vane channels, but did not implement this mechanism in the mode-matching procedure. Meanwhile, Mao et al. [22] derived a 
mode-matching model using a discontinuous representation of a cambered vane in the form of several flat elements. However, the 
computational efficiency of the model did not seem satisfactory with increasing camber and frequency.

Camber seems to play a significant role in the generation and propagation of sound by stator vanes, but is rarely considered in 
low-order models. Many authors have noted its importance for tonal noise prediction at moderate and high frequencies [19,23–26], 
but it does not significantly affect broadband noise [23,27,28]. Accounting for camber has also several benefits in analytical models. 
When using flat-plate vanes, the choice of an equivalent stagger angle is ambiguous and can have a dramatic impact on noise 
predictions [29–31]. This is quite understandable when thinking of an equivalent surface distribution of dipoles, as explained by 
Curle [32]. The complex interference pattern resulting from the radiation of multiple vanes in a cascade is directly influenced by 
the orientation of the dipoles. Since the unsteady lift generated by the impingement of wakes on the vanes is mainly concentrated 
near the leading edge, a proper inclination of the leading-edge vane angle should accurately reproduce the upstream radiation, 
whereas camber should mainly help to recover the downstream pressure field, as noticed by de Laborderie et al. [24]. Finally, 
flat guide vanes also lead to an ambiguity regarding the mean flow description, which is deviated through the cascade in realistic 
applications in order to recover the swirl. Hence, the mean flow should vary continuously through the cascade to obtain a relevant 
sound-propagation framework.

In view of the lack of dedicated literature, a two-dimensional mode-matching model is proposed here to describe the scattering 
of an acoustic wave by a linear cascade of cambered vanes. Vane thickness is not explicitly considered; furthermore, zero angle of 
attack is assumed, in the sense that the incident flow is aligned with the vane camber line at leading edge. The modeling is limited 
to two dimensions, in order to better understand the fundamental effects of camber. Note that the introduction of camber should 
give rise to the question of mean loading effects on aeroacoustics. Such effects are ignored in the present model. They are addressed, 
for instance, by Peake and Kerschen [33,34].

The outline of this paper is as follows. First, the mode-matching technique is briefly reminded in Section 2, focusing on the 
present extension of the model from flat vanes to cambered vanes. An approximate solution of the velocity potential inside the 
cambered inter-vane channels, needed as the key variable, is derived in Section 3 from the work of Brambley and Peake [35]. 
Using this potential, the new system of mode-matching equations for cambered vanes is derived in Section 4. The curved-channel 
modes are analyzed in Section 5 to understand their sensitivity to curvature, Mach number and frequency. Section 6 is dedicated to 
the validation of the developed mode-matching model by comparing the predicted sound-pressure field with high-fidelity numerical 
simulations in different conditions, with and without flow. Finally, concluding remarks are drawn in Section 7, alongside perspectives 
for future work.
3 
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Fig. 1. Scattering of an incident acoustic wave by a linear cascade of flat vanes.

2. Mode-matching technique

2.1. General principles

For a comprehensive description of the method, the reader can refer to, for example, Bouley et al. [6]. Only the general principles 
are described here in order to highlight the innovative addition of the present paper. The mode-matching technique is well suited 
when the geometry of the domain, in which the Helmholtz problem must be solved, can be seen as the junction of multiple sub-
domains. Such problems typically arise as waves propagate inside ducts with successive portions of rigid and lined walls, or as 
incident waves are scattered when transmitted through bifurcated channels. In particular, sound propagation through a blade row 
can be viewed as an example of the latter case. When described in a two-dimensional unwrapped cut at a constant radius 𝑅, the 
row is equivalent to an infinite array of bifurcated waveguides. A conceptual sketch is given in Fig.  1. An incident wave, in fact an 
acoustic mode of the first sub-domain described by its velocity potential 𝜙𝑖, is scattered at the stator Leading-Edge (LE) interface. 
This generates reflected modes 𝜙𝑟 and transmitted modes 𝜙𝑑 in the channels. The latter are then scattered at the Trailing-Edge (TE) 
interface, giving rise to reflected channel modes 𝜙𝑢 and transmitted modes 𝜙𝑡. Hard-wall boundary conditions at the walls of the 
inter-vane channels and periodic boundary conditions in the 𝑦-direction are imposed.

The mode-matching technique can be described in three steps: partitioning, modal solving and matching. The partitioning consists 
in dividing the domain into different sub-domains in which the boundary conditions are uniform, enabling the wave equation in the 
frequency domain to be solved on a local modal basis. In Fig.  1, the sub-domains are the upstream region, all inter-vane channels 
and the downstream region. The solving step consists in providing the modal basis and associated wavenumbers of the scattered 
waves in each sub-domain. For simple geometries such as in Fig.  1, the pairs of eigenfunctions and eigenvalues are determined 
analytically. Finally, the only remaining unknowns are the coefficients of the modal expansions of the waves. They are defined by 
matching the different modal solutions at both leading-edge and trailing-edge interfaces. To do so, continuity equations specific to 
the problem are integrated along the interfaces in order to build an infinite set of equations on the modal coefficients. The equations 
that need to be satisfied through the stator are derived from the classical continuity equations for mass, momentum and energy. 
When applied to adiabatic turbomachinery flows, they express the conservation of mass-flow rate and stagnation enthalpy [36]. 
After modal truncation, the system can be solved numerically. The sub-domains solving step and the matching step are detailed in 
what follows.

2.2. Solving step: wave equation in the sub-domains

The fluid is assumed to be an inviscid and ideal gas undergoing isentropic transformation. The flow variables are defined as: the 
velocity 𝐮∗, the density 𝜌∗, the pressure 𝑝∗ and the sound speed 𝑐∗. They are made dimensionless by combinations of the inter-vane 
spacing 𝑏, for length quantities, and the flow field variables far upstream of the cascade: density 𝐷−∞ for mass quantities, and 
sound speed 𝐶−∞ for time quantities. The flow is then split into a steady-state component (time average) and its zero-average 
fluctuations. The fluctuating part varies harmonically in time 𝑡, with angular frequency 𝜔, and is assumed to be small enough to 
allow linearization. Thus, the decomposition reads 

[

𝐮∗, 𝜌∗, 𝑝∗, 𝑐∗
]

= [𝐔, 𝐷, 𝑃 , 𝐶] + [𝐮, 𝜌, 𝑝, 𝑐] e−i𝜔𝑡, (1)

where i is the imaginary unit. The velocity potential is related to the fluctuating velocity by 

𝐮 = ∇𝜙, (2)

and to the fluctuating pressure by 

𝑝 = −𝐷 −i𝜔𝜙 + 𝐔 ⋅ ∇𝜙 . (3)
( )

4 



L. Girier et al. Journal of Sound and Vibration 620 (2026) 119473 
The linearized Euler equations and conditions of an isentropic flow of ideal gas lead to the following homogeneous compressible 
wave equation: 

𝐷(−i𝜔 + 𝐔 ⋅ ∇)
[

1
𝐶2

(−i𝜔 + 𝐔 ⋅ ∇)𝜙
]

− ∇ ⋅ (𝐷∇𝜙) = 0. (4)

Eq.  (4) is solved independently in each subdomain to obtain the local modal basis and wavenumbers.

2.3. Matching step: continuity equations at the interfaces

In the case of an oblique mean flow through the matching interface, typically when stagger or camber is considered, the 
conservation of mass-flow rate and stagnation enthalpy no longer reduces to the conservation of pressure and axial velocity as in 
Ref. [6]. Either a Prandtl–Glauert–Lorentz transformation is applied to reduce the problem to its no-flow mathematical equivalent, 
or more general variables are introduced. The latter choice is made here, in order to avoid unnecessary changes in future works 
dealing with sound generation by wake impingement.

The first retained conservative variable is (see Appendix  A for details) 
{

𝛤1 = 𝜙, at LE,
𝛤1 = 𝑝, at TE. (5)

The second conservative variable is a combination of axial 𝑢𝑥 and transverse 𝑢𝑦 velocities 
{

𝛤2 = 𝛽2𝑥𝑢𝑥 −𝑀𝑥𝑀𝑦𝑢𝑦, at LE,
𝛤2 = 𝑢𝑥, at TE, (6)

where the Mach number components are 𝑀𝑥 = 𝑈𝑥∕𝐶 and 𝑀𝑦 = 𝑈𝑦∕𝐶, and 𝛽𝑥 =
√

1 −𝑀2
𝑥 . Notice that in the absence of transverse 

mean flow (𝑀𝑦 = 0), the conservation of these new variables at LE is equivalent to the usual conservation of pressure 𝑝 and axial 
velocity 𝑢𝑥, of course as long as the mean flow is continuous across the interface.

The conservative variables are gathered into a vector Γ = (𝛤1, 𝛤2), for the incident (𝑖), reflected annular (𝑟), transmitted annular 
(𝑡), downstream-propagating channel (𝑑) or upstream-propagating channel (𝑢) field (see Fig.  1). The matching equations then read 

{

Γ𝑖 + Γ𝑟 = Γ𝑑 + Γ𝑢, at LE,
Γ𝑑 + Γ𝑢 = Γ𝑡, at TE. (7)

Only the knowledge of the potential field 𝜙, and its gradient, is required to solve the matching equations in this case. Upstream and 
downstream of the cascade, its description is already known from Bouley et al. [6]. Therefore, the innovative contribution of this 
article consists in the addition of the velocity potential in the cambered inter-vane channels from Eq.  (4).

3. Velocity potential in a cambered inter-vane channel

3.1. Geometry

3.1.1. Circle arc
The cambered vanes are modeled by circle arcs, which means that a constant curvature distribution along the chord is assumed; 

the associated curvature radius is noted 𝑅𝑐 . Fig.  2 shows how the stagger angle 𝛹𝑠, the camber angle 𝛹 and the axial chord length 
𝑙𝑥 are introduced. 𝛹 is the angle formed by the tangents to the vane leading and trailing edges. Since the stator trailing edge is 
aligned with the 𝑥-axis, i.e. the turbomachinery axis, the camber angle 𝛹 is equivalent to the leading-edge vane angle. Furthermore, 
because the vanes are circle arcs, 𝛹𝑠 = 𝛹∕2 and thus 𝑙𝑥 = 𝑙 cos𝛹𝑠 = 𝑙 cos𝛹∕2. The addition of camber has a twofold impact on 
sound propagation through the inter-vane channels. Indeed, the channel is curved, but its cross-section also expands from the inlet 
(leading edge) to the outlet (trailing edge).

3.1.2. Geometrical approximation
The need to cope with the vane overlap leads to split the inter-vane channel into two parts delimited by the segment BC in 

Fig.  3(a): a semi-open part delimited by the triangle ABC, and a curved channel of varying cross-section from the section BC to the 
trailing-edge interface, as represented in Fig.  3(b) with its curvilinear coordinates (𝑠, 𝑛, 𝑧).

Instead of following the exact camber line defined as a circle arc in Fig.  2, the choice is made to modify the suction side to 
facilitate mathematical tractability in subsequent derivations. Segment AC in Fig.  3(a) follows the tangent to the vane leading-edge, 
hence the triangle ABC is the same as for straight staggered plates already studied for electromagnetic and acoustic waves as will 
be discussed in Section 3.1.3. With this choice, the geometric difference induced by curvature only concerns the overlapping part 
from interface BC to the trailing edge interface. Different possibilities remain to define the curve from point C to the trailing edge, 
on the suction side of the vane. To ensure zero tangent at the trailing edge, thus avoiding another triangular part on this side, the 
following parametric representation is used: 

{

𝑥𝑠𝑠(𝜑) = 𝑅𝑐 (sin𝜑 + sin𝛹 ) − 𝑏 cos𝜑 sin𝜑,
2 (8)
𝑦𝑠𝑠(𝜑) = 𝑅𝑐 (cos𝜑 − cos𝛹 ) + 𝑏 sin 𝜑,

5 
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Fig. 2. Description of the vanes from flat and axial (a) to staggered (b) and curved and staggered (c).

Fig. 3. Geometrical approximation of the inter-vane channel (a) and the curved channel of varying cross-section from section BC to the trailing-
edge interface (b).

where 𝜑 = −𝛹 at the inlet and 𝜑 = 0 at the outlet (see Fig.  3(a)). Since a zero tangent is enforced at the trailing edge, non-monotonic 
curves can arise for high camber angles, depending on the solidity value 𝑙∕𝑏. This might be considered unrealistic. The limit at which 
it occurs is given by 𝛹 ≥ 𝛹𝑐 = 2 arcsin(𝑙∕4𝑏). This corresponds to 44◦ for 𝑙∕𝑏 = 1.5, which is outside the range of camber angles 
used for turbofan outlet guide vanes. In addition, the continuity of the derivative is not enforced at point C, resulting in an angular 
point. Smoothing out the transition would be detrimental to the critical camber angle 𝛹𝑐 . It will be shown that this angular point 
is not a concern for sound prediction by comparisons with numerical results in Section 6.2.2.

The upper-vane pressure side is a circle arc described by 
{

𝑥𝑝𝑠(𝜑) = 𝑅𝑐 (sin𝜑 + sin𝛹 ) ,

𝑦𝑝𝑠(𝜑) = 𝑅𝑐 (cos𝜑 − cos𝛹 ) + 𝑏.
(9)

The channel center line is represented by a dashed red line in Fig.  3(b); the parametric representation of which is given by 
⎧

⎪

⎨

⎪

⎩

𝑥𝑠(𝜑) = 𝑅𝑐 (sin𝜑 + sin𝛹 ) − 𝑏
2
cos𝜑 sin𝜑,

𝑦𝑠(𝜑) = 𝑅𝑐 (cos𝜑 − cos𝛹 ) + 𝑏
2
(

1 + sin2 𝜑
)

,
(10)

and the associated curvilinear abscissa 𝑠 by 

𝑠 = ∫

𝜑

−𝛹

√

(

d𝑥𝑠
d𝜑′

)2
+
(

d𝑦𝑠
d𝜑′

)2
d𝜑′ ∼

𝑏∕𝑅𝑐→0
𝑅𝑐 (𝜑 + 𝛹 ), −𝛹 ≤ 𝜑 ≤ 0. (11)

The channel length 𝑠(𝜑 = 0) is noted 𝑙𝑐 in the following. From Eqs. (8) and (9), the varying channel height is given by 

ℎ(𝜑) =
√

(𝑥𝑝𝑠 − 𝑥𝑠𝑠)2 + (𝑦𝑝𝑠 − 𝑦𝑠𝑠)2 = 𝑏 cos𝜑 ∼
𝑏∕𝑅𝑐→0

𝑏 cos (𝑠∕𝑅𝑐 − 𝛹 ), 0 ≤ 𝑠 ≤ 𝑙𝑐 . (12)

The approximate inlet height 𝑎 = 𝑏 cos𝛹 of segment BC (Fig.  3(a)) is smaller than the original height 𝑎̄ between two circle arcs by 
an amount 

𝑎̄ − 𝑎 = 1 −

√

1 −
(

𝑏 sin2 𝛹
)2
. (13)
𝑅𝑐 𝑙 cos𝛹∕2

6 
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Fig. 4. Evolution of the inlet height relative deviation 𝛥𝑎 = (𝑎̄ − 𝑎)∕𝑎̄ against the camber angle 𝛹 for different solidity values 𝑙∕𝑏.

This deviation being only dependent on the camber angle 𝛹 and the solidity 𝑙∕𝑏, its relative value 𝛥𝑎 = (𝑎̄ − 𝑎)∕𝑎̄ is plotted in 
Fig.  4. It is negligible (less than 2%) for camber angles below 20◦, but can reach 10% at 𝛹 = 36◦. In this case, the approximation 
tends to significantly increase the height expansion of the inter-vane channel compared to the mean camber line. Yet, this artificial 
thickness, albeit arbitrary because dictated by the need for mathematical tractability, is also a way to mimic the actual thickness 
of real vanes. For this reason, the mathematical process is believed relevant. Whether or not this artificial thickness helps in the 
prediction of sound propagation with a realistic vane profile is investigated in Section 6.2.2.

3.1.3. Modal basis approximation in the triangle ABC
Whitehead [2] proposed to use Green’s second identity to link the pressure field from the leading-edge interface to the segment 

BC in the channel, by taking advantage of the absence of acoustic sources inside the triangle ABC (Fig.  3(a)). The identity was 
used by Roger and François [16] and could be coupled with Kirchhoff’s integral theorem to give access to the pressure field inside 
the triangle. A convenient formulation has also been proposed by Roger et al. [14] who described the pressure field in this part 
as if it were a channel of height 𝑎 and length 𝑏 sin𝛹 . In this case, cosine functions are used as a modal basis and the matching 
at the leading-edge interface is done classically, by considering a staggered interface for the channel modes. A good agreement 
between both formulations was reported in Ref. [14]. Consequently, the approximate modal basis is used in the present study for 
its simplicity.

3.1.4. Multiple-scale approximation from section BC to the trailing edge
In the varying part of the channel, one last approximation is needed. If the cross-section varies slowly along the channel, the 

method of multiple scales can be used to derive a closed-form solution of the velocity potential. The idea behind the method of 
multiple scales is that the variation of cross-section occurs on a much larger scale than the acoustic motion and is defined by a new 
and independent coordinate 𝑆 = 𝜖𝑠, where 𝜖 is a small parameter. Each field is then expressed as a regular asymptotic expansion 
in powers of 𝜖 and an approximate solution is found at leading order, accounting for both fast and slow variations. This formalism 
has been used by many authors in turbomachinery acoustics [37–44], and proved its efficiency against numerical results [45,46]. 
In the present case, 𝜖 corresponds to the maximal value of the cross-section derivative, i.e. the local slope of the channel walls, and 
is assumed small enough in the following. From Eq.  (12), it can be estimated by 

𝜖 ∼
𝑏∕𝑅𝑐→0

𝑏
𝑅𝑐

sin𝛹 = 𝑏
𝑙

sin2 𝛹
cos𝛹∕2

. (14)

Note the link between this assumption and the artificial thickness in Eq.  (13), which becomes (𝜖2).

3.2. Mean flow

The incident mean flow is considered uniform and perfectly aligned with the vane leading edges. It is described by 
𝐔−∞(𝑥, 𝑦) = 𝑈−∞ cos𝛹 𝐞𝑥 + 𝑈−∞ sin𝛹 𝐞𝑦, −∞ < 𝑥 ≤ 0 and 0 ≤ 𝑦 < 2𝜋𝑅, (15)

where the −∞ subscript denotes the fields upstream of the stator.
Beyond the leading-edge interface (𝑥 > 0), the mean-flow velocity remains constant in the triangle ABC; then the flow enters the 

slowly varying part. Here, the mean velocity is assumed to be uniform in every cross-section normal to the curvilinear coordinate 
𝑆, hence only varying with 𝑆. The mean flow variables are expanded as 

𝐔(𝑆, 𝑛) = 𝑈 (𝑆)𝐞 + 𝜖𝑈 (𝑆, 𝑛)𝐞 + (𝜖2), (16a)
0𝑠 𝑠 1𝑛 𝑛

7 



L. Girier et al. Journal of Sound and Vibration 620 (2026) 119473 
Fig. 5. Modeled total Mach number and flow angle evolution through a cascade of cambered vanes, according to the present vane model. 
Geometry and flow conditions from Ref. [47].

𝐷(𝑆, 𝑛) = 𝐷0(𝑆) + (𝜖2), (16b)

𝐶(𝑆, 𝑛) = 𝐶0(𝑆) + (𝜖2). (16c)

The value of 𝑈0𝑠(𝑆) is given by the conservation of mass-flow rate between a given location 𝑆 and the inlet (interface BC). This 
gives 

𝑈0𝑠(𝑆) = 𝑈−∞
𝐷−∞𝑎

𝐷0(𝑆)ℎ(𝑆)
, 0 ≤ 𝑆 ≤ 𝐿𝑐 , (17)

where 𝐿𝑐 = 𝜖𝑙𝑐 is the channel length expressed in the slow variable. If the compressibility effects are accounted for, the evolution 
of the mean density 𝐷0(𝑆) has to be computed first using the momentum equation. Neglecting the rotational term at leading order 
leads to Bernoulli’s equation, which gives the density as one of the roots of the following polynomial function 

𝐷0(𝑆) ↦
1

𝛾 − 1
𝐷𝛾+1

0 (𝑆) −

(

𝑈2
−∞
2

+
𝐷𝛾−1

−∞
𝛾 − 1

)

𝐷2
0(𝑆) +

1
2

(

𝐷−∞𝑈−∞𝑎
ℎ(𝑆)

)2
, (18)

where 𝛾 is the ratio of specific heats. The value of 𝐷0(𝑆) is found by applying Newton–Raphson method at each location 𝑆, with 
an initial guess equal to 𝐷−∞ in order to converge to the desired root. The speed of sound is then solely determined by the density, 
in dimensionless form, as 

𝐶0(𝑆) =
√

𝐷𝛾−1
0 (𝑆). (19)

Downstream of the stator, the mean flow exits the channels without deviation. It is defined as 

𝐔+∞(𝑥, 𝑦) = 𝑈−∞ cos𝛹
𝐷−∞
𝐷+∞

𝐞𝑥, 𝑙𝑥 ≤ 𝑥 < ∞ and 0 ≤ 𝑦 < 2𝜋𝑅, (20)

where the +∞ subscript denotes the fields downstream of the stator. The evolution of the mean flow field through the cascade is 
displayed in Fig.  5.

3.3. Slowly varying acoustic modes

3.3.1. Problem formulation
In the slowly varying part of the inter-vane channels (Fig.  3(b)), the compressible wave Eq. (4) can be recast in terms of powers 

of 𝜖 using the mean flow description from Eq.(16). Introducing the scale factor for the curvilinear coordinate 𝑠 as 
ℎ𝑠 = 1 + 𝑛∕𝑅𝑐 , −ℎ(𝑆)∕2 ≤ 𝑛 ≤ ℎ(𝑆)∕2, (21)

the wave Eq. (4) reads 

𝜖2
𝛽2

ℎ2𝑠

𝜕2𝜙
𝜕𝑆2

+
𝜕2𝜙
𝜕𝑛2

+ 2i𝜖 𝑘𝑀
ℎ𝑠

𝜕𝜙
𝜕𝑆

+ 1
ℎ𝑠𝑅𝑐

𝜕𝜙
𝜕𝑛

+ 𝑘2𝜙 = (𝜖), (22)

where 𝑀 = 𝑈0𝑠∕𝐶0, 𝛽 =
√

1 −𝑀2 and 𝑘 = 𝜔∕𝐶0. The hard wall boundary conditions are written as 

∇𝜙 ⋅ 𝐧 = 0, at 𝑛 = ±ℎ(𝑆)∕2, (23)
( )

8 
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where 𝐧 is the outer normal unit vector to the respective wall, slightly misaligned with 𝐞𝑛 due to height expansion (Fig.  3(b)). The 
normal vectors to the upper and lower boundaries are written respectively 

𝐧up =
𝐞𝑛 −

𝜖
ℎ𝑠

dℎ
d𝑆

𝐞𝑠
√

1 + 𝜖2

ℎ2𝑠

( dℎ
d𝑆

)2
, 𝐧low = −

𝐞𝑛 +
𝜖
ℎ𝑠

dℎ
d𝑆

𝐞𝑠
√

1 + 𝜖2

ℎ2𝑠

( dℎ
d𝑆

)2
, at 𝑛 = ±ℎ(𝑆)∕2. (24)

A well suited technique for finding an approximate solution of Eq.  (22) is the WKB method. The WKB approximation is a special 
case of multiple-scale analysis in which the fast variations (dependence on 𝑠) are assumed to be of exponential form (see for example 
Ref. [48] or [49]). The asymptotic series expansion of the slowly-varying potential reads 

𝜙(𝑆, 𝑛) = exp
(

i
𝜖 ∫

𝑆
𝜇(𝜉) d𝜉

) ∞
∑

𝑚=0
𝜖𝑚𝛷𝑚(𝑆, 𝑛), (25)

where 𝜇(𝑆) is the acoustic wavenumber along the curvilinear abscissa that is now able to vary with 𝑆. Introducing the above 
expansion into the wave Eq. (22) yields, at leading order, 

𝜕2𝛷0

𝜕𝑛2
+ 1
ℎ𝑠𝑅𝑐

𝜕𝛷0
𝜕𝑛

+

(

[

𝑘 −
𝜇
ℎ𝑠
𝑀

]2
−
𝜇2

ℎ2𝑠

)

𝛷0 = 0. (26)

Since the misalignment of the normal unit vectors with 𝐞𝑛 is (𝜖) by definition in Eq.  (24), the upper and lower boundaries can be 
assumed parallel at leading order. The boundary conditions, Eq. (23), yield 

𝜕𝛷0
𝜕𝑛

|

|

|

|𝑛=±ℎ(𝑆)∕2
= 0. (27)

Finally, the leading-order solution 𝛷0 is split up into its amplitude 𝑁 and mode shape 𝜓 , with the following normalization 

𝛷0(𝑆, 𝑛) = 𝑁(𝑆)𝜓(𝑆, 𝑛), ∫

ℎ(𝑆)∕2

−ℎ(𝑆)∕2
𝜓2(𝑆, 𝑛) d𝑛 = 1. (28)

3.3.2. Mode shape and axial wavenumber
When 𝑀 = 0, the mode-shape Eq. (26) can be restated as a Bessel equation by a change of variable 𝑟 = 𝑛 + 𝑅𝑐 and introducing 

𝜈 = 𝜇𝑅𝑐 . The solution for a single mode is expressed by a sum of Bessel functions of the first and second kinds, J𝜈 and Y𝜈 respectively, 
such that 

𝜓(𝑆, 𝑟) = 𝐶1J𝜈 (𝑘𝑟) + 𝐶2Y𝜈(𝑘𝑟), 𝜈 ∈ C, 0 ≤ 𝑟 < ∞. (29)

The dimensionless axial wavenumber 𝜈 and the ratio 𝐶1∕𝐶2 are defined at each location 𝑆 by the algebraic equations resulting from 
the hard-wall boundary conditions at leading order, Eq. (27). The latter read 

−
𝐶1
𝐶2

=
𝜕Y𝜈∕𝜕𝑟

(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
])

𝜕J𝜈∕𝜕𝑟
(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
]) =

𝜕Y𝜈∕𝜕𝑟
(

𝑘
[

𝑅𝑐 − ℎ(𝑆)∕2
])

𝜕J𝜈∕𝜕𝑟
(

𝑘
[

𝑅𝑐 − ℎ(𝑆)∕2
]) . (30)

The choice is made to take 

𝐶1 =
𝜕Y𝜈
𝜕𝑟

(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
])

, and 𝐶2 = −
𝜕J𝜈
𝜕𝑟

(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
])

, (31)

to enforce the boundary condition on the upper part (𝑛 = +ℎ(𝑆)∕2). Hence 𝜈(𝑆) is defined by the boundary condition on the lower 
part (𝑛 = −ℎ(𝑆)∕2) as 

𝜕Y𝜈
𝜕𝑟

(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
]) 𝜕J𝜈

𝜕𝑟
(

𝑘
[

𝑅𝑐 − ℎ(𝑆)∕2
])

−
𝜕J𝜈
𝜕𝑟

(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
]) 𝜕Y𝜈

𝜕𝑟
(

𝑘
[

𝑅𝑐 − ℎ(𝑆)∕2
])

= 0, (32)

which describes implicitly the dispersion relation between 𝑘 and 𝜇 = 𝜈∕𝑅𝑐 . Now written in terms of 𝑛 instead of 𝑟, the mode shapes 
of Eq.  (29) read 

𝜓(𝑆, 𝑛) ∝
𝜕Y𝜈
𝜕𝑛

(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
])

J𝜈 (𝑘[𝑛 + 𝑅𝑐 ]) −
𝜕J𝜈
𝜕𝑛

(

𝑘
[

𝑅𝑐 + ℎ(𝑆)∕2
])

Y𝜈 (𝑘[𝑛 + 𝑅𝑐 ]). (33)

The proportionality factor is determined by the normalization Eq. (28). This two-dimensional solution is actually an extension of 
Krasnushkin’s result [50] to slowly varying ducts.

In the present framework of analysis for arbitrary subsonic flows, 0 < 𝑀 < 1, Eq. (26) no longer reduces to a linear eigenvalue 
problem. In this work, the choice is made to develop a numerical solution using the same procedure as in Refs. [8,35]. A pseudo-
spectral method based on Chebyshev polynomials of the first kind is used, the details of which can be found in Appendix  B. 
Introducing 𝜓∗ = 𝜇𝜓 makes the eigenvalue problem linear in terms of the vector (𝜓,𝜓∗). The generalized eigenvalue problem 
to be solved is then 

[

 0
] [

𝜓
∗

]

= 𝜇
[

2𝑘𝑀∕ℎ𝑠 𝛽2∕ℎ2𝑠
] [

𝜓
∗

]

, (34)

0 1 𝜓 1 0 𝜓

9 



L. Girier et al. Journal of Sound and Vibration 620 (2026) 119473 
where 

 ∶= 𝜕2

𝜕𝑛2
+ 1
ℎ𝑠𝑅𝑐

𝜕
𝜕𝑛

+ 𝑘2. (35)

The validity of the numerically solved modal basis 𝜓 and wavenumbers 𝜇 is assessed by comparing asymptotic behaviors to analytical 
solutions in Section 5.

3.3.3. Amplitude evolution
For a given mode, the unknown amplitude 𝑁(𝑆) from Eq.  (28) is determined by means of a solvability condition. From Brambley 

and Peake [35], an adiabatic invariant exists at leading order in the form of 
d
d𝑆

(

𝐹𝑁2) = (𝜖), (36)

where 𝐹 (𝑆) is defined by 

𝐹 (𝑆) = ∫

ℎ(𝑆)∕2

−ℎ(𝑆)∕2
𝐷0𝜓

2 (𝑘𝑀ℎ𝑠 + 𝛽2𝜇
) d𝑛
ℎ𝑠
. (37)

This leads to the solution 

𝑁2(𝑆) = 𝑄2

𝐹 (𝑆)
, (38)

where 𝑄 is a constant to be determined by a known value of 𝑁(𝑆) (typically at the inlet). In the end, the approximate velocity 
potential of a given mode in a slowly varying inter-vane channel is given by 

𝜙(𝑆, 𝑛) ∼ 𝑄
√

𝐹 (𝑆)
𝜓(𝑆, 𝑛) exp

(

i
𝜖 ∫

𝑆
𝜇(𝜉) d𝜉

)

. (39)

The matching equations, as presented in Ref. [51], are detailed in the next section.

4. System of mode-matching equations

4.1. Leading-edge interface

4.1.1. Definition of the acoustic potentials
The description of the leading-edge matching, including all the potentials involved, is sketched in Fig.  6. The incident acoustic 

wave is described as a mode of unitary amplitude and azimuthal order 𝑗, with transverse wavenumber 𝛼𝑗 and axial wavenumber 
𝑘𝑗 , such as 

𝜙𝑖(𝑥, 𝑦) = ei𝛼𝑗𝑦ei𝑘
+
𝑗 𝑥, −∞ < 𝑥 ≤ 0, 0 ≤ 𝑦 < 2𝜋𝑅. (40)

The transverse wavenumber 𝛼𝑗 is given by enforcing the periodicity 𝜙𝑖(𝑥, 0) = 𝜙𝑖(𝑥, 2𝜋𝑅), whereas the axial wavenumber 𝑘𝑗 is given 
by solving the Helmholtz Eq. (4) with a transverse mean flow and a solution of the form of Eq.  (40). This gives

𝛼𝑗 =
𝑗
𝑅
, 𝑘+𝑗 = −

(𝑘 − 𝛼𝑗𝑀𝑦)𝑀𝑥

𝛽2𝑥
+

√

(𝑘 − 𝛼𝑗𝑀𝑦)2 − 𝛽2𝑥𝛼
2
𝑗

𝛽2𝑥
, 𝑗 ∈ Z.

The axial wavenumber with a transverse mean flow has the same structure than with an axial mean flow [6], but with a modified 
effective frequency 𝑘 → 𝑘 − 𝛼𝑗𝑀𝑦 due to the mean flow component 𝑀𝑦, which increases/decreases the wavelength of the modes 
propagating in the same/opposite direction, respectively.

To comply with the periodicity of the cascade, the reflected potential 𝜙𝑟 is expressed as a sum of scattered modes of complex 
amplitudes 𝑅𝑝 as (see Ref. [6]) 

𝜙𝑟(𝑥, 𝑦) =
∞
∑

𝑝=−∞
𝑅𝑝e

i𝛼𝑝𝑦ei𝑘
−
𝑝 𝑥, −∞ < 𝑥 ≤ 0, 0 ≤ 𝑦 < 2𝜋𝑅, (41)

where the wavenumbers are

𝛼𝑝 = 𝛼𝑗 + 𝑝
2𝜋
𝑏
, 𝑘±𝑝 = −

(𝑘 − 𝛼𝑝𝑀𝑦)𝑀𝑥

𝛽2𝑥
±

√

(𝑘 − 𝛼𝑝𝑀𝑦)2 − 𝛽2𝑥𝛼2𝑝
𝛽2𝑥

, 𝑝 ∈ Z.

Here, the transverse wavenumber 𝛼𝑝 is enforced by the trace-velocity matching principle [52], which is a consequence of causality 
under steady-state circumstances.

In the triangle ABC, the channel modes of potentials 𝜙𝑑 and 𝜙𝑢 are written in terms of the coordinate system attached to the 
vanes (𝜁, 𝜂) defined in Fig.  6. With complex amplitudes 𝐴𝑞 and 𝐵̃𝑞 , respectively, and considering hard-wall boundary conditions, 
they read 

𝜙𝑑 (𝜁, 𝜂) =
∞
∑

𝐴𝑞 cos
(

𝛼𝑞𝜂
)

ei𝑘
+
𝑞 𝜁 , 𝜂 tan𝛹 ≤ 𝜁 ≤ 𝑎 tan𝛹, 0 ≤ 𝜂 ≤ 𝑎, (42)
𝑞=0
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Fig. 6. Scattering of an incident mode at the staggered leading-edge interface with feedback from the trailing-edge scattering.

𝜙𝑢(𝜁, 𝜂) =
∞
∑

𝑞=0
𝐵̃𝑞 cos

(

𝛼𝑞𝜂
)

ei𝑘
−
𝑞 (𝜁−𝑎 tan𝛹 ), 𝜂 tan𝛹 ≤ 𝜁 ≤ 𝑎 tan𝛹, 0 ≤ 𝜂 ≤ 𝑎, (43)

where the associated wavenumbers are given by

𝛼𝑞 =
𝑞𝜋
𝑎
, 𝑘±𝑞 = −𝑘𝑀

𝛽2
±

√

𝑘2 − 𝛽2𝛼2𝑞
𝛽2

, 𝑞 ∈ N.

In Eq.  (43), the origin of the upstream-propagating channel modes is considered at the interface BC, but in fact their origin is 
the trailing-edge interface. This requires to modify the complex amplitude 𝐵̃𝑞 to account for the effects of curvature during the 
propagation from the trailing edge to the interface BC. In order to compare the channel modal coefficients with and without 
accounting for curvature, they are always associated to cosine modes at the origin. Hence, a cosine mode 𝜙𝑢,𝑞 is first expanded 
in curved-channel modes 𝜓𝑙 at the trailing-edge interface, such that

𝜙𝑢,𝑞(𝐿𝑐 , 𝑛) = 𝐵𝑞
∞
∑

𝑙=0
𝑞𝑙 (𝐿𝑐 )𝜓𝑙(𝐿𝑐 , 𝑛),

where 𝐵𝑞 is the complex coefficient of the cosine mode. The projection coefficients 𝑞𝑙 (𝑆) of a cosine mode indexed 𝑞 onto 
curved-channel modes indexed 𝑙 are defined by 

cos
(

𝑞𝜋
ℎ(𝑆)

[

𝑛 +
ℎ(𝑆)
2

])

=
∞
∑

𝑙=0
𝑞𝑙 (𝑆)𝜓𝑙(𝑆, 𝑛), 0 ≤ 𝑆 ≤ 𝐿𝑐 , −

ℎ(𝑆)
2

≤ 𝑛 ≤ ℎ(𝑆)
2

. (44)

The amplitude and phase evolution of each of these curved-channel modes, from the trailing-edge interface to the interface BC, is 
given by the stream-wise variation function 𝛶 −

𝑙 : 

𝛶 −
𝑙 (𝑆) =

√

𝐹−
𝑙 (𝐿𝑐 )
𝐹−
𝑙 (𝑆)

exp

(

i
𝜖 ∫

𝑆

𝐿𝑐
𝜇−𝑙 (𝜉) d𝜉

)

, 0 ≤ 𝑆 ≤ 𝐿𝑐 , (45)

where 𝐹−
𝑙  is identical to the function 𝐹  defined in Eq.  (37) for the upstream-propagating mode of order 𝑙 and axial wavenumber 𝜇−𝑙 . 

Finally, each of the curved-channel modes has to be expanded back to cosine modes indexed 𝑞∗ at the interface BC, which yields 

𝜙𝑢,𝑞(0, 𝑛) = 𝐵𝑞
∞
∑

𝑙=0
𝑞𝑙 (𝐿𝑐 )𝛶

−
𝑙 (0)

∞
∑

𝑞∗=0
𝑙
𝑞∗ (0) cos

(

𝛼𝑞∗
[

𝑛 + 𝑎
2

])

, (46)

where the coefficients 𝑙
𝑞∗ (𝑆) result from the inverse projection 

𝜓𝑙(𝑆, 𝑛) =
∞
∑

𝑞∗=0
𝑙
𝑞∗ (𝑆) cos

(

𝑞𝜋
ℎ(𝑆)

[

𝑛 +
ℎ(𝑆)
2

])

, 0 ≤ 𝑆 ≤ 𝐿𝑐 , −
ℎ(𝑆)
2

≤ 𝑛 ≤ ℎ(𝑆)
2

. (47)

The complex coefficients 𝐵̃𝑞 in the triangle ABC can now be expressed in terms of the 𝐵𝑞 by equating both formulations in Eqs. (43) 
and (46). This ensures the continuity of the potential at the interface BC. Notice that the geometrical approximation of the inter-vane 
channel is in two parts: a straight channel in the triangle ABC, and a curved channel from interface BC to the trailing edge. This 
introduces an artificial curvature discontinuity at the junction, interface BC, that should generate scattering and reflection. This is 
neglected in the present model because it is a spurious effect of the approximation, not physically consistent. The reflection should 
be negligible anyway, because of the relatively low dimensionless curvature and angular length of the inter-vane channels compared 
11 
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to those of the bent ducts studied in, for example, Ref. [53]. In the end, the potential 𝜙𝑢 is expressed in the triangle ABC as 

𝜙𝑢(𝜁, 𝜂) =
∞
∑

𝑞=0
𝐵𝑞

∞
∑

𝑙=0
𝑞𝑙 (𝐿𝑐 )𝛶

−
𝑙 (0)

∞
∑

𝑞∗=0
𝑙
𝑞∗ (0) cos

(

𝛼𝑞∗𝜂
)

ei𝑘
−
𝑞∗ (𝜁−𝑎 tan𝛹 ). (48)

4.1.2. Matching equations
The leading-edge matching equation written Γ𝑑 + Γ𝑢 = Γ𝑟 + Γ𝑖 involves infinite sums. They need to be expanded into either 

the unwrapped-annular or channel modal basis in order to obtain a linear system of equations by virtue of the orthogonality of the 
modes. Using the projection on the annular modal basis 

∫

𝑏

0
(∙)e−i𝛼𝑝𝑦 d𝑦, with 𝛼𝑝 = 𝛼𝑗 + 𝑝

2𝜋
𝑏
, 𝑝 ∈ Z, (49)

leads to the continuity of the potential and of the modified acoustic velocity (𝛽2𝑥𝑢𝑥 −𝑀𝑥𝑀𝑦𝑢𝑦), respectively, as (see Appendix  C for 
details) 

∞
∑

𝑞=0

[

𝐴𝑞I
+
𝑞,𝑝 + 𝐵𝑞

∞
∑

𝑙=0
𝑞𝑙 (𝐿𝑐 )𝛶

−
𝑙 (0)

∞
∑

𝑞∗=0
𝑙
𝑞∗ (0)e

−i𝑘−𝑞∗ 𝑏 sin𝛹I−𝑞∗ ,𝑝

]

= 𝑏
(

𝑅𝑝 + 𝛿𝑝,0
)

, (50)

∞
∑

𝑞=0

[

𝐴𝑞+
𝑞,𝑝I

+
𝑞,𝑝 + 𝐵𝑞

∞
∑

𝑙=0
𝑞𝑙 (𝐿𝑐 )𝛶

−
𝑙 (0)

∞
∑

𝑞∗=0
𝑙
𝑞∗ (0)e

−i𝑘−𝑞∗ 𝑏 sin𝛹−
𝑞∗ ,𝑝I

−
𝑞∗ ,𝑝

]

= 𝑏
(

−
𝑝𝑅𝑝 ++

𝑗 𝛿𝑝,0
)

, (51)

where 𝛿 is the Kronecker delta, 

I±𝑞,𝑝(𝛹 ) =

⎧

⎪

⎨

⎪

⎩

−i(𝑘±𝑞 sin𝛹 − 𝛼𝑝)

(𝑞𝜋∕𝑏)2 − (𝑘±𝑞 sin𝛹 − 𝛼𝑝)2

(

1 − (−1)𝑞ei𝑏(𝑘
±
𝑞 sin𝛹−𝛼𝑝)

)

,

𝑏
2
(

1 + 𝛿𝑞,0
)

if |

|

|

𝑘±𝑞 sin𝛹 − 𝛼𝑝
|

|

|

=
𝑞𝜋
𝑏
,

(52)

and the staggered axial wavenumbers are defined by
+
𝑗 = 𝛽2𝑥𝑘

+
𝑗 −𝑀𝑥𝑀𝑦𝛼𝑗 ,

−
𝑝 = 𝛽2𝑥𝑘

−
𝑝 −𝑀𝑥𝑀𝑦𝛼𝑝,

±
𝑞,𝑝 =

(

𝛽2𝑥 cos𝛹 −𝑀𝑥𝑀𝑦 sin𝛹
)

𝑘±𝑞 + tan𝛹
𝑘±𝑞 sin𝛹 − 𝛼𝑝

( 𝑞𝜋
𝑏

)2
.

These wavenumbers are said ‘staggered’ because they tend to the actual axial wavenumbers 𝑘± when 𝛹 → 0, so the matching 
equation on axial velocity for flat-plate vanes [6] is retrieved.

4.2. Trailing-edge interface

4.2.1. Definition of the acoustic potentials
The trailing-edge matching involves the curved-channel potentials 𝜙𝑑 and 𝜙𝑢, which need to be matched with the transmitted 

potential 𝜙𝑡 as represented in Fig.  7. A new coordinate system attached to the trailing edge (𝑥′, 𝑦′) is defined for that purpose. 
The coefficients 𝐵𝑞 of the upstream-propagating modes 𝜙𝑢,𝑞 have been associated to cosine modes generated at the trailing-edge 
interface. Hence, the related potential is given by

𝜙𝑢(𝐿𝑐 , 𝑦′) =
∞
∑

𝑞=0
𝐵𝑞 cos

( 𝑞𝜋
𝑏
𝑦′
)

.

Following the same procedure for the downstream-propagating modes 𝜙𝑑,𝑞 , the coefficients 𝐴𝑞 are associated to cosine modes 
generated at the leading-edge interface. After an expansion on the curved-channel modes at the interface BC, and introducing the 
stream-wise variation function 𝛶 +

𝑙  as 

𝛶 +
𝑙 (𝑆) =

√

√

√

√

𝐹+
𝑙 (0)

𝐹+
𝑙 (𝑆)

exp
(

i
𝜖 ∫

𝑆

0
𝜇+𝑙 (𝜉) d𝜉

)

, 0 ≤ 𝑆 ≤ 𝐿𝑐 , (53)

where 𝐹+
𝑙  is defined by Eq.  (37), the related potential reads

𝜙𝑑 (𝐿𝑐 , 𝑦′) =
∞
∑

𝑞=0
𝐴𝑞e

i𝑘+𝑞 𝑎 tan𝛹
∞
∑

𝑙=0
𝑞𝑙 (0)𝛶

+
𝑙 (𝐿𝑐 )

∞
∑

𝑞∗=0
𝑙
𝑞∗ (𝐿𝑐 ) cos

(

𝑞∗𝜋
𝑏
𝑦′
)

.

The transmitted potential 𝜙𝑡 and its wavenumbers are expressed in the same manner as 𝜙𝑟 from Eq.  (41) (see Ref. [6]). Thus

𝜙𝑡(𝑥′, 𝑦′) =
∞
∑

𝑇𝑝e
i𝛼𝑝𝑦′ei𝑘

+
𝑝 𝑥

′
, 0 ≤ 𝑥′ <∞, 0 ≤ 𝑦′ < 2𝜋𝑅.
𝑝=−∞
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Fig. 7. Scattering of a downstream-propagating channel mode at the trailing-edge interface.

4.2.2. Matching equations
The matching equation is written Γ𝑑 + Γ𝑢 = Γ𝑡. Projecting on the annular modal basis, as in Eq.  (49), leads to the potential 

continuity 
∞
∑

𝑞=0

[

𝐴𝑞e
i𝑘+𝑞 𝑏 sin𝛹

∞
∑

𝑙=0
𝑞𝑙 (0)𝛶

+
𝑙 (𝐿𝑐 )

∞
∑

𝑞∗=0
𝑙
𝑞∗ (𝐿𝑐 )I

0
𝑞∗ ,𝑝 + 𝐵𝑞I

0
𝑞,𝑝

]

= 𝑏𝑇𝑝, (54)

where

I0𝑞,𝑝 = I±𝑞,𝑝(𝛹 = 0).

The leading-order variation of the potentials along the channel is given by the exponential term in 𝛶 ± from Eqs. (45) and (53). The 
axial velocity of the curved-channel modes is then defined by

𝜖
𝜕𝜙𝑢
𝜕𝑆

(𝑆, 𝑛) = i
∞
∑

𝑞=0
𝐵𝑞

∞
∑

𝑙=0
𝑞𝑙 (𝐿𝑐 )

𝜇−𝑙 (𝑆)
ℎ𝑠

𝛶 −
𝑙 (𝑆)𝜓𝑙(𝑆, 𝑛) + (𝜖),

and

𝜖
𝜕𝜙𝑑
𝜕𝑆

(𝑆, 𝑛) = i
∞
∑

𝑞=0
𝐴𝑞e

i𝑘+𝑞 𝑏 sin𝛹
∞
∑

𝑙=0
𝑞𝑙 (0)

𝜇+𝑙 (𝑆)
ℎ𝑠

𝛶 +
𝑙 (𝑆)𝜓𝑙(𝑆, 𝑛) + (𝜖).

As a consequence, a new projection is needed to expand the functions 𝜓𝑙(𝑆, 𝑛)∕ℎ𝑠(𝑛) into cosine functions. It reads 
𝜓𝑙(𝑆, 𝑛)
1 + 𝑛∕𝑅𝑐

=
∞
∑

𝑞∗=0
̃𝑙
𝑞∗ (𝑆) cos

(

𝑞∗𝜋
ℎ(𝑆)

[

𝑛 +
ℎ(𝑆)
2

])

, 0 ≤ 𝑆 ≤ 𝐿𝑐 , −
ℎ(𝑆)
2

≤ 𝑛 ≤ ℎ(𝑆)
2

. (55)

Finally, the continuity of axial velocity at the trailing-edge interface reads 
∞
∑

𝑞=0

∞
∑

𝑙=0

∞
∑

𝑞∗=0

[

𝐴𝑞e
i𝑘+𝑞 𝑏 sin𝛹𝑞𝑙 (0)𝜇

+
𝑙 (𝐿𝑐 )𝛶

+
𝑙 (𝐿𝑐 ) + 𝐵𝑞

𝑞
𝑙 (𝐿𝑐 )𝜇

−
𝑙 (𝐿𝑐 )

]

̃𝑙
𝑞∗ (𝐿𝑐 )I

0
𝑞∗ ,𝑝 = 𝑏𝑘+𝑝 𝑇𝑝. (56)

All four Eqs. (50), (51), (54) and (56) are then gathered to yield the linear system to be solved. If a Kutta condition is added, 
enforcing a zero pressure jump at the trailing edge, the system of matching equations is modified as in François et al. [54] (detailed 
derivations can be found in Appendix  D). The various steps of the modeling procedure, from the geometric definition to the main 
equations implemented, are summarized in a schematic diagram in Fig.  8.

Before moving on to the mode-matching results in Section 6, the validity of the numerically solved modal basis is assessed in the 
next section, by comparing its asymptotic behavior to analytical solutions. This gives an understanding of the key elements required 
for certain comparisons of the mode-matching results.

5. Modal basis asymptotic behavior

5.1. In the limit of small curvature

The numerical solution of the inter-vane channel modal basis 𝜓 and wavenumbers 𝜇 from Eq.  (34) is first tested in a curved duct 
without flow (𝑀 = 0). The frequency is set to 𝑘𝑏 = 12 and the curvature ranges from 𝑏∕𝑅𝑐 = 0 to 𝑏∕𝑅𝑐 ≃ 0.36, which corresponds to 
values of 𝛹 ranging from 0◦ to 40◦ with a solidity of 𝑙∕𝑏 = 1.8 for a cascade channel. When the curvature tends to 0, the expected 
eigenfunctions are cosine functions: cos 𝑞𝜋[𝑛 + 𝑏∕2]∕𝑏 , where 𝑞 is the mode order. Fig.  9 displays the eigenfunctions 𝜓  for 𝑞 = 0
( ) 𝑞
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Fig. 8. Schematic diagram illustrating the solution method of the present paper.
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Fig. 9. Eigenfunctions numerically computed for various curvature radii (solid lines) and the analytical cosine function for 𝑏∕𝑅𝑐 = 0 ( ). The 
subfigures (a) to (d) correspond to mode orders 𝑞 = 0 to 3.

to 3, computed with the collocation algorithm, for the different curvatures in shades of gray. The corresponding cosine functions 
for 𝑏∕𝑅𝑐 = 0 are added in black circles.

The collocation algorithm is able to recover the analytical solution in the limit of small curvature in all cases. When the curvature 
increases, the symmetry of the modes with respect to the origin is broken. The nodes (zeros of the eigenfunctions) are pushed toward 
the upper part of the channel, away from the curvature center. The eigenfunctions also tend to have a larger amplitude at the bottom 
of the channel, for 𝑞 ≥ 2, whereas the amplitude concentrates near the middle for 𝑞 = 1, and at the top for 𝑞 = 0. The asymmetry is 
no longer visible beyond a given mode order, which increases with curvature. Consequently, curvature only affects significantly a 
finite number of the lower-order modes.

Fig.  10 shows the eigenvalue evolution of the cut-on modes (Fig.  10(a)) and of the first four cut-off modes (Fig.  10(b)). The plots 
start at a cross mark (𝑏∕𝑅𝑐 = 0) and end at a square mark (𝑏∕𝑅𝑐 ≃ 0.36). The analytical values for 𝑏∕𝑅𝑐 = 0 are added in black 
circles, as 𝜇𝑞 =

√

𝑘2 − (𝑞𝜋∕𝑏)2.
Again, the analytical solution is recovered in the limit 𝑏∕𝑅𝑐 → 0, and the effect of curvature decreases rapidly with mode order 

(only the first 3 modes are significantly affected in this example). The cut-off modes are then naturally less affected by curvature due 
to their higher order. Furthermore they can be significant only over a reduced channel extent. The concentration of the eigenfunction 
at the top of the channel observed for the fundamental mode 𝑞 = 0 (Fig.  9(a)) corresponds to what is commonly named a whispering-
gallery mode. This is similar to the concentration of high-order azimuthal modes in cylindrical or annular ducts above a specific
caustic radius, according to the terminology of Chapman [55]. Fig.  10(a) shows that, unlike the other cut-on modes, the eigenvalue 
of the fundamental mode increases with curvature. Therefore, its caustic radius is expected to increase with curvature, as shown in 
Fig.  9(a). Since its eigenvalue also increases in absolute value with frequency and adverse mean flow, the whispering-gallery effect 
should be stronger in these cases as well, which are presented hereafter.

5.2. In the limit of small mach number

Now the curvature is fixed to 𝑏∕𝑅𝑐 = 0.36 and the frequency at 𝑘𝑏 = 12, but the Mach number varies from 𝑀 = −0.6 to 𝑀 = 0.6
by increments of 0.12. Notice that, due to symmetry in Eq.  (34), the eigenfunctions of the left-running modes 𝜓−

𝑞  for 𝑀 > 0 are 
the same as the eigenfunctions of the right-running modes 𝜓+ for 𝑀 < 0. In that regard, only the eigenfunctions 𝜓+ are presented, 
𝑞 𝑞
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Fig. 10. Eigenvalues of the cut-on modes 𝑞 = 0 ( ), 𝑞 = 1 ( ), 𝑞 = 2 ( ), 𝑞 = 3 ( ) (a), and the first four cut-off modes 𝑞 = 4 ( ), 
𝑞 = 5 ( ), 𝑞 = 6 ( ), 𝑞 = 7 ( ) (b) for various curvature values. Cross marks at 𝑏∕𝑅𝑐 = 0 and square marks at 𝑏∕𝑅𝑐 ≃ 0.36, with the 
analytical solution added for 𝑏∕𝑅𝑐 = 0 ( ).

corresponding to downstream-propagating modes when 𝑀 > 0 and upstream-propagating modes when 𝑀 < 0, respectively. Fig.  11 
depicts the eigenfunctions 𝜓+

𝑞 , for 𝑞 = 0 to 3, computed numerically for the different Mach numbers in shades of gray, where the 
black solid line corresponds to 𝑀 = 0. The analytical solution for 𝑀 = 0, given by the combination of Bessel functions of Eq.  (33), 
is added as black circles.

It appears that the mean flow has a stronger impact on the upstream-propagating modes (𝑀 < 0) and, in this case, amplifies 
the effect of curvature on the mode shapes. On the contrary, the mean flow reduces the effect of curvature on the downstream-
propagating modes (𝑀 > 0) and its impact vanishes quickly with mode order. It is important to emphasize that this conclusion 
might be limited to uniform mean flows.

5.3. In the limit of low frequency

To conclude this series of asymptotic comparisons, the limit of the first modes when the frequency tends toward 0 is analyzed, in 
order to assess the validity of the straight-channel approximation used in Roger et al. [14]. The curvature is set to 𝑏∕𝑅𝑐 ≃ 0.36 and 
the Mach number to 𝑀 = 0.6 (most critical case). The frequency ranges from 𝑘𝑏 ≃ 0 to 𝑘𝑏 = 12. Fig.  12 displays the eigenfunctions 
𝜓𝑞 , for 𝑞 = 0 to 3, computed with the collocation algorithm (solid lines), for the different frequencies, and the cosine functions for 
an equivalent straight duct (black circles).

When 𝑘𝑏 → 0, the first eigenfunction 𝜓0 tends to a constant value, similar to the plane-wave mode in a straight duct, because the 
Laplace equation shares this solution with the Helmholtz equation. However, for all other modes, the limit is not the cosine mode, 
and the larger the mode order, the larger the difference. Whether or not the approximation by a straight channel of equivalent 
height expansion is valid then relies on the eigenvalue estimation. Fig.  13 plots the relative difference between 𝜇0 and its value 
in an equivalent straight channel: −𝑘(𝑀 ∓ 1)∕(1 − 𝑀2). In this case, the difference is negligible for values of 𝑘𝑏 of the order of 
unity. Hence, the straight-channel approximation should be accurate for the fundamental mode as long as the channel length is 
small compared to the acoustic wavelength. For a longer channel, the cumulative discrepancy of 𝜇0 integrated along the channel 
could cause a significant phase difference at the outlet, as was also noticed by Roger and Moreau [17]. That is why neglecting the 
curvature when computing the channel modal basis [14] can be viewed as a low-frequency approximation. A good rule of thumb 
for the frequency limit of this approximation is to use the first cut-off frequency of the channels (𝑘𝑏 < 𝜋), keeping in mind that it 
might break down for lower frequencies if the curvature exceeds those encountered in compressor stages.

6. Comparison of the mode-matching technique with numerical solving

6.1. Methodology

6.1.1. Without flow
The model developed in Section 4 is referred to as Mode Matching for Bifurcated Curved Waveguides (MMBCW) in this study. 

Test cases are defined in this section to assess its validity against reference numerical simulations. In a first instance, the MMBCW 
is considered in a medium at rest. The reference results are computed with the commercial software Simcenter 3D Acoustics. This 
software addresses the two-dimensional Helmholtz problem with a high-order adaptive Finite Element Method (FEM) [56,57]. Only 
key aspects are mentioned here, details being found in the references. The FEM calculation uses the a priori error indicator from 
Bériot et al. [56] to adjust the order in every element for each frequency. The target error is set to 0.1 percent. Periodic boundary 
conditions are enforced on the horizontal boundaries, while an active Perfectly Matched Layer (PML) is used to enforce the incoming 
wave and avoid spurious reflections [58].
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Fig. 11. Eigenfunctions numerically computed for various Mach numbers (solid lines) and the combination of Bessel functions, Eq. (33), for 𝑀 = 0
( ). Positive Mach numbers correspond to downstream-propagating modes, whereas negative Mach numbers correspond to upstream-propagating 
modes. The subfigures (a) to (d) correspond to mode orders 𝑞 = 0 to 3.

Table 1
Input parameters of the test case without flow, 𝐷ref = 1.225 kg∕m3 and 𝐶ref = 340 m∕s.
 𝑉 Ψ (deg) 𝑙∕𝑏 𝑏∕𝑅𝑐 𝑀−∞ 𝐷−∞∕𝐷ref 𝐶−∞∕𝐶ref 
 4 30 1.04 0.5 0 1 1  

The first test case is focused on the curvature effects and the validity of the slowly-varying potential. For that matter, the same 
vane geometry is used in the numerical simulations and comparisons are also made with the straight-channel approximation of 
Ref. [14], called hereafter: Mode Matching for Bifurcated Waveguides (MMBW). The test case is defined as follow. A cascade of 
four vanes (𝑉 = 4) is considered at a duct radius of 𝑅 = 38 mm, which gives a vane spacing 𝑏 = 2𝜋𝑅∕𝑉 ≃ 60 mm. The camber angle is 
set at 𝛹 = 30◦ and the solidity at 𝑙∕𝑏 = 1.04. The dimensionless curvature is therefore 𝑏∕𝑅𝑐 ≃ 0.5, which is not small enough to know
a priori whether the multiple-scale approximation is appropriate or not. No mean flow is considered (𝑀 = 0) and the mean density 
and sound speed are assumed constant and set to 𝐷 = 1.225 kg∕m3 and 𝐶 = 340 m∕s. Incident acoustic waves of unit amplitude are 
scattered by the stator vanes. Computations are performed for two couples of frequencies and mode orders: 𝑗 = 1 at 𝑘𝑏 = 2.4289
(𝑓 ≃ 2200 Hz) and 𝑗 = 5 at 𝑘𝑏 = 12.145 (𝑓 ≃ 11000 Hz). The mode orders 𝑗 are chosen so that the propagation angle of the mode 
is the same in both computations, restricting the analysis to the effect of frequency for a given vane camber. The mesh used in the 
FEM is displayed in Fig.  14 and the parameters of the test case are gathered into Table  1.

As a second test case, the geometrical approximation of a circle arc used in the MMBCW is evaluated by comparisons with 
simulations on a realistic cascade. The geometry of the NASA Source Diagnostic Test (SDT) baseline configuration at mid-span 
is chosen for the numerical simulations [59]. Computations are performed with the MMBCW using two different approximate 
vane geometries, the so-called: stagger-angle geometry and camber-angle geometry (Fig.  15). The camber-angle geometry has the 
same camber angle 𝛹 = 33.7◦ than the SDT, in order to fit the inclination of the vane (and of the equivalent dipoles) at the 
leading edge. It has therefore a larger stagger angle of 16.8◦ than the real stagger angle of 11◦, and a slightly higher solidity value 
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Fig. 12. Eigenfunctions numerically computed for various frequencies (solid lines) and the cosine functions of an equivalent straight duct for 
𝑘𝑏 ≃ 0 ( ). The subfigures (a) to (d) correspond to mode orders 𝑞 = 0 to 3.

Fig. 13. Relative difference between 𝜇0 and its value in an equivalent straight channel: −𝑘(𝑀∓1)∕(1−𝑀2), as a function of frequency: downstream-
propagating mode (a); upstream-propagating mode (b).

𝑙∕𝑏 ≃ 1.58. The stagger-angle model has instead the same stagger angle of 11◦, but a substantially lower camber angle (𝛹 = 22◦). 
The dimensionless curvatures are equal to 0.37 and 0.25, respectively. The parameters of the different configurations are reminded 
in Table  2. Computations are performed for two incident acoustic waves: mode order 𝑗 = 6 at 𝑘𝑏 ≃ 2.75 (𝑓 = 5726 Hz) and mode 
order 𝑗 = −18 at 𝑘𝑏 ≃ 5.50 (𝑓 = 11452 Hz). The numerical simulations for this test case are also performed with the commercial 
software Simcenter 3D Acoustics. The mesh used in the FEM is displayed in Fig.  16 with the PML highlighted in blue. The mesh is 
refined in the region of the blades to guarantee an accurate representation of the geometry in the numerical model.
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Fig. 14. Explanatory scheme of the numerical setup displaying the geometry, the mesh and how boundary conditions are defined.

Fig. 15. SDT baseline geometry ( ) used in the FEM compared to the approximate vane geometries used in the MMBCW: stagger-angle 
geometry ( ) and camber-angle geometry ( ).

Table 2
Input parameters of the realistic test case without flow, 𝐷ref = 1.225 kg∕m3 and 𝐶ref = 340 m∕s.
 𝑉 Ψ (deg) Ψ𝑠 (deg) 𝑙∕𝑏 𝑏∕𝑅𝑐 𝑀−∞ 𝐷−∞∕𝐷ref 𝐶−∞∕𝐶ref 
 SDT 54 33.7 11.0 1.54 – 0 1 1  
 Stagger 54 22.0 11.0 1.54 0.25 0 1 1  
 Camber 54 33.7 16.8 1.58 0.37 0 1 1  

For each configuration, qualitative and quantitative comparisons between FEM and mode-matching results in terms of real values 
of the fluctuating pressure are presented. Reflected and transmitted acoustic powers are also computed from both numerical and 
analytical results in order to (i) ensure that the power balance is correctly predicted and (ii) attest the accuracy of the model by 
checking the energy conservation between the incident power and the sum of the reflected and transmitted powers.

6.1.2. With flow
The validity of the predicted overall mean-flow evolution through the cascade is first assessed without acoustic perturbation. As 

a reminder, the flow is assumed to be uniform in each cross-section of the channel, and to vary slowly along the channel center-
line due to cross-section variations.1 The inviscid mean flow computed with TURBO [60], presented by Envia for the 4th NASA 
CAA workshop, category 3, problem 2 [47], is used as a reference result. The test-case parameters are those of the SDT baseline 

1 The same mean flow description is used in both MMBW and MMBCW since the effects of curvature on the mean flow are neglected.
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Fig. 16. FEM mesh of the SDT test case without flow.

Table 3
Input parameters of the mean-flow test case, 𝐷ref = 1.225 kg∕m3 and 𝐶ref = 340 m∕s.
 𝑉 Ψ (deg) Ψ𝑠 (deg) 𝑙∕𝑏 𝑏∕𝑅𝑐 𝑀−∞ 𝐷−∞∕𝐷ref 𝐶−∞∕𝐶ref Flow angle (deg) 
 SDT 54 33.7 11.0 1.54 – 0.44958 0.90567 0.98038 36.0  
 Geom 54 33.7 16.8 1.58 0.37 0.44958 0.90567 0.98038 33.7  
 Flow 54 36.0 18.0 1.59 0.39 0.44958 0.90567 0.98038 36.0  

Table 4
Input parameters of the realistic test case with flow, 𝑃ref = 101325 Pa.
 𝑉 Ψ (deg) Ψ𝑠 (deg) 𝑙∕𝑏 𝑏∕𝑅𝑐 𝑀−∞ 𝑃−∞∕𝑃ref  
 SDT 54 33.7 11.0 1.54 – 0.4 0.714285 
 MMBCW 54 33.7 16.8 1.58 0.37 0.4 0.714285 

configuration at mid-span and are detailed in Table  3 with the label ‘‘SDT’’. Since the geometry is approximated in the mode-
matching model, two configurations are tested in order to define guidelines for tuning the parameters: the so-called geometrical 
configuration (Geom) and the flow configuration (Flow). The former is identical to the ‘‘camber’’ geometry of the previous test case, 
whereas the latter ensures the same incident flow angle as in the numerical simulation. Both configurations are also detailed in 
Table  3.

In the end, the results of acoustic scattering obtained with the MMBCW are compared with those from Hixon [18] to assess 
the performance of the model in presence of a mean flow. Hixon’s results were computed with the NASA Broadband Aeroacoustic 
Stator Simulation (BASS) code. The BASS code solves the two-dimensional nonlinear Euler equations in the time domain using an 
explicit fourth-order time marching scheme combined with high-order spatial differencing schemes. The unsteady pressure field is 
then recovered by subtracting the averaged flow from the instantaneous flow, since the disturbance is so small that the solution is 
essentially linear in this case. The mean flow has zero incidence angle in Hixon’s simulations [18], thus the choice of the camber 
angle in the MMBCW is straightforward. The parameters for this test case are collected in Table  4. Computations are performed at 
a fixed frequency 𝑘𝑏 = 2.75 (𝑓 = 5726 Hz), for two mode orders: 𝑗 = 6 and 𝑗 = −12. Note that, due to some uncertainties on the 
simulation parameters and the lack of extracted pressure profiles in Ref. [18], these comparisons are only qualitative.

6.2. Results

6.2.1. Curvature effects
The instantaneous pressure maps computed with the FEM and MMBCW on the academic test case, for 𝑗 = 1 at 𝑘𝑏 = 2.4289, 

are presented in Fig.  17. The locations of the extracted pressure profiles are indicated with dashed black lines and the profiles are 
plotted in Fig.  18, with the addition of the results obtained with the MMBW.
20 



L. Girier et al. Journal of Sound and Vibration 620 (2026) 119473 
Fig. 17. Instantaneous pressure maps normalized by the incident pressure at origin |𝑝𝑖|(𝑥 = 0, 𝑦 = 0), computed with FEM (a) and MMBCW (b) 
for 𝑗 = 1 at 𝑘𝑏 = 2.4289. Dashed black lines are the locations for quantitative comparisons and solid black lines in (a) show the limits of PML. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Instantaneous pressure profiles computed with FEM ( ), MMBW ( ) and MMBCW ( ) for 𝑗 = 1 at 𝑘𝑏 = 2.4289, extracted at 
𝑥 = −0.01 m (a), 𝑦 = 0.04 m (b) and 𝑥 = 0.07 m (c) from Fig.  17. The vertical dash-dotted lines in (b) represent the LE and TE interfaces.

Table 5
Comparison of the reflected 𝑟 and transmitted 𝑡 powers, relative to the incident power 𝑖, 
and of the relative conservation error 𝐸 = 1 − (𝑡 − 𝑟)∕𝑖 for 𝑗 = 1 at 𝑘𝑏 = 2.4289.
 𝑟 (%) 𝑡 (%) 𝐸 (%)  
 FEM 5.270 94.62 0.1100 
 MMBW 4.926 95.06 0.0140 
 MMBCW 5.200 96.32 −1.520 

The MMBCW is in good agreement compared to the FEM results, with a slightly better estimation of the reflected field amplitude 
compared to the MMBW, in view of Fig.  18(a). The frequency of the test being below the first channel cut-off frequency, the straight-
channel approximation is relevant here (see Section 5.3). In other words, this confirms that curvature effects on sound propagation 
are negligible at low frequency, at least below the first channel cut-off frequency (𝑘𝑏 < 𝜋).

The radiated acoustic powers are also computed for the MMBCW and compared to those of the MMBW and FEM in Table  5. 
This confirms that the reflected power is slightly better estimated with the MMBCW, but also indicates that the MMBCW is less 
accurate than the MMBW in terms of power balance in this case. The MMBCW results are not significantly improved by increasing 
the number of modes in the modal truncation. This suggests that some lack of accuracy can be attributed at low frequency either 
to the numerical computation of the channel modes or to the physical assumptions made in the MMBCW.

When increasing the frequency to 𝑘𝑏 = 12.145 and changing the incident mode order to 𝑗 = 5, the MMBCW is still able to recover 
the pressure pattern of the FEM (Fig.  19).

The pressure profiles extracted upstream, downstream and through the vane cascade are presented in Fig.  20 for the FEM, 
MMBW and MMBCW. Again, the MMBCW results agree well with the FEM results, whereas the MMBW cannot accurately predict 
the scattered field downstream of the cascade. The origin of the difference is in the propagation inside the inter-vane channels, as 
shown by the discrepancies in the MMBW starting at about two thirds of the channel length (Fig.  20(b)). Though there are still 
some discrepancies in amplitude with the MMBCW, the phase is well predicted downstream (Fig.  20(c)), which suggests that the 
modal distribution should also be. The balance of acoustic power now reaches the validity target 1% (Table  6). The MMBCW is also 
able to correctly recover the reflected power that is totally missing in the MMBW.
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Fig. 19. Instantaneous pressure maps normalized by the incident pressure at origin |𝑝𝑖|(𝑥 = 0, 𝑦 = 0), computed with FEM (a) and MMBCW (b) 
for 𝑗 = 5 at 𝑘𝑏 = 12.145. Dashed black lines are the locations for quantitative comparisons and solid black lines in (a) show the limits of PML. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Instantaneous pressure profiles computed with FEM ( ), MMBW ( ) and MMBCW ( ) for 𝑗 = 5 at 𝑘𝑏 = 12.145, extracted at 
𝑥 = −0.01 m (a), 𝑦 = 0.04 m (b) and 𝑥 = 0.07 m (c) from Fig.  19. The vertical dash-dotted lines in (b) represent the LE and TE interfaces.

Table 6
Comparison of the reflected 𝑟 and transmitted 𝑡 powers, relative to the incident power 𝑖, 
and of the relative conservation error 𝐸 = 1 − (𝑡 − 𝑟)∕𝑖 for 𝑗 = 5 at 𝑘𝑏 = 12.145.
 𝑟 (%) 𝑡 (%) 𝐸 (%)  
 FEM 3.950 96.05 < 0.01  
 MMBW 0.301 99.70 −0.001 
 MMBCW 2.560 96.61 0.830  

These results of the academic test case without flow demonstrate the validity of the developed mode-matching model and the 
relative importance of the curvature effects on sound propagation. They also show that the slowly-varying duct approach is well 
suited. This new model shows promising capabilities at the cost of a reasonably higher computation time than with the MMBW, say 
a couple of seconds on a personal laptop.

6.2.2. Geometrical approximation effects
In the previous analysis, numerical simulations were performed using the same geometry as in the mode-matching model. Here, 

the geometrical approximations in the model are tested on the SDT test case defined in Table  2, again without mean flow. Fig.  21 
shows the instantaneous pressure fields obtained at 𝑘𝑏 = 2.75, with the incident mode order 𝑗 = 6, for the FEM on the SDT geometry 
and the MMBCW on the approximate geometries, using the same camber angle or the same stagger angle. The extracted pressure 
profiles are then presented in Fig.  22.

The scattered sound field is well reproduced by the modified circle arc geometry used in the mode-matching procedure in this 
case, using either the stagger-angle or the camber-angle geometry. Yet, the approximate vane geometry with the real camber angle 
gives a slightly better amplitude inside the inter-vane channels and upstream of the vanes, compared to the geometry using the real 
stagger angle. Since the camber-angle geometry is more representative of the real geometry at the leading edge, the reflected field 
is expected to be more accurate. However, downstream of the cascade, using either geometry makes no difference at this frequency.
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Fig. 21. Instantaneous pressure maps normalized by incident pressure at origin |𝑝𝑖|(𝑥 = 0, 𝑦 = 0), computed with FEM (a), MMBCW/Camber (b) 
and MMBCW/Stagger (c) for 𝑗 = 6 and 𝑘𝑏 = 2.75. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 22. Instantaneous pressure profiles computed with FEM ( ), MMBCW/Stagger ( ) and MMBCW/Camber ( ) for 𝑗 = 6 at 𝑘𝑏 = 2.75, 
extracted at 𝑥 = −0.04 m (a), 𝑦 = 0.013 m (b) and 𝑥 = 0.08 m (c) from Fig.  21. The vertical dash-dotted lines in (b) represent the LE and TE 
interfaces.

Table 7
Comparison of the reflected 𝑟 and transmitted 𝑡 powers, relative to the incident power 𝑖, 
and of the relative conservation error 𝐸 = 1 − (𝑡 − 𝑟)∕𝑖 for 𝑗 = 6 at 𝑘𝑏 = 2.75.
 𝑟 (%) 𝑡 (%) 𝐸 (%)  
 FEM 0.951 99.06 −0.011 
 MMBCW/Stagger 0.190 99.67 0.140  
 MMBCW/Camber 1.080 99.37 −0.450 

These observations are confirmed by Table  7, which shows the reflected and transmitted acoustic powers, as well as the 
conservation error, for the FEM and both approximate geometries. It also highlights that the difference between the approximate 
geometries lies mainly in the reflected field, and that the MMBCW can achieve good accuracy in a realistic test case.

Figs.  23 and 24 display the results for twice the frequency (𝑘𝑏 = 5.5), and with an incident mode order 𝑗 = −18.
Discrepancies between the analytical and numerical solutions are more significant at this frequency. This is expected since 

high frequency waves are more sensitive to small details of the vane geometry. Nevertheless, the predicted pressure field from 
the MMBCW is still in good agreement with the FEM result. The camber-angle geometry gives better results, especially upstream of 
the vanes where the stagger-angle geometry seems to miss a cut-on reflected mode. Fig.  24(a) shows that the stagger-angle geometry 
predicts a sinuous pattern in the reflected field, thus dominated by a single mode, whereas the camber-angle geometry correctly 
reproduces the disturbed sine wave, representative of a stronger reflection. Table  8 confirms this result, indicating a reflected power 
two times stronger with the camber-angle geometry, which is closer to the FEM result.

Up to the frequency 𝑘𝑏 = 5.5, the modified circle arc geometry used in the model is able to generate a pressure field in fairly good 
agreement with the FEM results on a realistic geometry. This is encouraging for reliable and fast sound predictions in an industrial 
context, typically if repeated calculations are required, to predict broadband noise within the scope of a statistical approach or to 
run an optimization algorithm. The geometry mimicking the same camber angle should be preferred, as it reproduces more precisely 
the reflected scattered waves, as well as both reflected and transmitted powers.
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Fig. 23. Instantaneous pressure maps normalized by incident pressure at origin |𝑝𝑖|(𝑥 = 0, 𝑦 = 0), computed with FEM (a), MMBCW/Camber (b) 
and MMBCW/Stagger (c) for 𝑗 = −18 and 𝑘𝑏 = 5.5.  (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 24. Instantaneous pressure profiles computed with FEM ( ), MMBCW/Stagger ( ) and MMBCW/Camber ( ) for 𝑗 = −18 and 
𝑘𝑏 = 5.5, extracted at 𝑥 = −0.04 m (a), 𝑦 = 0.013 m (b) and 𝑥 = 0.08 m (c) from Fig.  23. The vertical dash-dotted lines in (b) represent the LE 
and TE interfaces.

Table 8
Comparison of the reflected 𝑟 and transmitted 𝑡 powers, relative to the incident power 𝑖, 
and of the relative conservation error 𝐸 = 1 − (𝑡 − 𝑟)∕𝑖 for 𝑗 = −18 at 𝑘𝑏 = 5.50.
 𝑟 (%) 𝑡 (%) 𝐸 (%)  
 FEM 10.57 89.43 < 0.01  
 MMBCW/Stagger 4.420 95.37 0.210  
 MMBCW/Camber 9.620 90.58 −0.200 

6.2.3. Mean flow approximation effects
The inviscid mean flow description used in the mode-matching model is compared to the inviscid mean flow computed with 

TURBO [60], from the 4th NASA CAA workshop, category 3, problem 2 [47]. Fig.  25 shows the qualitative numerical and analytical 
mean flow evolution through the cascade (using the ‘‘Flow’’ configuration). Table  9 presents the quantitative results downstream of 
the cascade, as well as the difference between the analytical and numerical results indicated by the 𝛥 symbol (in percentage of the 
numerical value).

The mean flow quantities downstream of the cascade are well recovered by the analytical model using the geometry optimized 
for the flow description (Flow), whereas the true vane geometry (Geom) suffers from a relative error of more than 3% on the 
Mach number. Both geometries give accurate changes of mean density and sound speed. These results demonstrate that the overall 
change in the inviscid mean flow through a realistic cascade of vanes is mainly due to the cross-section variations of the inter-vane 
channels, and is well recovered by a nearly uniform mean-flow description neglecting curvature and mean loading effects. However, 
when looking at local variations of the mean flow in the vicinity of the vanes, the nearly uniform mean-flow description is clearly 
inadequate.
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Fig. 25. Qualitative comparison of the total Mach number from Ref. [60] (a) and the analytical description used in the mode-matching models 
(b) for input parameters defined in Table  3. Color scales are not equal.  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Table 9
Mean flow quantities downstream of the cascade computed with TURBO on the SDT geometry, and analytical mean flow quantities 
predicted with a uniform flow using the geometrical and flow configurations. Input parameters defined in Table  3.
 𝑀+∞ 𝐷+∞∕𝐷ref 𝐶+∞∕𝐶ref 𝛥𝑀 (%) 𝛥

(

𝐷∕𝐷ref
) (%) 𝛥

(

𝐶∕𝐶ref
) (%) 

 SDT 0.34704 0.94216 0.98817 0.0000 0.0000 0.0000  
 Geom 0.35836 0.93856 0.98740 3.2619 0.3821 0.0779  
 Flow 0.34682 0.94229 0.98818 0.0634 0.0138 0.0010  

6.2.4. Comparisons of acoustic scattering with flow
Finally, Figs.  26 and 27 display the pressure fields computed with BASS [18] and with the MMBCW (imposing a Kutta condition 

as defined in Ref. [54], and detailed in Appendix  D) at 𝑘𝑏 = 2.75 and with 𝑀−∞ = 0.4, for the incident mode orders 𝑗 = 6 and 
𝑗 = −12. The parameters are detailed in Table  4. TURBO solves the steady part of the same nonlinear Euler equations as BASS, 
except that TURBO is a 3-D solver, whereas BASS is 2-D. Although the mean flow description computed with BASS is not provided 
in Ref. [18], it should be fairly the same as in Fig.  25(a).

In both cases, the pressure field from the MMBCW is in a good qualitative agreement with the numerical simulations. The 
inclination and relative phase of the scattered waves are well reproduced upstream and downstream of the cascade. The amplitude 
of the reflections also seems correctly predicted when looking at the wiggly interference pattern of the pressure field, but might 
still be slightly underestimated in Fig.  26(b). In Fig.  27(a), downstream of the cascade, the pressure field is polluted by spurious 
numerical reflections at the exit boundary as explained by Hixon [18]; this result was presented as an example of such an issue with 
Giles ‘nonreflecting’ boundary conditions. Only a single cut-on mode should propagate, as predicted by the mode-matching model 
in Fig.  27(b).

Although only qualitative, these results are highly satisfactory and encouraging. They show that the model of sound reflection 
and transmission performs well, even in the presence of a mean flow, and that the assumption of nearly-uniform mean flow can 
give relevant acoustic results in this case.

6.3. Discussion

The results support the statement that the model based on equivalent straight channels performs well at low frequency, as 
was pointed out by different authors [17,26]. However, at higher frequencies, the curvature effects are no longer negligible and 
the straight-channel approximation induces an artificial deviation of the wavefronts through the cascade, possibly ending up to a 
shifted dominant mode order downstream of the cascade.

These results also demonstrate the validity of the slowly-varying duct approach, and of the channel modal basis approximation 
in the triangle ABC. Furthermore, the geometrical approximation of the vane profile (circle arc with artificial thickness) is shown 
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Fig. 26. Instantaneous pressure maps normalized by 𝑃ref = 101325 Pa, from Ref. [18] (a) and MMBCW with a Kutta condition (b) for 𝑗 = 6 at 
𝑘𝑏 = 2.75, 𝑀−∞ = 0.4. Color scales are not equal.  (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 27. Instantaneous pressure maps normalized by 𝑃ref = 101325 Pa, from Ref. [18] (a) and MMBCW with a Kutta condition (b) for 𝑗 = −12
at 𝑘𝑏 = 2.75, 𝑀−∞ = 0.4. Color scales are not equal.  (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

to give reasonable results when used on the SDT test case at mid-span. Nonetheless, comparisons have been performed at relatively 
low and moderate frequencies only (𝑘𝑏 = 2.75 and 𝑘𝑏 = 5.5), which would barely cover the first four harmonics of the blade passing 
frequency in the SDT baseline configuration (7808 RPM). Geometrical discrepancies between the model and the real vane profile will 
have more and more impact as the frequency increases. Further investigations are needed to assess the sensitivity of the two-parts 
circle arc model at higher frequencies.

Regarding the acoustic field in the presence of a mean flow, the analytical predictions are in good qualitative agreement with 
numerical results. Yet, no quantitative comparisons were made and the numerical results are available at low frequency only 
(𝑘𝑏 = 2.75). Further investigations are also needed to release this limitation.

7. Conclusion

A two-dimensional model of acoustic scattering by a cascade of cambered vanes was developed, based on the mode-matching 
technique for periodic bifurcated waveguides. Comparisons with high-fidelity numerical simulations were performed to assess the 
validity of the assumptions made on the geometry and on the flow. It was also proved to be necessary to account for curvature 
above the first channel cut-off frequency, as a condition for relevant predictions of the acoustic field downstream of the cascade, as 
well as of the radiated acoustic powers upstream and downstream.
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Compared to the previous implementation of mode-matching for bifurcated waveguides [14], the computation time is still 
affordable for parametric studies and/or uses in optimization loops in an industrial context: a few seconds on a personal laptop 
for a given incident mode at a specific frequency.

The mean-flow approximation has shown to accurately reproduce the overall change in the mean-flow quantities from upstream 
to downstream. However, the local description in the inter-vane channels and near the stator vanes cannot reproduce the details of 
numerical inviscid computations. This local difference is mainly due to the mean loading of the vanes, which generates a non-uniform 
mean flow. It would be interesting to compare the results of acoustic scattering with a uniform mean flow and a rotational-free 
sheared mean flow inside the inter-vane channels, as a non-uniform mean flow is expected to have a significant influence at high 
frequencies, according to Peake and Kerschen [33,34]. Improvements could be made following Rienstra’s work [44] for the velocity 
potential in the inter-vane channels. Additional numerical results would also be useful for quantitative comparisons in presence of 
a mean flow.

Another path for improvements is the extension to three dimensions with staggered vanes, and then with cambered vanes. How 
to cope with the inter-vane geometry definition is still to be dealt with, as well as deciding whether or not such an approach is more 
relevant than the use of radial strips. The computation time of the Chebyshev collocation method might also become prohibitive 
for optimization strategies or for use in broadband-noise prediction schemes.

Currently undergoing works, based on the present MMBCW model, are investigating the effects of vane camber on acoustic 
resonances. They also address the cut-on/cut-off mode transitions, as a consequence of the variation in inter-vane channel 
cross-section. These topics were discarded from the present analysis, focused on fundamental aspects, for the sake of brevity.
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Appendix A. Conservation laws with an oblique mean flow

The mass conservation at an interface between a sub-domain 1 and a sub-domain 2 translates to mass-flow conservation through 
the interface as 

[

𝜌∗𝐮∗
]2
1 ⋅ 𝐧 = 0, (A.1)

where [∙]21 represents the difference between values of the quantity in domains 2 and 1, and 𝐧 is the normal unit vector to the 
interface. Linearization yields 

[

𝜌𝑈𝑥 +𝐷𝑢𝑥
]2
1 = 0. (A.2)

Because the mean velocity is equal on both sides of the interface, the mean density is also constant. This allows the use of the 
isentropic relation: 𝑝 = 𝜌𝐶2. Multiplying Eq. (A.2) by the Mach number 𝑀𝑥 = 𝑈𝑥∕𝐶, and dividing by the mean density 𝐷 finally 
gives 

[ 𝑝
𝑍
𝑀2

𝑥 +𝑀𝑥𝑢𝑥
]2

1
= 0, (A.3)

where 𝑍 = 𝐷𝐶.
Across the stator, no external work acts on the fluid. Since the flow is assumed inviscid and adiabatic, hence isentropic, the 

combined conservation of momentum and energy is equivalent to the conservation of total (or stagnation) enthalpy [36]: 
[

𝐻∗ + 1
2
|𝐮∗|2

]2

1
= 0, (A.4)

where 
|𝐮∗|2 = (𝑈 + 𝑢 )2 + (𝑈 + 𝑢 )2. (A.5)
𝑥 𝑥 𝑦 𝑦
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For an ideal gas, the enthalpy can be written as 
𝐻∗ = 𝐶𝑝𝑇 +

𝑝
𝐷
, (A.6)

where 𝐶𝑝 is the heat capacity at constant pressure. Linearization of Eq.  (A.4) yields
[ 𝑝
𝐷

+ 𝑈𝑥𝑢𝑥 + 𝑈𝑦𝑢𝑦
]2

1
= 0.

Finally, dividing the above equation by the mean sound speed 𝐶, identical on both sides of the interface, gives 
[ 𝑝
𝑍

+𝑀𝑥𝑢𝑥 +𝑀𝑦𝑢𝑦
]2

1
= 0. (A.7)

Denoting by 𝑈 the norm of the mean velocity and by 𝛹 the angle with the direction perpendicular to the interface, the 𝑥-axis 
in Fig.  1, allows one to express the mean velocity components as 𝑈𝑥 = 𝑈 cos𝛹 and 𝑈𝑦 = 𝑈 sin𝛹 . The conservation of total enthalpy 
(A.7) is then recast as 

[ 𝑝
𝑍

+𝑀𝑥
(

𝑢𝑥 + 𝑢𝑦 tan𝛹
)

]2

1
= 0. (A.8)

Combining Eqs. (A.3) and (A.8) yields the conservation of the fluctuating pressure 𝑝 and fluctuating axial velocity 𝑢𝑥, commonly 
used in mode-matching procedures, but only for the particular case where the mean flow is perfectly perpendicular to the interface, 
i.e. when 𝛹 = 0. In general, when 𝛹 ≠ 0 and 𝑀 ≠ 0, new variables need to be introduced to ensure the conservation of mass-flow 
and total enthalpy through the interface.

Due to camber, the leading-edge interface is staggered in the vanes reference frame. The pressure 𝑝 and fluctuating axial velocity 
𝑢𝑥 cannot be used as conservative variables. Expanding the linearized conservation of total enthalpy (A.7) leads to 

[

i𝑘𝜙 −𝑀𝑥𝑢𝑥 −𝑀𝑦𝑢𝑦 +𝑀𝑥𝑢𝑥 +𝑀𝑦𝑢𝑦
]2
1 = [i𝑘𝜙]21 = 0, (A.9)

which simply reduces to the conservation of 𝜙. The variable 𝛤1 is 

𝛤1 = 𝜙. (A.10)

The linearized conservation of mass-flow rate (A.3) reads 
[

i𝑘𝑀2
𝑥𝜙 + 𝛽2𝑥𝑀𝑥𝑢𝑥 −𝑀2

𝑥𝑀𝑦𝑢𝑦
]2
1 = 0, (A.11)

where 𝛽2𝑥 = 1 −𝑀2
𝑥 . Since the potential continuity is already enforced, this equation reduces to the conservation of the following 

quantity: 
𝛤2 = 𝛽2𝑥𝑢𝑥 −𝑀𝑥𝑀𝑦𝑢𝑦, (A.12)

composed of the fluctuations of axial and tangential velocities. This variable can also be rewritten as 
𝛤2 = 𝛽2𝑥𝑢𝑥 −𝑀

2
𝑥𝑢𝑦 tan𝛹. (A.13)

That demonstrates the equivalence of the conservation of 𝛤2 and 𝑢𝑥 when 𝛹 → 0 and/or 𝑀 → 0. In these particular cases, the set 
of variables (𝛤1, 𝛤2

) is equivalent to (𝜙, 𝑢𝑥) or (𝑝, 𝑢𝑥) as used for unstaggered flat vanes.

Appendix B. Chebyshev collocation method

In order to formulate a linear eigenvalue problem (according to 𝜇) from Eq.  (26), an intermediate variable is introduced as 
𝜓∗ = 𝜇𝜓 . This results in the generalized eigenvalue problem 

[

 0
0 1

] [

𝜓
𝜓∗

]

= 𝜇
[

2𝑘𝑀∕ℎ𝑠 𝛽2∕ℎ2𝑠
1 0

] [

𝜓
𝜓∗

]

, (B.1)

where 

 ∶= 𝜕2

𝜕𝑛2
+ 1
ℎ𝑠𝑅𝑐

𝜕
𝜕𝑛

+ 𝑘2. (B.2)

The first line corresponds to the mode shape Eq. (26), whereas the second line gives the relation between 𝜓 and 𝜓∗. Chebyshev 
polynomials are widely used to solve non-periodic partial differential equations due to their mathematical properties and exponential 
convergence (see for example Ref [61]. Chapter 2.4 for details). For −1 ≤ 𝑥 ≤ 1, the Chebyshev polynomials of the first kind are 
defined by

𝑇𝑚(𝑥) = cos(𝑚𝑥̄), 𝑥̄ = arccos(𝑥), 0 ≤ 𝑚 < ∞.

The Chebyshev expansion of a function 𝑓 , defined on the interval [−1, 1], is

𝑓 (𝑥) =
∞
∑

𝑓𝑚𝑇𝑚(𝑥), 𝑓𝑚 = 2
∫

1
𝑓 (𝑥)𝑇𝑚(𝑥)(1 − 𝑥2)−1∕2 d𝑥,
𝑚=0 𝜋𝑐𝑚 −1
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where 𝑐𝑚 = 2 if 𝑚 = 0, or 1 if 𝑚 ≥ 1. The discrete form of the Chebyshev polynomials is commonly described on the set of 
Gauss–Lobatto collocation points 𝑛𝑗 , ranging from 1 to −1, given by

𝑛𝑗 = cos
(

𝜋𝑗
𝑁

)

, 0 ≤ 𝑗 ≤ 𝑁.

The discrete Chebyshev polynomials of the first kind 𝑇𝑚,𝑗 and the interpolated function 𝑓𝑗 , on the collocation points 𝑛𝑗 , are defined 
as

𝑇𝑚,𝑗 = cos
(

𝑚𝜋𝑗
𝑁

)

, 𝑓𝑗 =
𝑁
∑

𝑚=0
𝑓𝑚𝑇𝑚,𝑗 .

The derivative of the interpolated function at the collocation points can simply be expressed by matrix multiplication, such that
(

d𝑓
d𝑥

)

𝑗
=

𝑁
∑

𝑙=0
(𝐷𝑁 )𝑗,𝑙𝑓𝑙 ,

where the entries of 𝐷𝑁  are deduced from the derivative of the Chebyshev polynomials of the first kind (see Ref [61]. Chapter 2.4). 
This gives

(𝐷𝑁 )𝑗,𝑙 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑐𝑗
𝑐𝑙

(−1)𝑗+𝑙

𝑛𝑗 − 𝑛𝑙
, if 𝑗 ≠ 𝑙,

−𝑛𝑙
2(1 − 𝑛2𝑙 )

, if 1 ≤ 𝑗 = 𝑙 ≤ 𝑁 − 1,

2𝑁2 + 1
6

, if 𝑗 = 𝑙 = 0,

−2𝑁2 + 1
6

, if 𝑗 = 𝑙 = 𝑁,

where

𝑐𝑗 =
{

2, if 𝑗 = 0, 𝑁,
1, if 1 ≤ 𝑗 ≤ 𝑁 − 1.

The second derivative can be computed from the square of the matrix 𝐷𝑁 . Finally, in order to account for the metric of the physical 
space, the collocation points 𝑛𝑗 and the derivative matrix 𝐷𝑁  are scaled by a factor −ℎ(𝑆)∕2. This gives 

𝑛∗𝑗 =
−ℎ(𝑆)

2
𝑛𝑗 , (𝐷∗

𝑁 )𝑗,𝑙 =
−2
ℎ(𝑆)

(𝐷𝑁 )𝑗,𝑙 , ∀(𝑗, 𝑙). (B.3)

Each equation in (B.1) is described by a matrix in its discrete form. The boundary conditions are then applied through the first and 
last lines of each sub-matrix, which correspond to the boundary points. For the second equation, 𝜓∗ = 𝜇𝜓 , there is no need for 
boundary conditions. Hence, the first and last lines are discarded and the vector 𝜓∗ is only evaluated on 𝑁 − 1 collocation points, 
i.e. the inner collocation points 1 ≤ 𝑖 ≤ 𝑁 − 1. For the first equation (the mode shape equation), the first and last lines are replaced 
by the boundary conditions, Eq. (27) in discrete form, which reads

𝑁
∑

𝑙=0
(𝐷∗

𝑁 )𝑗,𝑙𝜓𝑙 = 0, 𝑗 = 0, 𝑁.

The generalized eigenvalue problem (B.1) is finally written in discrete form as 
[

 𝐎
𝐎 𝐈

] [

𝜓
𝜓∗

]

=

[

𝐌𝟏 𝐌𝟐
𝐈 𝐎

]

[

𝜓
𝜓∗

]

𝝁, (B.4)

where

[]𝑗,𝑙 =

{

(𝐷∗2
𝑁 )𝑗,𝑙 + (𝐷∗

𝑁 )𝑗,𝑙∕(𝑅𝑐 + 𝑛∗𝑗 ) + 𝑘
2, if 1 ≤ 𝑗 ≤ 𝑁 − 1,

(𝐷∗
𝑁 )𝑗,𝑙 , if 𝑗 = 0, 𝑁,

[

𝑀1
]

𝑗,𝑙 =

{

2𝑘𝑀∕(1 + 𝑛∗𝑗 ∕𝑅𝑐 )𝛿𝑗,𝑙 , if 1 ≤ 𝑗 ≤ 𝑁 − 1,
0, if 𝑗 = 0, 𝑁,

[

𝑀2
]

𝑗,𝑖 =

{

𝛽2∕(1 + 𝑛∗𝑗 ∕𝑅𝑐 )
2𝛿𝑗,𝑖, if 1 ≤ 𝑗 ≤ 𝑁 − 1,

0, if 𝑗 = 0, 𝑁,

𝛿 denoting the Kronecker delta, 1 ≤ 𝑖 ≤ 𝑁 − 1 and 0 ≤ 𝑙 ≤ 𝑁 . The discrete eigenvalue problem (B.4) is solved at each location 𝑆 by 
employing a built-in solver in Matlab using the QZ algorithm (eig function), which returns the desired eigenfunctions 𝜓𝑙(𝑆, 𝑛∗𝑗 ) and 
their associated eigenvalues 𝜇 (𝑆).
𝑙
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Appendix C. Mode-matching equations at the staggered leading-edge interface

C.1. Continuity of the acoustic potential

To derive the matching equations, a change of variables is performed on the channel modes to express all potentials in terms of 
(𝑥, 𝑦). For the potential 𝜙𝑑 , it yields

𝜙𝑑 (𝑥, 𝑦) =
1
2

∞
∑

𝑞=0
𝐴𝑞

[

ei
(

− 𝑞𝜋
𝑎 sin𝛹+𝑘+𝑞 cos𝛹

)

𝑥ei
(

𝑞𝜋
𝑎 cos𝛹+𝑘+𝑞 sin𝛹

)

𝑦

+ei
(

𝑞𝜋
𝑎 sin𝛹+𝑘+𝑞 cos𝛹

)

𝑥ei
(

− 𝑞𝜋
𝑎 cos𝛹+𝑘+𝑞 sin𝛹

)

𝑦
]

. (C.1)

For the sake of brevity, the potential 𝜙𝑢 is written with the coefficients 𝐵̃𝑞 as in Eq.  (43) in the following. The acoustic potential 
continuity at the leading-edge interface reads

1
2

∞
∑

𝑞=0
𝐴𝑞

[

ei
(

𝑞𝜋
𝑏 +𝑘+𝑞 sin𝛹

)

𝑦 + ei
(

− 𝑞𝜋
𝑏 +𝑘+𝑞 sin𝛹

)

𝑦
]

+ 𝐵̃𝑞

[

ei
(

𝑞𝜋
𝑏 +𝑘−𝑞 sin𝛹

)

𝑦 + ei
(

− 𝑞𝜋
𝑏 +𝑘−𝑞 sin𝛹

)

𝑦
]

e−i𝑘
−
𝑞 𝑏 sin𝛹

=
∞
∑

𝑝=−∞
𝑅𝑝e

i𝛼𝑝𝑦 + ei𝛼𝑗𝑦. (C.2)

The projection on the annular modal basis is performed with the operator

∫

𝑏

0
(∙)e−i𝛼𝑝𝑦 d𝑦, with 𝛼𝑝 = 𝛼𝑗 + 𝑝

2𝜋
𝑏
, 𝑝 ∈ Z.

This leads to 
∞
∑

𝑞=0
𝐴𝑞

(

I++𝑞,𝑝 + I−+𝑞,𝑝

)

+ 𝐵̃𝑞
(

I+−𝑞,𝑝 + I−−𝑞,𝑝

)

e−i𝑘
−
𝑞 𝑏 sin𝛹 = 𝑏

(

𝑅𝑝 + 𝛿𝑝,0
)

, (C.3)

where the integrals on the staggered channel modes are defined by

I±±𝑞,𝑝 = 1
2 ∫

𝑏

0
ei(±

𝑞𝜋
𝑏 +𝑘±𝑞 sin𝛹−𝛼𝑝)𝑦 d𝑦 = 𝑏

2

sin
(

𝜑±±
𝑞,𝑝

)

𝜑±±
𝑞,𝑝

ei𝜑
±±
𝑞,𝑝 ,

with

𝜑±±
𝑞,𝑝 = 𝑏

2

(

±
𝑞𝜋
𝑏

+ 𝑘±𝑞 sin𝛹 − 𝛼𝑝
)

.

The integrals can also be recast together in the potential continuity Eq. (C.3) to give the result of Eq.  (50) as 
∞
∑

𝑞=0
𝐴𝑞I

+
𝑞,𝑝 + 𝐵̃𝑞I

−
𝑞,𝑝e

−i𝑘−𝑞 𝑏 sin𝛹 = 𝑏
(

𝑅𝑝 + 𝛿𝑝,0
)

, (C.4)

where 

I±𝑞,𝑝(𝛹 ) = I+±𝑞,𝑝 + I−±𝑞,𝑝 =

⎧

⎪

⎨

⎪

⎩

−i(𝑘±𝑞 sin𝛹 − 𝛼𝑝)

(𝑞𝜋∕𝑏)2 − (𝑘±𝑞 sin𝛹 − 𝛼𝑝)2

(

1 − (−1)𝑞ei𝑏(𝑘
±
𝑞 sin𝛹−𝛼𝑝)

)

,

𝑏
2
(

1 + 𝛿𝑞,0
)

if |

|

|

𝑘±𝑞 sin𝛹 − 𝛼𝑝
|

|

|

=
𝑞𝜋
𝑏
.

(C.5)

C.2. Continuity of the modified acoustic velocity

To write the continuity equation on the modified acoustic velocity 𝛽2𝑥𝑢𝑥 −𝑀𝑥𝑀𝑦𝑢𝑦, the derivatives of the potential (C.1) with 
respect to each coordinate are needed. They are derived as

𝜕𝜙𝑑
𝜕𝑥

= i
2

∞
∑

𝑞=0
𝐴𝑞

[

(

−
𝑞𝜋
𝑎

sin𝛹 + 𝑘+𝑞 cos𝛹
)

ei
(

− 𝑞𝜋
𝑎 sin𝛹+𝑘+𝑞 cos𝛹

)

𝑥ei
(

𝑞𝜋
𝑎 cos𝛹+𝑘+𝑞 sin𝛹

)

𝑦

+
( 𝑞𝜋
𝑎

sin𝛹 + 𝑘+𝑞 cos𝛹
)

ei
(

𝑞𝜋
𝑎 sin𝛹+𝑘+𝑞 cos𝛹

)

𝑥ei
(

− 𝑞𝜋
𝑎 cos𝛹+𝑘+𝑞 sin𝛹

)

𝑦
]

, (C.6)

and
𝜕𝜙𝑑
𝜕𝑦

= i
2

∞
∑

𝑞=0
𝐴𝑞

[

( 𝑞𝜋
𝑎

cos𝛹 + 𝑘+𝑞 sin𝛹
)

ei
(

− 𝑞𝜋
𝑎 sin𝛹+𝑘+𝑞 cos𝛹

)

𝑥ei
(

𝑞𝜋
𝑎 cos𝛹+𝑘+𝑞 sin𝛹

)

𝑦

+
(

−
𝑞𝜋

cos𝛹 + 𝑘+𝑞 sin𝛹
)

ei
(

𝑞𝜋
𝑎 sin𝛹+𝑘+𝑞 cos𝛹

)

𝑥ei
(

− 𝑞𝜋
𝑎 cos𝛹+𝑘+𝑞 sin𝛹

)

𝑦
]

. (C.7)

𝑎
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Fig. D.28. Scattering of a downstream-propagating channel mode at the trailing-edge interface with infinitely thin vorticity sheets induced by 
the Kutta condition.

The modified velocity continuity at the leading-edge interface reads
1
2

∞
∑

𝑞=0
𝐴𝑞

[(

𝛽2𝑥𝐾
+−
𝑞 −𝑀𝑥𝑀𝑦𝐴

++
𝑞

)

ei𝐴
++
𝑞 𝑦 +

(

𝛽2𝑥𝐾
++
𝑞 −𝑀𝑥𝑀𝑦𝐴

−+
𝑞

)

ei𝐴
−+
𝑞 𝑦

]

+ 𝐵̃𝑞
[(

𝛽2𝑥𝐾
−−
𝑞 −𝑀𝑥𝑀𝑦𝐴

+−
𝑞

)

ei𝐴
+−
𝑞 𝑦 +

(

𝛽2𝑥𝐾
−+
𝑞 −𝑀𝑥𝑀𝑦𝐴

−−
𝑞

)

ei𝐴
−−
𝑞 𝑦

]

e−i𝑘
−
𝑞 𝑏 sin𝛹

=
∞
∑

𝑝=−∞
𝑅𝑝

(

𝛽2𝑥𝑘
−
𝑝 −𝑀𝑥𝑀𝑦𝛼𝑝

)

ei𝛼𝑝𝑦 + (𝛽2𝑥𝑘
+
𝑗 −𝑀𝑥𝑀𝑦𝛼𝑗 )e

i𝛼𝑗𝑦, (C.8)

where

𝐾±±
𝑞 = 𝑘±𝑞 cos𝛹 ±

𝑞𝜋
𝑎

sin𝛹, 𝐴±±
𝑞 = ±

𝑞𝜋
𝑎

cos𝛹 + 𝑘±𝑞 sin𝛹.

Using the same projection method as previously gives the result of Eq.  (51) as 
∞
∑

𝑞=0
𝐴𝑞+

𝑞,𝑝I
+
𝑞,𝑝 + 𝐵̃𝑞

−
𝑞,𝑝I

−
𝑞,𝑝e

−i𝑘−𝑞 𝑏 sin𝛹 = 𝑏
(

−
𝑝𝑅𝑝 ++

𝑗 𝛿𝑝,0
)

, (C.9)

where the staggered axial wavenumbers are defined by
+
𝑗 = 𝛽2𝑥𝑘

+
𝑗 −𝑀𝑥𝑀𝑦𝛼𝑗 ,

−
𝑝 = 𝛽2𝑥𝑘

−
𝑝 −𝑀𝑥𝑀𝑦𝛼𝑝,

±
𝑞,𝑝 =

(

𝛽2𝑥 cos𝛹 −𝑀𝑥𝑀𝑦 sin𝛹
)

𝑘±𝑞 + tan𝛹
𝑘±𝑞 sin𝛹 − 𝛼𝑝

( 𝑞𝜋
𝑏

)2
.

Appendix D. Implementation of a Kutta condition

In the presence of an inviscid mean flow, a Kutta condition is needed on the fluctuating variables of the mode-matching model. 
This condition enforces a finite velocity at the trailing edges, allowing to indirectly account for some viscous effects within an 
inviscid flow. According to Rienstra [62], this condition is equivalently expressed by enforcing a zero pressure jump at the trailing 
edge of the vanes. This has for consequence the generation of a vortex shedding from the edges, which is modeled by infinitely thin 
vortical sheets convected at the speed of the mean flow [63]. This adds a vortical velocity field 𝐮𝑅𝐾 downstream of the vanes, that 
has to be accounted for in the matching equations. The new problem to solve at the trailing-edge interface is depicted in Fig.  D.28.

The zero pressure jump at the trailing edge, between a reference channel (𝑝0) and the channel below (𝑝−1), is derived as
𝑝−1(𝑆 = 𝐿𝑐 , 𝑛 = 𝑏∕2) = 𝑝0(𝑆 = 𝐿𝑐 , 𝑛 = −𝑏∕2),

⇔
∞
∑

𝑞=0

∞
∑

𝑙=0

∞
∑

𝑞∗=0

[

𝐴𝑞e
i𝑘+𝑞 𝑎 tan𝛹𝑞𝑙 (0)𝛶

+
𝑙

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇+𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)

+𝐵𝑞
𝑞
𝑙 (𝐿𝑐 )

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇−𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)]

cos(𝑞∗𝜋)e−i𝛼𝑗𝑏

=
∞
∑

∞
∑

∞
∑

[

𝐴𝑞e
i𝑘+𝑞 𝑎 tan𝛹𝑞𝑙 (0)𝛶

+
𝑙

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇+𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)

𝑞=0 𝑙=0 𝑞∗=0

31 



L. Girier et al. Journal of Sound and Vibration 620 (2026) 119473 
+𝐵𝑞
𝑞
𝑙 (𝐿𝑐 )

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇−𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)]

,

which can be rewritten as
∞
∑

𝑞=0

∞
∑

𝑙=0

∞
∑

𝑞∗=0
𝐴𝑞e

i𝑘+𝑞 𝑎 tan𝛹𝑞𝑙 (0)𝛶
+
𝑙

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇+𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)(

1 − (−1)𝑞
∗
e−i𝛼𝑗𝑏

)

= −
∞
∑

𝑞=0

∞
∑

𝑙=0

∞
∑

𝑞∗=0
𝐵𝑞

𝑞
𝑙 (𝐿𝑐 )

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇−𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)(

1 − (−1)𝑞
∗
e−i𝛼𝑗𝑏

)

. (D.1)

Since the vanes are locally aligned with the turbomachinery axis at the trailing edge, the vortical sheets are the same as for 
unstaggered flat vanes. Hence, the velocity field 𝐮𝑅𝐾 is described as [6]

𝐮𝑅𝐾 (𝑥
′, 𝑦′) =

∞
∑

𝑝=−∞
𝐔𝑅𝑝 e

i𝛼𝑝𝑦′ei(𝑘∕𝑀)𝑥′ , 0 ≤ 𝑥′ < ∞, 0 ≤ 𝑦′ < 2𝜋𝑅, (D.2)

𝐔𝑅𝑝 =
i𝛺𝐾
𝑏

[𝛼𝑝𝐞𝑥 − (𝑘∕𝑀)𝐞𝑦]
𝛼2𝑝 + (𝑘∕𝑀)2

, (D.3)

where 𝛺𝐾 is the unknown amplitude of the associated vortical field. Due to the presence of the vortical field, the total velocity field 
is not potential anymore downstream of the cascade. Thus, the continuity of the fluctuating velocity potential 𝜙 no longer enforces 
the continuity of the total enthalpy (A.7). The trailing-edge matching equations with a Kutta condition are then expressed on the 
set of variables (𝑝, 𝑢𝑥). The velocity field 𝐮𝑅𝐾 being pressure-free, the continuity of the fluctuating pressure 𝑝 is given by

∞
∑

𝑞=0

∞
∑

𝑙=0

∞
∑

𝑞∗=0

[

𝐴𝑞e
i𝑘+𝑞 𝑏 sin𝛹𝑞𝑙 (0)𝛶

+
𝑙

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇+𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)

+𝐵𝑞
𝑞
𝑙 (𝐿𝑐 )

(

𝑘𝑙
𝑞∗ (𝐿𝑐 ) −𝑀𝜇−𝑙 ̃

𝑙
𝑞∗ (𝐿𝑐 )

)]

I0𝑞∗ ,𝑝 = 𝑏(𝑘 −𝑀𝑘+𝑝 )𝑇𝑝. (D.4)

On the other hand, the continuity of the fluctuating axial velocity 𝑢𝑥 with the Kutta condition yields
∞
∑

𝑞=0

∞
∑

𝑙=0

∞
∑

𝑞∗=0

[

𝐴𝑞e
i𝑘+𝑞 𝑏 sin𝛹𝑞𝑙 (0)𝜇

+
𝑙 𝛶

+
𝑙 + 𝐵𝑞

𝑞
𝑙 (𝐿𝑐 )𝜇

−
𝑙

]

̃𝑙
𝑞∗ (𝐿𝑐 )I

0
𝑞∗ ,𝑝

= 𝑏𝑘+𝑝 𝑇𝑝 +
𝛼𝑝

𝛼2𝑝 + (𝑘∕𝑀)2
𝛺𝐾 . (D.5)

Data availability

Data will be made available on request.
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