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Abstract

The present work is devoted to the modeling of noise generated by the impingement
of fan wakes on outlet guide vanes in turbofan engines, which has been acknowledged
as one of the most important contribution to aircraft noise. Modern fan stages display
a high number of blades/vanes, resulting in strong cascade effect. For such configura-
tions, the mode-matching technique chosen in this thesis shown promising capabilities
to better understand and predict noise generation and propagation. This is why an
extension of this technique to more realistic vane geometries is proposed, with the
addition of camber in two dimensions.

Accounting for camber has a twofold impact on sound propagation through the
inter-vane channels: curvature of the center line, and expansion of the cross-section.
The latter is introduced by means of a multiple-scale analysis, relying on slow varia-
tions along the channel, while the former is added by formulating the wave equation in
curvilinear coordinates. The channel expansion plays a significant role on sound trans-
mission and reflection phenomena at all frequencies. It also generates cut-on/cut-off
transitions of channel modes, which can drastically change the acoustic behavior. A
detailed study of this mechanism has been carried out. On the other hand, it has been
observed that curvature only matters above the first cut-off frequency of the channels,
for typical outlet guide vane geometries.

Concerning the wakes evolution through the cascade of cambered vanes, only the
expansion effect has been modeled. This allows one to recover the wakes slicing and
tilting observed in numerical simulations. However, the missing curvature effects proved
to be limiting to address noise prediction in realistic configurations. They should be
added to ensure reliable results.

Throughout this work, emphasis was also placed on acoustic resonances. Para-
metric studies have been performed on the influence of vane design parameters and
incident perturbation on the prediction of resonant frequencies. The modulation of
the resonance pattern by an incident acoustic wave in non-ideal conditions has been
explained, as well as the crucial role of cut-on/cut-off transitions at certain frequencies.
The influence of acoustic resonances triggered by wake impingement was also studied.
It appeared that their occurrence can either reduce or amplify noise.

Keywords: Aeroacoustics, rotor-stator wake-interaction noise, camber, mode-matching,
multiple-scale analysis, cut-on/cut-off transition, acoustic resonance
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Résumé

Ce travail est consacré à la modélisation du bruit d’impact des sillages de la soufflante
sur les aubes de redresseur du flux secondaire d’un turboréacteur, qui est reconnu
comme l’une des contributions majeures au bruit d’un avion civil moderne. Les étages
de soufflante modernes présentent un nombre élevé de pales/aubes, ce qui entraîne un
fort effet de grille. Pour de telles configurations, la technique de raccordement modal
retenue pour cette thèse a montré des capacités prometteuses pour mieux comprendre
et prédire la génération et propagation du bruit. C’est pourquoi une extension de
cette technique à des géométries d’aube plus réalistes est proposée, avec l’ajout de la
cambrure en deux dimensions.

La prise en compte de la cambrure a un double impact sur la propagation du son
dans les canaux inter-aubes : la courbure de la ligne centrale et l’évasement de la section
transverse. L’effet d’évasement est introduit au moyen d’une analyse multi-échelle, en
supposant des variations lentes du canal, tandis que les effets de courbure sont ajoutés
en formulant l’équation d’onde en coordonnées curvilignes. L’évasement du canal joue
un rôle significatif sur la transmission et la réflexion du son à toutes les fréquences. Il
génère également des transitions de mode coupé/passant dans les canaux, ce qui peut
changer radicalement le comportement acoustique de la grille. D’autre part, il a été
observé que la courbure n’a d’importance qu’au-dessus de la première fréquence de
coupure des canaux, pour des géométries d’aube classiques.

Concernant l’évolution des sillages à travers la grille d’aubes cambrées, seul l’effet
d’évasement a été modélisé. Cela a permis de prendre en compte le découpage et
l’inclinaison des sillages observés dans les simulations numériques. Cependant, les effets
de courbure semblent nécessaires pour prédire correctement le contenu modal généré
dans des configurations réalistes. Ils devront être ajoutés pour garantir la fiabilité des
résultats.

Au cours de ce travail, l’accent a aussi été mis sur les résonances acoustiques.
Des études paramétriques ont été réalisées sur l’influence des paramètres géométriques
des aubes et de la perturbation incidente. La modulation du motif de résonance par
une onde acoustique incidente dans des conditions de résonance non idéales a été ex-
pliquée, ainsi que le rôle crucial des transitions. L’influence des résonances acoustiques
déclenchées par l’impact des sillages a également été étudiée. Il apparaît que la réso-
nance de la grille peut soit réduire, soit amplifier le bruit généré, en fonction de son
motif.

Mots-clés: Aéroacoustique, bruit d’interaction de sillage, cambrure, raccordement
modal, analyse multi-échelle, transition coupé/passant, résonance acoustique
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Introduction

General Context

With the exponential growth of air traffic, aircraft noise pollution has become a real
societal problem. To remedy this, an international specialized agency, known as the
International Civil Aviation Organization (ICAO), has emerged from the Chicago Con-
vention in the late 1940s. Its role is to provide standards and recommended practices
to manage aircraft noise pollution at an international level. One of the most important
pillars of the balanced approach adopted by the ICAO is the reduction of noise at its
source. To this end, noise limits have been imposed for aircraft since the 1970s. Since
then, the ICAO noise standards, known as chapters, continue to evolve and are applied
through the ICAO certification. The ICAO policy on that matter is "to ensure that
the latest available noise reduction technology is incorporated into aircraft design and
that this is demonstrated by procedures that are relevant to day-to-day operations."1.
Aircraft manufacturers are forced to pass this certification process with each of their
airplanes for it to be allowed to fly. Also, the Advisory Council for Aviation Research
and Innovation in Europe (ACARE) has set several objectives for the continent, as a
reduction of 65% of the noise emissions for airplanes in 2050, compared to airplanes
from the 2000s2.

Aircraft noise can emerge from a variety of sources that are always related to some
sort of flow unsteadiness. They can be split into two categories: sources related to
the engine and sources related to the airframe. The engine is a complex system that
generates sound in several ways internally, and by turbulent mixing within the hot jet
flow downstream (shown in red in Figure 1). The airframe elements generate noise
due to their interactions with the ambient flow during flight (shown in green in Fig-
ure 1). Moreover, sources can interact with each others, typically the jet flow with
wing elements, as shown in blue in Figure 1.

Though all sources indicated in Figure 1 might be relevant for on-board noise,
the present work focuses on noise pollution for people living near airports. To this
end, the relative efficiency of each noise source is estimated on the ground through
the certification process defined by the ICAO. The measurements are done during
two main flight procedures: approach and take-off, as depicted in Figure 2. The
approach procedure is basically a landing operation, so the engines run at the lowest

1International Civil Aviation Organization. [Online]. Available:
https://www.icao.int/environmental-protection/Pages/Reduction-of-Noise-at-Source.aspx

2Advisory Council for Aviation Research and Innovation in Europe. [Online]. Avail-
able: https://www.acare4europe.org/sria/flightpath-2050-goals/protecting-environment-and-energy-
supply-0
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Figure 1: List of the most relevant noise sources and interactions, ©Henri Siller and
Jan Delfs, DLR, 2019.

Figure 2: Noise certification flight paths and control points.

power/thrust of the certification. Noise is measured at a point directly below the
flight path. During the take-off procedure, two sets of noise measurements are done.
One lateral measurement (called sideline) during the first part of the take-off, where
the engines are operated at full power/thrust, and another measurement below the
flight path (called flyover/cutback) after the engines have been reduced to cutback
power/thrust, ensuring a minimum climb gradient.

A study made in the early century, on typical long-range four-engine aircraft [50],
pointed out that the airframe and engine noises are both crucial in approach condition
whereas the engine noise is always significant and especially dominant during take-off,
with emphasis on jet- and fan-related noise (see Figure 3). Reducing fan-related noise
then appears as one of the main lever to reduce the overall aircraft noise emission.
Therefore, this work focuses on the modeling of fan-related noise.
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Figure 3: Example of noise source contributions for typical long-range four-engine
aircraft, at the three certification points [50].

Thesis Aim
In order to reduce fan-related noise, aircraft engine manufacturers have two options:
apply acoustic liners inside the engine to absorb noise, and optimize the design of the
fan stage to directly reduce noise generation. The present work is concerned with the
latter. Accurate and efficient predictive tools are then needed in optimization strategies
at each step of the design (pre-design, design, ...). In this context, the mode-matching
technique described in Bouley et al. [12] showed promising capabilities as a tool for fan
stage acoustic pre-design, especially to further understand acoustic transmission and
reflection phenomena. Safran Aircraft Engines, as an aircraft engine manufacturer,
and the Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA) in Lyon want
to further improve this model and to include as many realistic design parameters as
possible while preserving analytical tractability, so that fast computations are ensured
when used in optimization loops and/or for broadband noise predictions. For this
purpose, the present thesis proposes an extension of the model of Bouley et al. [12]
by taking into account the effects of vane camber. Results are focused on tonal noise
predictions but the model can be applied to broadband predictions as shown by François
et al. [34].

Outline of Contents
The outline of the manuscript is as follows. Chapter 1 is dedicated to a literature
review on the most important noise sources present in the fan stage, and the tools
that are currently available to study and predict them. The general principles of the
mode-matching technique are then explained. Finally, a particular attention is paid to
the influence of vane camber on noise generation, that is yet to be fully understood.

Chapters 2 to 4 are devoted to the modeling and study of the transmission and
reflection phenomena in a cascade of cambered vanes. In Chapter 2, the system of
mode-matching equations is first detailed for a linear cascade of flat vanes. A first
extension to account for the effects of camber is then proposed, based on a multiple-
scale analysis. This first extension is fully analytical but is limited to relatively low
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frequencies. The results obtained with the extended model are compared to highly
accurate numerical results, which are used as a reference to validate the model. Chap-
ter 3 presents an alternative extension of the initial model, which allows one to take
into account the effects of vane camber at higher frequencies. This extension relies on
a pseudo-spectral method to solve an eigenvalue problem, and is therefore qualified
as semi-analytical. Comparisons with numerical results are presented to validate the
model with and without the presence of a mean flow. The validity range of the low-
frequency model is also assessed and parametric studies are conducted to investigate the
effects of camber on sound transmission and reflection, with emphasis on the resonance
phenomenon. Chapter 4 tackles the delicate phenomenon of cut-on/cut-off transition
of acoustic modes, which can happen in the inter-vane channels due to camber. An
extension of the multiple-scale analysis is explained, based on some form of matched
asymptotic expansion, which allows one to account for the fast variations of sound en-
countered in the vicinity of the transition location. This extension is then introduced
into the low-frequency mode-matching model, and investigations are performed on the
role of the transition, with a particular focus on resonance phenomena.

Finally, Chapter 5 introduces the modeling of sound generation by periodic wake
impingement on a linear cascade of cambered vanes. The wake is decomposed into
vortical gusts in the frequency domain, and a model of vortical gust evolution through
the cascade of cambered vanes is proposed, accounting for the "slicing" induced by
the vanes downstream. The vortical gust is introduced into the mode-matching model
alongside the acoustic waves and comparisons are made with analytical and numerical
results available in the literature for tonal noise prediction. Parametric studies are also
conducted to further understand the influence of camber on tonal noise generation.
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Chapter 1
State of the Art

Introduction

As mentioned in the previous chapter, the aircraft engine is the main source of
noise pollution, especially because of the contributions of the fan stage. The
engine architecture is first presented in a simplified manner to better visualize
the problem. A literature review is then done on the most important noise
sources present in the fan stage in order to point out the key sources that need
to be dealt with in the first instance. The tools currently available for studying
and predicting noise are also presented, which helps to understand where the
current work stands at. The general principles of the mode-matching technique
used in this PhD are explained afterward. Finally, the current knowledge on the
influence of vane camber on sound generation, which is yet to be fully understood,
is presented.
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1.1 Fan Noise Sources

1.1.1 Overview

Figure 1.1 displays a schematic view of the cross-section (called meridian plane) of a
modern turbofan engine with its main components: the Low-Pressure (LP) and High-
Pressure (HP) compressor/turbine stages and the combustion chamber. The so-called

Figure 1.1: Schematic view of a modern turbofan engine.

fan stage is composed of the fan (rotating part) and two sets of guiding vanes (static
part) named: Internal Guide Vanes (IGV) in the core duct, and Outlet Guide Vanes
(OGV) in the bypass duct. The fan is basically the main component that is seen when
standing in front of the engine.

As explained in the Introduction, the noise generated in the fan stage is one of the
main contributions to the aircraft noise pollution. In order to predict this noise, the
following methodology (see Figure 1.2) can be adopted:

1. Computation of the acoustic sources present in the fan stage;

2. In-duct propagation of sound up to the engine intake and exhaust;

3. Propagation of sound up to the external near-field, accounting for refraction
effects at the lip of the air intake and exhaust, as well as the complex interactions
with the jet flow;

4. Propagation of sound from the external near-field up to the far-field, where the
microphones of the certification process are located, by means of free-field prop-
agation tools.

In this work, only the first two steps are addressed: computation of the acoustic sources
and in-duct propagation. The following part presents what sort of acoustic sources exist
in the fan stage and how they are produced.

The fan stage of a modern turbofan engine is the home of a variety of noise genera-
tion mechanisms. Taking the point of view of a distant observer, the different sources

6



1.1. Fan Noise Sources

Figure 1.2: Possible noise prediction methodology.

of noise originate from unsteady interactions between the flow and the fan blades or
the IGV/OGV. The fundamental analysis of Ffowcs Williams & Hawkings [31] teaches
us that the acoustic sources due to a moving surface can be decomposed into three
categories, with relative importance based on the Mach number at which the source
approaches the observer point:

• thickness noise due to the volume displacement of fluid, mostly significant at high
subsonic Mach numbers and for thick-enough bodies;

• loading noise due to the aerodynamic forces exerted by the blade/vane on the
fluid, the unsteady part of which is essential at every subsonic Mach numbers
on contrary to the steady part that is significant only at higher Mach numbers,
similarly to thickness noise;

• flow noise due to unsteady fluctuations and internal stresses inherent to the flow
(gathered into the so-called Lighthill’s tensor), mostly significant at nearly sonic
and supersonic Mach numbers.

Since the fan blades are moving in a non-inertial rotational motion, each aforementioned
type of noise can be produced from the point of view of a distant observer. For the
stator vanes, however, only unsteady loading can generate noise, since the surface is
not moving.

Though the thickness noise, steady loading noise and flow noise can only originate
from the rotation of the fan blades, the unsteady loading noise of the blades/vanes
has numerous and unavoidable sources. The latter come from unsteady disturbances
of the velocity field that flows over the blades/vanes. The main flow interactions that
can happen in the fan stage are depicted in Figure 1.3. They can be gathered into
two categories from the point of view of the acoustics, depeding on whether they are
periodic or random. A periodic interaction will produce sound at the corresponding
frequency and its harmonics. A random interaction will produce sound on a broadband
spectrum, covering a continuous range of frequencies. A description of the resulting
sources of noise is given in the following, according to the review by Peake & Parry [94].
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Figure 1.3: Fan noise sources caused by periodic (red) or random (blue) interactions.

1.1.2 Tonal Noise Sources

Fan Self-Interaction

Fan self-interaction mainly describes the fan thickness noise and steady loading noise
here, which become significant at high subsonic speeds. Since unsteadiness is needed
to produce sound, the steady part of the aerodynamic forces exerted by the blades
on the fluid can only generate noise when the blades are in a non-inertial motion,
such as a rotating motion. This is the case for the fan blades, the steady loading
of which induces an unsteady periodic fluctuation of the fluid at each passage of a
blade. Thus, these fluctuations naturally produce noise at harmonics of the Blade
Passing Frequency (BPF), which is equal to the number of blades times the shaft-
rotation rate ΩR (in rad/s). In addition, at supersonic blade speeds encountered in
take-off condition, shocks start to develop at the blade leading edges. The expected
characteristic frequency is also the BPF. However, due to the non-linear behavior of the
shocks formation and propagation, the latter are particularly sensitive to small blade-
to-blade shape variations, resulting in differences in shock amplitude and azimuthal
spacing. The azimuthal symmetry is broken and noise is generated, and radiated, at
all multiples of the shaft-rotation frequency, generating what is called multiple pure
tones, in contrast with the BPF harmonic tones (see [129]).

Droop-Fan Interaction

If the incoming flow in the air intake is non-uniform in the azimuthal direction, it
creates mean distortions that interact with the rotating blades of the fan and generate
periodic lift fluctuations. Unsteady loading noise is then produced at harmonics of the
BPF. During flight, air is coming in the engine with a slight angle of attack due to
the difference between the flight path and the aircraft pitch angles. The air intake is
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usually designed to counteract this effect and ensure a uniform mean flow parallel to
the fan axis. However, the air intake of modern turbofan engines is shorter and shorter
and is usually not circular in cross section to satisfy ground-clearance requirements. It
is then difficult to ensure a uniform incoming flow.

Fan-Vane Wake Interaction

The rotating wakes of the fan blades are also a strong source of noise when inter-
acting with the stator vanes downstream. Considering all the fan blades as identical
and equivalently distributed along the circumference, the rotating wakes periodically
interact with each vane. The wake is characterized by a velocity deficit, the mean
part of which generates a periodic variation of the vanes lift, as each wake passes by a
given vane. This phenomenon generates an unsteady loading noise at harmonics of the
BPF. The wakes velocity deficit is usually larger and stronger at mid-span and above.
Consequently, the interaction of the wakes with the OGV is significantly noisier than
with the IGV. Fan wake-OGV interaction is considered as the main source of tonal
noise for a wide range of engine power regimes in current turbofan engines (except at
full power during the sideline measurements, where the dominant noise source is due
to the shocks developing at the fan leading edge).

Fan-Vane Potential Interaction

The presence of a thick solid surface in the flow forces the fluid to reorganize itself
to bypass the obstacle. This creates a mean loading on the obstacle, which generates
a local distortion of the flow, called potential effect. If the distance between the fan
and the vanes is short enough, or if the potential effect of the vanes is amplified by the
presence of struts, the steady distortion generated by the vanes can interact periodically
with the fan blade trailing edges. Inversely, the rotating potential distortion generated
by the blades can periodically interact with the vane leading edges. An unsteady
loading noise is then produced at harmonics of the BPF. This mechanism is usually
of secondary importance in modern turbofan engines, even with the reduction of the
fan-OGV distance (see for example [122, 95]).

1.1.3 Broadband Noise Sources

Fan Turbulent Boundary-Layer Interaction

The fan is also responsible for a part of the broadband noise due to the turbulent motion
of the flow within the blades boundary layer interacting with their trailing edge. At low
Mach numbers, it seems that this contribution is dominated by sound amplification of
the quadrupoles near the trailing edge [132]. Also, for off-design operating points such
as in approach condition, the blades can operate at a high angle of attack resulting in
flow separations or recirculation bubbles on the suction side. These mechanisms can
generate large turbulent structures that produce broadband noise when interacting
with the trailing edge or even produce noise by their own oscillation in the case of
recirculation bubbles. All of these noise mechanisms due to the interaction between a
fan blade and the turbulence produced in its own boundary layer and near wake are
usually referred to as self-noise, with the addition of tip-gap noise [15].
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Inlet Turbulence Ingestion

Atmospheric turbulence can also be responsible for broadband noise production [43, 91].
The interaction of the turbulent velocity field with the fan blades generates random
fluctuations of the lift concentrated at the leading edge, thus giving rise to a broadband
loading noise.

Fan/OGV Casing Boundary-Layer Interaction

The casing boundary layer is also responsible for turbulent interactions with the fan
blades and OGV leading edges. This gives rise to a broadband loading noise. It
has been noticeably studied by Stephens & Morris [128] and, even if of secondary
importance in the present case, could become a significant mechanism for boundary-
layer ingestion propulsion systems.

Fan Tip-Gap Noise

Jacob et al. [54] explain that the tip leakage flow is similar to a cross-jet flow, resulting
from the pressure gradient between the fan blades pressure side and suction side. This
secondary flow is then deflected by the surrounding flow and rolls up into one or two
vortices, called the tip leakage vortex (generated at the leading edge) and the tip
separation vortex (generated at mid-chord). The tip vortices then interact with the
outer flow or the casing, creating two highly turbulent shear layers identified as major
mechanisms for broadband noise production.

Fan-Vane Wake Interaction

The fan wakes also possess a strong turbulent component due to the shear layers de-
veloping from the mean velocity gradients. This turbulence then interacts with the
OGV and produces broadband loading noise. According to Peake & Parry [94], this
represents the strongest source of broadband noise.

The fan-OGV wake-interaction noise is considered as the main source of noise in
modern turbofan engines for a wide range of operating conditions, for tonal noise as
well as broadband noise. Hence, this work is focused on that particular rotor-stator
interaction. It can be achieved by different methods, involving numerical simulation,
analytical modeling or a combination of both. A list of the most commonly used tools
is given in the following, with the aim of assessing their general pros and cons. This
will help understand the goals and limitations of the current work.

Fan Noise Sources Summary

Different types of noise are generated from the rotating motion of the fan and
the unsteady interactions of the flow with the fan and the IGV/OGV. The main
source of noise in the fan stage results from the unsteady impingement of the fan
wake on the OGV. This interaction is both periodic, via the passage of a periodic
mean velocity deficit seen by the OGV, and random, via the chaotic unsteadiness
inherent to the turbulent flow. Thus, both tonal and broadband components
of noise emerge from this interaction. The fan-OGV wake-interaction noise is
therefore a complex noise generation mechanism to study but is also one of the
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main lever to reduce the overall engine noise, thus aircraft noise pollution. That
is why this thesis focuses on this source.

1.2 Rotor-Stator Wake-Interaction Noise Prediction

1.2.1 Blade/Vane Geometry Definition

To get a grasp of the complexity of the problem, the geometrical design parameters of
the blades/vanes, involved in the generation of sound, are described below. Notice that
those are simplified representations for the sake of explanation and that, in realistic
designs, each parameter might vary from the bottom of the blade/vane to its tip, and
even from one vane to another (in presence of struts). In Figure 1.4, from left to right,
are represented the sweep angle, defined in the meridian plane, the lean angle, defined
in the front view of the stator, and the stagger angle, defined in an unwrapped view
of the stator at a given span. When unwrapping the stator in a cascade view as in

(a) (b) (c)

Figure 1.4: Definition of the sweep, lean and stagger angles. Stator in the meridian
plane of the bypass duct (a), front view of the stator (b), and unwrapped stator at
mid-span (c).

Figure 1.4c, the vane profile is highlighted. The latter also requires some parameters to
be defined, which is done in Figure 1.5. The vane profile is defined from a straight line
(chord line), the ends of which are called leading edge and trailing edge, respectively.
The chord line serves as a reference to define the other parameters, such as the angle
of attack of the flow or the stagger angle in Figure 1.4 (c). Then camber and thickness
are added. The amount of camber is defined as the inverse of the radius of the smallest
circle that fits in the vane (as shown at the leading edge in Figure 1.5), and can vary
along the chord line. The thickness is defined as the distance between the upper surface
(suction side) and the lower surface (pressure side) following the perpendicular to the
chord line. As for camber, the thickness distribution can vary along the vane. Given
the distribution of camber and thickness, a new center line, called the camber line, is
defined from the upper and lower surfaces of the vane.
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Figure 1.5: Definition of the vane profile.

Now that all the parameters necessary to understand the modeling of fan-OGV
wake-interaction have been defined, a literature review of the most commonly used
tools currently available to study and predict noise generation is presented.

1.2.2 Numerical Simulation

The study of noise generation through numerical methods is referred to as Computa-
tional AeroAcoustics (CAA). When resorting to CAA means, the most general set of
equations can be solved while accounting for the real geometry of the problem. This
allows a realistic flow description through the fan-OGV stage but is very costly if the
whole range of turbulent scales, responsible for the broadband noise, is resolved. Con-
sequently, different types of numerical simulations have been developed, with different
levels of accuracy. The turbulent scales can be entirely resolved or only partially, in
which case the finer ones are modeled, or even entirely modeled. Modeling the tur-
bulent structures allows one to reduce the computational cost of the simulation by
making some assumptions on the turbulence behavior, thus loosing in accuracy. The
different approaches are summarized in Figure 1.6 and organized accounting to their
relative computational cost and level of modeling [121].

Figure 1.6: Hierarchy of the most commonly used Computational Fluid Dynamics
(CFD) methods with different levels of turbulence modeling (from Sagaut et al. [121]).

At the very top, where all the turbulent scales are resolved, seats the Direct Numeri-
cal Simulation (DNS). Assuming the underlying equations are exact, only the numerical
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configuration is responsible of the accuracy of this method (discretization schemes and
boundary conditions). The set of equations used can be either the Navier-Stokes (NS)
equations or the Boltzmann equation. The Navier-Stokes equations are the classical
equations that describe the motion of Newtonian fluids, developed during the first half
of the nineteenth century. The Boltzmann equation takes its roots in the kinetic theory
of gases, which describes the gas motion at a smaller scale than classical fluid dynamics
and recover the macroscopic fields by statistical means. The Boltzmann equation, after
some simplifications, is able to recover the Navier-Stokes equations as a second-order
perturbation around a local equilibrium [19]. On the contrary to classical meshes that
follow the surface of the blades, the Boltzmann equation is solved on a lattice in which
the blades are immersed. The method is therefore referred to as the Lattice-Boltzmann
Method (LBM).

The Large Eddy Simulation (LES) is found just below the DNS. In this method, only
the larger turbulent scales are resolved, while the finer ones, i.e. the most expensive,
are modeled (see Sagaut et al. [121] for more details about the method). This method
can also rely on either the NS equations or the LBM. Notice that, in theory, the LES
tends to the DNS if the turbulence spectrum tends to be entirely resolved. However,
this could cause practical issues due to the classical subgrid-scale models (which model
the behavior of the finer turbulence scales) not being fitted for such an extreme use.
On the other hand, the LES cost can be reduced by addressing the resolved part of
the flow (largest turbulence scales) with a hybrid method. In this case, the resolved
part is decomposed into an averaged representation of the flow solved by the Reynolds-
Averaged Navier-Stokes (RANS) equations, while the turbulent fluctuations are solved
by LES. The RANS method is explained in the following.

The RANS equations can be used in conjunction with LES or alone, to achieve even
greater gains in computation time. If used alone, the turbulence is completely modeled,
from the largest scales to the smallest ones. This method is based on the Reynolds
decomposition (or Favre decomposition for compressible flows), which separates the
mean flow part from its fluctuations. Thus, the RANS equations only describe the
statistically-averaged part of the flow. A statistical description of the turbulence is
still needed though, to get a closed system of equations since the Reynolds-averaged
momentum equation involves the fluctuating field, through the so-called Reynolds stress
tensor. Due to the use of averaged equations, the unsteady fluctuations are missing.
Convergence issues can occur for flows exhibiting an intense unsteadiness, such as
vortex shedding. To overcome this issue, an Unsteady-RANS (URANS) approach
was developed, which is able to account for periodic and deterministic phenomena
happening at a given frequency. Hence, the chaotic unsteadiness related to turbulence
is still modeled statistically, but the periodic fluctuations responsible for tonal noise
are recovered.

With these numerical tools available, different procedures have been developed for
the computation of sound. Colonius & Lele [21] have made a rich review of these
methods, highlighting their utility and limitations. They can be separated into two
groups: one which directly computes the sound field, and another that separates the
calculation of the acoustic sources from the calculation of sound propagation.

Direct Computation of Sound

The direct method numerically computes the unsteady flow and the sound generated
by it, by solving compressible flow equations. Depending on the desired level of de-
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scription of turbulence, the numerical tool employed is either the DNS, LES or hybrid
RANS/LES. In each case, the computational domain needs to be large enough to cover
the region of the acoustic sources and the region of the acoustic near-field. Then, if
the far-field cannot be directly computed up to the point of interest (the engine intake
and exhaust of Figure 1.2), a numerical domain extension or an analytical method is
used. In the former, a coarser and better-suited mesh for acoustic propagation is used
with simpler equations, such as the linearized Euler equations, whereas the analytical
methods rely on a integral formulation of the wave equation. Such methods can be
very accurate and account for all types of sources in the fan stage (not only wake in-
teraction), but the drawback is the high computational cost. These methods are then
helpful for unraveling the physical mechanisms of sound generation and providing rich
databases but are currently restricted to academic problems. Notice that, if only the
tonal noise is required, a URANS simulation can be used instead, drastically reducing
the computational cost. This latter approach is very attractive in an industrial context.

Hybrid Methods for Noise Prediction

The hybrid methods separate the calculation of the unsteady flow from the calcula-
tion of the generated sound field. The sound field is viewed as a post-processing of
the unsteady flow computation. This has the advantage of alleviating some of the
acoustic requirements on the numerical mesh and schemes, hence reducing the compu-
tational cost. The propagation can then either be simulated by analytical or numerical
means. A description of the different numerical methods available is given by Colonius
& Lele [21]. On the other hand, analytical propagation models can be used in conjunc-
tion with either a DNS or LES. The radiated noise is then computed by means of an
adequate acoustic analogy (see Goldstein [37]), propagating the numerically computed
acoustic sources via a Green’s function. The idea of the acoustic analogy is to restate
the governing equations of gas dynamics as an equivalent wave equation in an idealized
hypothetical medium. It assumes that the aerodynamic fluctuations generating sound
are localized in a limited region1, called the source region, which is described by the
right-hand side terms in the equivalent wave equation. This method usually resorts to
a linear wave operator, assuming a homogeneous medium at rest or in uniform motion,
and thus does not permit any feedback of the acoustic pressure field on the aerody-
namic fluctuations, restraining its use to weak pressure fluctuations. An illustrative
representation of the principle of acoustic analogy is presented in Figure 1.7, as it was
first introduced by Lighthill [66, 67]. Different analogy formulations have then followed,
especially to account for the presence of solid surfaces and boundaries that are present
in the context of ducted fan noise (see Curle [23], Ffowcs Williams & Hawkings [31] and
Goldstein [37]). The fundamental analysis of Ffowcs Williams & Hawkings states that
the acoustic sources due to a moving surface can be decomposed into three categories:

• thickness noise equivalent to a surface distribution of monopoles;

• loading noise equivalent to a surface distribution of dipoles;

• flow noise equivalent to a volume distribution of quadrupoles outside the surface.

1The ampltiude should decay sufficiently fast toward the boundaries of the numerical domain in
order to ensure that most of the noise sources are accounted for.
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Figure 1.7: Acoustic analogy as introduced by Lighthill [66, 67].

As mentioned earlier, source terms associated to monopoles and quadrupoles can gener-
ally be neglected compared to the dipole noise of the wake interaction for low-subsonic
fan configurations. Typical fan-OGV interaction noise, in approach condition, is then
essentially loading noise due to unsteady pressure-induced forces on the vanes by the
passage of the fan wakes. This simplifies the acoustic requirements in the numerical
computation since the acoustic sources are supposed to be only on the vanes surface
(even if the mesh still needs to be sufficiently refined in the wakes). Note that this
simplification is no longer valid at high subsonic Mach numbers, in take-off condition,
where the fan quadrupole noise possibly becomes significant and shock waves can ap-
pear, generating volume sources of noise by their interactions with vortical structures.

To summarize, hybrid methods are a good trade-off between accuracy and efficiency,
compared to direct methods. However, they are generally still too expensive to be used
as pre-design tools, especially for preliminary parametric studies or in optimization
algorithms. Furthermore, all previous strategies based on numerical simulations require
the knowledge of all geometrical details, which makes them unusable at early design
stages. That is why aircraft engine manufacturers are interested in the development
of a variety of prediction tools: from high accuracy and high computational cost, to
low fidelity and low computational cost. For fast and physically consistent predictions,
analytical models remain the best option. In each numerically-aided method previously
mentioned, the acoustic sources were numerically computed, or at least partially. This
is because they represent a crucial and very sensitive part of the noise prediction. In
the next section, the analytical modeling is pushed further to tackle this unsteady
aerodynamic part, in order to reduce the computational cost even more.
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1.2.3 Analytical Modeling

For thin and weakly cambered vanes under small angles of attack, unsteadiness of
the total aerodynamic force (composed of lift and drag) is mainly due to fluctuations
of the flow angle of attack, thus to fluctuations of the incident velocity component
perpendicular to the mean flow direction, called the upwash. This means that drag
fluctuations are negligible compared to lift fluctuations in this case. The problem
addressed in the following is then the generation of sound due to lift fluctuations only.

The first task is to model the wakes evolution from the rotor trailing edge to the
stator leading edge. From the analysis of Chu and Kovásznay [20], if the wake ve-
locity deficit is weak, it can be described at leading order as a pressure-free vortical
motion purely convected by the mean flow2 (frozen). As a consequence, the wake evo-
lution can be described independently of the generated sound field. For tonal noise
predictions, only the mean characteristics of the wake are necessary: mean velocity
deficit at the wake center and wake width at mid-height. Several semi-empirical mod-
els based on the rotor drag coefficient were developed during the twentieth century,
with increasing complexity. The most commonly used models are those of Reynolds &
Lakshminarayana [102, 103], Majjigi & Gliebe [69], and Philbrick & Topol [96]. Ana-
lytical models of the rotor wake also exist, such as the one derived by Cooper & Peake
in the early century [22]. For more details, Carazo has made a review of rotor wake
models in his PhD thesis in 2012 [17]. Finally, a RANS simulation can also be used to
extract the mean wake characteristics at the OGV leading edge3. Both modeling and
numerical approaches are very affordable in an industrial context. These characteristics
are then used to build a periodic Gaussian representation of the wakes velocity deficit,
projected onto the direction normal to the mean flow (upwash component). Since the
upwash fluctuations at the OGV leading edge are periodic in this case, a Fourier series
is applied. Each resulting component in the frequency domain corresponds to a given
harmonic of the BPF and is called a gust. The correlation between a given gust and
the sound produced at a given harmonic is then straightforward.

For broadband noise predictions, the turbulence evolution is calculated with a
RANS simulation. Then, the knowledge of the turbulence statistics at the OGV
leading edge allows one to compute the upwash velocity cross correlation, based on
a model of upwash turbulent spectrum (usually an isotropic model such as the well-
known Liepmann and Von Karman spectra). This cross-correlation function describes
the amplitude of each incident gust at each frequency. Comparatively to periodic in-
teractions, a continuous and infinite set of gusts participates to the noise produced at
each frequency for turbulent interactions.

Now that the necessary inputs have been defined (either discrete gusts at the BPF
harmonics or a continuous gust cross-correlation function), a short survey of the most
commonly used analytical models for rotor-stator wake-interaction noise is presented.
In order to keep analytical tractability and to better understand the influence of each
design parameter on the generated noise, a classical strategy is to start from the sim-

2This assumption is valid for a uniform mean flow, as modeled in this work, but is no longer true
when accounting for the swirl in the inter-stage [58].

3The wake characteristics are, in practice, not directly available at the OGV leading edge due to
the use of a mixing plane at the interface between the rotor mesh and the stator mesh. Thus, all
fluctuations are lost in the stator domain and an extrapolation strategy is needed from the mixing
plane up to the OGV leading edge. The latter is usually done on the wake harmonics, i.e. the Fourier
transform of the wake in the azimuthal direction.
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plest problem and then, try to alleviate some of the assumptions one by one. That
is why the following models have been first derived in two dimensions, before being
extended to three dimensions, adding new layers of complexity in the geometry and
flow description along the way.

Cascade-Response Based Models

Based on the previous discussion, analytical models were focused on deriving the un-
steady lift on the vanes, in order to be used in conjunction with a Green’s function
within the framework of acoustic analogies. The methodology is summarized syn-
thetically in Figure 1.8, and as follow: the incident gusts generate an unsteady lift
distribution along the vanes, then these lift fluctuations are used as an equivalent
dipole distribution that generates sound, according to the analysis of Ffowcs Williams
& Hawkings [31]. The unsteady lift is computed from the linearized Euler equations,

Figure 1.8: Noise prediction methodology scheme.

recast into a wave equation, with boundary conditions ensuring the impermeability
of the vanes and a zero pressure jump at the trailing edge (Kutta condition). The
resolution of this problem ends up to an integral equation that is solved by different
techniques depending on the model considered.

The early developments considered an isolated airfoil modeled as an infinitely thin
flat plate immersed in a uniform inviscid flow with zero angle of attack (see Figure 1.9),
thus neglecting camber, thickness and mean loading effects. In this context, Sears [125]
first derived a model of airfoil response in 1941 for incompressible flows, using the
circulation theory. In 1975, Amiet [2] proposed a compressible airfoil response us-

Figure 1.9: Schematic unwrapped representation of the isolated vane problem.

ing Schwarzchild’s theorem [124], further extended for finite chord effects in 1976 [3].
These models were then used to deal with trailing-edge noise [4]. More recently, Roger
& Moreau [113] and Moreau & Roger [75] proposed an extension of the model for
trailing-edge noise by performing a back-scattering iteration. This extension allowed
one to account for finite chord effects, which are relevant at low frequencies. In the
same time, Moreau et al. [77] and Roger et al. [114] further extended the model to
three-dimensional aerodynamic gusts, while also proposing semi-empirical corrections
to account for small camber and thickness effects. Finally, Roger & Carazo [112] and
Grasso et al. [40] added the effects of vane sweep to the modeling of leading-edge noise
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and trailing-edge noise respectively. The stagger angle can then be accounted for by
a simple rotation of the vane (polar angle shift in the formulation) and the lean angle
by use of a strip theory as in Ref. [114]. However, modern OGV designs display a
significant number of vanes with substantial overlapping [76], questioning the isolated
vane assumption. In fact, because the equivalent sources are dipoles perpendicular to
the vane surface, the interaction with the adjacent vanes is stronger when the overlap
d is higher and when the inter-blade spacing a is small (see Figure 1.10). In such a
configuration, the influence of the neighboring vanes on the acoustic generation and
propagation cannot be neglected anymore.

Figure 1.10: Schematic unwrapped representation of the cascade problem.

Cascade response functions have then been developed, accounting for the presence
of adjacent vanes on sound generation and propagation, referred to as cascade effect.
Different models were developed with increasing complexity and extensions to three-
dimensional gusts and three-dimensional cascade responses, relying on the Wiener-Hopf
technique (such as Glegg [36], Hanson & Horan [45] or Posson et al. [99]) or a collocation
method (such as Ventres [130] and further extensions) to solve the integral equation.
The Wiener-Hopf based modeling has then been pusher further, by accounting for the
swirling mean flow present in the inter-stage (Posson & Peake [100], Masson et al. [71],
Mathews & Peake [72]), or for small camber, thickness and angle of attack of the vanes
(Baddoo & Ayton [5]).

These models have enabled a deeper understanding of the relative importance of
each geometrical and flow parameter on the noise produced by rotor-stator wake in-
teractions. Yet, artificial resonances between adjacent vanes at each strip, artificially
considered parallel, are a concern and the radial scattering is not properly accounted
for. An alternative approach for modeling both noise generation and propagation in
a blade row has then started to emerge to tackle these issues, based on the mode-
matching technique.

Mode-Matching Based Models

Mode-matching based models do not consider the problem as acoustic sources dis-
tributed along the vanes. The starting point is still the linearized Euler equations
recast into a wave equation but, this time, the problem is seen as a matching problem
of vortical and acoustic disturbances at the interfaces of bifurcated wave-guides. This
implies that the major boundary value problem is moved from the vanes (imperme-
ability condition) to the inlet and outlet of the wave-guides (continuity equations).

The mode-matching technique was first used for electromagnetic fields by White-
head [131] and the method was later described in details by Mittra and Lee [73]. In
the context of cascade aeroacoustics, Roger et al. [115, 120] and Ingenito et al. [52, 53]
started applying the mode-matching technique in the early century to study sound gen-
eration and propagation in centrifugal compressors. This approach accounts for a fully

18



1.2. Rotor-Stator Wake-Interaction Noise Prediction

three-dimensional annular duct geometry without resorting to strips, and therefore
naturally accounts for the radial scattering. More recently, Bouley et al. [12] developed
a two-dimensional model of acoustic generation and transmission for axial-flow turbo-
fan engines. The model is extended to three dimensions for wake-interaction noise in
Bouley et al. [11], for trailing-edge noise in Roger et al. [117] and for turbulence im-
pingement noise in François et al. [34]. In the meantime, an alternative mode-matching
approach was developed, relying on the edge-dipole theory to recover the sound other-
wise produced by the impingement of vortical gusts [13, 118]. The method is also fully
explained in the PhD thesis of Bouley [10].

In each of the aforementioned models, the vanes are considered as infinitely thin
flat plates with zero stagger, sweep and lean. Returning to two dimensions, extensions
have been developed to take into account more realistic vane geometries. To this end,
stagger angle was introduced by using Green’s second identity, as described by Roger
& François [116]. Roger et al. [117] then did a preliminary investigation on the diffuser
effect of the OGV row, due to an increasing inter-vane channel cross-section. This ef-
fect is introduced when the mean camber is taken into account. To do so, vane profiles
have been modeled using circle arcs. Good agreements have been obtained by Roger &
Moreau [119] when applying the mode-matching technique with cambered vanes com-
pared to Hixon’s results [46] with the NASA Glenn Research Center BASS code, which
solves the fully nonlinear Euler equations. A comparative study of two-dimensional
sound transmission models in a realistic turbomachinery cascade, involving the mode-
matching model [117] and the cascade-response model of Baddoo & Ayton [5], can
also be found in Ref. [74], showing good agreement of the mode-matching model with
the numerical solution up to a certain frequency. Roger et al. [117] and Roger &
François [116] also used Ovenden’s solution [86] for the velocity potential to highlight
the effect of cut-on/cut-off transition of sound in such cambered inter-vane channels,
but did not implement this mechanism in the mode-matching procedure. Meanwhile,
Mao et al. [70] derived a mode-matching model with cambered vanes, using a discontin-
uous representation of a cambered vane in the form of several flat elements. However,
the computational efficiency of the model did not seem satisfactory with increasing
camber and frequency.

In this context, the mode-matching technique shows promising capabilities and has
been chosen for this thesis. The following section explains the general principles of the
mode-matching technique applied to a cascade of flat vanes.

Rotor-Stator Wake-Interaction Noise Prediction Summary

Numerical simulations can be very accurate and can account for all types of
sources in the fan stage (not only wake interaction), but the drawback is the high
computational cost. Furthermore, they require the knowledge of all geometrical
details, which makes them unusable at early design stages, when the blade de-
sign is not decided yet. The numerical methods are then helpful for unraveling
the physical mechanisms of sound generation and provide rich databases but are
restricted to more advanced design stages or to academic problems. For fast
and physically consistent predictions, analytical models remain the best option.
These models rely on stronger assumptions on the flow and the blade geometry,
thus being less accurate but usable in early design stages in pre-optimization
strategies. In this context, the mode-matching technique shows promising capa-
bilities and has been chosen for this thesis.
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1.3 Mode-Matching Technique

1.3.1 General Principle

The mode-matching technique is used to solve boundary value problems with linear
frequency-domain differential equations. This technique is well suited when the geom-
etry of the problem can be seen as the junction of multiple sub-regions. Such problems
can arise for wave propagation in ducts with liners on specific portions of the wall
or for wave scattering through bifurcated channels. In particular, sound propagation
through an OGV row seen in a two-dimensional unwrapped cut at a constant radius
can be viewed as an example of the latter case. An explanatory scheme is given in
Fig. 1.11. An incident acoustic mode, described by its velocity potential φi, is scat-
tered at the OGV Leading-Edge (LE) interface, generating reflected modes φr and
transmitted modes φd in the channels. The latter are then scattered at the Trailing-
Edge (TE) interface, giving rise to reflected channel modes φu and transmitted modes
φt. Hard-walled boundary conditions at the walls of the inter-vane channels and peri-
odic boundary conditions in the y-direction are imposed.

Figure 1.11: Scattering of an incident acoustic wave by a linear cascade of flat vanes.

The mode-matching technique can be described in three steps: partitioning, solving
and matching. The partitioning consists in dividing the domain into different sub-
domains in which the boundary conditions are uniform, allowing a solution of the
wave equation on a local modal basis. In Fig. 1.11, the sub-domains are the upstream
medium, each inter-vane channel and the downstream medium. The solving step is self-
explanatory and provides the wavenumbers and modal shapes of the scattered waves
in each sub-domain, based on an appropriate frequency-domain wave equation. For
simple geometries such as in Figure 1.11, these wavenumbers and eigenfunctions are
analytically known. Finally, the only remaining unknowns are the modal coefficients
of the waves. They are defined by matching the different modal solutions at both
leading-edge and trailing-edge interfaces. To do so, continuity equations specific to the
problem are used in order to build a set of equations on the modal coefficients, which
can be solved by matrix inversion. The equations that need to be satisfied through the
OGV row are derived from the classical continuity equations (mass, momentum and
energy) applied to an adiabatic lossless turbomachine [28]. The sub-domains solving
step and the matching step are then detailed in what follows.
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1.3.2 Wave Equation in the Sub-Domains

Consider a compressible inviscid isentropic perfect gas flow. In the following, all vari-
ables are made dimensionless in order to write general and concise equations but, notice
that dimensional variables are used in all other chapters. The variables are made di-
mensionless by combinations of the inter-vane spacing b, for length quantities, and the
flow fields far upstream of the cascade: density ρ−∞ for mass quantities, and sound
speed c−∞ for time quantities. Then, defining the following dimensionless quantities:
ρ∗ as the density, u∗ as the velocity, c∗ as the sound speed, p∗ as the pressure and
γ∗ as the ratio of specific heats, the governing Euler equations and conditions of an
isentropic perfect gas are [97]

∂ρ∗

∂t
+∇ · (ρ∗u∗) = 0, (1.1a)

ρ∗
(
∂u∗

∂t
+ (u∗ · ∇)u∗

)
+∇p∗ = 0, (1.1b)

γ∗p∗ = ρ∗γ
∗

and c∗2 =
∂p∗

∂ρ∗
= ρ∗γ

∗−1. (1.1c)

Using the vector identity (u∗ · ∇) u∗ = 1
2
∇|u∗|2 + (∇× u∗)×u∗, the momentum equa-

tion (1.1b) becomes

∂u∗

∂t
+

1

2
∇|u∗|2 + (∇× u∗)× u∗ +

1

ρ∗
∇p∗ = 0. (1.2)

By using the relations between p∗, ρ∗ and c∗ in (1.1c), it follows that

1

ρ∗
∇p∗ = ∇

(
ρ∗γ

∗−1

γ∗ − 1

)
.

Hence, the momentum equation (1.2) is recast into

∂u∗

∂t
+∇

(
1

2
|u∗|2 +

ρ∗γ
∗−1

γ∗ − 1

)
+ (∇× u∗)× u∗ = 0. (1.3)

The flow is then split up into a steady component (time average) and its fluctuations.
The fluctuating part varies harmonically in time, with angular frequency ω, and is
assumed to be small enough to allow linearization. Thus, the decomposition reads

[u∗, ρ∗, p∗, c∗] = [U, D, P, C] + [u, ρ, p, c] e−iωt. (1.4)

The fluctuating velocity u can be expressed as the sum of independent acoustic and
vortical motions according to the analysis of Chu & Kovásznay [20] at leading order.
The fundamental theorem of vector calculus states that u can be decomposed into the
sum of an irrotational field ∇φ and a solenoidal field uR, which are associated, in this
case, to the acoustic and vortical motions, respectively. Thus, the fluctuating velocity
u reads

u = ∇φ+ uR. (1.5)
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Substitution into (1.1) and linearization yields:
the mean flow part

∇ · (DU) = 0, (1.6a)

∇
(

1

2
|U|2 +

Dγ∗−1

γ∗ − 1

)
+ (∇×U)×U = 0, (1.6b)

C2 = γ∗P/D = Dγ∗−1, (1.6c)

and the fluctuating flow part

− iωρ+∇ · (D∇φ+ ρU) = −∇ · (DuR), (1.7a)

∇
(
−iωφ+ (U · ∇)φ+

p

D

)
+ (∇×U)×∇φ

= −(−iω + U · ∇)uR − (uR · ∇)U, (1.7b)
p = C2ρ. (1.7c)

If the mean flow is irrotational, the momentum equation (1.6b) can be integrated to a
variant of Bernoulli’s equation

1

2
|U|2 +

Dγ∗−1

γ∗ − 1
= E (a constant). (1.8)

Otherwise, the above quantity is conserved only along streamlines (E being different for
each streamline), which is demonstrated by taking the scalar product of the mean ve-
locity field with the momentum equation: U· (1.6b). From Goldstein [38], the pressure
can be defined as

p = −D (−iωφ+ U · ∇φ) , (1.9)

without loss of generality. The vortical field uR is then uniquely defined by (1.7b) such
that

(−iω + U · ∇)uR +
(
uR · ∇

)
U = − (∇×U)×∇φ . (1.10)

Subtracting (1.7a) from D(−iω+U·∇)C−2×(1.9), and using relations (1.7c) and (1.6a)
finally leads to the following inhomogeneous compressible wave equation

D(−iω + U · ∇)

[
1

C2
(−iω + U · ∇)φ

]
−∇ · (D∇φ) = ∇ · (DuR) . (1.11)

1.3.3 Jump Conditions at the Interfaces

The mass conservation at an interface between a sub-domain 1 and a sub-domain 2
translates to mass-flow conservation through the interface as

[ρ∗u∗]21 · n = 0, (1.12)
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where [•]21 represents the jump of the quantity (•) between the domain 1 and 2, and n
is the normal unit vector to the interface. Linearization yields

[ρUx +Dux]
2
1 = 0,

⇔
[ p
C2
Ux +Dux

]2

1
= 0.

Finally, multiplying the above expression by the mean velocity Ux, equal at both sides
of the interface, and dividing by the mean acoustic impedance of the fluid Z = DC,
gives [ p

Z
M2

x +Mxux

]2

1
= 0 , (1.13)

where Mx = Ux/C.
Across the stator, no external work acts on the fluid. Since the flow is assumed

inviscid and adiabatic, hence isentropic, the conservation of momentum and energy
gathered together is equivalent to the conservation of total (or stagnation) enthalpy [28]:[

H∗ +
1

2
|u∗|2

]2

1

= 0, (1.14)

where
|u∗|2 = (Ux + ux)

2 + (Uy + uy)
2. (1.15)

For a perfect gas, the enthalpy can be written as

H∗ = CpT +
p

D
, (1.16)

where Cp is the heat capacity at constant pressure. Linearization of (1.14) yields[ p
D

+ Uxux + Uyuy

]2

1
= 0.

Finally, dividing the above equation by the mean sound speed C, identical at both
sides of the interface, gives [ p

Z
+Mxux +Myuy

]2

1
= 0 . (1.17)

Writing U as the norm of the mean velocity and Ψ as the angle with the direction
perpendicular to the interface, the x-axis in Figure 1.11, allows one to express the
mean velocity components as Ux = U cos Ψ and Uy = U sin Ψ. The conservation of
total enthalpy (1.17) is then recast as[ p

Z
+Mx (ux + uy tan Ψ)

]2

1
= 0. (1.18)

Combining equations (1.13) and (1.18) allows one to recover the conservation of the fluc-
tuating pressure p and fluctuating axial velocity ux, commonly used in mode-matching
procedures, but only for the particular case where the mean flow is perfectly perpen-
dicular to the interface, i.e. when Ψ = 0. In general, when Ψ 6= 0, new variables need
to be introduced to ensure the conservation of mass and total enthalpy through the
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interface. These new conservative variables are written Γ1 and Γ2 in the following, and
are gathered into a vector Γγ = (Γ1γ,Γ2γ), where the index γ stands either for the
incident (i), reflected annular (r), transmitted annular (t), downstream-propagating
channel (d) or upstream-propagating channel (u) field (see Figure 1.11). The matching
equations then read {

Γi + Γr = Γd + Γu at LE,
Γd + Γu = Γt at TE.

(1.19)
(1.20)

Mode-Matching Technique Summary

The mode-matching technique is used to solve boundary value problems with lin-
ear frequency-domain differential equations. This technique is well suited when
the geometry of the problem can be seen as the junction of multiple sub-regions,
as it is the case for an OGV row (inter-vane channels and annular domains up-
stream and downstream of the OGV). The mode-matching technique can be
described in three steps: partitioning, solving and matching. The partitioning
consists in dividing the domain into different sub-domains in which the boundary
conditions are uniform. The solving step consists in calculating the eigenfunc-
tions and associated eigenvalues of each sub-domain, if they are not analytically
known. Finally, the matching step consists in writing continuity equations spe-
cific to the problem at each interface between the sub-domains, in order to build
a set of equations on the modal coefficients, which are then solved by matrix
inversion. The general wave equation that will be used in each sub-domain in
this thesis has been defined, as well as the usual continuity equations at both
the leading-edge and trailing-edge interfaces for a lossless adiabatic turboma-
chine [28], which ensure the conservation of mass and total enthalpy.

1.4 Influence of Vane Camber

Camber seems to play an important role in the generation and propagation of sound
in a cascade, yet it remains poorly modeled. Many authors have noted its importance
for tonal noise prediction at moderate and high frequency (see Evers & Peake [29],
de Laborderie et al. [25, 26, 27] and Baddoo & Ayton [5]). However, it does not sig-
nificantly affect broadband noise [29, 18, 35]. Accounting for camber has also several
benefits in analytical models. When using flat vanes, the choice of an equivalent stag-
ger angle is ambiguous and can have a dramatic impact on noise predictions (see for
example the work of Sanjosé et al. [123], Grace [39] or Lewis et al. [65]). This is
quite understandable when thinking of an equivalent surface distribution of dipoles,
as explained by Ffowcs Williams & Hawkings [31]. The complex interference pattern
resulting from the radiation of multiple vanes in a cascade is directly influenced by the
orientation of the dipoles. Since the unsteady lift generated by the impingement of
wakes on the vanes is mainly concentrated near the leading edge, a proper inclination
of the vane leading edges should accurately reproduce the upstream radiation, whereas
camber should mainly help to recover the downstream pressure field, as explained by
de Laborderie et al. [27]: "At 2 and 3 BPF the thickness and camber of the vane play
a more significant role. Moreover these geometrical parameters seem to influence more
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the downstream propagation. This can be explained by the inter-blade channel geometry
controlling the acoustic propagation inside and downstream of the cascade, whereas the
upstream radiation is mainly controlled locally by the vane leading edge geometry.". Fi-
nally, flat OGV also lead to an ambiguity concerning the mean flow description, which
is deviated through the cascade in realistic applications in order to recover the swirl.
Hence, the mean flow has to evolve continuously, from upstream to downstream of the
OGV, to obtain a relevant sound propagation.

Because of the above considerations, the attention is put on camber and tonal
noise modeling in this work. A two-dimensional mode-matching model is proposed
to describe sound generation and transmission through a linear cascade of cambered
vanes. Neither the thickness nor the angle of attack is considered, and the modeling is
limited to two dimensions in order to better understand the effects of camber at first.
Note that the introduction of camber should give rise to the question of mean loading
effects on sound but has not been introduced in the current model. Investigations on
the mean loading effect can be found in Peake & Kerschen [92, 93] and a possible
extension of the current model to account for a non-uniform mean flow is presented at
the end of Chapter 3.

1.5 Conclusion
The context and limits of the present work have been defined. By view of the literature
on fan-related noise, the focus on fan-OGV wake interactions is justified in approach
condition of the aircraft, where it might be the dominant source, and even in take-off
condition, where it remains significant even if supplemented notably by the generation
and interactions of shock waves.

Several methods for simulating noise are available in the literature, from highly
accurate but time consuming numerical simulations to approximate analytical solu-
tions, with hybrid methods in the middle. This work focuses on analytical modeling
to answer the need of i) fast and reliable prediction tools in the industrial context,
and ii) to better understand sound transmission and reflection phenomena in the fan
stage. In this context, the mode-matching technique described by Bouley et al. [12]
showed promising capabilities to address sound generation and propagation in modern
turbofan engines, in which the OGV cascade displays high solidity and overlap. That
is why this model has been selected.

The general principles of the mode-matching technique have been explained, as well
as all the assumptions made. The model is currently restricted to flat vanes, as are most
of the analytical models in the literature. Vane camber remains poorly modeled and
has been acknowledged to have a significant impact on wake-interaction tonal noise.
Moreover, it has several practical benefits for the analytical modeling, by removing the
ambiguity on: the choice of an equivalent stagger angle, and the missing swirl recovery
through the OGV. The original contribution of this PhD thesis therefore resides in the
addition of vane camber in a two-dimensional mode-matching model for rotor-stator
wake-interaction tonal noise prediction.
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Chapter 2
Acoustic Scattering by a Linear Cascade of
Cambered Vanes at Low Frequency

Introduction

When adding camber to a cascade of vanes, what are the consequences on the
scattering of an acoustic wave ? Understanding this is a first step to assess how
the noise generated in the rotor-stator stage will propagate and allows one to
answer the question of the description of the deviated mean flow. In this chapter,
a mode-matching procedure is developed to compute the pressure field and modal
content resulting from the scattering of an acoustic wave by a linear cascade of
cambered vanes. The mode-matching technique is first explained in detail for
flat vanes. Then, a model of acoustic propagation inside cambered inter-vane
channels is derived, based on a slowly-varying duct approach. Only the variation
of the cross-section is considered and the curvature effects are neglected in the
first instance. This propagation model is incorporated in the mode-matching
procedure and its validity is assessed with a finite elements numerical code, by
comparing qualitative and quantitative results on a set of test cases.
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2.1 Mode-Matching Technique for Flat Vanes

2.1.1 Jump Conditions

The mode-matching technique is first explained in detail with flat vanes, for the problem
of acoustic scattering described in Figure 2.1. A set of variables (Γ1,Γ2) is sought, the

Figure 2.1: Scattering of an incident acoustic wave by a linear cascade.

conservation of which through the leading-edge (LE) and trailing-edge (TE) interfaces
ensures the conservation of mass-flow rate (1.13) and total enthalpy (1.17). In this case,
both equations involve a combination of the fluctuating pressure p and fluctuating axial
velocity ux. These variables could then be chosen as conservative variables through the
interfaces but a few derivations will allow simpler expressions in the mode-matching
equations.

Without any vortical perturbations, the fluctuating velocity u is potential:

u = ∇φ.

The pressure field, from (1.9), is given by

p = −D (−iω + U · ∇)φ = ikZφ− ZMux,

where k = ω/C, Z = DC and M = U/C. Thus, the conservation of p and φ are equiv-
alent because the conservation of ux is also enforced. The first conservative variable
can be either

Γ1 = p or Γ1 = φ , (2.1)
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2.1. Mode-Matching Technique for Flat Vanes

while the second conservative variable has to be

Γ2 = ux . (2.2)

In the following, the velocity potential will be used as the first conservative variable
for the sake of simplicity.

In order to solve the continuity equations on φ and ux, the same iterative pro-
cedure as in Bouley et al. [12] can be used. It starts with a simplified problem at
the leading-edge interface, neglecting any feedback from the trailing-edge scattering.
For convenience, φ and ux are gathered into the vector Γγ = (φ, ux), where the in-
dex γ stands either for the incident (i), reflected annular (r), transmitted annular (t),
downstream-propagating channel (d) or upstream-propagating channel (u) field. The
initial iteration, indexed by the superscript 0, reads{

Γi + Γ0
r = Γ0

d, at LE,
Γ0
d + Γ0

u = Γ0
t , at TE.

This allows one to solve the leading-edge equations independently at first, and get
an initial value of the reflected and downstream-propagating modal coefficients. The
downstream-propagating modal coefficients are then used to solve the trailing-edge
equations and get the transmitted and upstream-propagating modal coefficients. For
the next iterations, a correction is made to the leading-edge matching conditions in
order to account for trailing-edge back-scattering. The new system is solved iteratively
until a convergence is reached on the modal coefficients. The system of equations at
the iteration of order g > 0 reads{

Γi + Γgr = Γgd + Γg−1
u , at LE,

Γgd + Γgu = Γgt , at TE.

An alternative approach consists of directly solving the whole system of leading-edge
and trailing-edge matching equations, which removes the need of an approximate equa-
tion at LE but generates a larger system to solve. Both methods have their pros and
cons, which are partially discussed in some of the following chapters. In the following,
each matching condition is detailed and written in two different ways: one suited for
the iterative approach, and another suited for the direct global approach.

2.1.2 Initial Leading-Edge Interface

Acoustic Potentials

The first problem to solve is the scattering of the incident acoustic wave at the leading-
edge interface of a periodic cascade of V vanes (Figure 2.2). This will result in scattered
modes φr in the annular domain and φd in the inter-vane channels. The mean flow
is considered uniform and constant through the cascade. From (1.11), each of these
acoustic potentials is a solution of the convected Helmholtz equation in its respective
sub-domain as

β2∂
2φ

∂x2
+
∂2φ

∂y2
+ 2ikM

∂φ

∂x
+ k2φ = 0, (2.3)

where β2 = 1−M2. Using the Reissner transformation [101] allows one to reduce the
above equation to the Helmholtz equation in the Prandtl-Glauert space (x/β, y), such
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Figure 2.2: Scattering of an incident acoustic wave at the leading-edge interface.

that
∂2φ̃

∂x̃2
+
∂2φ̃

∂ỹ2
+ k̃2φ̃ = 0, (2.4)

where x̃ = x/β, ỹ = y, k̃ = k/β and φ̃ = φ exp(ikMx/β2). By use of separation
of variables φ̃(x̃, ỹ) = φ̃x̃(x̃)φ̃ỹ(ỹ), equation (2.4) is rewritten as the following set of
equations {

∂2φ̃x̃/∂x̃
2 + (k̃2 − k̃2

y)φ̃x̃ = 0,

∂2φ̃ỹ/∂ỹ
2 + k̃2

yφ̃ỹ = 0,
(2.5)

where k̃y is the constant introduced due to the equality of a function dependent on
x̃ only with a function dependent on ỹ only, for each x̃ and ỹ. The solution of each
part is a combination of exponential functions. Introducing the dispersion relation
k̃2
x = k̃2 − k̃2

y, the solution of the convected Helmholtz equation (2.3) in the physical
space (x, y) is then

φ(x, y) = e−ikMx/β2
(
A+
x eik̄xx/β2

+ A−x e−ik̄xx/β2
)(

A+
y eikyy + A−y e−ikyy

)
, (2.6)

where (A+
x , A

−
x , A

+
y , A

−
y ) ∈ C4 are arbitrary constants and (k̄x, ky) ∈ C2, with 0 ≤

arg(k̄x) ≤ π/2 and 0 ≤ arg(ky) ≤ π/2, are the axial and azimuthal wavenumbers
linked by the dispersion relation k̄2

x = k2 − β2k2
y. In the following, the convective part

(−kM/β2) and the propagative part (k̄x/β2) of the axial wavenumber are gathered
together as

k±x =
−kM ± k̄x

β2
. (2.7)

The solution (2.6) corresponds to the sum of four plane waves that propagate in each
direction in the flow-attached frame of reference. By linearity of the Helmholtz equa-
tion, each potential represented in Figure 2.2 can be associated to a subset of these
four plane waves and be described individually. The expressions of the incident φi,
reflected φr and transmitted φd potentials are now detailed one by one.

In the annular domain, the downstream-propagating incident mode φi is chosen of
unitary amplitude, so that it reads

φi(x, y) = eiαjyeik+j x, for −∞ < x ≤ 0 and 0 ≤ y < 2πR. (2.8)

The periodicity condition in the transverse direction enforces φi(x, 0) = φi(x, 2πR),
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which gives

αj =
j

R
, j ∈ Z.

The coefficient j represents the azimuthal modal order of the incident mode. Its value
corresponds to the number of wavelengths in the transverse direction. Once j is set,
the axial wavenumber k+

j is given by (2.7) as

k+
j =

−kM +
√
k2 − β2α2

j

β2
.

It follows that the angle of propagation of the incident mode is set by the combination
of the incident mode order j, the wavenumber k and the Mach number M .

The reflected potential φr is generated by the scattering of φi by the cascade. By
symmetry of the problem, the incident wave is identically scattered by two adjacent
vanes with only a constant time delay. This delay can be modeled by a phase shift
and, according to the trace-velocity matching principle [97], the resulting scattered
waves are structured by the same phase shift. This simply means that the effects (the
scattered fields) are generated at each leading edge with the same time delay than the
causes (the impact of the incident wave). Hence, the scattered potential is subject to
the cascade periodicity through the property

φr(x,mb) = φr(x, [m− 1]b)eiαjb, ∀m ∈ J1, V K, (2.9)

which, letting αp be the reflected transverse wavenumber, is equivalent to eiαpb = eiαjb.
This leads to writing the reflected potential φr as the sum of an infinite number of
modes, such that

φr(x, y) =
∞∑

p=−∞

Rpe
iαpyeik−p x, for −∞ < x ≤ 0 and 0 ≤ y < 2πR, (2.10)

where the transverse wavenumbers αp are given by

αp = αj + p
2π

b
=
j + pV

R
, p ∈ Z,

and the axial wavenumbers k−p by

k−p =
−kM −

√
k2 − β2α2

p

β2
.

The expression (2.10) is actually a general mathematical result for periodic functions
of the form (2.9) called Floquet modes [32]. It states that any wave propagating in a
periodic domain can be described as a sum of plane waves.

In a given inter-vane channel, the downstream-propagating transmitted potential φd
is bounded by hard walls in the transverse direction. This implies that ∂φd/∂y = 0 at
y = 0 and y = b. The solution of the Helmholtz equation in this case is also composed
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of an infinite number of modes, which reads

φd(x, y) =
∞∑
q=0

Aq cos (αqy) eik+q x, for 0 ≤ x <∞ and 0 ≤ y ≤ b, (2.11)

where
αq =

qπ

b
, q ∈ N,

and

k+
q =

−kM +
√
k2 − β2α2

q

β2
.

From the trace-velocity matching principle [97], the value of the potential in the other
inter-vane channels is simply given by a phase shift of eiαjmb, m ∈ J1, V − 1K.

Continuity of the Acoustic Potential

Putting (2.8), (2.10) and (2.11) together at x = 0, the continuity of the acoustic
potential at the leading-edge interface reads

eiαjy +
∞∑

p=−∞

Rpe
iαpy =

∞∑
q=0

Aq cos (αqy) . (2.12)

Since all coefficients Rp and Aq are unknowns, a projection is performed on the modal
basis of the reflected waves to decouple them in (2.12), ending up with one equation
on each reflected wave due to the property of mode orthogonality. The corresponding
operator is ∫ b

0

(•)e−iανy dy, with αν = αj + ν
2π

b
, ν ∈ Z. (2.13)

This leads to three kinds of integrals in (2.12), namely Ii,ν , Ip,ν and Iq,ν , such that

Ii,ν +
∞∑

p=−∞

RpIp,ν =
∞∑
q=0

AqIq,ν .

The integral based on the incident wave is expressed as

Ii,ν =

∫ b

0

ei(αj−αν)y dy =

∫ b

0

e−i2πνy/b dy =

{
b if ν = 0,
0 if ν 6= 0.

Hence, Ii,ν = bδν,0 where δ is the Kronecker delta: δν,0 = 1 if ν = 0, and δν,0 = 0
otherwise. The integral associated with the reflected waves reads

Ip,ν =

∫ b

0

ei(αp−αν)y dy =

∫ b

0

ei2π(p−ν)y/b dy =

{
b if ν = p,
0 if ν 6= p.
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Hence,
∑∞

p=−∞RpIp,ν = bRν . Finally, the integral on the transmitted waves in the
inter-vane channel yields

Iq,ν =

∫ b

0

cos (αqy) e−iανy dy =


iαν

α2
q − α2

ν

(
1− (−1)qe−iαjb

)
,

b

2
(1 + δq,0) if |αν | = αq.

(2.14)

Consequently, the potential continuity at the leading-edge interface is expressed as

b (δν,0 +Rν) =
∞∑
q=0

AqIq,ν . (2.15)

Continuity of the Acoustic Axial Velocity

The acoustic axial velocity is the derivative of the potential with respect to x. Its
continuity at the leading-edge interface reads

k+
j eiαjy +

∞∑
p=−∞

Rpk
−
p eiαpy =

∞∑
q=0

k+
q Aq cos (αqy) (2.16)

Using the same projection method (2.13) gives

b
(
k+
j δν,0 + k−ν Rν

)
=
∞∑
q=0

k+
q AqIq,ν , (2.17)

where k−ν = −kM/β2 −
√
k2 − β2α2

ν/β
2.

Linear System of the Mode-Matching Condition

To solve the problem on the Aq coefficients, the Rν coefficients are canceled out by
subtracting (2.17) to k−ν times (2.15). This yields

∞∑
q=0

Aq(k
−
ν − k+

q )Iq,ν = b(k−ν − k+
j )δν,0. (2.18)

After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
matrix form of the linear system of equations reads

M1A = Mi, (2.19)

where [
M1
]
ν,q

= (k−ν − k+
q )Iq,ν , [Mi]ν,1 = b(k−ν − k+

j )δν,0, and [A]q,1 = Aq.

This has to be solved numerically using an algorithm based on a direct factorization
method, such that the LU decomposition, or an iterative method if necessary. Then
the Rν coefficients can be deduced from either the potential continuity (2.15) or the
axial velocity continuity (2.17).
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Another possibility is to solve the Aq and Rν coefficients simultaneously with a
global matrix equation of the form(

E1
1 F1

1

E1
2 F1

2

)(
A
R

)
=

(
H1

1

H1
2

)
, (2.20)

where [
E1

1

]
ν,q

= Iq,ν ,
[
F 1

1

]
ν,ν

= −bδν,ν ,
[
H1

1

]
ν,1

= bδν,0,[
E1

2

]
ν,q

= k+
q Iq,ν ,

[
F 1

2

]
ν,ν

= −bk−ν δν,ν ,
[
H1

2

]
ν,1

= bk+
j δν,0,

[A]q,1 = Aq, [R]ν,1 = Rν .

After solving this system, the Aq coefficients are used for the trailing-edge matching.

2.1.3 Trailing-Edge Interface

Acoustic Potentials

At the trailing-edge interface, the incident potential now corresponds to φd. Its scatter-
ing at the trailing-edges gives rise to reflected scattered modes φu in the channels and
transmitted scattered modes φt in the annular domain, as shown in Figure 2.3. The

Figure 2.3: Scattering of a channel acoustic wave at the trailing-edge interface.

acoustic potentials are still solution of the convected Helmholtz equation (2.6) with the
same boundary conditions. They are expressed in the channels as

φd(x, y) =
∞∑
q=0

Aq cos (αqy) eik+q x, for 0 ≤ x ≤ l and 0 ≤ y ≤ b, (2.21)

φu(x, y) =
∞∑
q=0

Bq cos (αqy) eik−q (x−l), for 0 ≤ x ≤ l and 0 ≤ y ≤ b, (2.22)

where

k±q =
−kM ±

√
k2 − β2α2

q

β2
, αq =

qπ

b
, q ∈ N,

and in the annular domain as

φt(x, y) =
∞∑

p=−∞

Tpe
iαpyeik+p (x−l), for l ≤ x <∞ and 0 ≤ y < 2πR, (2.23)
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where

k+
p =

−kM +
√
k2 − β2α2

p

β2
, αp = αj + p

2π

b
=
j + pV

R
, p ∈ Z.

Continuity of the Acoustic Potential

Taking the potentials (2.21), (2.22) and (2.23) evaluated at x = l gives

∞∑
q=0

(
Aqe

ik+q l +Bq

)
cos (αqy) =

∞∑
p=−∞

Tpe
iαpy. (2.24)

Using the projection (2.13) allows one to write the potential continuity at the trailing-
edge interface as

∞∑
q=0

(
Aqe

ik+q l +Bq

)
Iq,ν = bTν , (2.25)

where Iq,ν is defined by (2.14).

Continuity of the Acoustic Axial Velocity

Taking the derivative of the potentials with respect to x at the trailing-edge interface
yields the axial velocity continuity as

∞∑
q=0

(
k+
q Aqe

ik+q l + k−q Bq

)
cos (αqy) =

∞∑
p=−∞

k+
p Tpe

iαpy. (2.26)

Hence, using the same projection method as previously gives

∞∑
q=0

(
k+
q Aqe

ik+q l + k−q Bq

)
Iq,ν = bk+

ν Tν , (2.27)

where k+
ν =

−kM+
√
k2−β2α2

ν

β2 .

Linear System of the Mode-Matching Condition

The Tν coefficients are now eliminated by subtracting (2.27) to k+
ν times (2.25). This

yields
∞∑
q=0

(
k+
ν − k−q

)
BqIq,ν =

∞∑
q=0

(
k+
q − k+

ν

)
Aqe

ik+q lIq,ν . (2.28)

After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
matrix form of the equations to solve is

M2B = Md, (2.29)

where

[
M2
]
ν,q

=
(
k+
ν − k−q

)
Iq,ν , [Md]ν,1 =

∞∑
q=0

(
k+
q − k+

ν

)
Aqe

ik+q lIq,ν , and [B]q,1 = Bq.
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Again, the system of equation can be solved using either a direct factorization method
or an iterative method, the latter being generally more robust in this case. Then the
Tν coefficients can be deduced from either the potential continuity (2.25) or the axial
velocity continuity (2.27).

Using a global matrix equation instead reads(
E2

1 F2
1

E2
2 F2

2

)(
B
T

)
=

(
H2

1

H2
2

)
, (2.30)

where [
E2

1

]
ν,q

= Iq,ν ,
[
F 2

1

]
ν,ν

= −bδν,ν ,
[
H2

1

]
ν,1

= −
∞∑
q=0

Aqe
ik+q lIq,ν ,

[
E2

2

]
ν,q

= k−q Iq,ν ,
[
F 2

2

]
ν,ν

= bk+
ν δν,ν ,

[
H2

2

]
ν,1

= −
∞∑
q=0

k+
q Aqe

ik+q lIq,ν ,

[B]q,1 = Aq, [T ]ν,1 = Tν .

After the first pass of leading-edge matching (2.20) and trailing-edge matching (2.30),
an initial value of the Bq coefficients is known. For the next steps in the iterative
procedure, the left-running channel modes φu are added to the leading-edge matching
based on the knowledge of the previous iteration. This leads to the correction detailed
hereafter.

2.1.4 Correction to the Leading-Edge Interface

The complete mode-matching equations at the leading-edge interface need to account
for the left-running modes φu traveling back from the scattering at the trailing-edge
interface. This acts like a feedback from the trailing-edge interface that has been
neglected in the first iteration in (2.20). The complete picture of the leading-edge
problem is depicted in Figure 2.4. At a given iteration of order g ≥ 1 the potential

Figure 2.4: Scattering of an incident acoustic wave at the leading-edge interface with
feedback from the trailing-edge scattering.

continuity and axial velocity continuity respectively read,

b (δν,0 +Rg
ν) =

∞∑
q=0

(
Agq +Bg−1

q e−ik−q l
)
Iq,ν , (2.31)
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and

b
(
k+
j δν,0 + k−ν R

g
ν

)
=
∞∑
q=0

(
k+
q A

g
q + k−q B

g−1
q e−ik−q l

)
Iq,ν . (2.32)

Combining them to cancel out the unknown Rg
ν coefficients yields

∞∑
q=0

Agq(k
−
ν − k+

q )Iq,ν = b(k−ν − k+
j )δν,0 +

∞∑
q=0

Bg−1
q (k−q − k−ν )e−ik−q lIq,ν . (2.33)

After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
corrected system of equations at the leading-edge interface is

M1A = Mi, (2.34)

where

[
M1
]
ν,q

= (k−ν − k+
q )Iq,ν , [Mi]ν,1 = b(k−ν − k+

j )δν,0 +
∞∑
q=0

Bg−1
q (k−q − k−ν )e−ik−q lIq,ν ,

[A]q,1 = Agq .

The Rν coefficients are deduced from either (2.31) or (2.32).
The corrected global system of equations at the leading-edge interface is(

E1
1 F1

1

E1
2 F1

2

)(
A
R

)
=

(
H1

1

H1
2

)
, (2.35)

where

[
E1

1

]
ν,q

= Iq,ν ,
[
F 1

1

]
ν,ν

= −bδν,ν ,
[
H1

1

]
ν,1

= bδν,0 −
∞∑
q=0

Bg−1
q e−ik−q lIq,ν ,

[
E1

2

]
ν,q

= k+
q Iq,ν ,

[
F 1

2

]
ν,ν

= −bk−ν δν,ν ,
[
H1

2

]
ν,1

= bk+
j δν,0 −

∞∑
q=0

k−q B
g−1
q e−ik−q lIq,ν ,

[A]q,1 = Agq , [R]ν,1 = Rg
ν .

2.1.5 Limitations

The model can be extended to staggered flat vanes using Green’s reciprocity theorem,
as in Roger & François [116], but a question arises concerning the mean flow description.
Adding stagger allows one to be more accurate about acoustic scattering at the leading-
edge interface but cannot account for the mean flow deviation through the OGV. Such
a model would not be accurate in terms of modal content and sound propagation
downstream of the OGV. Some authors [25] used different stagger angles at the leading-
edge and trailing-edge interfaces, with an iterative Wiener-Hopf based method, but
the equations are somehow ill-posed since this creates a discontinuity in the mean flow
field that is not accounted for explicitly. The present work deals with this problem by
modeling cambered vanes, allowing a continuous deviation of the mean flow through
the cascade. Adding camber should also benefit the noise prediction downstream of the
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OGV, due to a more realistic description of sound propagation through the inter-vane
channels [29, 27, 26, 25, 5].

The description of the vanes geometry and the mean flow is detailed in the follow-
ing, with the derivation of slowly-varying acoustic modes in the inter-vane channels
and their implementation in the mode-matching technique.

Mode-Matching Technique for Flat Vanes Summary

The mode-matching technique has first been explained in detail in the simpler
case of unstaggered flat vanes, in subsonic flow conditions. The first step consists
in defining the set of conservative variables that will be used at the leading-edge
and trailing-edge interfaces. These variables are derived from the classical conti-
nuity equations (mass, momentum and energy) applied to an adiabatic lossless
turbomachine [28]. A wave equation is formulated in each sub-domain (upstream,
downstream and between the vanes) and is solved on a local modal basis. The
matching equations at the interfaces can then be defined on the modal coeffi-
cients of each of these modal solutions. The final step consists in defining an
iterative method that solves the leading-edge and trailing-edge mode-matching
equations until a sufficient convergence is reached on the modal coefficients.
The validity of this method has been demonstrated by comparing results with the
Wiener-Hopf solution in Bouley et al. [12]. The method has also been adapted
for staggered flat vanes by Roger & François [116]. Nonetheless, a cascade of flat
vanes cannot account for the mean flow deviation occurring through the OGV
and thus, is not adapted to the problem of fan-OGV wake-interaction noise.
To remedy this problem, the present work extends the mode-matching method
to cambered vanes, allowing a continuous deviation of the mean flow through
the OGV row. Adding camber also describes more realistically the vanes profile
and should benefit tonal noise predictions at high frequency, as noted by many
authors [29, 27, 26, 25, 5], especially downstream of the OGV.

2.2 Sound Propagation through Cambered Inter-Vane
Channels

2.2.1 Geometry

Circle Arc

The cambered vanes are modeled by circle arcs, which means that a constant curvature
distribution along the chord is assumed. Figure 2.5 shows how the stagger angle Ψs,
the camber angle Ψ and the axial chord length lx are introduced. Ψ is the angle formed
by the tangents to the vane leading edge and trailing edge. Since the OGV trailing
edge is aligned with the x-axis, i.e. the turbomachinery axis, the camber angle Ψ is
equivalent to the leading-edge slope angle. Furthermore, because the vanes are circle
arcs, Ψs = Ψ/2 and thus lx = l cos Ψs = l cos Ψ/2.
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(a) (b) (c)

Figure 2.5: Description of the vanes from flat (a) to staggered (b) and finally curved
and staggered (c).

Straight-Channel Approximation

The addition of camber has a twofold impact on sound propagation through the inter-
vane channels. Indeed, the channel is curved, but its cross-section also expands from
the inlet (leading edge) to the outlet (trailing edge). Both effects are displayed in
Figure 2.6. Different authors [25, 51, 119] have found that curvature effects on sound

(a) (b)

Figure 2.6: twofold impact of cambered vanes: curvature of the center line (a) and
expansion of the cross-section (b).

propagation were only noticeable above a given frequency, depending on the architec-
ture. Below that frequency, the influence of cross-section variations could be dominant.
Considering an equivalent straight channel of varying cross-section seems to be a fair
first approach to study sound propagation through a cascade of cambered vanes at
low frequency, in which the diffuser effect is addressed irrespective of the curvature
effect. Furthermore, neglecting the curvature in the first instance will allow to better
understand its effects by comparing results with other models accounting for it (see
Section 2.4 and Chapter 3).

Geometrical Approximation

From Figure 2.6b, it appears the inter-vane channel is better described in two parts
delimited by the measure ā: a semi-open part and then a channel of varying cross-
section. A modification is applied to the vanes suction side, depicted in Figure 2.7a, to
enable an approximate description of these two parts. The first part of the inter-vane
channel is delimited by the triangle ABC. The second part runs from the section BC to
the trailing-edge interface and is considered as an equivalent straight channel depicted
in Figure 2.7b. Notice that Cartesian coordinates (x, y) will be used when deriving
the approximate solution in this second part since it is considered to be straight,
and to avoid confusions when curvature effects will be accounted for and curvilinear
coordinates (s, n) will be used instead. The point C is where the intersection of the
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(a) (b)

Figure 2.7: Geometrical approximation of the inter-vane channel (a) and the equivalent
straight channel of varying cross-section from section BC to the trailing-edge interface
(b).

upper-vane curvature radius Rc (painted in blue in Figure 2.7a) and the lower-vane
leading-edge slope (painted in black in Figure 2.7a) makes a right angle. Segment AC
is then a straight line whereas the curve from point C to the trailing edge, on the
suction side of the vane, is described by the following parametric representation:{

xss(γ) = Rc (sin Ψ− sin γ) + b cos γ sin γ,

yss(γ) = Rc (cos γ − cos Ψ) + b sin2 γ,
(2.36)

where γ = 0 at the outlet and γ = Ψ at the inlet (see Figure 2.7a). The upper-vane
pressure side that is a circle arc is described by{

xps(γ) = Rc (sin Ψ− sin γ) ,

yps(γ) = Rc (cos γ − cos Ψ) + b.
(2.37)

The parametric representation of the curvilinear abscissa s, along the channel center
line, is then 

xs(γ) = Rc (sin Ψ− sin γ) +
b

2
cos γ sin γ,

ys(γ) = Rc (cos γ − cos Ψ) + b

(
1− 1

2
cos2 γ

)
.

(2.38)

The exact expression of the channel length lc in Figure 2.7b is given by

lc =

∫ Ψ

0

√(
dxs
dγ

)2

+

(
dys
dγ

)2

dγ, (2.39)
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but a good approximation is found by considering the curvilinear abscissa as a circle
arc with a mean curvature radius. This reads

lc ' (Rc − (a+ b)/4) Ψ = (Rc − b(1 + cos Ψ)/4) Ψ. (2.40)

The validity of this approximation is shown in Figure 2.8, displaying the relative error
∆lc = (lc − lc,approx)/lc against the camber angle Ψ for different solidity values l/b. Up
to about Ψ = 40°, the relative error stays below 0.5% for 1 ≤ l/b ≤ 1.5.

Figure 2.8: Evolution of the channel length relative error ∆lc = (lc−lc,approx)/lc against
the camber angle Ψ for different solidity values l/b.

The varying channel height is given by

h(γ) = b cos(γ), 0 ≤ γ ≤ Ψ. (2.41)

As mentioned by Roger et al. [116], the approximate height a = b cos Ψ of segment BC
is lower than the original height ā between two circle arcs by an error of

ā− a
Rc

= 1−

√
1−

(
b

l

sin2 Ψ

cos Ψ/2

)2

. (2.42)

The error being only dependent on the camber angle Ψ and the solidity l/b, its relative
value ∆a = (ā−a)/ā is plotted in Figure 2.9. It shows the error is negligible (less than
2%) for camber angles below 20° but, depending on the solidity value, is equal to 8%,
10% and 12% respectively at Ψ = 36°, which is in the range of OGV camber angles.
In this case, the difference is not negligible anymore and tends to increase the height
expansion of the inter-vane channel. This artificial thickness could have an impact on
sound propagation that will be discussed in the next chapter, in Section 3.3.2.

Modal Basis Approximation in the Triangle ABC

In the first part of the inter-vane channel, Whitehead [131] proposed to use Green’s
reciprocity theorem, based on Green’s second identity [41], to link the pressure field
from the leading-edge interface to the segment BC in the channel by taking advantage
of the absence of acoustic sources. It has been used by Roger & François [116] and could
be coupled with Kirchhoff’s integral theorem [59] to have access to the pressure field
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Figure 2.9: Evolution of the inlet height relative error ∆a = (ā − a)/ā against the
camber angle Ψ for different solidity values l/b.

inside the triangle ABC, which was missing in Ref. [116]. A convenient approximation
has also been proposed by Roger et al. [117] who described the pressure field in this
part as if it were a channel of height a and length b sin Ψ. Cosine functions are used
as a modal basis and the matching at the leading-edge interface is done classically,
considering it as a staggered interface for the channel modes. The authors [117] showed
a good agreement between both methods. Consequently, the approximate modal basis
is used in the present study for its practicality and will be detailed in Section 2.3.2.

Slowly-Varying Approximation from Section BC to the Trailing Edge

In the varying part of the channel, one last approximation is needed to allow a closed-
form solution of sound propagation. Considering the channel center line as a circle
arc of modified curvature radius proved to give a good approximation of the channel
length in (2.40). In this case, the curvilinear abscissa s is given by

s ' (Rc − b(1 + cos Ψ)/4) γ, 0 ≤ γ ≤ Ψ. (2.43)

By unwrapping the curved channel as a straight channel with equivalent length and
cross-section variations (Figure 2.7b), the channel height is given in Cartesian coordi-
nates by

h(x) ' b cos

(
Ψ− x

Rc − b(1 + cos Ψ)/4

)
, 0 ≤ x ≤ lc. (2.44)

The maximal value of the cross-section derivative, i.e. the local slope of the channel
walls, is

ε = max
∀x∈[0,lc]

∣∣∣∣dhdx

∣∣∣∣ ' b

Rc − b(1 + cos Ψ)/4
sin Ψ =

sin2 Ψ

l

b
cos Ψ/2− 1

4
(1 + cos Ψ) sin Ψ

.

(2.45)
If ε� 1, the cross-section varies slowly along the channel. In this case, a slowly-varying
formalism based on a multiple-scale analysis can be used (see for example [8, 82, 47])
and enables a closed-form solution of sound propagation in the inter-vane channels. The
basic idea behind the method of multiple scales is that the variation of cross-section
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occurs on a larger scale (hence slower variations) defined by a new and independent
coordinate X = εx, called the slow coordinate. Each field is then expanded in a
regular asymptotic expansion in powers of ε and an approximate solution is found at
leading order, accounting for both fast and slow variations. This formalism has been
used by many authors in turbomachinery acoustics, e.g. Nayfeh & co-authors [83, 84,
80] or Rienstra [105, 106, 107, 109, 110], and proved its efficiency against numerical
results [111]. In the present case, the value of ε is plotted against the camber angle
for different solidity values in Figure 2.10. ε increases with the camber angle Ψ but

Figure 2.10: Evolution of the cross-section variation parameter ε against the camber
angle Ψ for different solidity values l/b.

decreases with the solidity value l/b. For typical values of camber angle and solidity
of an OGV row, ε < 1, which ensures well-ordered expansions in the multiple-scale
analysis. Whether or not it is sufficiently small to give accurate results will depend
on the problem studied and will be investigated in sections 2.4 and 3.3. Consequently,
Figure 2.10 should be used to understand how the validity of the approximation evolves
with design parameters, ∂ε/∂Ψ and ∂ε/∂(l/b), and not as an absolute criterion to tell
whether or not the approximation is valid in a specific case.

In the following, the value of ε is assumed to be small enough to consider that the
cross-section varies slowly, thus the height h is a function of the slow coordinate X as

h(X) = b cos

(
Ψ− X

b sin Ψ

)
, 0 ≤ X ≤ Lc = bΨ sin Ψ. (2.46)

2.2.2 Mean Flow

The incident mean flow is considered uniform and with no angle of incidence, thus
being perfectly aligned with the vane leading edges. It is described by

U−∞(x, y) = U−∞ cos Ψ ex + U−∞ sin Ψ ey, −∞ ≤ x ≤ 0 and 0 ≤ y < 2πR,
(2.47)

where the −∞ subscript denotes the fields upstream of the OGV. Beyond the leading-
edge interface (x > 0), the mean flow enters the inter-vane channels and remains
constant in the triangle ABC, then passes through the slowly-varying part. Here, the
mean flow is assumed to stay nearly uniform, thus determined by the slowly varying ge-
ometry only (dependence in X only). Rewritten in terms of X, the continuity equation
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(1.6a) is now

ε
∂DUx
∂X

+
∂DUy
∂y

= 0. (2.48)

It appears that a small axial fluctuation of DUx can only be balanced by a small
transverse fluctuation of DUy. Consequently Uy = O(ε) at leading order since Ux is
O(1) by assumption. It follows from equations (1.6b) and (1.6c) that C, D and P are
O(1) at leading order. The variant of Bernoulli’s equation (1.6b) indicates that each
variable be expanded in powers of ε2. The solution takes the form

U(X, y) = U0x(X)ex + εU1y(X, y)ey +O(ε2), (2.49a)

C(X, y) = C0(X) +O(ε2), (2.49b)

D(X, y) = D0(X) +O(ε2), (2.49c)

P (X, y) = P0(X) +O(ε2). (2.49d)

The value of U0x(X) is given by the conservation of mass-flow rate, i.e. integral version
of the mass equation (1.6a), between a given location X and the inlet (interface BC).
This reads ∫ h(X)/2

−h(X)/2

D0(X)U0x(X) dy = F−∞ +O(ε),

where F−∞ = D−∞U−∞a. Hence, the mean velocity at leading order is

U0x(X) = U−∞
D−∞a

D0(X)h(X)
. (2.50)

By considering a straight channel, the mean vorticity of the flow is neglected. Thus,
from Bernoulli’s equation (1.8), it follows that

1

2

F 2
−∞

D2
0(X)h2(X)

+
Dγ∗−1

0 (X)

γ∗ − 1
= E−∞ +O(ε), (2.51)

where E−∞ = U2
−∞/2 +Dγ∗−1

−∞ /(γ∗− 1). Leading-order solutions of equation (2.51) can
be viewed as the roots of the polynomial function

D0(X) 7→ 1

γ∗ − 1
Dγ∗+1

0 (X)−

(
U2
−∞

2
+
Dγ∗−1
−∞

γ∗ − 1

)
D2

0(X) +
1

2

(
D−∞U−∞a

h(X)

)2

,

where X acts as a parameter. The value of D0(X) is found by applying Newton-
Raphson method (see for example [42]) at each location X with an initial guess equal
to D−∞ in order to converge to the desired root. C0(X) and P0(X), if needed, are then
deduced from the thermodynamics relations (1.6c). Finally, downstream of the OGV,
the mean flow exits the channels aligned with the vane trailing edges, hence with the
turbomachinery axis. It is described by

U+∞(x, y) = U−∞ cos Ψ
D−∞
D+∞

ex, lx ≤ x ≤ ∞ and 0 ≤ y < 2πR, (2.52)

where the +∞ subscript denotes the fields downstream of the OGV, thus D+∞ =
D0(Lc). The evolution of the mean flow field through the cascade is displayed in
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Figure 2.11.

Figure 2.11: Modeled total Mach number and flow angle evolution through a cascade
of cambered vanes (geometry and flow conditions from the fourth NASA CAA work-
shop [24]).

2.2.3 Slowly-Varying Acoustic Modes

Problem Formulation

With the description of the slowly-varying mean flow in (2.49), the compressible con-
vected Helmholtz equation (1.11) can be recast in terms of powers of ε. Notice that,
in order to avoid a complicated coupling between the two small parameters (ε and the
acoustic amplitude), the acoustic part will be assumed much smaller than any relevant
power of ε in all further developments. Consequently, the Helmholtz equation (1.11)
in the slowly-varying part of the channel, reads, with a change of Fourier-transform
convention to match Rienstra’s result [107] (see Appendix A.1.1 for details),

β2∂
2φ

∂x2
+
∂2φ

∂y2
− 2ikM

∂φ

∂x
+ k2φ

+ ε

{[
1

D0

∂D0

∂X
− U0x

∂

∂X

(
M

C0

)]
∂φ

∂x
− iωU0x

∂

∂X

(
1

C2
0

)
φ− 2ik

U1y

C0

∂φ

∂y
− 2M

U1y

C0

∂2φ

∂x∂y

}
+O(ε2) = 0, (2.53)

where M = U0x/C0, β =
√

1−M2 and k = ω/C0. At leading order, the Helmholtz
equation shows a similar structure in a slowly-varying channel (2.53) than in a straight
channel (2.3), the only difference being the non-constant coefficients. The boundary
condition for hard walls is written as

(∇φ · n) = 0, at y = ±h(X)/2, (2.54)

where n is the outer normal unit vector to the respective wall, slightly misaligned with
ey due to the height expansion (Figure 2.7b). The boundary is described from the
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center line by Σ±(X, y) = 0 where the ± sign denotes the upper (pressure side) or
lower (suction side) boundary, respectively, and

Σ±(X, y) = y ∓ h(X)

2
.

The respective outward-directed normal unit vectors, given by ∇Σ±(X, y), are then

n+ =
ey − ε

sin
(
Ψ− X

b sin Ψ

)
sin Ψ

ex√
1 + ε2

sin2
(
Ψ− X

b sin Ψ

)
sin2 Ψ

, n− = −
ey + ε

sin
(
Ψ− X

b sin Ψ

)
sin Ψ

ex√
1 + ε2

sin2
(
Ψ− X

b sin Ψ

)
sin2 Ψ

.

This shows that the misalignment between n and ey is, indeed, maximum at X = 0
where it is given by ε, and null at X = Lc.

WKB Expansion

The slowly varying acoustic modes are obtained by solving equation (2.53) with the
WKB method, which stands for Wentzel–Kramers–Brillouin. The WKB theory is
a special case of multiple-scale analysis where the fast variations (dependence in x)
are assumed to be exponential (see for example [8, 82, 47]). The asymptotic series
expansion of the slowly-varying potential then reads

φ(X, y) = exp

(
− i

ε

∫ X

µ(ξ) dξ

) ∞∑
m=0

εmΦm(X, y), 0 ≤ X ≤ Lc, −h(X)

2
≤ y ≤ h(X)

2
,

(2.55)
where µ(X) is the axial wavenumber that is now able to vary with X. It gives the
following derivatives:

ε
∂φ

∂X
(X, y) = exp

(
− i

ε

∫ X

µ(ξ) dξ

)(
−iµ+ ε

∂

∂X

) ∞∑
m=0

εmΦm(X, y),

and

ε2
∂2φ

∂X2
(X, y) = exp

(
− i

ε

∫ X

µ(ξ) dξ

)(
−µ2 − iε

∂µ

∂X
− 2iεµ

∂

∂X
+ ε2

∂2

∂X2

) ∞∑
m=0

εmΦm(X, y).

Using the above expressions in (2.53) and dividing by the common exponential term
(see A.1.2) gives

O(1)
∂2Φ0

∂y2
+
(
Λ2 − µ2

)
Φ0 = 0, (2.56a)

O(ε)
∂2Φ1

∂y2
+
(
Λ2 − µ2

)
Φ1 =

i

D0Φ0

{
∂

∂X

[
(ΛM + µ)D0Φ2

0

]
+

ΛD0

C0

∂

∂y

(
U1yΦ

2
0

)}
,

(2.56b)

where
Λ = k − µM.

46



2.2. Sound Propagation through Cambered Inter-Vane Channels

The boundary conditions at y = ±h(X)/2 from (2.54) become

O(1)
∂Φ0

∂y

∣∣∣∣
y=±h(X)/2

= 0, (2.57a)

O(ε)
∂Φ1

∂y

∣∣∣∣
y=±h(X)/2

= ∓iµ
sin
(
Ψ− X

b sin Ψ

)
sin Ψ

Φ0|y=±h(X)/2 . (2.57b)

The transverse wavenumber θ is introduced through the dispersion relation

θ2 = Λ2 − µ2. (2.58)

The leading-order equation (2.56a) with boundary conditions (2.57a) is rewritten as an
eigenvalue problem of the operator −∂2/∂y2 in the transverse direction, with eigenvalue
θ2 and eigenfunction ψ, such that

− ∂2ψ

∂y2
= θ2ψ, with

∂ψ

∂y
= 0 at y = ±h(X)/2, (2.59)

and X acting as a parameter. Following Rienstra [109], a normalization is introduced
as ∫ h(X)/2

−h(X)/2

ψ2(X, y) dy = 1. (2.60)

The solution of (2.56a) is written as a sum of transverse modes (eigenfunctions) of
order q ∈ N such that

Φ0(X, y) =
∞∑
q=0

Nq(X)ψq(X, y), (2.61)

where
ψq(X, y) =

cos(θq[y + h(X)/2])√
(1 + δq,0)h(X)/2

, θq(X) =
qπ

h(X)
, (2.62)

where δ is the Kronecker delta: δq,0 = 1 if q = 0, and δq,0 = 0 otherwise. The amplitudes
Nq(X) are determined by the O(ε) problem (2.56b), but the latter does not need to be
solved. Instead, a solvability condition is used based on the Fredholm alternative (see
for example Ref. [82] Chapter 15.4). This states that the O(ε) problem (2.56b) has a
solution if, and only if, its inhomogeneous part (right-hand side) is orthogonal to the
solution Φ†0 of the adjoint O(1) problem (2.56a). Since the leading-order homogeneous
problem is self-adjoint, Φ†0 = Φ0, the solvability condition is∫ h(X)/2

−h(X)/2

Φ0fh(Φ0) dy = Φ0
∂Φ1

∂y

∣∣∣∣
y=h(X)/2

− Φ0
∂Φ1

∂y

∣∣∣∣
y=−h(X)/2

, (2.63)

where fh(Φ0) is the inhomogeneous part (right-hand side) of (2.56b). The solvability
condition (2.63) reduces to Green’s second identity in this case. Notice that, the
partial derivative ∂Φ1/∂y evaluated at the boundaries involves only Φ0 (2.57b). As
a consequence, equation (2.63) involves only Φ0 and so gives the necessary constraint
to define the amplitudes Nq. For the sake of clarity, the reduced axial wavenumber is
introduced as

σq =

√
1− β2

θ2
q

k2
. (2.64)
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After some derivations presented in Appendix A.2, this leads to

N2
q (X) =

Q2
q

D0(X)k(X)σq(X)
, (2.65)

where Qq are constants to be defined from a known value of Nq(X) at some point
(usually the inlet). The axial wavenumber µ is defined through the quadratic equation
given by the dispersion relation (2.58) as

µ±q =
−kM ± kσq

β2
, (2.66)

where the ± symbol denotes a wave propagating downstream (+) or upstream (−).
Finally, the slowly-varying acoustic potential of the superposition of a downstream-
propagating mode of order q and amplitude I, and the opposite upstream-propagating
mode of amplitude R, can be approximated at leading order by

φq(X, y) ∼ Qq√
D0(X)k(X)σq(X)

ψq(X, y) exp

(
i

ε

∫ X k(ξ)M(ξ)

β2(ξ)
dξ

)
×
[
I exp

(
− i

ε

∫ X k(ξ)σq(ξ)

β2(ξ)
dξ

)
+R exp

(
i

ε

∫ X k(ξ)σq(ξ)

β2(ξ)
dξ

)]
. (2.67)

Now that a modal solution is known in each subdomain (upstream annular, inter-vane,
downstream annular), the mode-matching equations are derived in the following sec-
tion.

Sound Propagation through Cambered Inter-Vane Channels Sum-
mary

Camber has been introduced by modeling the vanes profile as circle arcs. This
has a twofold impact on sound propagation through the inter-vane channels:
curvature of the center line and expansion of the cross-section. Different au-
thors found that the curvature effects were negligible at low frequency, where
the influence of cross-section variations could be dominant. Thus, a sound prop-
agation model based on straight channels of equivalent cross-section variations
has been proposed. Such a problem does not have an exact closed-form solu-
tion. A leading-order approximate solution has been derived instead, based on
the assumption that the cross-section varies slowly along the channel. This was
achieved via the method of multiple scales. An approximation has also been done
on the modal basis of the triangle ABC, between the leading-edge interface and
the inter-vane channel, using a set of cosine functions. Furthermore, geometri-
cal approximations have been accepted in order to model the inter-vane channel
geometry more easily. This results in an artificial thickness of the vane. Finally,
the mean flow has been assumed subsonic and to stay nearly uniform through
the cascade, while being continuously deviated. All the necessary assumptions
of the model are listed below:

• Straight-channel approximation and slowly-varying approach in the inter-
vane channel;
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• Modal basis approximation in the triangle ABC;

• Geometrical approximation leading to an artificial thickness;

• Nearly uniform mean flow continuously deviated through the cascade.

2.3 Mode-Matching Equations

2.3.1 Jump Conditions

Due to camber, the leading-edge interface is staggered in the vanes reference frame.
The oblique mean flow passing through requires a change in the jump conditions seen
earlier in 2.1.1. Going back to the conservation of total enthalpy (1.17) leads to

[ikφ−Mxux −Myuy +Mxux +Myuy]
2
1 = [ikφ]21 = 0, (2.68)

which simply reduces to the conservation of φ. The variable Γ1 is still

Γ1 = φ . (2.69)

The conservation of mass-flow rate (1.13) reads[
ikM2

xφ+ β2
xMxux −M2

xMyuy
]2

1
= 0, (2.70)

where β2
x = 1 −M2

x . Since the potential continuity is already enforced, this equation
reduces to the conservation of the following quantity:

Γ2 = β2
xux −MxMyuy , (2.71)

composed of the fluctuations of axial and tangential velocities. This variable can also
be rewritten as

Γ2 = β2
xux −M2

xuy tan Ψ. (2.72)

That demonstrates the equivalence of the conservation of Γ2 and ux when Ψ → 0
and/or M → 0. In these particular cases, the set of variables (Γ1,Γ2) is equivalent
to (φ, ux) or (p, ux) as was previously used for unstaggered flat vanes in 2.1.1. It is
important to notice that in general, when Ψ 6= 0 and M 6= 0, the fluctuating pressure
field p cannot be used as a conservative variable through the matching interface.

2.3.2 Initial Leading-Edge Interface

Acoustic Potentials

At this initial step of leading-edge matching, no back-scattering from the trailing-edge
interface is accounted for. The slowly-varying formalism is not needed and the only
difference with a cascade of flat vanes (Section 2.1.2) is that the matching interface
is staggered from the point of view of the channel modes in the triangle ABC (see
Figure 2.12). In the annular domain, the mean flow is aligned with the vane leading
edges. By noticing that the Helmholtz equation written in the vanes-attached system
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Figure 2.12: Scattering of an incident mode at the staggered leading-edge interface.

of coordinates (ζ, η) is identical to (2.3), a change of variables from (ζ, η) to (x, y) gives

β2
−∞x

∂2φ

∂x2
+β2
−∞y

∂2φ

∂y2
−2M−∞xM−∞y

∂2φ

∂xy
+2ik−∞

(
M−∞x

∂φ

∂x
+M−∞y

∂φ

∂y

)
+k2
−∞φ = 0,

(2.73)
whereM−∞x = M−∞ cos Ψ,M−∞y = M−∞ sin Ψ, β2

−∞x = 1−M2
−∞x, β2

−∞y = 1−M2
−∞y.

Since each field will be evaluated at the leading-edge interface in this section, the −∞
subscript is not needed and will be dismissed in the following to simplify the notation.

Assuming that equation (2.73) has a solution of the same form as the solution of
(2.3), the incident φi and reflected φr potentials read

φi(x, y) = eiαjyeik+j x, for −∞ < x ≤ 0 and 0 ≤ y < 2πR, (2.74)

where

αj =
j

R
, k+

j = −(k − αjMy)Mx

β2
x

+

√
k2 − (β2

x −M2
y )α2

j − 2kαjMy

β2
x

,

and

φr(x, y) =
∞∑

p=−∞

Rpe
iαpyeik−p x, for −∞ < x ≤ 0 and 0 ≤ y < 2πR, (2.75)

where

αp = αj + p
2π

b
, k−p = −(k − αpMy)Mx

β2
x

−

√
k2 − (β2

x −M2
y )α2

p − 2kαpMy

β2
x

.

In the triangle ABC, the downstream-propagating transmitted modes are given by
the potential φd as

φd(ζ, η) =
∞∑
q=0

Aq cos (αqη) eik+q ζ , for η tan Ψ ≤ ζ ≤ a tan Ψ and 0 ≤ η ≤ a,

(2.76)
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where

αq =
qπ

a
, k+

q =
−kM +

√
k2 − β2α2

q

β2
.

Continuity of the Acoustic Potential

To derive the matching equations, a change of variables is performed on the channel
modes to express all potentials in terms of (x, y). It yields

φd(x, y) =
1

2

∞∑
q=0

Aq

[
ei(− qπa sin Ψ+k+q cos Ψ)xei( qπa cos Ψ+k+q sin Ψ)y

+ei( qπa sin Ψ+k+q cos Ψ)xei(− qπa cos Ψ+k+q sin Ψ)y
]
. (2.77)

The acoustic potential continuity at the leading-edge interface reads

eiαjy +
∞∑

p=−∞

Rpe
iαpy =

1

2

∞∑
q=0

Aq

[
ei( qπb +k+q sin Ψ)y + ei(− qπb +k+q sin Ψ)y

]
. (2.78)

The same projection on the annular modal basis (2.13), as seen previously for flat
vanes, is performed with the operator∫ b

0

(•)e−iανy dy, with αν = αj + ν
2π

b
, ν ∈ Z.

This leads to

Ii,ν +
∞∑

p=−∞

RpIp,ν =
∞∑
q=0

Aq
(
I++
q,ν + I−+

q,ν

)
. (2.79)

The first two integrals have been detailed in 2.1.2, whereas the integral on the channel
modes is changed due to stagger. It is described by

I±±q,ν =
1

2

∫ b

0

ei(± qπ
b

+k±q sin Ψ−αν)y dy =
b

2

sin
(
ϕ±±q,ν

)
ϕ±±q,ν

eiϕ±±q,ν ,

where
ϕ±±q,ν =

b

2

(
±qπ
b

+ ϕ±q,ν(Ψ)
)

and ϕ±q,ν(Ψ) = k±q sin Ψ− αν .

These integrals can also be recast together in the potential continuity equation as

b (Rν + δν,0) =
∞∑
q=0

AqI
+
q,ν , (2.80)

where

I+
q,ν(Ψ) = I++

q,ν + I−+
q,ν =


−iϕ+

q,ν(Ψ)

(qπ/b)2 − ϕ+ 2
q,ν (Ψ)

(
1− (−1)qeibϕ+

q,ν(Ψ)
)
,

b

2
(1 + δq,0) if

∣∣ϕ+
q,ν(Ψ)

∣∣ =
qπ

b
.

(2.81)
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Continuity of the Modified Acoustic Velocity

To write the continuity equation on the modified acoustic velocity β2
xux−MxMyuy, the

derivatives of the potential (2.77) with respect to each coordinate are needed. They
are derived as

∂φd
∂x

=
i

2

∞∑
q=0

Aq

[(
−qπ
a

sin Ψ + k+
q cos Ψ

)
ei(− qπa sin Ψ+k+q cos Ψ)xei( qπa cos Ψ+k+q sin Ψ)y

+
(qπ
a

sin Ψ + k+
q cos Ψ

)
ei( qπa sin Ψ+k+q cos Ψ)xei(− qπa cos Ψ+k+q sin Ψ)y

]
,

(2.82)

and

∂φd
∂y

=
i

2

∞∑
q=0

Aq

[(qπ
a

cos Ψ + k+
q sin Ψ

)
ei(− qπa sin Ψ+k+q cos Ψ)xei( qπa cos Ψ+k+q sin Ψ)y

+
(
−qπ
a

cos Ψ + k+
q sin Ψ

)
ei( qπa sin Ψ+k+q cos Ψ)xei(− qπa cos Ψ+k+q sin Ψ)y

]
.

(2.83)

The modified velocity continuity at the leading-edge interface reads

(β2
xk

+
j −MxMyαj)e

iαjy +
∞∑

p=−∞

Rp

(
β2
xk
−
p −MxMyαp

)
eiαpy

=
1

2

∞∑
q=0

Aq

[(
β2
xK

+−
q −MxMyA

++
q

)
eiA++

q y +
(
β2
xK

++
q −MxMyA

−+
q

)
eiA−+

q y
]
,

(2.84)

where
K±±q = k±q cos Ψ± qπ

a
sin Ψ, A±±q = ±qπ

a
cos Ψ + k±q sin Ψ.

Using the same projection method as previously gives

(β2
xk

+
j −MxMyαj)Ii,ν +

∞∑
p=−∞

Rp

(
β2
xk
−
p −MxMyαp

)
Ip,ν

=
1

2

∞∑
q=0

Aq
[(
β2
xK

+−
q −MxMyA

++
q

)
I++
q,ν +

(
β2
xK

++
q −MxMyA

−+
q

)
I−+
q,ν

]
.

(2.85)

After some algebra, the modified velocity continuity reads

b
(
K+
j δν,0 +K−ν Rν

)
=
∞∑
q=0

AqK+
q,νI

+
q,ν , (2.86)

where
K+
j = β2

xk
+
j −MxMyαj,

K−ν = β2
xk
−
ν −MxMyαν ,

52



2.3. Mode-Matching Equations

K±q,ν =
(
β2
x cos Ψ−MxMy sin Ψ

)
k±q +

tan Ψ

ϕ±q,ν(Ψ)

(qπ
b

)2

.

Linear System of the Mode-Matching Condition

To solve the problem on the Aq coefficients, the Rν terms are canceled out by subtract-
ing (2.86) to K−ν times (2.80). This yields

∞∑
q=0

Aq
(
K−ν −K+

q,ν

)
I+
q,ν = b

(
K−ν −K+

j

)
δν,0. (2.87)

After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
matrix form of the equations to solve is

M1A = Mi, (2.88)

where[
M1
]
ν,q

=
(
K−ν −K+

q,ν

)
I+
q,ν , [Mi]ν,1 = b

(
K−ν −K+

j

)
δν,0, and [A]q,1 = Aq.

This is solved by means of an iterative least-squares method. Then the Rν coefficients
can be deduced from either the potential continuity (2.80) or the modified velocity
continuity (2.86).

Another possibility is to solve the Aq and Rν coefficients simultaneously with a
global matrix equation of the form(

E1
1 F1

1

E1
2 F1

2

)(
A
R

)
=

(
H1

1

H1
2

)
, (2.89)

where [
E1

1

]
ν,q

= I+
q,ν ,

[
F 1

1

]
ν,ν

= −bδν,ν ,
[
H1

1

]
ν,1

= bδν,0,[
E1

2

]
ν,q

= K+
q,νI

+
q,ν ,

[
F 1

2

]
ν,ν

= −bK−ν δν,ν ,
[
H1

2

]
ν,1

= bK+
j δν,0,

[A]q,1 = Aq, [R]ν,1 = Tν .

2.3.3 Trailing-Edge Interface

Acoustic Potentials

At the trailing-edge interface, the acoustic potentials involved are represented in Fig-
ure 2.13. Since this interface is not staggered, the continuity of the modified velocity
β2
xux−MxMyuy reduces to the continuity of the axial fluctuating velocity ux, along the

continuity of the velocity potential φ, which remains unchanged. Downstream of the
OGV, the mean flow is axial and the Helmholtz equation is the same as for flat vanes
(2.3). The expression of the transmitted acoustic potential φt is

φt(x
′, y′) =

∞∑
p=−∞

Tpe
iαpy′eik+p x

′
, for 0 ≤ x′ <∞ and 0 ≤ y′ < 2πR, (2.90)
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Figure 2.13: Scattering of a downstream-propagating channel mode at the trailing-edge
interface.

where

x′ = x− lx, y′ = y −Rc(1− cos Ψ), αp = αj + p
2π

b
, k+

p =
−kM +

√
k2 − β2α2

p

β2
.

Since all potentials are evaluated at the trailing-edge interface in this section, the +∞
subscript below the mean flow variables is not needed and is dismissed.

In the inter-vane channels, the modes are given by equation (2.67). With the
opposite Fourier-transform convention used here, it reads

φq(S, n) =
Qq

√
2/(1 + δq,0)√

D0(S)k(S)σq(S)h(S)
cos

(
θq(S)

[
n+

h(S)

2

])
exp

(
i

ε

∫ S

µ±q (ξ) dξ

)
,

(2.91)
for 0 ≤ S ≤ Lc and −h(S)/2 ≤ n ≤ h(S)/2, and where

µ±q (S) =
−k(S)M(S)± k(S)σq(S)

β2(S)
, σq(S) =

√
1−

(
β(S)θq(S)

k(S)

)2

, θq(S) =
qπ

h(S)
.

By gathering some constants into the Qq amplitudes, the potentials φd and φu can
be expressed in terms of the Aq and Bq modal coefficients. For this purpose, both
formulations φq(S, n) (2.91) and φd(ζ, η) (2.76) are matched at the inlet of the slowly-
varying channel (segment BC from Figure 2.13). On this interface h(S = 0) = a,
thus {

η ∈ [0, a],
ζ = a tan Ψ,

and
{
n = η − a/2,
S = 0.

Consequently, the Qq amplitudes for the downstream-propagating modes are given by

Qq = Aq

√
D0(0)k(0)σq(0)h(0)√

2/(1 + δq,0)
eik+q a tan Ψ.

Introducing the stream-wise variation function as

Υ+
q (S) =

√
D0(0)k(0)σq(0)h(0)

D0(S)k(S)σq(S)h(S)
exp

(
i

ε

∫ S

0

µ+
q (ξ) dξ

)
, (2.92)
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the potential φd in the slowly-varying channel reads

φd(S, n) =
∞∑
q=0

AqΥ
+
q (S)eik+q a tan Ψ cos

(
θq(S)

[
n+

h(S)

2

])
. (2.93)

For the upstream-propagating modes, the matching is done at the trailing-edge inter-
face with a locally constant channel mode. The Qq amplitudes in this case are given
by

Qq = Bq

√
D0(Lc)k(Lc)σq(Lc)h(Lc)√

2/(1 + δq,0)
.

Hence,

φu(S, n) =
∞∑
q=0

BqΥ
−
q (S) cos

(
θq(S)

[
n+

h(S)

2

])
, (2.94)

where

Υ−q (S) =

√
D0(Lc)k(Lc)σq(Lc)h(Lc)

D0(S)k(S)σq(S)h(S)
exp

(
i

ε

∫ S

Lc

µ−q (ξ) dξ

)
. (2.95)

Continuity of the Acoustic Potential

At the trailing-edge interface, the continuity of the potential reads

∞∑
q=0

[
AqΥ

+
q (Lc)e

ik+q a tan Ψ +Bq

]
cos (θq(Lc)y

′) =
∞∑

p=−∞

Tpe
iαpy′ . (2.96)

After a projection on the modal basis of the transmitted modes with the operator∫ b

0

(•)e−iανy′ dy′, with αν = αj + ν
2π

b
, ν ∈ Z,

the integrals yields ∫ b

0

ei(αp−αν)y′ dy′ = bδν,p,

and

I0
q,ν =

∫ b

0

cos (θq(Lc)y
′) e−iανy′ dy′ =


iαν

(αq)
2 − α2

ν

[
1− (−1)qe−iαjb

]
,

b

2
(1 + δq,0) if αν =

qπ

b
.

Notice that I0
q,ν is a particular case of the previously defined inner product I±q,ν(Ψ = 0)

in (2.81) for a zero stagger angle. Compiling these results together yields

∞∑
q=0

[
AqΥ

+
q (Lc)e

ik+q a tan Ψ +Bq

]
I0
q,ν = bTν . (2.97)
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Continuity of the Acoustic Axial Velocity

The slowly-varying channel modes φd and φu have a slowly varying part (dependence
in S) and a rapidly varying part (dependence in s). The small scale variations are
given by the exponential term in the stream-wise variation functions Υ±. Therefore,
the derivative of the potentials with respect to s only involves this exponential term at
leading order. The acoustic axial velocities are given by

∂φd
∂s

(S, n) =
∞∑
q=0

Aqiµ
+
q (S)Υ+

q (S)eik+q a tan Ψ cos

(
θq(S)

[
n+

h(S)

2

])
+O(ε), (2.98)

and

∂φu
∂s

(S, n) =
∞∑
q=0

Bqiµ
−
q (S)Υ−q (S) cos

(
θq(S)

[
n+

h(S)

2

])
+O(ε). (2.99)

Projecting on the annular modal basis, the axial velocity continuity at the trailing-edge
interface reads

∞∑
q=0

[
Aqµ

+
q (Lc)Υ

+
q (Lc)e

ik+q a tan Ψ +Bqµ
−
q (Lc)

]
I0
q,ν = bk+

ν Tν . (2.100)

Linear System of the Mode-Matching Condition

The unknown Bq coefficients are solved by canceling out the Tν coefficients in (2.97)
and (2.100), which gives

∞∑
q=0

Bq

[
k+
ν − µ−q (Lc)

]
I0
q,ν =

∞∑
q=0

Aq
[
µ+
q (Lc)− k+

ν

]
Υ+(Lc)e

ik+q a tan ΨI0
q,ν . (2.101)

The modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]) allows one
to numerically compute the Bq coefficients from the linear system of equations

M2B = Md, (2.102)

where

[
M2
]
ν,q

=
[
k+
ν − µ−q (Lc)

]
I0
q,ν , [Md]ν,1 =

∞∑
q=0

Aq
[
µ+
q (Lc)− k+

ν

]
Υ+(Lc)e

ik+q a tan ΨI0
q,ν ,

[B]q,1 = Bq.

The continuity equation (2.97) or (2.100) can then be used to deduce Tν .
Finally, the general matrix equation for this interface is(

E2
1 F2

1

E2
2 F2

2

)(
B
T

)
=

(
H2

1

H2
2

)
, (2.103)
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where

[
E2

1

]
ν,q

= I0
q,ν ,

[
F 2

1

]
ν,ν

= −bδν,ν ,
[
H2

1

]
ν,1

= −
∞∑
q=0

AqΥ
+
q (Lc)e

ik+q a tan ΨI0
q,ν ,

[
E2

2

]
ν,q

= µ−q (Lc)I
0
q,ν ,

[
F 2

2

]
ν,ν

= −bk+
ν δν,ν ,

[
H2

2

]
ν,1

= −
∞∑
q=0

Aqµ
+
q (Lc)Υ

+
q (Lc)e

ik+q a tan ΨI0
q,ν ,

[B]q,1 = Aq, [T ]ν,1 = Rν .

2.3.4 Correction to the Leading-Edge Interface

For the next steps in the iterative procedure, the leading-edge matching (2.89) needs
to be modified to account for the upstream scattered modes φuq traveling back from
the trailing-edge interface (see Figure 2.14). The potential continuity and modified

Figure 2.14: Scattering of an incident mode at the staggered leading-edge interface
with feedback from the trailing-edge scattering.

velocity continuity read, at the gth iteration,

∞∑
q=0

AgqI
+
q,ν +Bg−1

q Υ−q (0)e−ik−q b sin ΨI−q,ν = b (Rg
ν + δν,0) , (2.104)

and

∞∑
q=0

AgqK+
q,νI

+
q,ν +Bg−1

q Υ−q (0)e−ik−q b sin ΨK−q,νI−q,ν = b
(
K−ν Rg

ν +K+
j δν,0

)
. (2.105)

Combining them to cancel out the unknown Rg
ν coefficients yields

∞∑
q=0

Agq
(
K−ν −K+

q,ν

)
I+
q,ν = b

(
K−ν −K+

j

)
δν,0−

∞∑
q=0

Bg−1
q

(
K−ν −K−q,ν

)
Υ−q (0)e−ik−q b sin ΨI−q,ν .

(2.106)
After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
corrected system of equations at the leading-edge interface is

M1A = Mi, (2.107)
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where [
M1
]
ν,q

=
(
K−ν −K+

q,ν

)
I+
q,ν , [A]q,1 = Agq ,

[Mi]ν,1 = b
(
K−ν −K+

j

)
δν,0 −

∞∑
q=0

Bg−1
q

(
K−ν −K−q,ν

)
Υ−q (0)e−ik−q b sin ΨIq,ν .

The Rν coefficients are then deduced from either (2.104) or (2.105).
The corrected global system of equations at the leading-edge interface is(

E1
1 F1

1

E1
2 F1

2

)(
A
R

)
=

(
H1

1

H1
2

)
, (2.108)

where

[
E1

1

]
ν,q

= I+
q,ν ,

[
F 1

1

]
ν,ν

= −bδν,ν ,
[
H1

1

]
ν,1

= bδν,0 −
∞∑
q=0

Bg−1
q Υ−q (0)I−q,νe

−ik−q b sin Ψ,

[
E1

2

]
ν,q

= K+
q,νI

+
q,ν ,

[
F 1

2

]
ν,ν

= −bK−ν δν,ν ,[
H1

2

]
ν,1

= bK+
j δν,0 −

∞∑
q=0

Bg−1
q Υ−q (0)K−q,νI−q,νe−ik−q b sin Ψ,

[A]q,1 = Agq , [R]ν,1 = Rg
ν .

Mode-Matching Equations Summary

The mode-matching equations have been derived for the scattering of an acoustic
wave by a cascade of cambered vanes, assuming equivalent straight channels. A
subsonic nearly uniform mean flow, continuously deviated through the cascade,
has been used. Jump conditions for the staggered leading-edge interface have
been detailed with emphasis on the fact that pressure cannot be used, in gen-
eral, for a staggered interface with flow. Instead, the velocity potential and a
combination of axial and transverse velocities is used.

2.4 Comparison with Numerical Results

2.4.1 Methodology

A test case is defined to test the present analytical solution against numerical simula-
tions computed with the commercial software Simcenter 3D Acoustics 1. A cascade of
four vanes (V = 4) is considered at a duct radius of R = 38 mm, which gives a vane
spacing b = 2πR/V ' 60 mm. The camber angle is set at Ψ = 30° and the solidity
value at l/b = 1.04. No mean flow is considered (M = 0) and the mean density and
sound speed are assumed constant and set to D = 1.225 kg/m3 and C = 340 m/s.
Incident acoustic waves of unit amplitude are scattered by the OGV. Computations
are performed for two distinct frequencies and modal orders: j = 1 at kb = 2.4289

1Hadrien Bériot, Siemens Industry Software NV (personal communication, January 2019).
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(f ' 2200 Hz) and j = 5 at kb = 12.145 (f ' 11000 Hz). The angle of incidence of
the waves, from the x-axis, is given by θj = arcsin(j/kR) to ensure the periodicity in
the y-direction. This gives θ ' 40° for both cases.

The two-dimensional Helmholtz problem is addressed numerically using a high-
order adaptive Finite Element Method (FEM) [9, 7]. Periodic boundary conditions are
enforced and spurious reflections at the boundaries are avoided using Perfectly Matched
Layers (PML) [6] as shown in Figure 2.15.

Figure 2.15: Explanatory scheme of the numerical setup displaying the geometry, the
mesh and how boundary conditions are treated.

This test case aims at validating the developed method of Mode Matching for
Bifurcated Wave-guides (MMBW). The same Helmholtz equation is solved with the
same boundary conditions and vanes geometry in both methods (finite element and
mode matching). No flow is considered since the numerical method cannot handle a
varying mean flow with the Helmholtz equation, and it is better to first assess the
validity of the geometrical assumptions of the MMBW in a medium at rest.

Qualitative and quantitative comparisons between FEM and MMBW results in
terms of real values of the fluctuating pressure are presented below. Reflected and
transmitted acoustic powers are computed for both numerical and analytical results in
order to (i) ensure that the power balance is correctly predicted with the MMBW and
(ii) attest the accuracy of the technique by comparing the incident power to the sum
of the reflected and transmitted powers. Some limitations and possible extensions of
this validation process are discussed afterward.

2.4.2 Results

First Scenario: j = 1 at kb = 2.4289

Figure 2.16 shows the instantaneous pressure maps computed with the FEM and the
MMBW for j = 1 at kb = 2.4289. The pressure patterns are in good agreement
upstream and downstream of the cascade, as well as in the inter-vane channels.

Figure 2.17 displays the instantaneous pressure profiles extracted upstream, down-
stream and through the cascade, at the locations pointed out with dashed black lines in
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(a) (b)

Figure 2.16: Instantaneous pressure maps computed with FEM (a) and MMBW (b) for
j = 1 at kb = 2.4289. Dashed black lines are the locations for quantitative comparisons
and solid black lines in (a) show the limit of PML.

Figure 2.16. The pressure field predicted by the analytical model matches the numer-
ical results downstream of the cascade (2.17c), but a difference in amplitude is visible
upstream (2.17a).

(a) (b) (c)

Figure 2.17: Instantaneous pressure profiles using FEM ( ) and MMBW ( ) for
j = 1 at kb = 2.4289, at x = −0.01 m (a), y = 0.04 m (b) and x = 0.07 m (c). The
vertical dash-dotted lines in (b) represents the LE and TE interfaces.

From the look of the pressure profiles, it is clear that only the mode of order
j+ pV = 1 (p = 0) is cut-on in the annular domain. The amplitude of this mode could
be under-evaluated by the MMBW in the upstream region. The global acoustic power
balance is defined as

Pi + Pr = Pt, (2.109)

where Pi, Pr and Pt are the incident, reflected and transmitted acoustic powers, re-
spectively. They are given by (see [37], p. 41)

Pi =
kZbV

2β2
x

Re
(√

k2 − (β2
x −M2

y )α2
j − 2kαjMy

)
, (2.110)
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Pr = −kZbV
2β2

x

∞∑
p=−∞

Re
(√

k2 − (β2
x −M2

y )α2
p − 2kαpMy

)
|Rp|2, (2.111)

and

Pt =
kZbV

2β2

∞∑
p=−∞

Re
(√

k2 − β2α2
p

)
|Tp|2, (2.112)

where the mean flow quantities have to be evaluated at either −∞ for Pi and Pr,
or +∞ for Pt. The relative value of the reflected and transmitted powers, in terms
of a percentage of the incident power, are given in Table 2.1 with the error E =
1−(Pt−Pr)/Pi, for both FEM and MMBW. The relative reflected power Pr predicted

Pr/% Pt/% E/%
FEM 5.270 94.62 0.1100
MMBW 4.926 95.06 0.0140

Table 2.1: Comparison of reflected Pr and transmitted Pt relative powers, in terms
of the incident power Pi, and the relative error E = 1 − (Pt − Pr)/Pi for j = 1 at
kb = 2.4289.

by the MMBW is lower than what is predicted by the FEM. Since only one mode
is cut-on, it is tempting to say that this explains the difference in amplitude seen
in Figure 2.17a, but the difference is about 0.344 %, which should not be visible in
the pressure profiles. Furthermore, downstream of the cascade, a difference of 0.44
% is observed between the numerical and analytical transmitted powers Pt, and no
discrepancies are visible in the pressure profiles (2.17c). Consequently, the difference
between the upstream pressure profiles are due to under-predicted cut-off modes in
the mode-matching technique. Cut-off modes can play a significant role here since the
pressure profiles are extracted at a distance of only lx/6 from the leading-edge interface,
which is their defined origin.

Second Scenario: j = 5 at kb = 12.145

When increasing the frequency to kb = 12.145 and changing the incident mode or-
der to j = 5, a fairly good agreement is still observed upstream (Figures 2.18 and
2.19a). However, the analytical model displays significant discrepancies compared to
the numerical simulation in the axial profile, beyond x = 2lx/3 (Figure 2.19b). These
differences are also observable in the pressure map (Figure 2.18b) and the downstream
profile (Figure 2.19c).

Table 2.2 shows that the relative error in the acoustic power balance is still very
low (E = −0.001 %). This indicates that the model is still accurate in this case but
does not represent the problem correctly.

In Figure 2.18b, the wavefront in the inter-vane channels is deviated with the in-
clination of the vanes. This behavior, not observed in the numerical solution (Figure
2.18a), is solely due to the straight-channel approximation in the MMBW. The chan-
nel modes are dominated by the plane mode q = 0, which is constant along the axis
perpendicular to the curvilinear abscissa. In a curved duct, such a mode does not
exist, as it will be demonstrated in Chapter 3. Since the discrepancies are due to the
propagation model inside the inter-vane channels and that most of the incident wave
is transmitted through the cascade, the pressure field downstream of the cascade is the
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(a) (b)

Figure 2.18: Instantaneous pressure maps computed with FEM (a) and MMBW (b) for
j = 5 at kb = 12.145. Dashed black lines are the locations for quantitative comparisons
and solid black lines in (a) show the limit of PML.

(a) (b)

-2 0 2

0

0.1

0.2

(c)

Figure 2.19: Instantaneous pressure profiles using FEM ( ) and MMBW ( ) for
j = 5 at kb = 12.145, at x = −0.01 m (a), y = 0.04 m (b) and x = 0.07 m (c). The
vertical dash-dotted lines in (b) represents the LE and TE interfaces.

Pr/% Pt/% E/%
FEM 3.950 96.05 <0.11
MMBW 0.3010 99.70 -0.001

Table 2.2: Comparison of reflected Pr and transmitted Pt relative powers, in terms
of the incident power Pi, and the relative error E = 1 − (Pt − Pr)/Pi for j = 5 at
kb = 12.145.

most affected. The upstream field is mostly dependent on the leading-edge geometry
here, not on the back-scattering of the upstream-propagating channel modes generated
at the trailing-edge interface.

2.4.3 Discussion

These quantitative results support the assumption that the model based on equivalent
straight channels performs well at low frequency, as was indicated by Ref. [25, 51, 119].

62



2.4. Comparison with Numerical Results

However, at higher frequencies, the curvature effects are no longer negligible and the
straight-channel approximation induces an artificial deviation of the wavefront through
the cascade, ending up to a shifted dominant mode order downstream of the cascade:
j+pV = 1 (p = −1) instead of j+pV = 5 (p = 0). Curvature effects will be introduced
in the next chapter and comparisons will be made between the models to define the
frequency limit of the straight-channel approximation.

These results also demonstrate the validity of the slowly-varying approach, and
of the channel modal basis approximation in the triangle ABC. Yet, the modal basis
approximation seems to generate oscillations similar to the Gibbs phenomenon at the
leading-edge interface in the highest frequency case (kb = 12.145). This may have an
influence on the scattered modal content and, if so, would indicate that the approach
based on Green’s reciprocity theorem could be more adequate [116].

The impact of the artificial thickness will be assessed in the next chapter with the
model accounting for curvature, in order to avoid mixing multiple sources of error.

Comparisons in the presence of a mean flow have not been performed yet. Emphasis
has been placed on the other assumptions of the model, such as the neglected curva-
ture, considered of primary importance. However, the study of sound propagation in
an axial compressor stage could not be accurate without flow. It is then necessary to
evaluate the impact of the mean flow modeling but, unfortunately, this has not been
done during the PhD. Quantitative investigations on that matter will be carried out
during a post-doctoral fellowship. Yet, qualitative comparisons are made in Chapter 3,
Section 3.3.2, and a more realistic mean flow modeling is proposed in the conclusion.

Comparison with Numerical Results Summary

Results from the present analytical solution have been compared with numerical
results obtained from a finite element method. The same Helmholtz equation is
solved in both methods, with the same boundary conditions and vane geometry.
Computations have been performed at two frequencies and incident mode orders:
j = 1 at kb = 2.4289 (low frequency case) and j = 5 at kb = 12.145 (high
frequency case). Assessments on the validity of the approximations made in the
model are given below.

Straight-Channel Approximation:

• Good agreement with numerical results, qualitatively and quantitatively,
at low frequency;

• Artificial deviation of the wavefront, starting at two thirds of the channel
length, at high frequency due to missing curvature effects.

Slowly-Varying Approximation:

• Adequate approach at low frequency;

• Validation needed at high frequency with curvature effects.

Modal Basis Approximation:

• Adequate approximation at low frequency;
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• Oscillations similar to the Gibbs phenomenon at high frequency in the
vicinity of the leading edge;

• Green’s reciprocity theorem could be used instead to estimate the impact
of the oscillations on the modal content.

Geometrical Approximation:

• Will be assessed in the next chapter with curvature effects.

Mean Flow Approximation:

• Qualitative comparisons made in Chapter 3, Section 3.3.2.

2.5 Conclusion
In the first instance, the focus was on the transmission and reflection phenomena of an
incident acoustic wave. For the sake of clarity, the mode-matching technique has first
been explained in detail in the simpler case of unstaggered flat vanes. Two possible
solving procedures have been introduced: an iterative approach made of successive
leading-edge and trailing-edge steps, and a direct approach solving a larger global
system. Both methods are relevant and usually equivalent, except in some cases that
will be discussed when encountered. The possibility to resort to the Wiener-Hopf
technique to get a closed-form solution of the modal coefficients has not been presented
since it becomes unusable when adding stagger or camber.

Vane camber has a twofold impact on sound propagation through the inter-vane
channels:

• curvature of the channel center line;

• expansion of the channel cross-section.

This chapter was dedicated to the modeling of the expansion effect, irrespective of
curvature. The latter will be introduced in the next chapter.

Several assumptions have been made on the vane geometry and flow description in
order to build an approximate analytical solution of the acoustic potential, based on the
multiple-scale analysis of Rienstra [107]. The core assumption of the model is the slow
variation of the channel cross-section. The approximate solution of the slowly-varying
Helmholtz-like equation is similar to the classical solution of the Helmholtz equation,
except that the potential amplitude and wavenumbers can vary with the change in
cross-section along the channel.

After incorporating this solution in the mode-matching equations, each assumption
has been carefully investigated. The developed model performed well at relatively
low frequencies compared to highly accurate numerical results obtained with a finite
element method, highlighting the influence of curvature at higher frequencies.
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Chapter 3
Acoustic Scattering by a Linear Cascade of
Cambered Vanes

Introduction

Camber has been introduced in the previous chapter by only considering the
diffuser effect, due to an increasing channel cross-section. The model proved
to give accurate results at low frequency but the curvature effects seem to be
missing at higher frequencies. In this chapter, the model is extended to account
for the curvature on sound propagation. The convected Helmholtz-like equation
in the channels is then rewritten in curvilinear coordinates and the solution is
integrated into the mode-matching procedure. In the first instance, comparisons
are performed with numerical results to assess the validity of the new model.
Then, comparisons are performed between both analytical models, accounting
or not for curvature, to assess the frequency limit below which the approximate
model is valid. This allows one to better understand when curvature effects come
into play and how. Finally, parametric studies are performed on the geometrical,
disturbance and flow parameters, with emphasis on the resonance phenomenon.
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3.1 Bent Channel of Slowly-Varying Cross-Section

3.1.1 Geometry

Curvature effects on sound propagation inside the inter-vane channels are needed at
higher frequencies. In this chapter, curvature is accounted for by use of curvilinear
coordinates (s, n), instead of the Cartesian coordinates (x, y) used in the previous
chapter. The same geometry is used, as described in Figure 3.1a, but the inter-vane
channel is now described without further simplifications, as depicted in Figure 3.1b.
The channel height is a function of the slow coordinate S = εs, such that

(a) (b)

Figure 3.1: Geometrical approximation of the inter-vane channel (a) and the curved
channel of varying cross-section from section BC to the trailing-edge interface (b).

h(S) = b cos

(
Ψ− S

b sin Ψ

)
, 0 ≤ S ≤ Lc = bΨ sin Ψ. (3.1)
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Since the center line is almost a circle arc of radius R̄c = Rc−b(1+cos Ψ)/4 (see 2.2.1),
its curvature κ is defined by

κb ' −b
R̄c

=
sin Ψ

1

4
(1 + cos Ψ) sin Ψ− l

b
cos Ψ/2

=
−ε

sin Ψ
. (3.2)

The evolution of the dimensionless curvature κb is plotted against the camber angle
Ψ, for different solidity values l/b, in Figure 3.2. As for the expansion parameter ε,

Figure 3.2: Evolution of the dimensionless curvature κb against the camber angle Ψ
for different solidity values l/b.

the absolute value of the dimensionless curvature increases with camber, but decreases
with solidity.

3.1.2 Mean Flow

The same mean flow description is assumed but expressed in the curvilinear system of
coordinates, such that

U(S, n) = U0s(S)es + εU1n(S, n)en +O(ε2), (3.3a)

C(S, n) = C0(S) +O(ε2), (3.3b)

D(S, n) = D0(S) +O(ε2), (3.3c)

P (S, n) = P0(S) +O(ε2). (3.3d)

The mean velocity is still given at leading order by

U0s(S) = U−∞
D−∞a

D0(S)h(S)
. (3.4)

However, since the channel is now considered as a curved channel, the deviated mean
flow is rotational at leading order. Since a constant curvature is assumed along the
channel, the curvilinear coordinates used in this work are basically polar coordinates
in disguise (see Appendix B.1). Introducing the scale factor hs = 1 − κn for the
coordinate s, the mean vorticity is defined as (see for example [78] Chapter 1.3 – 1.4
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or Appendix B.3)

∇×U ∼ −U0s

hs

dhs
dn

ez =
κU0s

hs
ez. (3.5)

This has a consequence on the evolution of the mean density since the mechanical
energy is no longer uniform in the flow, as described by Bernoulli’s equation (1.8),
but now varies from one fluid particle to another. Yet, a scale analysis shows that the
rotational term in (1.6b) is negligible compared to the potential term if κLc � 1. From
(3.2), κLc = −εΨ = O(ε) for realistic OGV camber angles, which means the rotational
term in (1.6b) vanishes at leading order. As a consequence, the mean density value at
the location S is still given by the root of the polynomial function

D0(S) 7→ 1

γ∗ − 1
Dγ∗+1

0 (S)−

(
U2
−∞

2
+
Dγ∗−1
−∞

γ∗ − 1

)
D2

0(S) +
1

2

(
D−∞U−∞a

h(S)

)2

.

The validity of this approximation on the mean flow description will be assessed in
section 3.3.2.

3.1.3 Slowly-Varying Bent Acoustic Modes

Problem Formulation

The Helmholtz equation (1.11) is written in the curvilinear system of coordinates (see
[78] Chapter 1.4 or Appendix B.3 for the differential operators definition). The deriva-
tion is then similar to what was done for the straight channel in Appendix A.1.1. With
a change of Fourier-transform convention to match Brambley & Peake’s result [14], the
wave equation now reads

β2

h2
s

∂2φ

∂s2
+
∂2φ

∂n2
− 2i

kM

hs

∂φ

∂s
+

1

hs

dhs
dn

∂φ

∂n
+ k2φ

+ ε

{[
1

D0hs

∂D0

∂S
− U0s

h2
s

∂

∂S

(
M

C0

)]
∂φ

∂s
− iω

U0s

hs

∂

∂S

(
1

C2
0

)
φ− 2ik

U1n

C0

∂φ

∂n

−2M
U1n

C0

∂2φ

∂s∂n

}
+O(ε2) = 0, (3.6)

where M = U0s/C0, β =
√

1−M2 and k = ω/C0. The hard wall boundary condition
is written as

(∇φ · n) = 0, at n = ±h(S)/2, (3.7)

where n is the outer normal unit vector to the respective wall (Figure 3.1b). This time,
n+ is always aligned with en, so only n− is slightly misaligned. The description of the
lower boundary (2.36) does not allow an exact closed-form solution of the misalignment
between n− and en. However, it is still zero at X = Lc and of the same order as ε
at X = 0. This is shown in Figure 3.3, in which the relative alignment difference at
X = 0, with ε as reference, is plotted against the camber angle for different solidity
values. For realistic OGV camber angles and solidity values, the misalignment is about
1.5 times ε.

68



3.1. Bent Channel of Slowly-Varying Cross-Section

Figure 3.3: Evolution of the relative alignment difference ∆n, compared to ε, against
the camber angle Ψ for different solidity values l/b.

WKB Expansion

Introducing the WKB ansatz

φ(S, n) = exp

(
− i

ε

∫ S

µ(ξ) dξ

) ∞∑
m=0

εmΦm(S, n), 0 ≤ S ≤ Lc, −h(S)

2
≤ n ≤ h(S)

2
,

(3.8)
where µ(S) is the axial wavenumber, the leading-order wave equation (3.6) reads

∂2Φ0

∂n2
+

1

hs

dhs
dn

∂Φ0

∂n
+

(
Λ2 − µ2

h2
s

)
Φ0 = 0, (3.9)

where
Λ = k − µM/hs.

Since the misalignment of the normal unit vectors is O(ε), the upper and lower bound-
aries can still be assumed parallel at leading order. The boundary condition at n =
±h(S)/2 from (3.7) then reads

∂Φ0

∂n

∣∣∣∣
n=±h(S)/2

= 0. (3.10)

Notice that, when M = 0, the leading-order equation (3.9) can be restated as a
Bessel equation by a change of variable n̄ = −(1−κn)/κ. The solution, in this case, is
expressed by a sum of Bessel functions of the first and second kinds: Jµ/κ (−k [1− κn] /κ)
and Yµ/κ (−k [1− κn] /κ). The axial wavenumber µ is then defined at each location S
by the algebraic equation resulting from the hard wall boundary condition at leading
order (3.10). This solution is an extension of Krasnuskin’s result [62] to slowly-varying
ducts, by noticing that the curvature is negative here κ = −1/R̄c. However, this
solution requires the use of Bessel functions of complex order that are not built-in
functions in the Matlab environment. Thus, it requires some additional work to ensure
a stable and accurate implementation that has not been finished during the PhD. Also
note that, according to Wolfram Alpha [1], equation (3.9) has a general closed-form
solution in presence of a uniform flow, M 6= 0, given by a combination of confluent
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hypergeometric functions (see for example [85]). The validity of this solution with the
boundary conditions in (3.10) has not been assessed though. This solution has not
been investigated further during the PhD, but it could lead to a better understanding
of the effects of the mean flow.

In this work, the choice was made to develop a numerical solution using the same
procedure as in Ingenito [52] and Brambley & Peake [14], who used a pseudo-spectral
method based on Chebyshev polynomials of the first kind. This method ensures fast
and accurate computations that work with or without flow. Furthermore, the devel-
opment of such a general solution could be of interest for future extensions in three
dimensions, where no closed-form solutions exist even without flow (except for rectan-
gular ducts).

For definiteness, the solution Φ0 is normalized in the same way as in the previous
chapter. It reads

Φ0(S, n) = N(S)ψ(S, n),

∫ h(S)/2

−h(S)/2

ψ2(S, n) dn = 1. (3.11)

The unknown amplitude N(S) is determined by means of a solvability condition instead
of solving for the O(ε) problem. From Brambley & Peake [14], the solution reads

N2(S) =
Q2

F (S)
, (3.12)

where Q is a constant to be determined by a known value of N(S) (typically at the
inlet) and F (S) is defined by

F (S) =

∫ h(S)/2

−h(S)/2

D0ψ
2

(
kM + β2 µ

hs

)
dn. (3.13)

When κ→ 0, the numerically solved axial wavenumber µ should tend to the analytical
solution µ → −kM/β2 + kσ/β2. Thus, because of the normalization of ψ, F (S) →
D0(S)k(S)σ(S), which is the same result as in the straight channel (2.65). The solution
from Brambley & Peake [14] is indeed a generalization of Rienstra’s solution [107] to
curved ducts.

The remaining unknowns are the eigenfunctions ψ(S, n) (modal shapes) and their
associated eigenvalues µ(S) (axial wavenumbers). They are solved numerically using a
Chebyshev collocation method described in the following section.

Chebyshev Collocation Method

In order to formulate a linear eigenvalue problem (according to µ), an intermediate
variable is introduced as ψ̄ = µβ2ψ/hs. The system of equations then reads[

0 hs/β
2

L −2kMhs/β
2

] [
ψ
ψ̄

]
= µ

[
ψ
ψ̄

]
, (3.14)

where
L = hs

∂2

∂n2
− κ ∂

∂n
+ k2hs. (3.15)
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The first line gives the relation between ψ and ψ̄ as hsψ̄/β2 = µψ, whereas the second
line is the actual mode shape equation (3.9).

Chebyshev polynomials are widely used to solve non-periodic partial differential
equations due to their mathematical properties and exponential convergence (see for
example [16] Chapter 2.4 for details). For −1 ≤ x ≤ 1, the Chebyshev polynomials of
the first kind are defined by

Tm(x) = cos(mx̄), x̄ = arccos(x), 0 ≤ m ≤ ∞,

which, given the normalization Tm(1) = 1, are the eigenfunctions of the singular Sturm-
Liouville problem (√

1− x2T ′m(x)
)′

+
m2

√
1− x2

Tm(x) = 0,

where the prime symbol denotes the derivative with respect to x. The Chebyshev
expansion of a function f , defined on the interval [−1, 1], is

f(x) =
∞∑
m=0

f̂mTm(x), f̂m =
2

πcm

∫ 1

−1

f(x)Tm(x)(1− x2)−1/2 dx,

where cm = 2, ifm = 0, or 1, ifm ≥ 1. The discrete form of the Chebyshev polynomials
is commonly described on the set of Gauss-Lobatto collocation points nj, ranging from
1 to -1, given by

nj = cos

(
πj

N

)
, 0 ≤ j ≤ N.

Hence, the discrete Chebyshev polynomials of the first kind Tm,j and the interpolated
function fj, on the collocation points nj, are defined as

Tm,j = cos

(
mπj

N

)
, fj =

N∑
m=0

f̂mTm,j.

The derivative of the interpolated function at the collocation points can simply be
expressed by matrix multiplication, such that

f ′j =
N∑
l=0

(DN)j,lfl,

where the entries of DN are deduced from the derivative of the Chebyshev polynomials
of the first kind (see [16] Chapter 2.4). This gives

(DN)j,l =



cj
cl

(−1)j+l

nj − nl
, if j 6= l,

−nl
2(1− n2

l )
, if 1 ≤ j = l ≤ N − 1,

2N2 + 1

6
, if j = l = 0,

−2N2 + 1

6
, if j = l = N,
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where

cj =

{
2, if j = 0, N,

1, if 1 ≤ j ≤ N − 1.

Then, The second derivative can be computed from the square of the matrix DN .
Finally, in order to account for the metric of the physical space, the collocation points
nj and the derivative matrix DN are scaled by a factor −h(S)/2. This gives

n∗j =
−h(S)

2
nj, (D∗N)j,l =

−2

h(S)
(DN)j,l, ∀(j, l). (3.16)

Each equation in (3.14) is described by a matrix in its discrete form. The boundary
conditions are then applied through the first and last lines of each sub-matrix, which
correspond to the boundary points. For the first equation, hsψ̄/β2 = µψ, there is no
need for boundary conditions. Hence, the first and last lines are discarded and the
vector ψ̄ is only evaluated on N − 1 collocation points, i.e. the inner collocation points
1 ≤ i ≤ N − 1. For the second equation (the mode shape equation), the first and last
lines are replaced by the boundary conditions (3.10) in discrete form, which read

N∑
l=0

(D∗N)j,lψl = 0, j = 0, N.

The eigenvalue problem (3.14) is finally written in discrete form as[
O M1

L M2

] [
ψ
ψ̄

]
= µ

[
ψ
ψ̄

]
, (3.17)

where
[O]i,l = 0, [M1]i,i = (1− κn∗i )/β2δi,i, [µ]i+j,l+i = µδi+j,l+i,

[L]j,l =

{
(1− κn∗j)(D∗2N )j,l − κ(D∗N)j,l + k2(1− κn∗j), if 1 ≤ j ≤ N − 1

(D∗N)j,l, if j = 0, N,

[M2]j,i =

{
−2kM(1− κn∗j)/β2δj,i, if 1 ≤ j ≤ N − 1

0, if j = 0, N,

for 1 ≤ i ≤ N − 1 and 0 ≤ l ≤ N . Notice that O and M2 are not square matrices, but
the overall matrix is. The discrete eigenvalue problem (3.17) is solved at each location
S by employing a built-in solver in Matlab using a QZ algorithm (eig function), which
returns the desired eigenfunctions ψl(S, n∗j) and their associated eigenvalues µl(S).

In the following, the validity of the developed routine is assessed by investigating the
behavior of the discrete solution in the limit of different parameters, where an analytical
solution is known, and also at low frequency to see if the solution in a curved channel
tends to the straight-channel solution.

3.1.4 Asymptotic Behavior

In the Limit of Small Curvature without Widening

The numerical solution is first tested in a curved duct of constant height, without flow
(M = 0). The frequency of study is set at kb = 4.725 and the curvature varies from
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κb = 0 to κb ' −0.381, which corresponds to values of Ψ ranging from 0° to 60° with a
solidity of l/b = 3 for an OGV channel. When the curvature tends to 0, the expected
eigenfunctions are cosine functions with eigenvalues kq =

√
k2 − (qπ/b)2, 0 ≤ q < ∞.

Figure 3.4 displays the eigenfunctions ψ0, ψ1, ψ2 and ψ5 computed with the collocation
algorithm (solid lines), for the different curvature values, and the corresponding cosine
functions for κb = 0 (black circles). The collocation algorithm is able to recover the

(a) (b)

(c) (d)

Figure 3.4: Eigenfunctions numerically computed for varying curvature values (solid
lines) and the analytical cosine function for κb = 0 ( ).

analytical solution in the limit of small curvature in all cases. Then, the eigenvalues
are compared in Figure 3.5. Here, the frequency has been increased to kb = 11.219 to
have more cut-on modes. Figure 3.5 shows the evolution of the first four eigenvalues (of
the downstream-propagating modes) with the curvature, computed numerically (solid
lines). It starts at the cross mark (κb = 0) and ends at the square mark (κb ' −0.381).
The analytical values for κb = 0 are then added with black circles. Again, the agreement
is perfect between the analytical and numerical solutions in the limit κb→ 0.

It is also interesting to see the effects of curvature on sound propagation in an in-
finitely long duct. The plane-wave mode no longer exists (Figure 3.4a) and the energy
of this zeroth-order mode tends to concentrate at the top of the curved channel. Some
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Figure 3.5: Eigenvalues of the first four (from right to left) downstream-propagating
cut-on modes computed for varying curvature values. Cross marks at κb = 0 and
square marks at κb ' −0.381, with the analytical solution added for κb = 0 ( ).

sort of contraction happens to the other eigenfunctions. The node1 of the eigenfunc-
tion ψ1 is shifted to the top, whereas the nodes of all higher-order modes are shifted
to the bottom. Thus, the curvature makes the eigenfunctions asymmetric from the
center of the duct. Concerning the wavenumbers, an increasing curvature increases the
amplitude of µ0 (in blue in Figure 3.5), but decreases the amplitude of all other cut-on
modes µl 6=0. Though, changes in curvature alone cannot make a cut-on mode become
cut-off. Getting closer to the cut-off frequency of a mode only reduces the impact the
curvature has on its wavenumber.

In the Limit of Small Curvature and Small Widening

The collocation algorithm is now tested in a curved duct of slowly-varying height, still
without flow (M = 0). The frequency of study is set at kb = 4.725 and the values
of Ψ varies from Ψ = 0° to Ψ = 60°, which implies curvature values ranging from
κb = 0 to κb ' −0.381 and an expansion parameter ranging from ε = 0 to ε = 0.33
(for an equivalent OGV channel solidity value of l/b = 3). Figure 3.6 displays the
eigenfunctions ψ0, ψ1, ψ2 and ψ5 computed with the collocation algorithm (solid lines),
for the different camber angles, and the corresponding cosine functions for Ψ = 0°
(black circles). The eigenfunctions and eigenvalues are evaluated at the inlet of the
duct. The eigenvalues are compared in Figure 3.7a for a frequency increased to kb =
11.219. Figure 3.7a shows the evolution of the first four eigenvalues (of the downstream-
propagating modes) with the curvature and shrinkage, with the same notations as
in Figure 3.5. Figure 3.7b is a zoom of Figure 3.7a on the first eigenvalue µ0 to
emphasize its particular behavior, starting by increasing up to the point marked by
the left triangle, then decreasing for higher values of Ψ. The numerically computed
eigenfunctions and eigenvalues perfectly match the analytical solutions in the limit of
small curvature and expansion.

The eigenfunctions do not seem to behave differently with changes in cross-section.
The differences between Figure 3.4 and Figure 3.6 are only due to the normalization
being on the channel height. The eigenfunctions are the same in both cases if plotted

1value of n where ψ(n) = 0
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(a) (b)

(c) (d)

Figure 3.6: Eigenfunctions numerically computed for varying curvature and expansion
values (solid lines) and the analytical cosine function for Ψ = 0° ( ).

against n/b, so they are only stretched with the cross-section expansion. In Figure 3.7,
the eigenvalues µl 6=0 are affected similarly by the increasing curvature and the height
reduction. This results in a faster decrease in amplitude than in Figure 3.5, where only
the curvature was varying. The modes can also become cut-off due to the change of
height inducing a change of the cut-off frequencies. The effects of a varying cut-off
frequency along the duct are examined in detail in Chapter 4. For the zeroth-order
mode wavenumber (µ0), curvature and shrinkage have opposite effects. The curvature
tends to increase its amplitude (as in Figure 3.5) while the shrinkage tends to reduce it.
This leads to the presence of a turning point, marked with a left triangle in Figure 3.7b,
for the evolution of µ0 with Ψ.

In the Limit of Low Frequency

The collocation algorithm is tested in a fixed curved duct of slowly-varying height,
without flow (M = 0), but this time for frequencies varying from kb = π/10 ' 0.3142
to kb = 4π ' 12.57. The parameters are set to Ψ = 33.7° and l/b = 1.5, which
implies a curvature of κb ' −0.47 and an expansion parameter of ε ' 0.26. Figure 3.8
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(a) (b)

Figure 3.7: Eigenvalues of the first four (from right to left) downstream-propagating
cut-on modes computed for varying curvature and expansion values (a) and zoom on
the first eigenvalue (b). Cross marks at Ψ = 0° and square marks at Ψ = 60°, with the
analytical solution added for Ψ = 0° ( ).

displays the eigenfunctions ψ0, ψ1, ψ2 and ψ5 computed with the collocation algorithm
(solid lines), for the different frequencies, and the corresponding cosine functions for
an equivalent straight duct (black circles). The eigenfunctions and eigenvalues are
evaluated at the inlet of the duct. The eigenvalues are plotted in the complex plane
in Figure 3.9a, in the same manner as for the previous scenarios. A zoom on the first
eigenvalue is also plotted in Figure 3.9b, around the lowest frequencies, to emphasize
the difference between the numerically computed value and the analytical straight-
channel approximation.

The effects of curvature on the zeroth-order mode eigenfunction are more and more
significant as the frequency increases (Figure 3.8a). As could have been expected, this
mode tends to a plane-wave mode at low frequency. Yet, none of the other eigen-
functions tends toward the straight-channel solution in the limit. This means that the
capacity of the MMBW to accurately predict sound transmission in the low frequency
scenario (section 2.4.2) is due to the zeroth-order mode being the only cut-on mode
(kb < π). Discrepancies should be expected above the first channel cut-off frequency
then (kb > π). Also, the eigenvalue µ0 of the almost plane mode at low frequency is
predicted with an error of 25% by the straight-channel value µ0 = k (Figure 3.9b).
Hence, the straight-channel approximation in the MMBW should be accurate as long
as the channel length is small compared to the acoustic wavelength, as was also no-
ticed by Roger & Moreau [119]. This could be estimated by the Helmholtz number
kl > kb for typical applications to OGV. If this number is small, an incident wave
will propagate through the curved cascade without being significantly affected by it.
Finally, it is seen from Figure 3.8 that the higher the mode order, the less sensitive the
eigenfunction is to the frequency.

In the Limit of Small Mach Number

To conclude this series of asymptotic comparisons, the collocation algorithm is tested
in a fixed curved duct of slowly-varying height, with varying Mach numbers. The
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(a) (b)

(c) (d)

Figure 3.8: Eigenfunctions numerically computed for varying frequencies (solid lines)
and the cosine function for an equivalent straight channel ( ).

frequency is set at kb = 4.725 and the geometrical parameters to Ψ = 33.7° and l/b =
1.5, which implies a curvature of κb ' −0.47 and an expansion parameter of ε ' 0.26.
The incident Mach number ranges from M = 0 to M = 0.5 and evolves through
the duct accounting for compressible effects (see section 3.1.2). Figure 3.10 depicts
the eigenfunctions ψ0, ψ1, ψ2 and ψ5 computed with the collocation algorithm for the
different incident Mach numbers. The eigenfunctions and eigenvalues are evaluated at
the inlet of the duct.

Surprisingly, the Mach number only affects ψ0 in this test case, using realistic OGV
parameters. In the presence of a mean flow, the solution is described by a combination
of confluent hypergeometric functions (from Wolfram Alpha [1]), but it appears that
the eigenfunctions behavior remains close to Bessel functions. This argument could be
useful if confluent hypergeometric functions are cumbersome to implement and use.

Concerning the eigenvalues (Figure 3.11), increasing the Mach number has the pre-
dicted outcome by adding an increasingly negative real part to each eigenvalue, and
also reducing the imaginary part of the cut-off mode eigenvalues. However, a strange
behavior is seen on the eigenvalue µ4, which is cut-off for M = 0 and undergoes transi-
tion with the increase of the Mach number. For Mach numbers at which this mode is
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cut-on, increasing the Mach number increases its real part, instead of decreasing it. It is
possible that the leading-order equation (3.9) is not adequate to describe the evolution
of the eigenvalue in the vicinity of its transition, and artificially causes the ampli-
tude to increase because of missing higher-order mechanisms. In fact, this is known
that the modes behavior changes too rapidly in such conditions for the leading-order
slowly-varying equation to be accurate. This part is examined in detail in Chapter 4.

The validity of the collocation routine developed in Matlab has been assessed. It
performs well for a variety of geometrical and flow parameters, as well as for low and
high frequencies. The only limitation observed is due to the leading-order equation
solved, which is unable to describe the rapid changes in the modes behavior in the
vicinity of cut-on/cut-off transitions. The definition of the curved channel modes will
be integrated into the mode-matching procedure in the next section.

Bent Channel of Slowly-Varying Cross-Section Summary

The modeling of sound propagation in cambered inter-vane channels has been
extended by taking into account curvature effects, thus relying on curvilinear
coordinates instead of Cartesian coordinates to derive the equivalent convected
Helmholtz equation. This equation, with hard wall boundary condition, has been
rewritten as an eigenvalue problem, which has been solved numerically by means
of a pseudo-spectral collocation method based on Chebyshev polynomials of the
first kind. This two-dimensional problem has an exact closed-form solution in
terms of Bessel functions without flow, and apparently in terms of confluent
hypergeometric functions with flow, but the choice was made to rely on a collo-
cation method. The numerical method ensures fast and accurate computations
with or without flow. Furthermore, the development of such a general solution
could be of interest for future extensions in three dimensions, where no closed-
form solutions exist even without flow (except for rectangular ducts). However,
the analytical solutions should be investigated to better understand the effects
of curvature and mean flow.
The developed collocation routine has been validated by investigating its be-
havior in the limit of different parameters, where a simple analytical solution is
known. The routine proved to be efficient and accurate. It was then used to shed
light on the behavior of the eigenfunctions and eigenvalues of the slowly-varying
curved duct for varying expansion, curvature, frequency and Mach number.
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(a) (b)

Figure 3.9: Eigenvalues of the first four (from right to left) downstream-propagating
cut-on modes computed for varying frequencies (a) and zoom on the first eigenvalue
(b). Cross marks at kb = π/10 and square marks at kb = 4π, with the approximate
straight-channel solution added for kb = π/10 ( ).

(a) (b)

(c) (d)

Figure 3.10: Eigenfunctions numerically computed for varying Mach numbers.
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Figure 3.11: Eigenvalues of the first five downstream-propagating modes computed for
varying Mach numbers. Cross marks at M = 0 and square marks at M = 0.5.
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3.2 Mode-Matching Equations

3.2.1 Leading-Edge Interface

Only the propagation in the inter-vane channels, from section BC to the trailing-edge
interface (Figure 3.12), is changed compared to the low frequency model of Chapter 2.
Thus, no change is necessary in the jump conditions.

At the leading-edge interface, only the reflected channel potential φu, generated at
the trailing-edge interface, has to be modified to account for the effects of curvature.
To be able to compare the channel modal coefficients with and without accounting

Figure 3.12: Scattering of an incident mode at the staggered leading-edge interface
with feedback from the trailing-edge scattering.

for curvature, the modal coefficients will always be those associated to cosine modes.
Hence, considering a cosine mode φu,q generated at the trailing-edge interface, it is
expanded in curved-channel modes ψl, such that

φu,q(Lc, n) = Bq

∞∑
l=0

Bql (Lc)ψl(Lc, n),

where the projection coefficients Bql (S) are defined such that

cos

(
qπ

h(S)

[
n− h(S)

2

])
=
∞∑
l=0

Bql (S)ψl(S, n), 0 ≤ S ≤ Lc, −h(S)

2
≤ n ≤ h(S)

2
.

(3.18)
The propagation of each of these curved-channel modes, from the trailing-edge interface
to the interface BC, is then given by the stream-wise variation function Υ−l , defined by

Υ−l (S) =

√
F−l (Lc)

F−l (S)
exp

(
i

ε

∫ S

Lc

µ−l (ξ) dξ

)
, 0 ≤ S ≤ Lc, (3.19)

where F−l is identical to the function F defined in (3.13) for the upstream-propagating
mode of order l. Finally, each of the curved-channel modes has to be expanded back
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to cosine modes at the interface BC, thus

φu,q(0, n) = Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

∞∑
q∗=0

Alq∗(0) cos

(
q∗π

a

[
n− a

2

])
,

where the projection coefficients Alq∗(S) are defined by

ψl(S, n) =
∞∑
q∗=0

Alq∗(S) cos

(
qπ

h(S)

[
n− h(S)

2

])
, 0 ≤ S ≤ Lc, −h(S)

2
≤ n ≤ h(S)

2
.

(3.20)
This ensures the continuity of the potential at the interface BC, neglecting any scat-
tering and reflection at this interface. This assumption is based on the relatively low
dimensionless curvature and angular length of the inter-vane channels (respectively
about 0.5 from Figure 3.2 and 30°) compared to those of the bent ducts studied in,
for example, Félix & Pagneux [30], which are respectively about 8 and 150° and give
a reflection coefficient lower than 15%. If scattering and reflection at the interface BC
become significant, Green’s reciprocity theorem could be used instead of the modal ap-
proximation in the triangle ABC, as in Roger & François [116]. Finally, the potential
φu is expressed in the triangle ABC as

φu(ζ, η) =
∞∑
q=0

Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

∞∑
q∗=0

Alq∗(0) cos

(
q∗π

a
η

)
eik−

q∗ (ξ−a tan Ψ), (3.21)

for η tan Ψ ≤ ζ ≤ a tan Ψ and 0 ≤ η ≤ a. The other potentials are reminded hereafter
for the sake of clarity.

φi(x, y) = eiαjyeik+j x, −∞ < x ≤ 0, 0 ≤ y < 2πR,

φr(x, y) =
∞∑

p=−∞

Rpe
iαpyeik−p x, −∞ < x ≤ 0, 0 ≤ y < 2πR,

φd(ζ, η) =
∞∑
q=0

Aq cos
(qπ
a
η
)

eik+q ζ , η tan Ψ ≤ ζ ≤ a tan Ψ, 0 ≤ η ≤ a.

Using the same projection on the annular modal basis (2.13), as previously, leads to
the potential continuity

∞∑
q=0

[
AqI

+
q,ν +Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

∞∑
q∗=0

Alq∗(0)e−ik−
q∗b sin ΨI−q∗,ν

]
= b (Rν + δν,0) , (3.22)

and the modified acoustic velocity (β2
xux −MxMyuy) continuity

∞∑
q=0

[
AqK+

q,νI
+
q,ν +Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

∞∑
q∗=0

Alq∗(0)e−ik−
q∗b sin Ψ K−q∗,νI−q∗,ν

]
= b

(
K−ν Rν +K+

j δν,0
) .

(3.23)
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Combining equations (3.22) and (3.23) to cancel out the unknown Rν coefficients
yields

∞∑
q=0

Aq
(
K−ν −K+

q,ν

)
I+
q,ν = b

(
K−ν −K+

j

)
δν,0

−
∞∑
q=0

Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

∞∑
q∗=0

Alq∗(0)
(
K−ν −K−q∗,ν

)
e−ik−

q∗b sin ΨI−q∗,ν .

(3.24)

After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
system of equations at the leading-edge interface reads

M1A = Mi, (3.25)

where [
M1
]
ν,q

=
(
K−ν −K+

q,ν

)
I+
q,ν , [A]q,1 = Aq,

[Mi]ν,1 = b
(
K−ν −K+

j

)
δν,0 −

∞∑
q=0

Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

×
∞∑
q∗=0

Alq∗(0)
(
K−ν −K−q∗,ν

)
e−ik−

q∗b sin ΨI−q∗,ν .

This is solved with the knowledge of the Bq coefficients from the previous iteration
of trailing-edge matching. Then, the Rν coefficients are deduced from either (3.22) or
(3.23).

The global system of equations at the leading-edge interface is(
E1

1 F1
1

E1
2 F1

2

)(
A
R

)
=

(
H1

1

H1
2

)
, (3.26)

where [
E1

1

]
ν,q

= I+
q,ν ,

[
F 1

1

]
ν,ν

= −bδν,ν ,[
H1

1

]
ν,1

= bδν,0 −
∞∑
q=0

Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

∞∑
q∗=0

Alq∗(0)e−ik−
q∗b sin ΨI−q∗,ν ,[

E1
2

]
ν,q

= K+
q,νI

+
q,ν ,

[
F 1

2

]
ν,ν

= −bK−ν δν,ν ,[
H1

2

]
ν,1

= bK+
j δν,0 −

∞∑
q=0

Bq

∞∑
l=0

Bql (Lc)Υ
−
l (0)

∞∑
q∗=0

Alq∗(0)e−ik−
q∗b sin ΨK−q∗,νI−q∗,ν ,

[A]q,1 = Aq, [R]ν,1 = Rν .

3.2.2 Trailing-Edge Interface

The trailing-edge matching now involves the curved channel potentials φd and φu, which
need to be matched with the transmitted potential φt as represented in Figure 3.13.
The coefficients Bq of the upstream-propagating modes φu,q have been associated to
cosine modes generated at the trailing-edge interface. Hence, the related potential is
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Figure 3.13: Scattering of a downstream-propagating channel mode at the trailing-edge
interface.

given by

φu(S, n) =
∞∑
q=0

Bq

∞∑
l=0

Bql (Lc)Υ
−
l (S)

∞∑
q∗=0

Alq∗(S) cos

(
q∗π

h(S)

[
n− h(S)

2

])
, (3.27)

for 0 ≤ S ≤ Lc and −h(S)/2 ≤ n ≤ h(S)/2. From (3.18), (3.19) and (3.20), this
expression of the potential φu at the trailing-edge interface reduces to

φu(Lc, y
′) =

∞∑
q=0

Bq cos
(qπ
b
y′
)
.

Following the same procedure for the downstream-propagating modes φd,q, their coeffi-
cients Aq are associated to cosine modes generated at the leading-edge interface. After
an expansion on the curved-channel modes at the interface BC, and introducing the
stream-wise variation function Υ+

l as

Υ+
l (S) =

√
F+
l (0)

F+
l (S)

exp

(
i

ε

∫ S

0

µ+
l (ξ) dξ

)
, 0 ≤ S ≤ Lc, (3.28)

the related potential reads

φd(S, n) =
∞∑
q=0

Aqe
ik+q a tan Ψ

∞∑
l=0

Bql (0)Υ+
l (S)

∞∑
q∗=0

Alq∗(S) cos

(
q∗π

h(S)

[
n− h(S)

2

])
,

(3.29)
for 0 ≤ S ≤ Lc, −h(S)/2 ≤ n ≤ h(S)/2. Thus, it is given at the trailing-edge interface
by

φd(Lc, y
′) =

∞∑
q=0

Aqe
ik+q a tan Ψ

∞∑
l=0

Bql (0)Υ+
l (Lc)

∞∑
q∗=0

Alq∗(Lc) cos

(
q∗π

b
y′
)
.

As a reminder, the transmitted potential φt is expressed as

φt(x
′, y′) =

∞∑
p=−∞

Tpe
iαpy′eik+p x

′
, 0 ≤ x′ <∞, 0 ≤ y′ < 2πR.
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Projecting on the annular modal basis, as in (2.13), leads to the potential continuity

∞∑
q=0

[
BqI

0
q,ν + Aqe

ik+q a tan Ψ

∞∑
l=0

Bql (0)Υ+
l (Lc)

∞∑
q∗=0

Alq∗(Lc)I0
q∗,ν

]
= bTν . (3.30)

As for the slowly-varying straight channel, the leading-order variations of the potentials
along the channel are given by the exponential term in Υ± (see 2.3.3). The axial velocity
of the curved channel modes is then defined as

∂φu
∂s

(S, n) = i
∞∑
q=0

Bq

∞∑
l=0

Bql (Lc)
µ−l (S)

hs(n)
Υ−l (S)ψl(S, n) +O(ε),

and
∂φd
∂s

(S, n) = i
∞∑
q=0

Aqe
ik+q a tan Ψ

∞∑
l=0

Bql (0)
µ+
l (S)

hs(n)
Υ+
l (S)ψl(S, n) +O(ε).

Thus, a new projection is needed to expand the eigenfunctions ψl(S, n)/hs(n) into
cosine functions. This is defined by

ψl(S, n)

hs(n)
=

∞∑
q∗=0

Ãlq∗(S) cos

(
qπ

h(S)

[
n− h(S)

2

])
, 0 ≤ S ≤ Lc, −h(S)

2
≤ n ≤ h(S)

2
.

(3.31)
Finally, the axial velocity continuity at the trailing-edge interface reads

∞∑
q=0

∞∑
l=0

∞∑
q∗=0

[
BqBql (Lc)µ

−
l (Lc) + Aqe

ik+q a tan ΨBql (0)µ+
l (Lc)Υ

+
l (Lc)

]
Ãlq∗(Lc)I0

q∗,ν = bk+
ν Tν .

(3.32)

Combining equations (3.30) and (3.32) to cancel out the unknown Tν coefficients
yields

∞∑
q=0

∞∑
l=0

∞∑
q∗=0

BqBql (Lc)
[
k+
ν Alq∗(Lc)− µ−l (Lc)Ãlq∗(Lc)

]
I0
q∗,ν =

−
∞∑
q=0

∞∑
l=0

∞∑
q∗=0

Aqe
ik+q a tan ΨBql (0)Υ+

l (Lc)
[
k+
ν Alq∗(Lc)− µ+

l (Lc)Ãlq∗(Lc)
]
I0
q∗,ν .

(3.33)

The modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]) allows one
to numerically compute the Bq coefficients from the linear system of equations

M2B = Md, (3.34)

where [
M2
]
ν,q

=
∞∑
l=0

∞∑
q∗=0

Bql (Lc)
[
k+
ν Alq∗(Lc)− µ−l (Lc)Ãlq∗(Lc)

]
I0
q∗,ν ,
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[Md]ν,1 =
∞∑
q=0

∞∑
l=0

∞∑
q∗=0

Aqe
ik+q a tan ΨBql (0)Υ+

l (Lc)
[
µ+
l (Lc)Ãlq∗(Lc)− k+

ν Alq∗(Lc)
]
I0
q∗,ν ,

[B]q,1 = Bq.

The continuity equation (3.30) or (3.32) can then be used to deduce the Tν coefficients.

Finally, the general matrix equation for this interface is(
E2

1 F2
1

E2
2 F2

2

)(
B
T

)
=

(
H2

1

H2
2

)
, (3.35)

where [
E2

1

]
ν,q

= I0
q,ν ,

[
F 2

1

]
ν,ν

= −bδν,ν ,[
H2

1

]
ν,1

= −
∞∑
q=0

Aqe
ik+q a tan Ψ

∞∑
l=0

Bql (0)Υ+
l (Lc)

∞∑
q∗=0

Alq∗(Lc)I0
q∗,ν ,

[
E2

2

]
ν,q

=
∞∑
l=0

Bql (Lc)µ
−
l (Lc)

∞∑
q∗=0

Ãlq∗(Lc)I0
q∗,ν ,

[
F 2

2

]
ν,ν

= −bk+
ν δν,ν ,

[
H2

2

]
ν,1

= −
∞∑
q=0

Aqe
ik+q a tan Ψ

∞∑
l=0

Bql (0)µ+
l (Lc)Υ

+
l (Lc)

∞∑
q∗=0

Ãlq∗(Lc)I0
q∗,ν ,

[B]q,1 = Aq, [T ]ν,1 = Rν .

3.2.3 Implementation of a Kutta Condition

In the presence of an inviscid mean flow, a Kutta condition is needed on the fluctuating
variables. This condition enforces a finite velocity at the trailing edges, allowing to
indirectly account for some viscous effects within an inviscid flow. The Kutta condition
has a significant influence on the acoustic field, as was pointed out by many authors
(e.g. Jones [57], Rienstra [104], Howe [49] and Job [56]). According to Rienstra [104],
this condition is equivalently expressed by enforcing a zero pressure jump at the trailing
edge of the vanes. This has for consequence the generation of a vortex shedding from
the edges, which is modeled by infinitely thin vortical sheets convected at the speed of
the mean flow (Howe [49]). This adds a vortical velocity field uRK downstream of the
vanes, that has to be accounted for in the matching equations. The new problem to
solve at the trailing-edge interface is depicted in Figure 3.14.

The zero pressure jump at the trailing edge, between a reference channel (p0) and
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Figure 3.14: Scattering of a downstream-propagating channel mode at the trailing-edge
interface with infinitely thin vorticity sheets induced by the Kutta condition.

the channel below (p−1), is derived as

p−1(S = Lc, n = b/2) = p0(S = Lc, n = −b/2),

⇔
∞∑
q=0

∞∑
l=0

∞∑
q∗=0

[
Aqe

ik+q a tan ΨBql (0)Υ+
l

(
kAlq∗(Lc)−Mµ+

l Ã
l
q∗(Lc)

)
+BqBql (Lc)

(
kAlq∗(Lc)−Mµ−l Ã

l
q∗(Lc)

)]
cos(q∗π)e−iαjb

=
∞∑
q=0

∞∑
l=0

∞∑
q∗=0

[
Aqe

ik+q a tan ΨBql (0)Υ+
l

(
kAlq∗(Lc)−Mµ+

l Ã
l
q∗(Lc)

)
+BqBql (Lc)

(
kAlq∗(Lc)−Mµ−l Ã

l
q∗(Lc)

)]
,

which can be rewritten as

∞∑
q=0

∞∑
l=0

∞∑
q∗=0

Aqe
ik+q a tan ΨBql (0)Υ+

l

(
kAlq∗(Lc)−Mµ+

l Ã
l
q∗(Lc)

) (
1− (−1)q

∗
e−iαjb

)
= −

∞∑
q=0

∞∑
l=0

∞∑
q∗=0

BqBql (Lc)
(
kAlq∗(Lc)−Mµ−l Ã

l
q∗(Lc)

) (
1− (−1)q

∗
e−iαjb

) .

(3.36)
The vortical sheets are defined by a velocity field uRK . Since the vanes are locally

aligned with the turbomachinery axis at the trailing edge, the vortical sheets are the
same as for unstaggered flat vanes. Hence, the velocity field uRK is described from
Bouley et al. [12] as

uRK(x′, y′) =
∞∑

p=−∞

UR
p eiαpy′ei(k/M)x′ , 0 ≤ x′ <∞, 0 ≤ y′ < 2πR, (3.37)

UR
p =

iΩK

b

[αpex − (k/M)ey]

α2
p + (k/M)2

, (3.38)

where ΩK is the unknown amplitude of the associated vortical field. Due to the presence
of the vortical field, the total velocity field is not potential anymore downstream of the
OGV. Thus, the continuity of the fluctuating velocity potential φ no longer enforces
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the continuity of the total enthalpy (1.17). The trailing-edge matching equations with
a Kutta condition are then expressed on the set of variables (p, ux). The velocity field
uRK being pressure-free, the continuity of the fluctuating pressure p is given by

∞∑
q=0

∞∑
l=0

∞∑
q∗=0

[
Aqe

ik+q a tan ΨBql (0)Υ+
l

(
kAlq∗(Lc)−Mµ+

l Ã
l
q∗(Lc)

)
+BqBql (Lc)

(
kAlq∗(Lc)−Mµ−l Ã

l
q∗(Lc)

)]
I0
q∗,ν = b(k −Mk+

ν )Tν

. (3.39)

On the other hand, the continuity of the fluctuating axial velocity ux with the Kutta
condition yields

∞∑
q=0

∞∑
l=0

∞∑
q∗=0

[
Aqe

ik+q a tan ΨBql (0)µ+
l Υ+

l +BqBql (Lc)µ
−
l

]
Ãlq∗(Lc)I0

q∗,ν

= bk+
ν Tν +

αν
α2
ν + (k/M)2

ΩK

. (3.40)

Finally, the matrix equation for the trailing-edge interface with a Kutta condition readsE2
1 F2

1 0

E2
2 F2

2 G2
K

E2
K 0 0

 B
T

ΩK

 =

H2
1

H2
2

H2
K

 , (3.41)

where
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1

]
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=
∞∑
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∞∑
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1
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∞∑
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∞∑
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∞∑
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(
kAlq∗(Lc)−Mµ+
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∞∑
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∞∑
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∞∑
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∞∑
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(
kAlq∗(Lc)−Mµ−l Ã

l
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∗
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H2
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∞∑
q=0

∞∑
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∞∑
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Aqe
ik+q a tan ΨBql (0)Υ+
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∗
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,

[B]q,1 = Bq, [T ]ν,1 = Tν .
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Mode-Matching Equations Summary

The mode-matching equations have been derived for the scattering of an acoustic
wave by a cascade of cambered vanes. A subsonic nearly uniform mean flow,
continuously deviated through the cascade, has been used. Jump conditions
for the staggered leading-edge interface have been detailed with emphasis on
the fact that pressure cannot be used, in general, for a staggered interface with
flow. Instead, the velocity potential and a combination of axial and transverse
velocities is used. Finally, a Kutta condition has been derived at the trailing-edge
interface and incorporated into the associated system of matching equations.

3.3 Comparison with Numerical Results

3.3.1 Methodology

Without Flow

A couple of test cases are defined to assess the validity of the newly developed model
of Mode Matching for Bifurcated Curved Wave-guides (MMBCW), and the remaining
untested assumptions of the previous chapter.

In the first instance, the same test case as in the previous chapter is used, for which
the numerical simulations are done with the exact same geometry as in the mode-
matching model. Computations are performed with the FEM, MMBW and MMBCW
at two different frequencies and mode orders: j = 1 at kb = 2.4289 and j = 5 at
kb = 12.145 . This aims at i) validating the implementation of the curvature and ii)
verifying if a better description of the pressure field at high frequency is achieved. As
a reminder, the parameters of the test case are gathered into Table 3.1.

V Ψ/° l/b M−∞ D−∞/Dref C−∞/Cref
Setup 4 30 1.04 0 1 1

Table 3.1: Input parameters of the academic test case without flow, Dref = 1.2258
kg/m3 and Cref = 340 m/s.

As a second case, the performance of the MMBCW is assessed by comparisons with
simulations on a realistic vane geometry. In an industrial context, the vane geometry
has thickness and camber varying along the chord. It is therefore important to quantify
the effects of the approximate vane geometry on the acoustic predictions. For that
matter, the geometry of the NASA Source Diagnostic Test (SDT) baseline configuration
at mid-span has been chosen [98] for the numerical simulations. Computations are
performed with the MMBCW using two different approximate vane geometries: the
stagger-angle geometry and the camber-angle geometry (Figure 3.15). The camber-
angle geometry has the same leading-edge camber angle Ψ = 33.7° than the SDT, in
order to fit the inclination of the vane (and of the equivalent dipoles) at the leading
edge. It has therefore a larger stagger angle (16.8°) than the real stagger angle of 11°,
and a slightly higher solidity value l/b ' 1.58. The stagger-angle model has instead
the same stagger angle of 11°, but a substantially lower camber angle (Ψ = 22°). The
parameters of the different configurations are reminded in Table 3.2. Computations
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are performed for two different incident acoustic waves: mode order j = 6 at kb ' 2.75
(f = 5726 Hz) and mode order j = −18 at kb ' 5.50 (f = 11452 Hz).

V Ψ/° l/b M−∞ D−∞/Dref C−∞/Cref
SDT 54 33.7 1.54 0 1 1
Stagger 54 22.0 1.54 0 1 1
Camber 54 33.7 1.58 0 1 1

Table 3.2: Input parameters of the realistic test case without flow, Dref = 1.2258
kg/m3 and Cref = 340 m/s.

Figure 3.15: SDT baseline geometry ( ) used in the FEM compared to the ap-
proximate vane geometries used in the MMBCW: stagger-angle geometry ( ) and
camber-angle geometry ( ).

All the numerical simulations for these test cases are performed with the commercial
software Simcenter 3D Acoustics, thanks to Hadrien Bériot from Siemens Industry
Software NV. As a reminder, the two-dimensional Helmholtz problem is addressed
numerically using a high-order adaptive finite element method [9, 7]. Periodic boundary
conditions are enforced and the far-field reflections are avoided using perfectly matched
layers [6]. The mesh used in the FEM is displayed in Figure 3.16 with the PML
highlighted in blue.

With Flow

In the first instance, the validity of the overall change in the mean flow, which is
assumed to stay nearly uniform and vary slowly across the channels due to cross-section
variations only2, is assessed. For that matter, the results presented by Edmane Envia
for the 4th NASA CAA workshop, category 3, problem 2 [24], are used as reference
results. The test-case parameters are those of the SDT baseline configuration at mid-
span and are detailed in Table 3.3 as SDT. Since the geometry is approximated in the
analytical model, two configurations are tested in order to give guidance on how to
tune the parameters: the geometrical configuration (Geom) and the flow configuration
(Flow). The latter ensures the same incident flow angle as in the numerical simulation,

2The same mean flow description is used in both MMBW and MMBCW since the effects of cur-
vature on the mean flow have been neglected (section 3.1.2).

90



3.3. Comparison with Numerical Results

Figure 3.16: FEM mesh of the SDT test case without flow.

whereas the former ensures the same leading-edge camber angle. Both configurations
are detailed in Table 3.3 as well.

V Ψ/° l/b M−∞ D−∞/Dref C−∞/Cref Flow angle/°
SDT 54 33.7 1.54 0.44958 0.90567 0.98038 36.0
Geom 54 33.7 1.58 0.44958 0.90569 0.98088 33.7
Flow 54 36.0 1.59 0.44958 0.90569 0.98088 36.0

Table 3.3: Input parameters of the mean-flow test case, Dref = 1.2258 kg/m3 and
Cref = 340 m/s.

At the same time, results of acoustic scattering obtained with the MMBCW are
compared with those from Hixon [46] to assess the performance of the model in pres-
ence of a mean flow. Hixon’s results [46] have been computed with the NASA Glenn
Research Center Broadband Aeroacoustic Stator Simulation (BASS) code. The BASS
code solves the two-dimensional nonlinear Euler equations in the time domain using an
explicit fourth-order time marching scheme combined with high-order spatial differenc-
ing schemes. It seems the mean flow has no angle of attack in Hixon’s simulations [46],
thus the choice of the camber angle in the MMBCW is straightforward. The param-
eters for this test case are collected in Table 3.4. Computations are performed at a
fixed frequency kb = 2.75 (f = 5726 Hz), for two mode orders: j = 6 and j = −12.
Note that, due to some uncertainties on the simulation parameters of Hixon [46] and
the lack of extracted pressure profiles, these comparisons will be only qualitative.

V Ψ/° l/b M−∞ D−∞/Dref C−∞/Cref Flow angle/°
SDT 54 33.7 1.54 0.4 1 1 33.7
MMBCW 54 33.7 1.58 0.4 1 1 33.7

Table 3.4: Input parameters of the realistic test case with flow, Dref = 1.2258 kg/m3

and Cref = 340 m/s.

91



Chapter 3. Acoustic Scattering by Cambered Vanes

3.3.2 Results

Curvature Effects

The instantaneous pressure maps computed with the FEM and MMBCW on the aca-
demic test case, for j = 1 at kcx = 2.44, are presented in Figure 3.17. In Figure 3.18,
the pressure profiles extracted upstream, downstream and through the OGV cascade
are shown with the addition of the results obtained with the MMBW in the previous
chapter.

(a) (b)

Figure 3.17: Instantaneous pressure maps computed with FEM (a) and MMBCW
(b) for j = 1 at kb = 2.4289. Dashed black lines are the locations for quantitative
comparisons and solid black lines in (a) show the limit of PML.

(a) (b) (c)

Figure 3.18: Instantaneous pressure profiles computed with FEM ( ), MMBW ( )
and MMBCW ( ) for j = 1 at kb = 2.4289, extracted at x = −0.01 m (a), y = 0.04
m (b) and x = 0.07 m (c). The vertical dash-dotted lines in (b) represents the LE and
TE interfaces.

The MMBCW is in good agreement compared to the FEM results, with a slightly
better estimation of the reflected field amplitude compared to the MMBW. The fre-
quency of study being below the first channel cut-off frequency, the straight-channel
approximation is relevant here (see section 3.1.4). In other words, this confirms that
curvature effects on sound propagation are negligible at low frequency, at least below
the first channel cut-off frequency (kb < π). Parametric studies are carried out in Sec-
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tion 3.4 to define a dimensionless number that evaluates the impact of the curvature
effects on sound transmission, hence delimiting the validity range of the MMBW.

The radiated acoustic powers are also computed for the MMBCW and compared
to those of the MMBW and FEM in Table 3.5. It confirms that the reflected power

Pr/% Pt/% E/%
FEM 5.270 94.62 0.1100
MMBW 4.926 95.06 0.0140
MMBCW 5.200 96.32 -1.520

Table 3.5: Comparison of reflected Pr and transmitted Pt relative powers, in terms
of the incident power Pi, and the relative error E = 1 − (Pt − Pr)/Pi for j = 1 at
kb = 2.4289.

is slightly better estimated with the MMBCW, compared to the MMBW, but also
indicates that the MMBCW is less accurate with a greater absolute error of 1.5%. The
MMBCW results are not significantly improved by increasing the number of modes in
the modal truncation. It seems that either the numerical computations of the channel
modes and projection coefficients (Bql , Alq∗ , Ãlq∗) or the physical assumptions keep the
MMBCW results from converging in terms of accuracy in this case. Further analyses
are done in section 3.5.

When increasing the frequency to kb = 12.145 and changing the incident mode
order to j = 5, the MMBCW is still able to recover the pressure patterns of the FEM
(Figure 3.19).

(a) (b)

Figure 3.19: Instantaneous pressure maps computed with FEM (a) and MMBCW
(b) for j = 5 at kb = 12.145. Dashed black lines are the locations for quantitative
comparisons and solid black lines in (a) show the limit of PML.

The pressure profiles extracted upstream, downstream and through the OGV cas-
cade are presented in Figure 3.20 for the FEM, MMBW and MMBCW. The MMBCW
results show a good agreement with the FEM results, where the MMBW was unable
to accurately predict the scattered field downstream of the cascade. The difference is
undoubtedly due to the propagation inside the inter-vane channels, as shown by the
discrepancies in the MMBW starting at about two thirds of the channel length (Figure
3.20b). Though there are still some discrepancies in amplitude with the MMBCW,
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(a) (b) (c)

Figure 3.20: Instantaneous pressure profiles computed with FEM ( ), MMBW ( )
and MMBCW ( ) for j = 5 at kb = 12.145, extracted at x = −0.01 m (a), y = 0.04
m (b) and x = 0.07 m (c). The vertical dash-dotted lines in (b) represents the LE and
TE interfaces.

the phase is well predicted downstream (Figure 3.20c), which suggests that the modal
distribution should also be.

Concerning the acoustic power balance, this time it reaches the 1% validity target
(Table 3.6). The MMBCW is also able to recover the reflected power that was totally
missing with the MMBW.

Pr/% Pt/% E/%
FEM 3.950 96.05 <0.11
MMBW 0.3010 99.70 -0.001
MMBCW 2.5600 96.61 0.8300

Table 3.6: Comparison of reflected Pr and transmitted Pt relative powers, in terms
of the incident power Pi, and the relative error E = 1 − (Pt − Pr)/Pi for j = 5 at
kb = 12.145.

These results on the academic test case without flow demonstrate the validity of
the developed routine and the relative importance of the curvature effects on sound
propagation, depending on the frequency. This new model shows promising capabilities
at the cost of a reasonably higher computation time.

Geometrical Approximation Effects

In the previous analysis, numerical simulations were performed using the same geome-
try as in the mode-matching model. Here, the geometrical approximations in the model
are tested on the SDT test case defined in Table 3.2. Figure 3.21 shows the instanta-
neous pressure fields obtained at kb = 2.75, with the incident mode order j = 6, for the
FEM on the SDT geometry and the MMBCW on the approximate geometries, using
the same camber angle or the same stagger angle. The extracted pressure profiles are
then presented in Figure 3.22.

The scattered sound field is well reproduced by the modified circle arc geometry
used in the mode-matching procedure in this case, using either the stagger-angle or
the camber-angle geometry. Yet, the approximate vane geometry with the real stagger
angle gives a slightly better amplitude inside the inter-vane channels and, surpris-
ingly, upstream of the OGV, than the geometry using the real leading-edge camber
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(a) (b) (c)

Figure 3.21: Instantaneous pressure maps computed with FEM (a), MMBCW/Camber
(b) and MMBCW/Stagger (c) for j = 6 and kb = 2.75.

(a) (b) (c)

Figure 3.22: Instantaneous pressure profiles computed with FEM ( ), MM-
BCW/Stagger ( ) and MMBCW/Camber ( ) for j = 6 at kb = 2.75, extracted
at x = −0.04 m (a), y = 0.013 m (b) and x = 0.08 m (c). The vertical dash-dotted
lines in (b) represents the LE and TE interfaces.

angle. Since the camber-angle geometry is more representative of the real geometry
at the leading edge, the reflected field was expected to be more accurate. However,
downstream of the cascade, using the stagger-angle or camber-angle model makes no
difference at this frequency.

Table 3.7 shows the reflected and transmitted acoustic powers, as well as the balance
error, for both models. It confirms that the difference between them resides in the
reflected field and demonstrates that the MMBCW can reach a good accuracy in a real
test case.

Pr/% Pt/% E/%
MMBCW/Stagger 0.190 99.67 0.140
MMBCW/Camber 1.080 99.37 -0.450

Table 3.7: Comparison of reflected Pr and transmitted Pt relative powers, in terms
of the incident power Pi, and the relative error E = 1 − (Pt − Pr)/Pi for j = 6 at
kb = 2.75.

Figures 3.23 and 3.24 display results at twice the previous frequency (kb = 5.5),
and with an incident mode order of j = −18.
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(a) (b) (c)

Figure 3.23: Instantaneous pressure maps computed with FEM (a), MMBCW/Camber
(b) and MMBCW/Stagger (c) for j = −18 and kb = 5.5.

(a) (b) (c)

Figure 3.24: Instantaneous pressure profiles computed with FEM ( ), MM-
BCW/Stagger ( ) and MMBCW/Camber ( ) for j = −18 and kb = 5.5, extracted
at x = −0.04 m (a), y = 0.013 m (b) and x = 0.08 m (c). The vertical dash-dotted
lines in (b) represents the LE and TE interfaces.

Discrepancies between the analytical solutions and the numerical solution are more
significant at this frequency. This is expected since high frequency waves are more
sensitive to small details of the vane geometry. Though, the predicted pressure field
from the MMBCW is still in good agreement with the FEM results. This time, the
camber-angle model gives better results, especially upstream of the OGV where the
stagger-angle model seems to miss a cut-on reflected mode. It is visible in Figure 3.24a
that the stagger-angle model predicts a sinuous pattern reflected field, thus composed
of a single mode, whereas the camber-angle model correctly reproduces the disturbed
sinusoid, representative of a stronger reflection. Table 3.8 confirms this result, indicat-
ing a reflected power two times stronger with the camber-angle model.

Pr/% Pt/% E/%
MMBCW/Stagger 4.420 95.37 0.210
MMBCW/Camber 9.620 90.58 -0.200

Table 3.8: Comparison of reflected Pr and transmitted Pt relative powers, in terms of
the incident power Pi, and the relative error E = 1 − (Pt − Pr)/Pi for j = −18 at
kb = 5.50.

96



3.3. Comparison with Numerical Results

Up to the frequency kb = 5.5, the modified circle arc geometry used in the model
is able to generate a pressure field in fairly good agreement with the FEM results on
a realistic geometry. This is encouraging for reliable and fast sound predictions in an
industrial context. The model using the same leading-edge camber angle should be
preferred as it reproduces more precisely the reflected scattered waves in the highest-
frequency case, and is relatively similar in the lowest-frequency case. Furthermore, the
accuracy of the model is always within the 1% error range, giving confidence in the
model if used for parametric studies.

Mean Flow Approximation Effects

In the first instance, the inviscid mean flow description used in the mode-matching
model is compared to the inviscid mean flow computed with TURBO [55], from the 4th

NASA CAA workshop, category 3, problem 2 [24]. Figure 3.25 shows the qualitative
numerical and analytical (flow configuration) mean flow evolution through the cascade,
while Table 3.9 presents the quantitative results downstream of the cascade, as well as
the difference between the analytical results and the numerical results indicated by the
∆ symbol (in percentage of the numerical value).

(a) (b)

Figure 3.25: Qualitative comparisons of total Mach number obtained with TURBO
(a) and the analytical description used in the mode-matching models (b) for input
parameters defined in Table 3.3. Color scales are not equal.

The mean flow quantities downstream of the cascade are well recovered by the
analytical model using the geometry optimized for the flow description (Flow), whereas
the true vane geometry (Geom) suffers from a relative error of more than 3% on the
Mach number. Though, both geometries give an accurate change of the mean density
and sound speed. These results demonstrate that the overall change in the inviscid
mean flow through a realistic OGV cascade is mainly due to the cross-section variations
of the inter-vane channels in this case, and so is well recovered by a nearly uniform
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M+∞ D+∞/Dref C+∞/Cref ∆M/% ∆ (D/Dref ) /% ∆ (C/Cref ) /%
SDT 0.34704 0.94216 0.98817 0.0000 0.0000 0.0000
Geom 0.35836 0.93859 0.98791 3.2619 0.3789 0.0263
Flow 0.34682 0.94232 0.98869 0.0634 0.0170 0.0526

Table 3.9: Mean flow quantities downstream of the cascade computed with TURBO on
the SDT geometry, and analytical mean flow quantities predicted with a uniform flow
using the geometrical and flow configurations. Input parameters defined in Table 3.3.

mean flow description neglecting curvature and mean loading effects. However, when
looking at local variations of the mean flow inside the inter-vane channels, the nearly
uniform mean flow description is clearly inadequate. Some perspectives of improvement
concerning that part are discussed in conclusion of this chapter. In the meantime,
qualitative comparisons of scattered pressure fields in presence of such numerical and
analytical mean flows are analyzed in the following.

Figures 3.26 and 3.27 display the pressure fields computed with BASS (from Hixon [46])
and with the MMBCW (with a Kutta condition) at kb = 2.75 and withM−∞ = 0.4, for
two different incident mode orders: j = 6 and j = −12 respectively. The parameters
are given in detail in Table 3.4. TURBO solves the steady part of the same nonlinear
Euler equations than BASS, except TURBO is a 3-D solver whereas BASS is 2-D.
Although the mean flow description computed with BASS is not given in Hixon [46],
it should be fairly the same as in Figure 3.25a.

(a) (b)

Figure 3.26: Instantaneous pressure maps computed with BASS (a) and MMBCW
with a Kutta condition (b) for j = 6 at kb = 2.75, M−∞ = 0.4. Color scales are not
equal.

In both cases, the pressure field from the MMBCW is in a good agreement with
the numerical result. The inclination and relative phase of the scattered waves are well
reproduced upstream and downstream of the cascade. The amplitude of the reflections
also seems correctly predicted when looking at the "wiggling" pattern of the wave.
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(a) (b)

Figure 3.27: Instantaneous pressure maps computed with BASS (a) and MMBCW
with a Kutta condition (b) for j = −12 at kb = 2.75, M−∞ = 0.4. Color scales are not
equal.

In Figure 3.27a, downstream of the cascade, the pressure field is polluted by spurious
numerical reflections at the boundary (see Hixon [46]). Only a single cut-on mode
should propagate as predicted by the mode-matching model in Figure 3.27b.

Though only qualitative, these results are very satisfactory and encouraging. They
show that the model of sound reflection and transmission performs well even in the
presence of a mean flow, and that a uniform mean flow can give reasonable acoustic
results in this case. However, these results are only at a relatively low frequency
kb = 2.75 < π. Further comparisons with reference results at higher frequencies would
be needed to assess the validity of the model, especially for the uniform mean flow
assumption that neglects the mean loading of the cambered vanes and can have an
influence at higher frequencies [92, 93].

3.3.3 Discussion

The assumptions that remained to be assessed at high frequency have shown to be
adequate for the problem of sound propagation in an OGV row. The slowly-varying
assumption is still valid at such frequencies, as well as the modal approximation in
the triangle ABC. The neglected reflections at the interface BC, due to the abrupt
change of curvature between the straight part and the curved part, do not play a
significant role in the case studied. Furthermore, the geometrical approximation of the
vane profile (circle arc with artificial thickness and approximate center line curvature)
has demonstrated to give reasonable results when used on the SDT test case at mid-
span. This is indeed only relevant for this geometry but is nevertheless promising.
However, comparisons have been performed at relatively low and moderate frequencies
(kb = 2.75 and kb = 5.5), which would barely cover the first four BPF in the NASA
SDT baseline configuration (7808 RPM). Geometrical discrepancies between the model
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and the real profile will have more and more impact as the frequency increases. Further
investigations are then needed to assess the validity of the model at higher frequencies.

The mean flow modeling has been shown to accurately reproduce the overall change
in the mean flow quantities. However, the local description in the inter-vane channels
and near the OGV is completely different from what is seen in the numerical inviscid
computations. This local difference is mainly due to the mean loading of the vanes,
which generates a non-uniform mean flow. Suggestions for improvement in that direc-
tion are made in conclusion of this chapter. Regarding the acoustic field, the results
of the model are in good qualitative agreement with numerical results. However, no
quantitative comparisons have been made and the available numerical results are at low
frequency (kb = 2.75). Further investigations are also needed for that part. Numerical
samples could be obtained with the SU2 open-source solver3 for example.

Comparison with Numerical Results Summary

Results from the present analytical solution accounting for curvature effects
(MMBCW) have been compared in different test cases with numerical results
obtained by

1. without flow: using Simcenter 3D Acoustics FEM code;

2. with flow: relying on results from the literature using inviscid non-linear
solvers such as TURBO [55] for the steady mean flow [24], and BASS for
the acoustic results [46].

Computations have been performed without flow on the same test case as in
the previous chapter, and with and without flow on the realistic vane geometry
of the NASA SDT baseline configuration at mid-span [98]. Assessments on the
validity of the approximations made in the model are given below.

Modal Basis Approximation:

• Adequate approximation at all frequencies;

• Oscillations similar to the Gibbs phenomenon at high frequency in the
vicinity of the leading edge;

• Green’s reciprocity theorem could be used instead to estimate the impact
of the oscillations on the modal content.

Neglected Modal Scattering at the Interface BC:

• Adequate approximation at all frequencies;

• Green’s reciprocity theorem could be used instead to take the scattering
into account (or an additional matching interface).

Slowly-Varying Approximation:

• Adequate approach at all frequencies.

Geometrical Approximation:

3SU2 code. [Online]. Available: https://su2foundation.org/
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• Two-parts definition of the channel with artificial thickness and approxi-
mate center line curvature;

• Reasonable approximation for realistic vane cascades (such as the NASA
SDT) at low and moderate frequency.

Mean Flow Approximation:

• Accurate approximation for the change in mean flow quantities but missing
local non-uniformity due to the vanes mean loading;

• Adequate approximation for the scattered sound field at low frequency.

3.4 Validity Range of the Low-Frequency Model

In this section, the validity range of the low-frequency model is assessed. For this
purpose, a reference test case similar to the SDT is used, as described in Table 3.10.
Figures 3.28 and 3.29 then display results of reflected acoustic power for both models,

V Ψ/° l/b M−∞ D−∞/Dref C−∞/Cref
Setup 54 36 1.5 0 1 1

Table 3.10: Input parameters of the test case used for the low-frequency model validity
assessment, Dref = 1.2258 kg/m3 and Cref = 340 m/s.

with different camber angles and incident mode orders. The vertical dash-dotted lines
are the limits of the transition ranges, in which a mode undergoes transition from cut-
off to cut-on or vice versa. This phenomenon was already mentioned when investigating
the asymptotic behavior of the model in section 3.1.4 and will be examined in detail in
the next chapter. For now, the rapid variations that the mode undergoes in the vicinity
of the transition location are not accounted for, thus the model cannot be trusted in
these frequency ranges. On top of these plots is also drawn the value of the following
criterion:

κac = kl︸︷︷︸
compactness

× b/R̄c︸︷︷︸
curvature

, (3.42)

which is a proposed criterion for estimating the influence of the camber effects on sound
propagation through the OGV. Curvature effects should be negligible when κac � 1,
thus both MMBW and MMBCW results should be similar in this case. Note that
the compactness term can also be interpreted as the product of the dimensionless
frequency kb (transverse compactness) with the solidity l/b. Thus, even at frequencies
of order O(1) or higher, the effects of camber should be negligible if the solidity is low.
This criterion is built upon the investigation made in section 3.1.4, on the asymptotic
behavior of the eigenfunctions and eigenvalues of the slowly-varying curved channel.

From this investigation, it appears that below the first cut-off frequency of the chan-
nel, sound propagation could be approximated with a straight-channel assumption in
the absence of flow. This is confirmed by the results of the MMBCW in each case of
Figures 3.28 and 3.29. Above the first cut-off frequency of the channel, discrepancies
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(a) (b)

Figure 3.28: Reflected acoustic power against the frequency without flow calculated
with MMBCW ( ) and MMBW ( ), for an incident mode order j = 0 (a) and j = 6
(b), and the proposed criterion for estimating the influence of camber effects ( )

(a) (b)

Figure 3.29: Reflected acoustic power against the frequency without flow calculated
with MMBCW ( ) and MMBW ( ), for a camber angle Ψ = 23° (a) and Ψ = 12°
(b), and the proposed criterion for estimating the influence of camber effects ( )

start to be visible between both models. With Ψ = 36°, the MMBW model is gen-
erally off, except for particular isolated frequencies. Then, when lowering the camber
angle, the camber effects become less and less dominant on sound propagation, and the
MMBW is able to recover the results of the MMBCW up to kb/π ' 1.7 for Ψ = 12°
(Figure 3.29b). This seems in agreement with the proposed criterion, which is then
greater than one.

The reflected power spectra also show the presence of peaks, which are due to
acoustic resonances. This phenomenon is examined in detail in section 3.6. What
can be observed now is that the resonant frequencies are reasonably well estimated
by the MMBW, but the latter seems to over predict resonance phenomena, especially
for kb/π ≥ 2. The resonances involved here are longitudinal resonances between the
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leading-edge and trailing-edge interfaces. Thus, it appears that the straight-channel
assumption in the MMBW tends to strengthen such resonance by artificially consid-
ering the inlet and outlet of the channel as parallel. Note that the resonances still
appear with the MMBCW but with a drastically lower strength, seemingly due to the
non-parallelism of the inlet and outlet.

Figures 3.30 and 3.31 represent the pressure maps calculated with both MMBW
and MMBCW, with an incident Mach number M−∞ = 0.4 at two different frequen-
cies above the first cut-off of the channel. At kb/π = 1.6, the MMBW is able to

(a) (b)

Figure 3.30: Pressure maps at kb/π = 1.6, with Ψ = 23° and M−∞ = 0.4, calculated
with MMBW (a) and MMBCW (b).

(a) (b)

Figure 3.31: Pressure maps at kb/π = 2.6, with Ψ = 23° and M−∞ = 0.4, calculated
with MMBW (a) and MMBCW (b).

qualitatively and quantitatively reproduce the scattered sound field downstream of the
cascade predicted by the MMBCW. This is due to the fact that only one mode is cut-on
downstream of the OGV, and also to the fact that the mean flow makes the channel
mode D0 dominant in this case, which is the only mode that the MMBW is capa-
ble of estimating. However, upstream of the cascade, two modes are cut-on and then
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the modal distribution is no longer well estimated by the MMBW. This is a general
conclusion that also appears at kb/π = 2.6, where, this time, the downstream modal
content is composed of several cut-on modes, and thus the MMBW shows significant
discrepancies with the MMBCW.

Validity Range of the Low-Frequency Model Summary

The MMBW (called low-frequency model) is capable of correctly predicting the
scattered fields below the first cut-off frequency of the channels. Above this
frequency, the MMBCW needs to be used instead. Yet, the MMBW can still be
accurate if the camber effects are not dominant, which can be estimated by the
proposed criterion in (3.42). In the presence of a mean flow, the MMBW appears
to be accurate up to the first cut-off frequency of the annular domain, which is
different upstream and downstream of the cascade due to the swirl recovery.

3.5 Parametric Studies

3.5.1 Influence of Stagger and Camber

Unless mentioned, all following results are obtained with the MMBCW model, thus
accounting for curvature effects. The influence of camber on the reflected Pr and
transmitted Pt acoustic powers, and on the modal content, is assessed in this first part.
Attention is paid to the evolution of the acoustic power balance (Pt−Pr)/Pi with the
frequency and camber angle, since this is the main criterion to estimate the accuracy of
the method. Figure 3.32 displays this balance for Ψ = 23° and Ψ = 34°, without flow
(M−∞ = 0), with a solidity value of l/b = 1.5 and an incident mode order j = 6. The
horizontal dashed lines represent the limits of the 1% confidence range in which the
results can be trusted. The vertical dash-dotted lines are the limits of the transition
ranges, in which a mode undergoes transition from cut-off to cut-on or vice versa. As
mentioned earlier, this phenomenon will be examined in detail in the next chapter and
the current model cannot be trusted in these frequency ranges.

Comparing the results at Ψ = 23° (Figure 3.32a) and Ψ = 34° (Figure 3.32b)
clearly indicates that the accuracy is better for lower camber angles. The balance at
Ψ = 23° is closer to 1, and the fluctuations are much weaker. In Figure 3.32b, the
balance is just at the limit for 2.41 . kb/π < 3 and 3.62 . kb/π ≤ 4, but could be
improved by taking more modes in the modal truncation. Between 1.2 . kb/π < 2,
three significant drops can be seen. Similar drops, but much weaker, are also seen in
Figure 3.32a for 1.09 . kb < 2. When looking at Figure 3.33, which represents the
reflected and transmitted acoustic powers evolution with the frequency and camber
angle, the drops in the acoustic power balance seem to be due to resonance phenomena.
The occurrence of a resonance in 1 < kb/π < 2 induces a high reflection, up to 80%
of relative power, whereas the acoustic power is almost entirely transmitted otherwise.
The favored reflected power in these cases indicates that the resonances create some
sort of a blockage for the acoustic energy. In such conditions, the number of modes
accounted for in the modal truncation should also be optimized. This will be further
investigated in section 3.6. In conclusion, fluctuations of the acoustic power balance
seem to appear for two reasons: when a transition or a resonance occurs. To improve
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(a) (b)

Figure 3.32: Acoustic power balance against the frequency with a camber angle Ψ = 23°
(a) and Ψ = 34° (b).

(a) (b)

Figure 3.33: Reflected (a) and transmitted (b) acoustic power against the frequency
for varying camber angles: Ψ = 1° ( ), Ψ = 12° ( ), Ψ = 23° ( ) and Ψ = 34°
( ).

the accuracy in the latter, an optimized number of modes needs to be used in the modal
truncation, whereas in the former, the model needs to be adjusted as in Chapter 4.

On the other hand, Figure 3.33 shows that outside the resonant frequencies, the
acoustic power is almost fully transmitted, without significant effects of the camber
angle. However, camber plays a role in the modal content produced downstream of the
cascade. Figure 3.34 displays the pressure maps and associated modal contents for two
different camber angles (Ψ = 1° and Ψ = 34°) at kb/π = 2.7. Upstream of the cascade,
a higher vane inclination at the leading edge increases the relative angle between the
vanes and the incident wave. As a consequence, it significantly changes the balance of
the reflected modes. Even if their amplitude is small at this frequency, a shift from
a dominant mode R42 to R−66 is seen. In the channels, the dominant modes D0 and
D1 are replaced by D1 and D2, but the reflection at the trailing-edge remains close
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(a) (b)

(c) (d)

Figure 3.34: Pressure maps and corresponding modal contents without flow (M−∞ =
0), for an incident mode order j = −12 at kb/π = 2.7, a solidity value l/b = 1.5 and a
camber angle Ψ = 1° (a,c) or Ψ = 34° (b,d).

to zero. Downstream of the cascade, because of the difference in the channel modal
content being scattered at the trailing edges, a more evenly distributed modal content
is produced. The transmitted field dominated by the mode T−12 for Ψ = 1°, same
mode as the incident one, is more complex for Ψ = 34° due to interference patterns
between all three modes T−66, T−12 and T42. Even if the transmitted power is roughly
the same in both cases, this difference in modal content could have a significant impact
on the scattering at the engine exhaust, thus on the directivity of the noise propagating
outside. Noise pollution measurements on the ground could be affected by it.

3.5.2 Influence of Solidity

According to the previous results, the MMBCW is inaccurate within the transition
ranges of the channel modes. At Ψ = 34°, these transitions occur on a significant
portion of the frequency range in 0.5 ≤ kb/π ≤ 4. For that reason, the following
results are calculated with a camber angle of 23°. Figure 3.35 displays the acoustic
power balance for varying solidity values, without flow M−∞ = 0, and with parameters
Ψ = 23°, l/b = 1.5 and j = 6. Again, the horizontal dashed lines represent the limits
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of the 1% confidence range and the vertical dash-dotted lines are the limits of the
transition ranges. Figure 3.36 then shows the detail of the balance between reflected
Pr and transmitted Pt acoustic powers.

Figure 3.35: Acoustic power balance against the frequency for varying solidity values:
l/b = 0.75 ( ), l/b = 1 ( ), l/b = 1.25 ( ) and l/b = 1.5 ( ).

(a) (b)

Figure 3.36: Reflected (a) and transmitted (b) acoustic power against the frequency for
varying solidity values: l/b = 0.75 ( ), l/b = 1 ( ), l/b = 1.25 ( ) and l/b = 1.5
( ).

The acoustic power balance lies within the confidence range for all frequencies
greater than kb/π = 1, except within the transition ranges and at the resonant frequen-
cies. Below kb/π = 1, Figures 3.35 and 3.36b indicate an overestimation of transmitted
power. For all frequencies though, the balance becomes more and more accurate with
increasing solidity value. This is in agreement with i) the mode-matching technique
being better suited when sound propagation is governed by in-duct acoustics and ii)
results from Figure 2.10, showing the error ε of the approximate channel potential
decreasing with the solidity value l/b.

Concerning the resonances, it appears without surprise that they get stronger with
increasing solidity. However, the predicted amplitudes of the reflected and transmitted
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powers at the resonant frequencies need to be taken with a pinch of salt since this
phenomenon displays a highly non-linear behavior in real applications. However, linear
analysis is able to give insights on this phenomenon. The resonant frequencies are
correctly estimated with linear acoustics for example, but the amplitude of the pressure
field inside the channels, and thus the radiated acoustic powers, are subject to a large
uncertainty.

Finally, Figure 3.37 represents the pressure maps and associated modal contents
for two different solidity values (l/b = 0.75 and l/b = 1.5) at kb/π = 2.7. Reducing the

(a) (b)

(c) (d)

Figure 3.37: Pressure maps and corresponding modal contents without flow (M−∞ =
0), for an incident mode order j = −12 at kb/π = 2.7, a camber angle Ψ = 23° and a
solidity value l/b = 0.75 (a,c) or l/b = 1.5 (b,d).

solidity by half has no significant impact on the modal distribution except downstream
of the cascade. Interestingly enough, a low solidity has the same effect as a low camber
angle here. Both result in a lower impact of the cascade scattering edges, hence in a
transmitted field similar to the incident one. Note that this conclusion is dependent
on the incident mode order though, since for a given solidity or camber/stagger angle,
more reflections inside the channels would occur with a greater relative angle between
the incident wave and the vanes. The influence of the incident mode order is then
naturally investigated in the following.
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3.5.3 Influence of Incident Mode Order

The influence of the mode order is studied with the same configuration as previously:
Ψ = 23°, l/b = 1.5 andM−∞ = 0, but with varying incident mode orders j. Figure 3.38
shows the acoustic power balance as a function of frequency in this case. Again, the
horizontal dashed lines represent the limits of the 1% confidence range and the vertical
dash-dotted lines are the limits of the transition ranges. Figure 3.39 gives the detail
of the balance between reflected Pr and transmitted Pt acoustic powers. Bear in mind
that the different curves, corresponding to different incident mode orders, do not each
correspond to a unique angle of incidence since the latter vary with frequency.

Figure 3.38: Acoustic power balance against the frequency for varying incident mode
orders: j = −12 ( ), j = 0 ( ), j = 6 ( ) and j = 27 ( ).

(a) (b)

Figure 3.39: Reflected (a) and transmitted (b) acoustic power against the frequency
for varying incident mode orders: j = −12 ( ), j = 0 ( ), j = 6 ( ) and j = 27
( ).

Again, the acoustic power balance is well within the confidence range except in
the transition ranges and at the resonant frequencies. When looking at the reflected
and transmitted powers, the resonant frequencies are functions of the incident mode
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order j. Indeed such a result is well known, since the incident mode order controls
the inter-vane phase shift. However, a deeper look at the effect of the inter-vane phase
shift, usually not mentioned, will be given in Section 3.6. The inter-vane phase shift
is given by αjb = 2πj/V . The expected behavior is seen for j = 0 and j = 27, which
respectively trigger the resonances in 1 ≤ kb/π < 2 (adjacent channels of equal phases)
and 2 ≤ kb/π < 3 (adjacent channels of opposite phases). On the other hand, j = −12
and j = 6 also seem to trigger some resonances though, with a weaker strength.

Another important aspect of the incident mode order is the so-called "Venetian
blind" configuration [44], when the incident wavefront is perpendicular to the vanes. In
such a case, the acoustic wave is fully transmitted for flat vanes, without any influence
of the cascade. The following results prove that such a configuration no longer exists
when the vanes are curved. Figure 3.40 shows the pressure maps and associated modal
contents for two different scenarios: Ψ = 23.5° at kb/π = 2.7 and Ψ = 27° at kb/π =
2.45. Both cases are calculated without flow and for a solidity value l/b = 1.5 and
an incident mode order j = 27. In the right scenario (Figure 3.40b), nothing special

(a) (b)

(c) (d)

Figure 3.40: Pressure maps and corresponding modal contents without flow (M−∞ =
0), for an incident wavefront perpendicular to the vane leading edges: with a resonance
(a,c) and without (b,d).

happens, but the simple fact that the vanes are no longer parallel allows reflections
to occur. The acoustic power balance in this case gives a reflected power of 14.49%
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and a transmitted power of 85.36%. In the left scenario (Figure 3.40a), a resonance is
even able to take place, which cannot happen with flat vanes in the "Venetian blind"
configuration. The acoustic power balance in this case gives a reflected power of 26.73%
and a transmitted power of 73.18%.

3.5.4 Influence of Mach Number

In the presence of a mean flow and a Kutta condition, the acoustic power balance can
no longer be calculated in the same manner due to energy transfer between the acoustic
and vortical motions. This energy transfer usually takes the form of a loss, in the point
of view of the acoustic, which concedes energy to the wake downstream of the cascade.
This acoustic energy loss has been investigated for a single plate in a ducted flow
by, for example, Howe [49] with an analytical model for low-subsonic Mach numbers,
and Job [56] with an efficient numerical finite element method. Recent works from
Maierhofer & Peake [68] give an interesting insight into the distribution of radiated
powers, between acoustic and hydrodynamic, for an infinite cascade of flat plates with
a mean flow. Such a work could be used to better understand energy conversions in the
current model and help to build an accurate estimation of the global power balance,
so as to have a criterion to measure the accuracy of MMBCW even in the presence of
a mean flow. Such a work has not been done during the PhD. The accuracy of the
method cannot be estimated then, but the influence of the mean flow on the acoustic
resonances, which is known [60], can at least be visualized. Figure 3.41 displays the
balance and acoustic reflected power for Ψ = 23°, a solidity value of l/b = 1.5 and an
incident mode order j = 0. The Mach number is either M−∞ = 0 or M−∞ = 0.4. The
horizontal dashed lines representing the limits of the 1% confidence range in which the
results can be trusted are also added, along the vertical dash-dotted lines showing the
limits of the transition ranges.

(a) (b)

Figure 3.41: Acoustic power balance (a) and reflected acoustic power (b) against the
frequency for M−∞ = 0 ( ), M−∞ = 0.4 ( ) and M−∞ = 0.4 without Kutta
condition ( ).

Figure 3.41a shows that the presence of a mean flow induces a loss in the acoustic
power in the whole range of frequencies studied. Note that, even if not reported here,
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some scenarios of a transmitted acoustic power exceeding 100% happened. Whether
this means that the acoustic field harvested energy from the mean flow, as reported
by Maierhofer & Peake [68], or that the model was inaccurate remains an open ques-
tion without a correct estimation of the hydrodynamic power. On the other hand,
Figure 3.41b highlights the well known effect of the mean flow on the acoustic reso-
nance, which consists in i) reducing the resonant frequencies and ii) adding a damping
that lowers the resonance amplitude. In this case, an incident Mach number of 0.4 is
sufficient to drastically attenuate the resonances.

Results are then provided for the transmission of the oblique incident wave of order
j = −12 at kb/π = 2.7 in Figure 3.42 (pressure field), Figure 3.43 (axial velocity field)
and Figure 3.44 (transverse velocity field). The mean flow increases the wavelength of

(a) (b)

Figure 3.42: Pressure maps for an incident mode order j = −12 at kb/π = 2.7, a
camber angle Ψ = 23°, a solidity value l/b = 1.5 and a Mach number M−∞ = 0 (a) or
M−∞ = 0.4 (b).

(a) (b)

Figure 3.43: Axial velocity maps for an incident mode order j = −12 at kb/π = 2.7, a
camber angle Ψ = 23°, a solidity value l/b = 1.5 and a Mach number M−∞ = 0 (a) or
M−∞ = 0.4 (b).
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(a) (b)

Figure 3.44: Transverse velocity maps for an incident mode order j = −12 at kb/π =
2.7, a camber angle Ψ = 23°, a solidity value l/b = 1.5 and a Mach number M−∞ = 0
(a) or M−∞ = 0.4 (b).

the incident and transmitted waves by convection effect, which is clearly visible since
the reflection coefficient is low. The mean flow also seems to favor the transmitted
mode that propagates in the closest direction to it, thus the lowest order j = −12 in
this case. Finally, Figures 3.43 and 3.44 shows the presence of the vortex sheet induced
by the Kutta condition. The transverse velocity field seems to be the most affected by
the presence of the mean flow, with a noticeably reduced amplitude.

Parametric Studies Summary

Acoustic power balance and accuracy of the method:

Increasing stagger/camber or decreasing solidity deteriorates the accuracy of the
model. Around resonant frequencies, the accuracy depends on camber, solidity
and incident mode order, and the 1% confidence range cannot be reached in some
cases. In the presence of a mean flow, energy conversions between acoustic and
vortical motions happens. The power contained in the vortical sheet induced
by the Kutta condition has not been estimated in this work, hence the power
balance can no longer serve as a measure of the accuracy in this case.

Influence of input parameters on sound:

Apart from the vicinity of the resonant frequencies, neither stagger/camber, so-
lidity or incident mode order has a significant impact on the acoustic power
balance between reflection and transmission. Although, stagger/camber and so-
lidity do change the distribution of modal energy in the scattered fields for a
given incident wave. Camber induces reflections in the inter-vane channels even
when the incident wavefront is perfectly perpendicular to the vane leading edges.
For flat vanes, such a configuration is sometimes called "Venetian blind" and
leads to a fully transmitted field. With curved vanes, reflected scattered waves
appear upstream of the cascade, and a resonance can even take place in the
cascade.

113



Chapter 3. Acoustic Scattering by Cambered Vanes

3.6 Resonance of a Cascade of Cambered Vanes
The field of acoustic resonances relates to high-intensity fluctuations of the air volume
comprised within the inter-vane channels, without involving the mechanical vibration of
the plates. It has experienced a revival of interest when Parker [89] showed experimental
proofs that such resonances can be triggered by vortex shedding in wind tunnels, and
all other engineering systems involving air flowing over a cascade of flat parallel plates.
Experimental evidences of such resonances have then been discovered for staggered flat
plates in a compressor stage by Parker [90], and for cambered vanes in a bend by Honjo
& Tominaga [48]. A number of attempts to predict the resonant frequencies by means
of linear analysis have seen the day. For example, Koch [60] tackled the problem of
a cascade of staggered flat plates with the Wiener-Hopf technique, and more recently
relied on a numerical solution to address the acoustic resonances in three-dimensional
annular plate cascades [61]. The latter provides a good overview of the historical
evolution of knowledge about resonances in a compressor stage.

Nayfeh & Huddleston [79] developed a method based on mode matching to cal-
culate the resonant frequencies. A similar procedure could then be used to study the
resonances with the current model of cambered vanes. Unfortunately, time was missing
to carry out such a study during the PhD. Consequently, two concessions were made:

1. resonant frequencies are found by looking for local maxima of the reflected acous-
tic power over a given frequency range, hence trapped modes cannot be identified;

2. results are calculated using the MMBW model, neglecting the effects of curva-
ture. It is expected that the missing curvature effects induce uncertainty in the
predicted resonant frequencies (see section 3.4), which could be plotted as error
bars, but the overall shape and trend should be well captured in the restricted
frequency range 1 ≤ kb/π < 2. All pressure maps are, however, computed with
the MMBCW model.

The resonant frequencies are generally regrouped into "families", each family lying
in a frequency range of unit length (in terms of kb/π) and involving a given channel
mode. The channel mode q = 0 is responsible for the resonances happening in 0 ≤
kb/π < 1, the channel mode q = 1 then takes over for 1 ≤ kb/π < 2, and so on. This is
usually pictured via the so-called "Parker mode diagram", representing the evolution
of the resonant frequencies with the solidity value of the cascade. Thus, results are
presented in this convenient form in the following.

3.6.1 Influence of Stagger and Camber

In the first instance, the influence of camber is studied. Figure 3.45 shows an ex-
ample of resonance for a weakly cambered/staggered cascade (Ψ = 5°) and a more
cambered/staggered cascade (Ψ = 36°).

As expected from a resonance, a relatively high pressure amplitude is seen in the
inter-vane channels, with a particular pattern. The resonance pattern shows one hor-
izontal nodal line and one vertical nodal line, thus four lobes alternatively vibrating
within the inter-vane channels. The resonances can be named from those numbers. The
resonance displayed in Figure 3.45 is called resonance (1,1), referring to its number of
vertical and horizontal nodal lines respectively. The second number also happens to in-
dicate the channel mode responsible for the resonance, which is the mode q = 1 in this
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(a) (b)

Figure 3.45: Resonance (1,1) seen in a cascade of Ψ = 5° (a) and Ψ = 36° (b), with
l/b = 1.5 and M−∞ = 0.

case. Figure 3.46 represents the "Parker mode diagram" for the family of resonances
induced by the channel mode q = 1, at two different camber angles. As expected, the

Figure 3.46: Parker-like mode diagram for resonances in 1 ≤ kb/π = 2, with Ψ = 5°
( ) and Ψ = 36° ( ).

resonant frequencies decrease with the solidity value and reach a limit at kb/π = 2
when the solidity value decreases. It is known that each resonance has a limiting so-
lidity value below which it cannot exist, thus the curves can never cross. Notice that
this limit is not necessarily reached in Figure 3.46 since some resonant frequencies have
been missed by the searching algorithm.

The trend observed for stagger angle by Koch [60] is recovered: the resonant fre-
quencies increase with Ψ. Camber seems to only exacerbate this effect.

115



Chapter 3. Acoustic Scattering by Cambered Vanes

3.6.2 Influence of Mach Number

Figure 3.47 and 3.48 display examples of the resonance (0,1) and the effect of the mean
flow on the "Parker mode diagram", respectively.

(a) (b)

Figure 3.47: Resonance (0,1) with M−∞ = 0 (a) and M−∞ = 0.4 (b), with Ψ = 36°
and l/b = 1.5.

Figure 3.48: Real part of Parker-like mode diagram for resonances in 1 ≤ kb/π = 2,
with M−∞ = 0 ( ) and M−∞ = 0.25 ( ).

It is clear from Figure 3.47b that the strength of the resonance has been drastically
reduced with an incident Mach number M−∞ = 0.4, compared to the no-flow case
in Figure 3.47a. Moreover, when looking at the "Parker mode diagram", the resonant
frequencies are reduced as expected but also seem to depend on solidity. The mean flow
drastically reduces the frequencies at the lowest solidity values of existence for a given
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resonance, but does not have a significant effect otherwise. Notice that some resonances
related to the channel mode q = 2 can occur below kb/π = 2 with M−∞ = 0.25 but
have been discarded from Figure 3.48.

3.6.3 Influence of Incident Mode Order

Finally, the influence of the incident mode order on the resonance phenomenon is
investigated to shed light on properties usually not mentioned in research papers. The
resonances shown previously are what could be called "ideal" resonances. Those are
triggered by an adequate inter-vane phase shift, which is controlled by the incident
mode order in this case. When the resonance is related to an even channel mode
order, q = 0, 2, ..., adjacent inter-vane channels need to be of opposite phases. On the
contrary, when the resonance is related to an odd channel mode order, q = 1, 3, ...,
adjacent inter-vane channels need to be in phase. Each resonance can only exist in a
frequency range given by the corresponding channel mode order as q ≤ kb/π < q + 1.
The inter-vane phase shift is given by αjb = 2πj/V . Hence, to trigger the resonances
related to q = 1, which occur in 1 ≤ kb/π < 2, the incident mode order needs to be an
even multiple of the number of vanes V , in other words j = 0 [V ]. A resonance in this
case exhibits pressure fluctuations that have a uniform and steady maximal amplitude
over the cascade. On the contrary, when the phase shift is not ideal, a "resonance"
can still occur but does not take place steadily throughout the whole cascade. Instead,
the resonance appears in "patches" of noticeably high pressure, which move along the
cascade with time. This can be seen in Figure 3.49 for the "non-ideal" resonance (2,1)
with j = 5.

(a) (b)

Figure 3.49: Resonance (2,1) seen in a cascade of Ψ = 36° with l/b = 1.5, M−∞ = 0
and j = 5, at t = 0 (a) and t = 3αjb/ω (b).

In fact, the "non-ideal" resonance represents the general case of resonance since the
"ideal" scenario happens only for the particular phase shifts 0 and π in the continuous
range [0, 2π[. For these two particular cases, the relation between the incident wave-
length and the cascade periodicity creates a steady pattern. Otherwise, the resonance
pattern is seen as modulated by the incoming wave. This modulation also generates an
interesting pattern upstream of the cascade, as seen in Figure 3.50. Adjacent "patches"
of resonance oscillate in phase opposition, generating destructive interference with the
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incident field between each patch (seen as shadow zones upstream) and constructive
interference in front of each patch (seen as high-amplitude plane waves concentrated in
a layer of the patch height). The number of patches is two times the difference between
the "ideal" incident mode order j = 0 and the current incident mode order j. Thus
being equal to 0, 2, 8 and 10, respectively, in Figure 3.50. This indicates a modulation
by the number of lobes of this difference: each positive lobe generates a patch of reso-
nance oscillating in opposite phase with its neighbor, the latter being modulated by a
negative lobe. This modulation is still seen around j = 27, for the resonances related
to q = 2, where it might be less obvious that the modulation is given by the difference
between the incident mode order j and the ideal mode order j = 27.

Finally, the Parker-like mode diagram is plotted for j = 0 and j = 5 in Figure 3.51.
On the contrary to the effect of mean flow, the non-ideal phase shift does not just
lower the resonant frequencies, it reduces their range of existence. In this case, no
resonance can occur between kb/π ' 1.8 and kb/π = 2 for j = 5. Going to the
limit j = 27 would totally cancel any resonance related to the channel mode q = 1, due
to a phase shift in perfect opposite phase from the ideal phase shift of those resonances.

(a) (b) (c) (d)

Figure 3.50: Resonance (2,1) seen in a cascade of Ψ = 36°, with l/b = 1.5 andM−∞ = 0,
for j = 0 (a), j = 1 (b), j = 4 (c) and j = 5 (d).

118



3.6. Resonance of a Cascade of Cambered Vanes

Figure 3.51: Parker-like mode diagram in 1 ≤ kb/π = 2, with Ψ = 36°, for "ideal"
resonances j = 0 ( ) and "non-ideal" resonances j = 5 ( ).

Resonance of a Cascade of Cambered Vanes Summary

The high amplitudes and non-linear mechanisms involved at resonant frequencies
make the prediction too sensitive to numerical errors, thus the value of reflected
and transmitted powers at such frequencies should be taken with care. Yet,
the frequencies at which resonances occur should be reasonably well predicted
within the scope of linear acoustics. "Parker mode diagrams" have been plotted
for varying stagger/camber angles, Mach numbers and incident mode orders.
The derivation of the system of equations providing the resonant frequencies
is beyond the scope of the PhD, instead their estimation relies on a search for
local maxima of the reflected power in a given frequency range. Computations
have been performed with the MMBW model, neglecting curvature effects, which
induces error bars in the frequencies (of the order of a few percents) but should
give the correct trends. In that regard, the effect of camber seems similar to that
of stagger. The mean flow, as already known, reduces the resonant frequencies
and damps their amplitude. The incident mode order also significantly decreases
the resonant frequencies, but only below a given solidity value, which depends on
the resonance considered. A peculiar phenomenon, generally not mentioned in
research papers, has also been brought to light when the incident mode order does
not induce an "ideal" inter-vane phase shift for the resonance. In this case, the
resonance pattern is seen as modulated by the incoming wave, instead of being
uniform and seemingly attached to the cascade. The upstream reflected field
is also drastically changed by this patchwork resonance. Shadow zones appear
between the resonant patches and, in front of them, constructive interference
with the incident wave generates a strong standing-wave pattern concentrated in
a layer of the patch height.
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3.7 Conclusion

The modeling of sound propagation in cambered inter-vane channels has been extended
by taking into account curvature effects, thus relying on curvilinear coordinates in-
stead of Cartesian coordinates to derive the equivalent convected Helmholtz-like equa-
tion. This equation, with hard wall boundary condition, has been rewritten as an
eigenvalue problem, which has been solved numerically by means of a pseudo-spectral
collocation method based on Chebyshev polynomials of the first kind. Though this
two-dimensional problem has an exact closed-form solution in terms of Bessel func-
tions without flow, and apparently in terms of confluent hypergeometric functions with
flow [1], the choice was made to resort to a collocation method. This pseudo-spectral
method ensures fast and accurate computations, with or without flow, and could be
extended to three dimensions, where no closed-form solutions exist (except for rectan-
gular ducts). Yet, the analytical solutions should be investigated to better understand
the effects of curvature and mean flow.

The validity of each assumption in the model of Mode Matching for Bifurcated
Curved Wave-guides (MMBCW) has been carefully investigated up to relatively high
frequencies. The model remained accurate in terms of acoustic power balance but,
in the presence of a mean flow with a Kutta conditions, energy conversions between
acoustic and vortical motions can happen. Hence the acoustic power balance alone
can no longer serve as a measure of the accuracy in this case. A more general power
balance needs to be derived.

Comparisons with results of the previous model, referred to as MMBW, have shown
that curvature effects are needed above the first channel cut-off frequency, except if
camber and/or frequency remain small and the almost plane-wave mode is dominant
in the channels.

Parametric studies have been carried out on the different physical parameters of
the MMBCW model. Apart from the vicinity of the cascade resonant frequencies,
neither stagger/camber, solidity or incident mode order has a significant impact on the
acoustic power balance between reflection and transmission. Although, stagger/camber
and solidity do change the distribution of modal energy in the scattered fields for a
given incident wave. Furthermore, camber induces reflections in the inter-vane channels
even when the incident wavefront is perfectly perpendicular to the vane leading edges.
For flat vanes, such a configuration is sometimes called "Venetian blind" and leads
to a fully transmitted field, without any reflection or scattering. With curved vanes,
reflected scattered waves appear upstream of the cascade, and a resonance can even
take place in it.

Acoustic resonances occurring above the cut-off frequency of the annular domain,
thus putting aside trapped modes, have also been investigated, but with the MMBW
model. Within the limitations of this model, it appeared that camber has a similar
effect as stagger on resonant frequencies, which consists in an increase of the frequency
when solidity is large enough, depending on the resonance considered. The influence
of incident mode order has also been investigated since usually left aside in the liter-
ature. A peculiar phenomenon of resonance by layers was brought to light, due to a
modulation induced by the incident wave when its wavelength no longer matches the
cascade periodicity.

On the note of possible improvement, the MMBCW model could be extended to
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account for a non-uniform mean flow inside the inter-vane channels, thus to account
for some sort of mean loading effects. Enforcing the mean flow to be irrotational and
divergence-free leads to the following description in two dimensions:

M0(S, n) =
M−∞κa

hs(n) ln
(

2+κh(S)
2−κh(S)

) .
In the assumption of small curvature κh(S)� 1, ∀S ∈ [0, Lc], this relation even reduces
to

M0(S, n) =
M−∞a

hs(n)h(S)
+O(κh),

which is almost the same relation as for the uniform flow (3.4), except for a coefficient
hs(n) driving the non-uniformity. Notice that, if the compressibility effects are to be
accounted for, M0(S, n) no longer has an exact closed-form solution and a numerical
integration of the mass-flow continuity equation is needed.

The new eigenvalue problem, already derived by Rienstra [110] in a more general
case, could be solved by collocation. However, a new geometrical description of the
vanes would be needed. The non-uniformity of the mean flow, in this case, directly
depends on the curvature κ. With a constant camber distribution along the chord, i.e.
vanes modeled as circle arcs, a discontinuity of the curvature is seen at the interface
BC and the trailing-edge interface. Outside of the inter-vane channels, the curvature is
κ = 0, and inside it, κ = 1/R̄c. In order to have a continuous description of the mean
flow through the cascade, a new description of the vane camber distribution is needed.
A Gaussian distribution could be used, or any combination of functions that ensures
a curvature distribution going to 0 at both limits. This would remove the two-parts
definition of the channels and the induced artificial thickness, thus describing the mean
camber line only. This is currently an ongoing work.

On the other hand, frequency limitations have been observed due to modes under-
going transition from cut-off to cut-on or vice versa. This phenomenon is possible due
to the varying channel height, inducing a varying cut-off frequency along the channel.
The rapid variations that a mode undergoes in the vicinity of such transition were
not accounted for in this chapter. An extension of the model of sound propagation is
derived in the next chapter to include the transition mechanism in the mode-matching
procedure.
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Chapter 4
Cut-on/Cut-off Transition of Sound Inside
Cambered Inter-Vane Channels

Introduction

A leading-order multiple-scale solution of the acoustic potential has been devel-
oped inside the inter-vane channels, assuming slow variations of the cross-section.
With the variation of the cross-section also vary the acoustic modes cut-off fre-
quencies. Hence, a given mode at a given frequency can be cut-on in one part
of the channel and cut-off in the other part. The location at which the transi-
tion happens is called a turning point, or transition point. In its vicinity, the
mode behavior changes too rapidly for the leading-order multiple-scale solution
to remain valid. In this chapter, the approximate solution of the potential is reg-
ularized near the transition point and the impact of the cut-on/cut-off transition
on the modal energy distribution is investigated. The extension is only made
for the solution of Chapter 2, considering a straight duct, following the work of
Rienstra [109] and Ovenden [86]. Transition in a bent duct, which Brambley
& Peake [14] studied, has neither been derived nor implemented in the mode-
matching procedure yet.
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4.1 Transition Point Analysis

4.1.1 Boundary Layer

In chapter 2, the approximate solution for the acoustic potential inside the inter-vane
channels was derived as (2.67)

φ(X, y) ∼ N(X)√
σ(X)

ψ(X, y) exp

(
i

ε

∫ X k(ξ)M(ξ)

β2(ξ)
dξ

)
×
[
I exp

(
− i

ε

∫ X k(ξ)σ(ξ)

β2(ξ)
dξ

)
+R exp

(
i

ε

∫ X k(ξ)σ(ξ)

β2(ξ)
dξ

)]
.

The above expression fails when the medium and the channel height vary in such a
way that, at some point X = Xt, the reduced axial wavenumber σ(Xt) = 0. In a small
interval around Xt the mode does not vary slowly and a different approximation is
needed. In the terminology of matched asymptotic expansions [47], this is a boundary
layer in X. The following analysis is strongly based on Holmes’ book [47] and so it is
advised to look into it if any doubts remain.

In the outer region of this layer, the solutions on either side are named

φ ∼
{
φL(X, y;Xt) if X < Xt,
φR(X, y;Xt) if Xt < X,

where

φL(X, y;Xt) =
N(X)√
σ(X)

ψ(X, y) exp

(
− i

ε

∫ Xt

X

k(ξ)M(ξ)

β2(ξ)
dξ

)
×
[
A+
L exp

(
1

ε

∫ Xt

X

k(ξ)|σ(ξ)|
β2(ξ)

dξ

)
+ A−L exp

(
−1

ε

∫ Xt

X

k(ξ)|σ(ξ)|
β2(ξ)

dξ

)]
, (4.1)

φR(X, y;Xt) =
N(X)√
σ(X)

ψ(X, y) exp

(
i

ε

∫ X

Xt

k(ξ)M(ξ)

β2(ξ)
dξ

)
×
[
A+
R exp

(
− i

ε

∫ X

Xt

k(ξ)σ(ξ)

β2(ξ)
dξ

)
+ A−R exp

(
i

ε

∫ X

Xt

k(ξ)σ(ξ)

β2(ξ)
dξ

)]
, (4.2)
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and (A+
L , A

−
L , A

+
R, A

−
R) ∈ C4 are arbitrary constants. They are represented in Figure 4.1

with a schematic view of the problem. Note that for the cut-off modes in φL, the chosen
roots are σ = −i|σ| and

√
σ = e−iπ/4

√
|σ|.

Figure 4.1: Sketch of a diverging duct with a boundary layer in X dividing the domain
into two regions : a cut-off region on the left side and a cut-on region on the right side.

To understand the nature of the singularity, the analysis starts back from the con-
vected wave equation at leading order (2.53):

β2∂
2φ

∂x2
+
∂2φ

∂y2
− 2ikM

∂φ

∂x
+ k2φ = O(ε).

Using the Reissner transformation [101] adapted for a slowly-varying duct gives

∂2φ̃

∂x̃2
+
∂2φ̃

∂ỹ2
+ k̃2φ̃ = O(ε), (4.3)

where x̃ = x/β, k̃ = k/β, φ̃ = φ exp(−i
∫ x̃

k̃M dξ̃) and β =
√

1−M2, all other vari-
ables being unchanged unless mentioned. Now, assuming that even when a transition
occurs, the acoustic mode is still a solution of the eigenvalue problem (2.59) at leading
order, the ỹ-derivative ∂2/∂ỹ2 in (4.3) can be replaced by −θ̃2. Hence, using the rela-
tionship k̃2− θ̃2 = k̃2σ̃2 and replacing the variable x̃ by the slow variable X̃ = εx̃ , the
Helmholtz equation becomes

ε2
∂2φ̃

∂X̃2
+ k̃2σ̃2(X̃)φ̃ = O(ε). (4.4)

This equation is known to have a turning point when σ̃2(X̃) = 0 (see Ref. [47] Chapter
4.3). In the inter-vane channels, the increasing height governs the variation of σ̃2.
Since it is a monotonously increasing function, if a point X̃t exists, it is always a single
transition point for the mode considered (see Figure 4.2).

As depicted in Figure 4.1 the transition point is not actually a point but a layer
in which the potential behaves differently. The solution in this layer, called the inner
solution φI , is described in the following.

125



Chapter 4. Cut-on/Cut-off Transition of Sound

Figure 4.2: Sketch of the evolution of σ2(X) in the inter-vane channels.

4.1.2 Inner Solution

The first step in deriving the inner solution φI of (4.4) is to determine the boundary-
layer thickness. Introducing a boundary-layer variable

Xδ =
X̃ − X̃t

εδ
,

Taylor’s theorem states that

σ̃2(X̃) = σ̃2(X̃t + εδXδ) = εδXδ(σ̃
2)′t +O(ε2δ),

where the prime symbol denotes the derivative of σ̃2 and the subscript t the evaluation
of the function at the transition location X̃ = X̃t. Applying the stretching to (4.4) and
letting φI(Xδ, y) be the solution in this layer, gives

ε2−2δ ∂
2φI
∂X2

δ

+ εδk̃2
tXδ(σ̃

2)′tφI = O(ε) +O(ε2δ). (4.5)

For balancing it is required that 2 − 2δ = δ, and so δ = 2/3. It also agrees with the
order of magnitude of the neglected term O(ε2δ) = O(ε4/3) which is then lower than
O(ε). This demonstrates the order of magnitude of the boundary-layer thickness shown
in Figure 4.1.

In order to derive the inner solution φI(Xδ, y), its transverse structure is assumed
unaffected in the relatively short transition region, which is consistent with the approx-
imation of the ỹ-derivative ∂2/∂ỹ2 in (4.3). It reads

φI(Xδ, y) = χ(Xδ)ψ(X, y), (4.6)

where X = Xt + βε2/3Xδ and so ψ(X, y) is the same transverse function, or modal
shape, as defined in (2.62) for the outer solutions.

The appropriate expansion of the unknown inner function χ(Xδ) is

χ = εγχ0 +O(ε2γ). (4.7)

Introducing this into (4.5) yields the equation

εγ+2/3χ′′0 + εγ+2/3k̃2
tXδ(σ̃

2)′tχ0 = O(ε), (4.8)
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which requires γ < 1/3. Letting r = Xδ

(
k̃2
t (σ̃

2)′t

)1/3

be a dimensionless inner coor-
dinate, it appears that the inner function is the solution of Airy’s equation at leading
order, which is

χ′′0 + rχ0 = 0, for −∞ < r <∞. (4.9)

The general solution can be written as

χ0 = aAi(−r) + bBi(−r), (4.10)

where Ai and Bi are Airy functions of the first and second kinds, respectively, and a
and b are arbitrary constants. Note that r is of the same sign as Xδ, since (σ̃2)′t > 0
(Figure 4.2), and so the argument of the Airy functions is positive on the left side of
the transition and negative on the right side. This is understandable since the mode
goes from cut-off to cut-on in the case studied, hence the Airy functions need to be
traveled in the negative direction (see Figure 4.3).

Figure 4.3: Airy functions.

Finally the inner solution is written at leading order as

φI(X, y) =

[
aAi

(
−λX −Xt

ε2/3

)
+ bBi

(
−λX −Xt

ε2/3

)]
ψ(X, y) exp

(
i

ε

∫ X

Xt

kM

β2
dξ

)
,

(4.11)
for |X −Xt| = O(ε2/3) and where λ is defined by

λ3 =
k2
t (σ

2)′t
β4
t

> 0.

Note that the coefficient λ here is not equivalent to the coefficient λ in Refs. [109, 86].
It has to be multiplied by −k2

t /β
2
t θ

2
t to recover the value of the aforementioned authors.

4.1.3 Matching

To determine the waves coefficients in the outer region, a matching between the outer
solutions (4.1 - 4.2) and the inner solution (4.11) is necessary. To do so an intermediate
variable is introduced, which corresponds to the intermediate region at each side of the
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boundary layer where the inner solution overlaps the outer solutions. Let

Xη =
X −Xt

εη
,

where 0 < η < 2/3. Both outer solutions and the inner solution are expressed in terms
of the intermediate variable Xη to be matched.

Matching for X < Xt

In the cut-off region X < Xt, the inner variable r = λεη−2/3Xη is negative. Thus the
asymptotic expansion of Airy functions given in Appendix C.1 yields

χ(−r) ∼ aεγ
exp

(
−2

3
(−r)3/2

)
2
√
π(−r)1/4

+ bεγ
exp

(
2
3
(−r)3/2

)
√
π(−r)1/4

.

The evanescent integral to be evaluated in the outer solution (4.1) is

1

ε

∫ 0

Xη

k|σ|
β2

dξη ∼ −
1

ε
λ3/2

∫ 0

Xη

√
εη(−ξη) dξη

= λ3/2 2

3
ε3/2η−1(−Xη)

3/2

=
2

3
(−r)3/2.

The amplitude of (4.1) in the intermediate region is

N√
σ
∼ Nt

√
kt
βt

[
−εη(−Xη)λ

3
]−1/4

=
N̄te

iπ/4

ε1/6λ1/2(−r)1/4
,

where N̄t = Ntk
1/2
t /βt. Then the matching gives

aεγ
exp

(
−2

3
(−r)3/2

)
2
√
π(−r)1/4

+ bεγ
exp

(
2
3
(−r)3/2

)
√
π(−r)1/4

=
N̄te

iπ/4

ε1/6λ1/2(−r)1/4

[
A+
L exp

(
2

3
(−r)3/2

)
+A−L exp

(
−2

3
(−r)3/2

)]
,

which implies γ = −1/6 and 
A+
L =

e−iπ/4λ1/2

N̄t

√
π

b,

A−L =
e−iπ/4λ1/2

2N̄t

√
π
a.

(4.12)
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Matching for X > Xt

When X > Xt, in the cut-on region, the inner variable r = λεη−2/3Xη is positive. The
asymptotic expansion of Airy functions given in Appendix C.1 gives

χ(−r) ∼ aεγ
cos
(

2
3
r3/2 − π

4

)
√
πr1/4

− bεγ
sin
(

2
3
r3/2 − π

4

)
√
πr1/4

.

The propagating integral in (4.2) is

1

ε

∫ Xη

0

kσ

β2
dξη ∼

1

ε
λ3/2

∫ Xη

0

√
εηξη dξη

= λ3/2 2

3
ε3/2η−1X3/2

η

=
2

3
r3/2,

and the amplitude is

N√
σ
∼ Nt

√
kt
βt

(
εηXηλ

3
)−1/4

=
N̄t

ε1/6λ1/2r1/4
,

where N̄t = Ntk
1/2
t /βt. The matching gives

aεγ
cos
(

2
3
r3/2 − π

4

)
√
πr1/4

− bεγ
sin
(

2
3
r3/2 − π

4

)
√
πr1/4

=
N̄t

ε1/6λ1/2r1/4

[
A+
R exp

(
−i

2

3
r3/2

)
+A−R exp

(
i
2

3
r3/2

)]
.

The value γ = −1/6 is retrieved and the outer-right coefficients are related to the inner
coefficients by 

A+
R =

e−iπ/4λ1/2

2N̄t

√
π

(ia+ b),

A−R =
e−iπ/4λ1/2

2N̄t

√
π

(a+ ib).

(4.13)

4.1.4 Connection Formulas

The systems of equations (4.12) and (4.13) form what is known as the connection
formulas between both sides of the boundary layer and are summed up by(

A−L
A+
R

)
=

[
−i/2 1

1 i

](
A+
L

A−R

)
. (4.14)

They are expressed in a way that is useful for the implementation in the mode-matching
procedure since the coefficients A+

L and A−R are the known inputs. For example, Rien-
stra [108, 109] and Ovenden [87, 88] investigated the case of a transition for an incident
cut-on mode in a infinite duct, which corresponds to A+

L = 0 and A−R = 1, and they
found the same result: reflection coefficient A+

R = i and transmission coefficient A−L = 1.
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Furthermore, Ovenden [88] also treated the case of an incident cut-off mode undergo-
ing transition, transposing to A+

L = 1 and A−R = 0, but didn’t explicitly derived the
reflection and transmission coefficients. Though it will appear that the same result is
obtained by looking at the composite solution later on: reflection coefficient A−L = −i/2
and transmission coefficient A+

R = 1.
In both cases the transmission coefficient is the same but the reflection coefficient

has a phase shift of either +π/2 or −π/2 and in the case of an incident cut-off mode
the amplitude is also halved. This reduces noticeably the impact of the reflected
cut-off mode at the leading-edge interface. The significant outcome should then be
the transmitted cut-on mode which, if the transition appears sufficiently close to the
leading edge compared to the decaying rate of the cut-off mode, could carry energy to
the trailing-edge interface by acoustic tunnel effect. On the other hand, for an incident
cut-on mode, the reflection at the transition generates a standing wave in the cut-on
region. Indeed it could have a significant impact if the mode undergoing transition
starts to prevail over the other modes in the inter-vane channels.

In order to attest the impact of such phenomena, the mode-matching procedure
needs to be modified to account for the reflected part of the modes undergoing transi-
tion. This could be implemented with the actual piece-wise solution (φL, φI , φR) but
the choice of the solution to use depending on the transition location is problematic and
could end up to a wrong evaluation of the potential. To solve this issue, a composite
solution valid throughout the whole channel, inside and outside the transition region,
is now derived.

4.1.5 Uniformly Valid Solution

Langer [63] seems to be the first to give a uniform solution to such a mathematical
problem. In the field of slowly-varying duct acoustics, Nayfeh & Telionis [83] derived a
solution for converging hard-walled rectangular and circular ducts without flow. Then
Ovenden [86] expressed the solution for slowly-varying ducts with irrotational flow
and arbitrary cross-section. The final result was always given for an incident cut-on
mode in an infinitely long duct and, as a consequence, the exponentially growing term
beyond the turning point was discarded. In the inter-vane channels, this discarded
term corresponds to an incident cut-off mode generated at the leading-edge interface
and cannot be neglected. In order to account for this cut-off mode, the mathematical
procedure used by Ovenden [86] is followed and adapted for a more general case where
no solution of the Helmholtz equation is discarded in the outer solutions.

Mimicking the form of the outer solutions (4.1 – 4.2) and inner solution (4.11), the
desired composite solution φ̃ of (4.4) is expressed as

φ̃(X̃, y) = f̃(X̃, y)χ(r). (4.15)

The function f̃(X̃, y) represents the slowly varying part in terms of the slow variable X̃
while χ(r) is a transitional part around the turning point. Knowing the boundary-layer
thickness from the balancing in (4.5) leads to choose

r =
g(X̃)

ε2/3
,

where the function g remains unknown at the moment. Substituting these expressions
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into (4.4) gives
ε2/3(g′)2χ′′ + k̃2σ̃2χ = O(ε). (4.16)

Letting

r =
g

ε2/3
=

k̃2σ̃2

ε2/3(g′)2
, (4.17)

and introducing it into (4.16) concludes that the transitional function χ is solution of
Airy’s equation at leading order

χ′′(r) + rχ(r) = O(ε), (4.18)

whose general solution is
χ(r) = aAi(−r) + bBi(−r). (4.19)

The variable r can be expressed after solving the ordinary differential equation on g(X̃)
in (4.17) as

r =


−

(
3

2ε

∫ X̃t

X̃

k̃|σ̃| dξ̃

)2/3

< 0 if X̃ < X̃t,(
3

2ε

∫ X̃

X̃t

k̃|σ̃| dξ̃

)2/3

≥ 0 if X̃t ≤ X̃,

so that r is negative real for X̃ < X̃t (cut-off region) and positive real for X̃ ≥ X̃t

(cut-on region). The uniform solution (4.15) is now written as

φ̃(X̃, y) = f̃1(X̃, y)Ai(−r) + f̃2(X̃, y)Bi(−r). (4.20)

An expression for f̃1 and f̃2 is found by knowing that, far beyond the transition
location, the composite solution (4.20) must match the outer solutions (4.1 – 4.2).
These outer solutions are recast into

φ̃L(X̃, y) =
Ñ(X̃)√
σ̃(X̃)

ψ̃(X̃, y)

[
A+
L exp

(
2

3
(−r)3/2

)
+ A−L exp

(
−2

3
(−r)3/2

)]
,

for X̃ < X̃t and

φ̃R(X̃, y) =
Ñ(X̃)√
σ̃(X̃)

ψ̃(X̃, y)

[
A+
R exp

(
−i

2

3
r3/2

)
+ A−R exp

(
i
2

3
r3/2

)]
,

for X̃ > X̃t. Hence using the asymptotic expansion of Airy functions in Appendix C.1,
the matching at r → ±∞ yields at leading order

f̃1(X̃, y) = 2
√
π exp

(
iπ

4

)
Ñ(X̃)ψ̃(X̃, y)

(
3

2ε

1

|σ̃|3

∫ X̃

X̃t

k̃|σ̃| dξ̃

)1/6

A−L ,

f̃2(X̃, y) =
√
π exp

(
iπ

4

)
Ñ(X̃)ψ̃(X̃, y)

(
3

2ε

1

|σ̃|3

∫ X̃

X̃t

k̃|σ̃| dξ̃

)1/6

A+
L ,
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for r → −∞ and

f̃1(X̃, y) =
√
π exp

(
iπ

4

)
Ñ(X̃)ψ̃(X̃, y)

(
3

2ε

1

|σ̃|3

∫ X̃

X̃t

k̃|σ̃| dξ̃

)1/6

(A−R − iA+
R),

f̃2(X̃, y) =
√
π exp

(
iπ

4

)
Ñ(X̃)ψ̃(X̃, y)

(
3

2ε

1

|σ̃|3

∫ X̃

X̃t

k̃|σ̃| dξ̃

)1/6

(A+
R − iA−R),

for r → +∞. Each matching gives a solution for f̃1 and f̃2 that should end up to the
same uniform solution. Thus(

A−L
A+
R

)
=

[
−i/2 1

1 i

](
A+
L

A−R

)
,

which demonstrates that the connection formulas (4.14) are recovered. The uniformly
valid solution can finally be expressed as, for example,

φ(X, y) =
Q̄√
Dk

ψ(X, y)
∣∣∣ r
σ2

∣∣∣1/4 exp

(
i

ε

∫ X

Xt

kM

β2
dξ

)[
(A−R −

i

2
A+
L)Ai(−r) +

1

2
A+
LBi(−r)

]
,

(4.21)
where Q̄ = 2

√
πeiπ/4Q and

r =


−
(

3

2ε

∫ Xt

X

k|σ|
β2

dξ

)2/3

< 0 if X < Xt,(
3

2ε

∫ X

Xt

k|σ|
β2

dξ

)2/3

≥ 0 if Xt ≤ X.

It should be noted that the term |r/σ2|1/4 in (4.21) is always real positive and is not
singular when σ2(Xt) = 0. In the boundary layer, let X = Xt + ε2/3Xδ, so

|σ|2(X) = |σ|2(Xt + ε2/3Xδ) ∼ ε2/3
β4
t

k2
t

λ3|Xδ|,

and
|r| ∼ λ|Xδ|,

where
λ3 =

k2
t (σ

2)′t
β4
t

> 0.

These inner-region expansions at leading order demonstrate that

∣∣∣ r
σ2

∣∣∣1/4 ∼ ε−1/6

√
kt
λβ2

t

> 0 for |X −Xt| = O(ε2/3). (4.22)

In the following, the validity and usefulness of the derived composite solution is high-
lighted through both examples of an incident cut-on mode and an incident cut-off mode.
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Transition Point Analysis Summary

A singularity in the leading-order approximate slowly-varying acoustic potential
has been highlighted and investigated. The singularity is due to the transition of
a mode from cut-on to cut-off, or vice-versa, and thus is called a transition point.
In the terminology of matched asymptotic expansions [47] this is a boundary
layer and its thickness has been evaluated to O(ε2/3). An inner solution has
been derived along with the connection formulas between the outer solutions
coefficients. Hence the reflected and transmitted coefficients for the case of an
incident cut-on mode and the case of an incident cut-off mode has been deduced
and the results agree with the literature. Finally, a uniformly valid solution for
a mode undergoing transition has been developed which covers both cases of an
incident right-running cut-off mode and an incident left-running cut-on mode
that will be used in the mode-matching procedure.

4.2 Examples of Acoustic Modes Undergoing Transi-
tion

4.2.1 Cut-on to Cut-off Transition

In the inter-vane channels, an upstream-propagating mode generated at the trailing-
edge interface could undergo cut-on to cut-off transition along its way. In this case
the input parameters for the composite solution (4.21) are A+

L = 0 and A−R = 1 (see
Figure 4.1), which yields

φ(X, y) =
Q̄√
Dk

ψ(X, y)
∣∣∣ r
σ2

∣∣∣1/4 exp

(
i

∫ X

Xt

kM

β2
dξ

)
Ai(−r). (4.23)

Figure 4.4 shows the result of the uniform solution compared to the outer solutions for
ε ' 0.14 at two different frequencies. For both frequencies the uniform solution fits well
with the outer solutions outside the vicinity of the boundary layer and the asymptotic
expansion (4.22) is used at the transition location to smooth out the numerical results.

The crucial feature is the superposition of the incident mode and its reflection which
generates a standing wave between the turning point and the trailing-edge interface.
Depending on the transition location, the amplitude of the standing wave at the trailing
edge ranges from zero to its maximal value. Hence if the mode considered carries a
significant amount of energy, the transition location could have a noticeable impact on
the energy distribution between trailing-edge scattered modes. On the other hand, an
evanescent mode is transmitted beyond the transition point. In the first scenario at
ka = 9.3 shown in Figure 4.4a, the transition occurs sufficiently close to the inlet so
that the outer solution fails. Thus both uniform and outer solution exhibit different
values at this location. This emphasizes the importance and practical interest of a
uniform solution. Though in the second scenario in Figure 4.4b, at ka = 8.5, the
transmitted cut-off mode has completely vanished at the leading-edge interface and so
the outer solution is valid in this case.

133



Chapter 4. Cut-on/Cut-off Transition of Sound

(a) (b)

Figure 4.4: Left-running cut-on mode undergoing transition in a duct of ε ' 0.14. The
left scenario is at ka = 9.3 while the right scenario is at ka = 8.5. The amplitude of
the uniform solution is shown in blue line and the outer solutions in red dashed lines.

4.2.2 Cut-off to Cut-on Transition

For an incident cut-off mode generated at the leading-edge interface and undergoing
transition, the input parameters are A+

L = 1 and A−R = 0 (see Figure 4.1). This yields
a uniformly valid solution as

φ(X, y) =
Q̄√
Dk

ψ(X, y)
∣∣∣ r
σ2

∣∣∣1/4 exp

(
i

∫ X

Xt

kM

β2
dξ

)
F̄BA(−r), (4.24)

where F̄BA ≡ 1
2
(Bi − iAi). Figure 4.5 shows the amplitude of the uniform solution

and outer solutions for ε ' 0.14 at two different frequencies. Again the asymptotic
expansion (4.22) is used at the transition location to smooth out the numerical results.

In the first scenario, at ka = 9.0, the transition occurs sufficiently close to the
leading edge compared to the decaying rate of the cut-off mode and thus it transmits
some energy to the propagating mode beyond. There is also a reflected cut-off mode
but it should hardly be noticeable here since the reflection coefficient amplitude is
half the incident one which has already been reduced by almost two thirds from the
inlet to the transition location. The discrepancy seen between the outer and uniform
solutions on the left side of the transition in Figure 4.5a is solely due to the asymptotic
approximation of the Airy function of second kind Bi (see Appendix C.1) and shows
that the potential is not out of the boundary layer yet. This is clear when looking at
the second scenario in Figure 4.5b, at ka = 8.5, where the transition occurs farther
away from the leading edge. In this case both outer and uniform solutions match well
outside the vicinity of the transition location.

In the next section, the uniform solutions for an incident cut-off or cut-on mode
are used to adapt the mode-matching equations to the presence of a transition. The
example of an incident cut-on mode is used for the trailing-edge interface matching
and the incident cut-off mode for the leading-edge interface matching.
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(a) (b)

Figure 4.5: Right-running cut-off mode undergoing transition in a duct of ε ' 0.14.
The left scenario is at ka = 9.0 while the right scenario is at ka = 8.5. The amplitude
of the uniform solution is shown as a blue line and the outer solutions as a red dashed
lines.

Examples of Modes Undergoing Transition Summary

The uniform solution has been validated against the outer solutions and proves
to be an adequate regularization of the leading-order slowly-varying acoustic
potential usable for both cases of an incident cut-on mode and an incident cut-
off mode. For numerical computation it can be necessary to smooth out the
value of the regularized solution at the transition location using (4.22) in order
to avoid discrepancies in the modal amplitudes when the transition occurs close
to an interface.

4.3 Mode-Matching Equations

4.3.1 Initial Leading-Edge Interface

Acoustic Potentials

Here the potentials formulations need to be adjusted to account for the reflected part
of a cut-off mode undergoing transition in the slowly-varying part of the channel. In
the annular domain (Figure 4.6) the incident φi and reflected φr acoustic potentials
remain unchanged, so

φi(x, y) = eiαjyeik+j x, φr(x, y) =
∞∑

p=−∞

Rpe
iαpyeik−p x, (4.25)

where

αj =
j

R
, k+

j =
−(k − αjMy)Mx +

√
k2 − (β2

x −M2
y )α2

j − 2kαjMy

β2
x

,
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Figure 4.6: Scattering of an incident mode at the staggered leading-edge interface.

αp = αj + p
2π

b
, k−p =

−(k − αpMy)Mx −
√
k2 − (β2

x −M2
y )α2

p − 2kαpMy

β2
x

.

The validity domain is {
y ∈ [0, 2πR],
x ∈]−∞, 0].

In the constant part of the channel (triangle ABC in Figure 4.6) the downstream- and
upstream-propagating modes φd and φu are

φd(ζ, η) =
∞∑
q=0

Aq cos (αqη) eik+q ζ , (4.26)

φu(ζ, η) =
∞∑
q=0

Bq cos (αqη) eik−q (ζ−a tan Ψ), (4.27)

where

αq =
qπ

a
, k±q =

−kM ±
√
k2 − β2α2

q

β2
,

and {
η ∈ [0, a],
ζ ∈ [η tan Ψ, a tan Ψ].

(4.28)

Assuming a mode q undergoes transition from cut-off to cut-on in the slowly-varying
part of the channel (beyond the interface BC in Figure 4.6), its acoustic potential is
given by (4.24). Because of the opposite Fourier-transform convention used here, the
complex conjugate of the solution is taken. It reads

φq(S, n) = Qdq

√
2

Dkh
cos

(
θq

[
n+

h

2

]) ∣∣∣∣ rqσ2
q

∣∣∣∣1/4 exp

(
−i

∫ S

St

kM

β2
dξ

)
FBA(rq), (4.29)

where

θq(S) =
qπ

h
, σq(S) =

√
1−

(
βθq
k

)2

,
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rq(S) =


(

3

2

∫ St

S

k|σq|
β2

dξ

)2/3

> 0 if S < St,

−
(

3

2

∫ S

St

k|σq|
β2

dξ

)2/3

≤ 0 if St ≤ S,

and FBA ≡ 1
2
(Bi + iAi), which is a composition of Airy functions of second and first

kinds, respectively. The validity domain for this expression is{
n ∈ [−h(S)/2, h(S)/2],
S ∈ [0, Lc].

Upstream of the transition, in the cut-off region where rq > 0, the incident and reflected
parts of the solution are easily distinguishable in (4.29). The incident part, with
exponentially decaying amplitude, is associated to the function Bi whereas the reflected
part, with exponentially growing amplitude, is associated to Ai. In order to determine
the constant coefficient Qdq in terms of Aq, both formulations from (4.26) and (4.29)
are matched at the interface between the constant and slowly varying parts of the
channel (segment BC from Figure 4.6). On this interface h(S = 0) = a, thus{

η ∈ [0, a],
ζ = a tan Ψ,

and
{
n = η − a/2,
S = 0.

In that respect, the equality of (4.26) and the incident part of (4.29) results in

Qdq = Aq

√
2eik+q a tan Ψ

Gq(0)Bi(rq(0))
, (4.30)

where

Gq(S) =

∣∣∣∣ rq(S)

D2(S)k2(S)h2(S)σ2
q (S)

∣∣∣∣1/4 exp

(
−i

∫ S

St

k(ξ)M(ξ)

β2(ξ)
dξ

)
. (4.31)

Note that k = ω/C can be a function of the curvilinear abscissa s if compressible effects
are accounted for. Now equating the reflected part of (4.29) with its counterpart (4.27)
yields

Qdq = Bq

√
2e−iπ/2

Gq(0)Ai(rq(0))
. (4.32)

From equations (4.30) and (4.32) the reflected coefficients Bq can be expressed in terms
of Aq as

Bq = Aq
Ai(rq(0))

Bi(rq(0))
ei(k+q a tan Ψ+π/2). (4.33)

Consequently the channel mode and its reflection at the transition point can be gath-
ered together and, introducing the coefficient

Fq =


Ai(rq(0))

Bi(rq(0))
e−2b sin Ψ

√
β2α2

q−k2/β2+iπ
2 if ∃St ∈ [0, Lc], σ

2
q (St) = 0,

0 otherwise,
(4.34)
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the general acoustic potential φ̂d is expressed as

φ̂d(ζ, η) =
∞∑
q=0

Aq cos (αqη)
[
eik+q ζ + Fqeik−q ζ

]
. (4.35)

The reflected part for modes undergoing transition is simply added along with the
coefficient Fq being zero for modes not undergoing transition. Furthermore, the coeffi-
cient Fq represents the back and forth propagation between the leading-edge interface
and the transition location with a ratio of Airy functions for the slowly varying part
of the channel and, for the constant part, an exponential decay corresponding to the
distance traveled. It also has the phase shift of π/2 which occurs at the transition
and the amplitude reduction by a half which is given by the ratio of Airy functions
at their origin. It is interesting to see that the ratio of Ai(rq(0)) over Bi(rq(0)) is
maximum if St = 0 (the closest transition location to the leading-edge interface) and
decreases as st increases (transition location moving away from the leading edge). As
expected, it shows that the greater the distance the reflected mode has to travel before
going back to the leading edge, the weaker its influence. Hence its impact should be
noticeable only in cases where the distance it travels times its decaying rate is small:
(b sin Ψ + st)

√
β2α2

q − k2/β2 � 1.

Continuity of the Acoustic Potential

To derive the continuity equations, a change of variables is performed to express all
potentials in terms of (x, y). It yields

φ̂d(x, y) =
1

2

∞∑
q=0

Aq

[
ei(− qπa sin Ψ+k+q cos Ψ)xei( qπa cos Ψ+k+q sin Ψ)y

+ ei( qπa sin Ψ+k+q cos Ψ)xei(− qπa cos Ψ+k+q sin Ψ)y

+ Fq
(

ei(− qπa sin Ψ+k−q cos Ψ)xei( qπa cos Ψ+k−q sin Ψ)y

+ei( qπa sin Ψ+k−q cos Ψ)xei(− qπa cos Ψ+k−q sin Ψ)y
)]
. (4.36)

Then the acoustic potential continuity at the leading-edge interface reads

eiαjy +
∞∑

p=−∞

Rpe
iαpy =

1

2

∞∑
q=0

Aq

[
ei( qπb +k+q sin Ψ)y + ei(− qπb +k+q sin Ψ)y

+Fq
(

ei( qπb +k−q sin Ψ)y + ei(− qπb +k−q sin Ψ)y
)]
. (4.37)

Since all coefficients Rp and Aq are unknowns, a projection is performed on the modal
basis of the reflected waves to decouple them in (4.37), ending up with one equation
on each reflected wave. The corresponding operator is∫ b

0

(•)e−iανy dy, with αν = αj + ν
2π

b
, ν ∈ Z.
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This leads to three kinds of integrals in (4.37), namely Ii,ν , Ip,ν and I±±q,ν , as

Ii,ν +
∞∑

p=−∞

RpIp,ν =
∞∑
q=0

Aq
[
I++
q,ν + I−+

q,ν + Fq
(
I+−
q,ν + I−−q,ν

)]
. (4.38)

The integral based on the incident wave is

Ii,ν =

∫ b

0

ei(αj−αν)y dy =

∫ b

0

e−i2πνy/b dy =

{
b if ν = 0,
0 if ν 6= 0.

Hence, Ii,ν = bδν,0 where δ represents the Kronecker symbol. The integral associated
with the reflected waves is

Ip,ν =

∫ b

0

ei(αp−αν)y dy =

∫ b

0

ei2π(p−ν)y/b dy =

{
b if ν = p,
0 if ν 6= p.

Hence,
∑∞

p=−∞RpIp,ν = bRν . Finally, the transmitted waves in the inter-vane channel
yield different integrals denoted by the ± symbols as

I±±q,ν =
1

2

∫ b

0

ei(± qπ
b

+k±q sin Ψ−αν)y dy =
b

2

sin
(
ϕ±±q,ν

)
ϕ±±q,ν

eiϕ±±q,ν ,

where
ϕ±±q,ν =

b

2

(
±qπ
b

+ ϕ±q,ν(Ψ)
)

and ϕ±q,ν(Ψ) = k±q sin Ψ− αν .

This last integrals can also be recast together in the potential continuity equation to
give

b (Rν + δν,0) =
∞∑
q=0

Aq
(
I+
q,ν + FqI−q,ν

)
, (4.39)

where

I±q,ν(Ψ) = I+±
q,ν + I−±q,ν =


−iϕ±q,ν(Ψ)

(qπ/b)2 − ϕ± 2
q,ν (Ψ)

(
1− (−1)qeibϕ±q,ν(Ψ)

)
,

b

2
(1 + δq,0) if

∣∣ϕ±q,ν(Ψ)
∣∣ =

qπ

b
.

(4.40)

Continuity of the Modified Acoustic Velocity

To write the continuity equation on the modified acoustic velocity β2
xux−MxMyuy, the

derivative of the potential (4.36) with respect to each coordinate is needed. It yields

∂φ̂d
∂x

=
i

2

∞∑
q=0

Aq

[(
−qπ
a

sin Ψ + k+
q cos Ψ

)
ei(− qπa sin Ψ+k+q cos Ψ)xei( qπa cos Ψ+k+q sin Ψ)y

+
(qπ
a

sin Ψ + k+
q cos Ψ

)
ei( qπa sin Ψ+k+q cos Ψ)xei(− qπa cos Ψ+k+q sin Ψ)y

+ Fq
{(
−qπ
a

sin Ψ + k−q cos Ψ
)

ei(− qπa sin Ψ+k−q cos Ψ)xei( qπa cos Ψ+k−q sin Ψ)y

+
(qπ
a

sin Ψ + k−q cos Ψ
)

ei( qπa sin Ψ+k−q cos Ψ)xei(− qπa cos Ψ+k−q sin Ψ)y
}]

, (4.41)
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and

∂φ̂d
∂y

=
i

2

∞∑
q=0

Aq

[(qπ
a

cos Ψ + k+
q sin Ψ

)
ei(− qπa sin Ψ+k+q cos Ψ)xei( qπa cos Ψ+k+q sin Ψ)y

+
(
−qπ
a

cos Ψ + k+
q sin Ψ

)
ei( qπa sin Ψ+k+q cos Ψ)xei(− qπa cos Ψ+k+q sin Ψ)y

+ Fq
{(qπ

a
cos Ψ + k−q sin Ψ

)
ei(− qπa sin Ψ+k−q cos Ψ)xei( qπa cos Ψ+k−q sin Ψ)y

+
(
−qπ
a

cos Ψ + k−q sin Ψ
)

ei( qπa sin Ψ+k−q cos Ψ)xei(− qπa cos Ψ+k−q sin Ψ)y
}]

. (4.42)

Thus the modified velocity continuity at the leading-edge interface reads

(β2
xk

+
j −MxMyαj)e

iαjy +
∞∑

p=−∞

Rp

(
β2
xk
−
p −MxMyαp

)
eiαpy

=
1

2

∞∑
q=0

Aq

[(
β2
xK

+−
q −MxMyA

++
q

)
eiA++

q y +
(
β2
xK

++
q −MxMyA

−+
q

)
eiA−+

q y

+Fq
{(
β2
xK
−−
q −MxMyA

+−
q

)
eiA+−

q y +
(
β2
xK
−+
q −MxMyA

−−
q

)
eiA−−q y

}]
,

(4.43)

where
K±±q = k±q cos Ψ± qπ

a
sin Ψ, A±±q = ±qπ

a
cos Ψ + k±q sin Ψ.

Using the same projection method as previously gives

(β2
xk

+
j −MxMyαj)Ii,ν +

∞∑
p=−∞

Rp

(
β2
xk
−
p −MxMyαp

)
Ip,ν

=
1

2

∞∑
q=0

Aq
[(
β2
xK

+−
q −MxMyA

++
q

)
I++
q,ν +

(
β2
xK

++
q −MxMyA

−+
q

)
I−+
q,ν

+Fq
{(
β2
xK
−−
q −MxMyA

+−
q

)
I+−
q,ν +

(
β2
xK
−+
q −MxMyA

−−
q

)
I−−q,ν

}]
. (4.44)

After some algebra, the modified velocity continuity reads

b
(
K+
j δν,0 +K−ν Rν

)
=
∞∑
q=0

Aq
(
K+
q,νI

+
q,ν + FqK−q,νI−q,ν

)
, (4.45)

where
K+
j = β2

xk
+
j −MxMyαj,

K−ν = β2
xk
−
ν −MxMyαν ,

K±q,ν =
(
β2
x cos Ψ−MxMy sin Ψ

)
k±q +

tan Ψ

ϕ±q,ν(Ψ)

(qπ
b

)2

.
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Linear System of the Mode-Matching Condition

To solve the problem on the Aq coefficients, the Rν terms are canceled out by subtract-
ing (4.45) to K−ν times (4.39). This yields

∞∑
q=0

Aq
[
I+
q,ν

(
K−ν −K+

q,ν

)
+ FqI−q,ν

(
K−ν −K−q,ν

)]
= b

(
K−ν −K+

j

)
δν,0. (4.46)

After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
matrix form of the equations to solve is

Φ1
qA = Φi, (4.47)

where

Φ1
q(ν, q) = I+

q,ν

(
K−ν −K+

q,ν

)
+ FqI−q,ν

(
K−ν −K−q,ν

)
and Φi(ν, 1) = b

(
K−ν −K+

j

)
δν,0.

This has to be solved numerically using, for example, an algorithm based on the LU
decomposition. Then the Rν coefficients can be deduced from either the potential
continuity (4.39) or the modified velocity continuity (4.45).

Another possibility is to solve the Aq and Rν coefficients simultaneously with a
global matrix equation of the form(

E1
1 F1

1

E1
2 F1

2

)(
A
R

)
=

(
H1

1

H1
2

)
, (4.48)

where
E1

1(ν, q) = I+
q,ν + FqI−q,ν , F 1

1 (ν, ν) = −bδν,ν , H1
1 (ν, 1) = bδν,0,

E1
2(ν, q) = K+

q,νI
+
q,ν + FqK−q,νI−q,ν , F 1

2 (ν, ν) = −bK−ν δν,ν , H1
2 (ν, 1) = bK+

j δν,0.

4.3.2 Trailing-Edge Interface

Acoustic Potentials

At the trailing-edge interface, the acoustic potentials involved are represented in Fig-
ure 4.7. The expression of the transmitted φt acoustic potential is

Figure 4.7: Scattering of a downstream-propagating channel mode at the trailing-edge
interface.
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φt(x
′, y′) =

∞∑
p=−∞

Tpe
iαpy′eik+p x

′
, (4.49)

where

x′ = x− cx, y′ = y −Rc(1− cos Ψ), αp = αj + p
2π

b
, k+

p =
−kM +

√
k2 − β2α2

p

β2
,

cx is the projection of the chord length on the x−axis and Rc is the vanes curvature
radius. The validity domain is {

y′ ∈ [0, 2πR],
x′ ∈ [0,∞[.

In the inter-vane channels, an incident mode propagating downstream from the leading
edge and undergoing transition along its way is expressed from (4.29) and (4.30) as

φdq(S, n) = Aq
Gq(S)

Gq(0)

Bi(rq(S)) + iAi(rq(S))

Bi(rq(0))
cos

(
θq

[
n+

h

2

])
eik+q a tan Ψ. (4.50)

In order to have a general expression of the acoustic potential φd, let Υ+
q be the am-

plitude and phase stream-wise variation of a mode not undergoing transition. It reads
from (2.92 – 2.95):

Υ±q (S) =

√
D0(S0)k(S0)σq(S0)h(S0)

D0(S)k(S)σq(S)h(S)
exp

(
i

∫ s

S0

µ±q (ξ) dξ

)
, S0 =

{
0 for Υ+

q ,
Lc for Υ−q .

and

µ±q (S) =
−kM ± kσq

β2
, σq(S) =

√
1−

(
βθq
k

)2

, θq(S) =
qπ

h(S)
.

Introducing the general function Ξ+
q as

Ξ+
q (S) =


Gq(S)

Gq(0)

Bi(rq(S)) + iAi(rq(S))

Bi(rq(0))
eik+q a tan Ψ if ∃st ∈ [0, Lc], σ

2
q (St) = 0,

Υ+
q (S)eik+q a tan Ψ otherwise,

(4.51)
allows one to write the acoustic potential as

φd(S, n) =
∞∑
q=0

AqΞ
+
q (S) cos

(
θq

[
n+

h

2

])
. (4.52)

Reflected modes φuq are generated from the scattering of the acoustic modes φdq
by the trailing edges. Indeed these modes can also undergo transition in the channel.
The sum of an upstream-propagating mode and its reflection at the transition point is

φ̂uq(S, n) = Quq

√
2

Dkh
cos

(
θq

[
n+

h

2

]) ∣∣∣∣ rqσ2
q

∣∣∣∣1/4 exp

(
−i

∫ s

St

kM

β2
dξ

)
Ai(rq(S)).

(4.53)
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The normalization is chosen such that the amplitude at the trailing-edge interface
locally equates to

Quq

√
2

Dkh

∣∣∣∣ rqσ2
q

∣∣∣∣1/4 exp

(
−i

∫ Lc

St

kM

β2
dξ

)
Ai(rq(Lc)) = Bq. (4.54)

Hence
Quq =

Bq√
2Gq(Lc)Ai(rq(Lc))

, (4.55)

and the upstream-propagating modes undergoing transition are written as

φ̂uq(S, n) = Bq
Gq(S)

Gq(Lc)

Ai(rq(S))

Ai(rq(Lc))
cos

(
θq

[
n+

h

2

])
. (4.56)

In order to write a general expression for the acoustic potential whether or not a mode
undergoes transition, another general function Ξ−q is introduced as

Ξ−q (S) =


Gq(S)

Gq(Lc)

Ai(rq(S))

Ai(rq(Lc))
if ∃st ∈ [0, Lc], σ

2
q (St) = 0,

Υ−q (S) otherwise.
(4.57)

The acoustic potential corresponding to the upstream-propagating modes is expressed
as

φ̂u(S, n) =
∞∑
q=0

BqΞ
−
q (S) cos

(
θq

[
n+

h

2

])
. (4.58)

For both φd (4.52) and φ̂u (4.58) the validity range is{
n ∈ [−h(S)/2, h(S)/2],
s ∈ [0, Lc].

Continuity of the Acoustic Potential

At the trailing-edge interface, the continuity of the potential reads

∞∑
q=0

[
AqΞ

+
q (Lc) +Bq

]
cos (θq(Lc)y

′) =
∞∑

p=−∞

Tpe
iαpy′ . (4.59)

After a projection on the modal basis of the transmitted modes∫ b

0

(•)e−iανy′ dy′, with αν = αj + ν
2π

b
, ν ∈ Z,

the integrals yields ∫ b

0

ei(αp−αν)y′ dy′ = bδν,p,
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and

I0
q,ν =

∫ b

0

cos (θq(Lc)y
′) e−iανy′ dy′ =


iαν

(αq)
2 − α2

ν

[
1− (−1)qe−iαjb

]
,

b

2
(1 + δq,0) if αν =

qπ

b
.

Notice that I0
q,ν is a particular case of the previously defined inner product I±q,ν(Ψ = 0)

in (4.40) for a null stagger angle. Compiling these results together yields

∞∑
q=0

[
AqΞ

+
q (Lc) +Bq

]
I0
q,ν = bTν . (4.60)

Continuity of the Acoustic Axial Velocity

The derivation of the axial velocities in the slowly varying part of the channel are given
in Appendix C.2. It yields at leading order

∂φd
∂s

(S, n) ∼
∞∑
q=0

i

(
−kM
β2

+
kς+
q

β2

)
AqΞ

+
q (S) cos

(
θq

[
n+

h

2

])
, (4.61)

where the general reduced axial wavenumber ς+
q is

ς+
q = σq if @st ∈ [0, Lc], σ

2
q (St) = 0,

and otherwise

ς+
q = i|σq| ×


1

|rq|1/2
Bi
′(rq) + iAi

′(rq)

Bi(rq) + iAi(rq)
+

1

4|rq|3/2
if S < St,

1

|rq|1/2
Bi
′(rq) + iAi

′(rq)

Bi(rq) + iAi(rq)
− 1

4|rq|3/2
if St ≤ S.

Also, the acoustic velocity corresponding to the upstream-propagating modes is given
by

∂φu
∂s

(S, n) ∼
∞∑
q=0

i

(
−kM
β2
−
kς−q
β2

)
BqΞ

−
q (S) cos

(
θq

[
n+

h

2

])
, (4.62)

where the general reduced axial wavenumber ς−q is

ς−q = σq if @st ∈ [0, Lc], σ
2
q (St) = 0,

and otherwise

ς−q = −i|σq| ×


1

|rq|1/2
Ai
′(rq)

Ai(rq)
+

1

4|rq|3/2
if S < St,

1

|rq|1/2
Ai
′(rq)

Ai(rq)
− 1

4|rq|3/2
if St ≤ S.
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Introducing the general axial wavenumber as

τ±q = −kM
β2
±
kς±q
β2

,

and projecting on the annular modal basis, the axial velocity continuity at the trailing-
edge interface reads

∞∑
q=0

[
τ+
q (Lc)AqΞ

+
q (Lc) + τ−q (Lc)Bq

]
I0
q,ν = k+

ν bTν . (4.63)

Linear System of the Mode-Matching Condition

The matrix equation for this interface readsE2
1 F2

1 0

E2
2 F2

2 G2
K

E2
K 0 0

 B
T

ΩK

 =

H2
1

H2
2

H2
K

 , (4.64)

(
E2

p F2
p

E2
v F2

v

)(
U
T

)
=

(
H2

p

H2
v

)
, (4.65)

where

E2
p(ν, q) = I0

q,ν , F 2
p (ν, ν) = −bδν,ν , H2

p (ν, 1) = −
∞∑
q=0

AqΞ
+
q (Lc)I

0
q,ν ,

E2
v(ν, q) = τ−q (Lc)I

0
q,ν , F 2

v (ν, ν) = −bk+
ν δν,ν , H2

v (ν, 1) = −
∞∑
q=0

τ+
q (Lc)AqΞ

+
q (Lc)I

0
q,ν ,

4.3.3 Correction to the Leading-Edge Interface

For the next steps in the iterative procedure, the leading-edge matching (4.48) needs to
be modified to account for the upstream scattered modes φuq traveling from the trailing-
edge interface to the leading-edge interface, see Figure 4.8. The potential continuity

Figure 4.8: Scattering of an incident mode at the staggered leading-edge interface.
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and modified velocity continuity read, at the gth iteration,

∞∑
q=0

Agq
(
I+
q,ν + FqI−q,ν

)
+Bg−1

q Ξ−q (0)e−ik−q b sin ΨI−q,ν = b (Rg
ν + δν,0) , (4.66)

and

∞∑
q=0

Agq
(
K+
q,νI

+
q,ν + FqK−q,νI−q,ν

)
+Bg−1

q Ξ−q (0)e−ik−q b sin ΨK−q,νI−q,ν = b
(
K−ν Rg

ν +K+
j δν,0

)
.

(4.67)
Combining them to cancel out the unknown Rg

ν coefficients yields

∞∑
q=0

Agq
[
I+
q,ν

(
K−ν −K+

q,ν

)
+ FqI−q,ν

(
K−ν −K−q,ν

)]
= b

(
K−ν −K+

j

)
δν,0

−
∞∑
q=0

Bg−1
q Ξ−q (0)I−q,ν

(
K−ν −K−q,ν

)
e−ik−q b sin Ψ.

(4.68)

After a modal truncation (ν ∈ [−(Nν − 1)/2, (Nν − 1)/2] and q ∈ [0, Nq − 1]), the
corrected system of equations at the leading-edge interface is

Φ1
qA = Φi, (4.69)

where
Φ1
q(ν, q) = I+

q,ν

(
K−ν −K+

q,ν

)
+ FqI−q,ν

(
K−ν −K−q,ν

)
,

Φi(ν, 1) = b
(
K−ν −K+

j

)
δν,0 −

∞∑
q=0

Bg−1
q Ξ−q (0)I−q,ν

(
K−ν −K−q,ν

)
e−ik−q b sin Ψ.

The Rν coefficients are then deduced from either (4.66) or (4.67).

The corrected global system of equations at the leading-edge interface is(
E1

1 F1
1

E1
2 F1

2

)(
A
R

)
=

(
H1

1

H1
2

)
, (4.70)

where
E1

1(ν, q) = I+
q,ν + FqI−q,ν , F 1

1 (ν, ν) = −bδν,ν ,

H1
1 (ν, 1) = bδν,0 −

∞∑
q=0

Bg−1
q Ξ−q (0)I−q,νe

−ik−q b sin Ψ,

E1
2(ν, q) = K+

q,νI
+
q,ν + FqK−q,νI−q,ν , F 1

2 (ν, ν) = −bK−ν δν,ν ,

H1
2 (ν, 1) = bK+

j δν,0 −
∞∑
q=0

Bg−1
q Ξ−q (0)K−q,νI−q,νe−ik−q b sin Ψ,

146



4.3. Mode-Matching Equations

4.3.4 Global Matching

In order to avoid convergence issues when a transition occurs near the leading-edge
interface (see section 4.4.2), the iterative procedure going back and forth between the
leading edge (4.70) and trailing edge (4.65) can be replaced by a direct approach. This
method solves the matching equations on the whole cascade directly, as represented
in Figure 4.9. Thus all four unknown potentials are computed simultaneously as the
solution of the four matching equations: two at the leading edge and two at the trailing
edge. The weakness of the direct approach is that the size of the matrix is multiplied

Figure 4.9: Scattering of an incident mode by the cascade of cambered vanes.

by four by comparison to the matrices in the iterative approach. Since the matrix to
invert is larger it has a worse conditioning and so caution is required. Comparisons in
terms of acoustic power balance are shown in section 4.4.2.

Combining the continuity equations (4.66), (4.67), (4.60) and (4.63) leads to the
global system of equations

R1
p D1

p U1
p 0

R1
v D1

v U1
v 0

0 D2
p U2

p T2
p

0 D2
v U2

v T2
v




R
D
U
T

 =


H1

p

H1
v

0
0

 , (4.71)

where

R1
p(ν, ν) = −bδν,ν , D1

p(ν, q) = I+
q,ν + FqI−q,ν , U1

p (ν, q) = Ξ−q (0)I−q,νe
−ik−q b sin Ψ,

R1
v(ν, ν) = −bK−ν δν,ν , D1

v(ν, q) = K+
q,νI

+
q,ν + FqK−q,νI−q,ν ,

U1
v (ν, q) = Ξ−q (0)K−q,νI−q,νe−ik−q b sin Ψ,

D2
p(ν, q) = Ξ+

q (Lc)I
0
q,ν , U2

p (ν, q) = I0
q,ν , T 2

p (ν, ν) = −bδν,ν ,

D2
v(ν, q) = τ+

q (Lc)Ξ
+
q (Lc)I

0
q,ν , U2

v (ν, q) = τ−q (Lc)I
0
q,ν , T 2

v (ν, ν) = −bk+
ν δν,ν ,

and
H1
p (ν, 1) = bδν,0, H1

v (ν, 1) = bK+
j δν,0.
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Mode-Matching Equations Summary

A general formulation of the continuity equations has been derived which covers
both cases of acoustic modes undergoing transition and not. The continuity
equations have the same structure whereas a transition occurs or not due to a
general expression of axial wavenumbers τ±q and axial modal-evolution functions
Ξ±q . Finally, a global linear system of equations encompassing both leading-
edge and trailing-edge matching equations has been developed. It enables a
direct computation of all modal coefficients R, D, U , T . The choice of a direct
approach instead of an iterative approach was motivated by non-converging cases
with the iterative approach when a transition takes place close to the leading-
edge interface. The pros and cons of both methods are detailed in the next
section.

4.4 Validation

4.4.1 Modal Truncation

The following analyses are focused on the transition of the first two channel modes
q = 1 and q = 2, respectively named q1- and q2-transitions, for the geometry of the
fourth NASA CAA workshop, category 3, problem 2 [24]. The validation is performed
without flow M = 0 and with a camber angle of Ψ = 36°. Thus the maximal dimen-
sionless frequency of interest is kb = qπ/ cos Ψ ' 2.5π. Curvature effects are expected
to play a role at such frequencies in the acoustic propagation. Nonetheless, some
aspects of the transition effects should still be reliable due to the reflection and trans-
mission coefficients at the transition location being independent to the curvature [14].
A special attention is paid to that matter when investigating resonant phenomena in
Section 4.5.2.

Preliminary computations are done to assess the optimal number of modes N to
account for in the modal truncation and are shown in Figure 4.10. The error E at a

Figure 4.10: Norm of the acoustic power balance error, for j = 2, integrated from
kb = 0.9π to 2.6π.
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given dimensionless frequency kb is given by the acoustic power balance as

E(kb) = 1− Pt − Pr
Pi

, (4.72)

where Pi, Pr and Pt are the incident, reflected and transmitted acoustic powers, re-
spectively, as defined in (2.110 - 2.112). Then the 2-norm is defined as

||E||2 =

[∑
i

|E(kbi)|2
]1/2

, (4.73)

where the (kb)i values are the set of discrete dimensionless frequencies at which the
error E has been evaluated. To compute the result of Figure 4.10, 341 points have been
used linearly ranging from kb = 0.9π to 2.6π, which covers both transition ranges of
the modes q = 1 and q = 2. It is found that the optimal number of modes is N = 11 for
j = 2 and then the error increases for higher N due to ill-conditioning at the staggered
interface.

4.4.2 Iterative Procedure vs. Global Matching

A direct global approach has been developed in 4.3.4 to overcome convergence issues
with the iterative procedure when a transition occurs near the leading-edge interface.
These issues are highlighted in Figure 4.11 which shows the evolution of the acoustic
power balance with the frequency using both methods. The horizontal dashed lines
represent the limits of the 1% confidence range in which the results can be trusted.
The vertical dash-dotted lines are the limits of the transition ranges: 1 ≤ kb/π . 1.235
for the q1-transition and 2 ≤ kb/π . 2.47 for the q2-transition. With an incident mode
of order j = 0 (Figure 4.11a), the iterative procedure does not converge at the right-
end side of the first transition range, corresponding to the closest transition locations
to the leading-edge interface. This behavior seems to be due to numerical difficulties
to handle the exponentially growing reflected mode, the amplitude of which becomes
larger and larger as the transition approaches the leading edge. Since it happens in the
q1-transition range, only the mode q = 0 is cut-on at the leading-edge interface. It is
believed the channel mode D0 and the reflected annular modes Rν are not sufficient to
locally ensure enough dissipation while enforcing continuity. Using the global approach
allows one to account for the channel mode D1, which is cut-on in the other part of
the channel and can dissipate energy from the cut-off region. This method solves
the convergence problem smoothly for j = 0 but the balance suffers a drop of up to
1.8% for j = 2 and 4.6% for j = 5 (Figures 4.11b - 4.11c). Caution should then
be taken when analyzing results at these frequencies. As observed in Chapter 2, the
method does not give sufficiently accurate results for some incident modes due to the
ill-conditioned problem at the staggered interface. This appears to be also true with
the direct approach and inside the transition ranges as shown in Figure 4.11d for the
incident modal order j = −7. The acoustic balance is off of the 1% confidence range
for almost all frequencies in this case.

When lowering the camber angle to Ψ = 25° there is no convergence issue anymore,
see Figure 4.12. The global approach gives smoother results but sometimes shows
instabilities resulting in an error of 18% for an incident modal order of j = 0 at
kb/π = 2, as shown in Figure 4.12a. Furthermore, using the iterative procedure with
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(a) j = 0 (b) j = 2

(c) j = 5 (d) j = −7

Figure 4.11: Evolution of the acoustic power balance with the frequency using both
iterative and direct methods for different incident modal orders, Ψ = 36°.

N = 31 modes ensures accurate results for the scattering of the incident mode j = −7
which was badly resolved using N = 11 modes (see Figure 4.13). Although a similar
improvement is not possible when Ψ = 36°, it appears that the iterative procedure
should be used by default and the direct method only when convergence issues occur.
This is how all further results are obtained.

Validation Summary

The direct approach always converges and so it solves the issues encountered with
the iterative method in some cases where a transition occurs near the leading-
edge interface. However, even if it most often gives similar or identical results
to the iterative approach, sometimes the direct method is off by many percents
while the iterative method performs well. This behavior is seen at kb = 2π and
for some incident perturbations when increasing the number of modes in the
modal truncation. For that reason, the global approach should be used only for
frequencies at which the iterative approach has convergence issues.
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(a) j = 0 (b) j = 2

(c) j = 5 (d) j = −7

Figure 4.12: Evolution of the acoustic power balance with the frequency using both
iterative and direct methods for different incident modal orders, Ψ = 25°.

4.5 Results

4.5.1 Influence of the Transition on the Acoustic Power Balance

The necessity to account for the transition mechanism in the acoustic propagation is
highlighted in Figure 4.14. It shows the evolution of the acoustic power balance with
the frequency when accounting or not for the reflected modes at the transition. This is
basically a comparison of what is predicted with the model described in Chapter 2 and
the extended model of the current chapter. When the transition appears exactly at the
trailing-edge interface, kb/π = 1, 2, ..., the computation does not converge without the
reflection at the transition location. Then the discrepancy remains large especially for
the q2-transition, and decreases with the transition moving toward the leading edge.

The drop in the q2-transition range indicates a lack of energy in the scattered modes
when the transition occurs near the trailing-edge interface. In this case, the reflection
of the right-running cut-off mode is negligible in view of the distance traveled. The left-
running mode propagating from the trailing-edge interface undergoes a cut-on to cut-off
transition and so its energy vanishes with the transmitted evanescent mode beyond the
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(a) N = 11 (b) N = 31

Figure 4.13: Acoustic power balance for j = −7 and different modal truncations,
Ψ = 25°.

Figure 4.14: Influence of the transition modeling on the acoustic power balance for
j = 2 and Ψ = 36°.

transition location. Adding the reflected propagating mode allows one to recover this
missing energy. This demonstrates that a single mode can have a significant impact on
the acoustic power balance and so in the modal distribution. In the q1-transition range,
the energy is sometimes higher than it should be and sometimes lower, indicating a
more complex role of the mode undergoing transition on the power balance. These
results show the importance to properly model the transition mechanism in order to
accurately predict the scattering of an acoustic wave by a cascade of cambered vanes.

Figure 4.15a shows the detail of the power distribution when computed with the
transition properly modeled. It appears that the larger discrepancy of Figure 4.14 be-
tween kb/π = 2 and kb/π ' 2.1 is due to a resonance phenomenon. Since the mode
responsible for the resonance undergoes transition at these frequencies, both mecha-
nisms could be coupled in this case. In the following, acoustic power distributions,
modal distributions and pressure maps are analyzed to further understand the role of
the transition at resonant frequencies.
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4.5.2 Resonant Phenomena in the Transition Range

The acoustic power distribution, between reflected and transmitted powers, for the
incident mode j = 2 is plotted in Figure 4.15 against the dimensionless frequency kb/π
with and without modeling the reflected modes at the transition.

(a) with reflections at the transition (b) without reflections at the transition

Figure 4.15: Reflected −Pr/Pi ( ), transmitted Pt/Pi ( ) and total (Pt − Pr)/Pi
( ) powers evolution for j = 2 and Ψ = 36°.

(a) with reflections at the transition (b) without reflections at the transition

Figure 4.16: Instantaneous pressure maps at the (0,2) resonance for j = 2 and Ψ = 36°.

In this case, not modeling the reflected modes at the transition does not seem to
change drastically the quasi-resonance spotted in the q2-transition range. The relative
reflected power still reaches a peak of 42%, without reflections, instead of 57% with
reflections. The difference could be due to the missing energy in the total balance.
Figure 4.16 shows the corresponding pressure maps for five of the fifty four vanes at the
frequency of the quasi-resonance. Though the amplitudes look the same qualitatively,
Figure 4.17 shows the left-running cut-on channel mode U of order q = 2 is two times
higher when its reflection at the transition is modeled, while the right-running cut-off
channel mode D2 is almost the same. However the quasi-resonance is too weak to
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(a) with reflections at the transition (b) without reflections at the transition

Figure 4.17: Reflected R, transmitted T , downstream D and upstream U modal dis-
tributions at the (0,2) resonance for j = 2 and Ψ = 36°.

conclude on any influence of the transition modeling and the reflected modes in this
case.

The incident modal order is now changed to j = 22 to observe the same quasi-
resonances but with a different inter-vane phase shift. The acoustic power distribution
is shown in Figure 4.18. This time, the first quasi-resonance in 1 ≤ kb/π < 2 occurs
in the q1-transition range but is also too weak to give further conclusions. On the
other hand, the quasi-resonance in the q2-transition range is now stronger and totally
disappears when neglecting the reflected modes at the transition. This could indicate
a particular role of the transition mechanism.

(a) with reflections at the transition (b) without reflections at the transition

Figure 4.18: Reflected −Pr/Pi ( ), transmitted Pt/Pi ( ) and total (Pt − Pr)/Pi
( ) powers evolution for j = 22 and Ψ = 36°.

Changing the incident modal order to j = 22 triggers the quasi-resonance noticeably
stronger than with j = 2 as displayed in Figures 4.19 and 4.20. Again, the major
difference between the modal distributions, with and without properly modeling the
transition, is the left-running cut-on channel mode U2. It is almost five times higher
in 4.20a than in 4.20b. For a resonance, or quasi-resonance, to happen, both right-
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and left-running modes of the same order need to have a relatively high amplitude to
form a standing-wave pattern along the channel. In this case, the transition occurs
at 30% of the slowly-varying part of the channel. At the transition location, the cut-
off channel mode D2 has vanished and so the resonance pattern is solely due to the
left-propagating mode U2 and its reflection at the transition. This explains why the
quasi-resonance is missing when neglecting this reflected mode.

Notice that, at such frequency, the curvature effects could change the behavior of
the resonance, as shown in section 3.4. Though the resonance amplitude could be
overestimated by the straight-channel assumption, its existence should not be com-
promised but only shifted in frequency. Furthermore, this observation on the role of
the upstream-propagating mode U2 is independent of the curvature since Brambley
and Peake [14] demonstrated that the reflection and transmission coefficients at the
transition location are the same for bent and straight ducts. Hence, the standing-
wave pattern should appear in both cases. To summarize, only the transition location
and the shape of the pressure field would be different if accounting for curvature ef-
fects, not compromising the occurrence of the resonance due to the reflection of the
upstream-propagating mode.

(a) with reflections at the transition (b) without reflections at the transition

Figure 4.19: Instantaneous pressure maps at the (0,2) resonance for j = 22 and Ψ =
36°.

The remaining question is whether or not this type of resonance is a new phe-
nomenon triggered by the transition mechanism and coexisting alongside the classical
resonances of the cascade. The so-called Parker mode diagram, which displays the
evolution of the resonant frequencies with the solidity value, is plotted in Figure 4.21.
The horizontal dash-dotted lines represent the limits of the transition ranges. The
resonant frequencies are not directly computed from the mode-matching equations but
found by looking for local maxima of the relative reflected acoustic power at different
solidity values.

The resonant modes (0,1) and (1,2) have frequencies both inside and outside their
respective transition ranges in Figure 4.21, and the curve slope does not seem to be al-
tered by the occurrence of the transition. If a new resonance mechanism were triggered
by the transition, two different curves for the modes (0,1) and (1,2), or a bifurcation at
the limits kb/π = 1/ cos(Ψ) ' 1.23 and kb/π = 2/ cos(Ψ) ' 2.47, would be expected.
It seems that there is no new resonances for a cascade of cambered vanes compared to
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(a) with reflections at the transition (b) without reflections at the transition

Figure 4.20: Reflected R, transmitted T , downstream D and upstream U modal dis-
tributions at the (0,2) resonance for j = 22 and Ψ = 36°.

Figure 4.21: "Parker mode diagram" for ideal resonances with j = 0 ( ) and j = V/2
( ).

flat vanes. The origin of the phenomenon is only more subtle due to the occurrence
of transitions. The transition mechanism is needed to ensure the continuity of the
resonances in Figure 4.21 when the right-running mode D vanishes and the reflection
of the left-running mode U takes his role.

4.5.3 Influence of a UniformMean Flow on the Transition Range

The addition of a mean flow, assumed uniform in any cross-section, shifts and reduces
the frequency ranges over which transitions occur. It is useful to know how much of the
frequency range is covered by occurrences of transitions. It allows one to estimate the
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influence the transitions could have on the noise prediction, especially for broadband
noise. The distribution of the transition areas and the influence of the Mach number
are explained in the following.

Figure 4.22 shows the dimensionless frequency ranges over which the modes undergo
transition by hatched areas for increasing values of the camber angle. When Ψ =

Figure 4.22: Sketch of the evolution of the modes transition ranges with the frequency
and the camber angle. The transition location moves from the trailing edge at the
cut-off frequency kb to the leading edge at the cut-off frequency ka.

0 no transition occurs and so the dimensionless cut-off frequencies are separated by
a constant distance dq = πβ for each modal order q, where β =

√
1−M2. With

increasing camber angle, transition ranges of growing length are observed. The length
of a transition range, for a given mode q, is given by the difference between the cut-off
frequencies at the inlet and the outlet kaq − kbq = q∆. Its value is defined by

∆ = π

(
bβa − aβb

a

)
= π

(
βa − βb cos Ψ

cos Ψ

)
, (4.74)

where βa =
√

1−M2
a , βb =

√
1− (DaCaMa cos Ψ)2/(DbCb)2 and the subscripts a and

b indicate that the variable is evaluated at the inlet or outlet of the slowly-varying part
of the channel. Without flow βa = βb = 1 and so ∆ ≥ 0 for any value of the camber
angle. In the presence of a mean flow, an increasing Mach number reduces the cut-off
frequencies so they are shifted to the left in Figure 4.22. Because the Mach number is
higher at the inlet than the outlet, the inlet cut-off frequencies kaq are shifted faster
than the outlet cut-off frequencies kbq. The lengths of the transition areas are reduced
and the cut-off frequencies of a mode can even be inverted, when ∆ < 0. For a given
camber angle Ψ 6= 0, if the inlet Mach number Ma takes the exact value that cancels
out ∆, it will result in a similar case to when Ψ = 0 and no transition can occur. For
higher Mach numbers, the modes are no longer cut-off then cut-on, but cut-on then
cut-off along the inter-vane channels. However, this case is not examined here since
it appears for relatively high subsonic Mach numbers Ma & 0.7 that are out of the
scope of this study. An example of which has been given by Ingenito & Roger [52] in
the inlet-duct of a centrifugal compressor with a Mach number artificially increased to
0.72. Consequently, the distance dq separating the transition ranges of the modes q
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and q + 1 is
dq = πβb − q∆. (4.75)

When dq ≤ 0 the modes q and q + 1 both undergo transition on the overlapping
frequency area. It is illustrated by double red hatches in Figure 4.22 for the highest
camber angle case. An estimation of the occurrence of transitions can be given by the
probability of having at least one mode undergoing transition over a given frequency
range. This implies to not account for the overlapping transition frequencies more
than once. Thus, letting Tr denote the number of modes undergoing transition, the
probability for frequencies ranging from 0 to kbNq = Nqπβb is given by

PNq(Tr ≥ 1) = 1−
∑Nq−1

q=0 dq

Nqπβb
, if dq > 0. (4.76)

The probabilities P3(Tr ≥ 1) and P5(Tr ≥ 1) are plotted against the camber angle
in Figure 4.23 for M = 0 and M = 0.45, neglecting any compressible effect. For the
NASA SDT baseline configuration (7808 RPM), these frequency ranges would cover
the first six BPF (Nq = 3) and the first ten BPF (Nq = 5).

Figure 4.23: Evolution of the probability of having at least one mode undergoing
transition with increasing values of the camber angle. The frequency ranges are chosen
from 0 to kb/πβb = 3 and 5. The solid lines represent the cases where M = 0 whereas
the cross marks are for M = 0.45 without compressible effects.

Depending on the bandwidth considered, Figure 4.23 shows that 23% to 47% of the
frequencies contain at least one transition for Ψ = 36° at Ma = 0, and 18% to 37%
at Ma = 0.45. The wider the integration range, the higher the probability. Hence,
for broadband noise predictions it might be necessary to account for the transition
mechanism when dealing with cambered vanes. However, for tonal noise predictions,
the first BPFs can be outside of any transition ranges. As a consequence, depending
on the architecture and the number of BPFs of interest, there could be no transition
to account for.
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Results Summary

Relatively large discrepancies of the acoustic power balance, compared to the 1%
confidence range, have been observed in the transition frequency areas when the
transition mechanism is not properly modeled. The extension of the sound prop-
agation model proposed in this chapter for the inter-vane channels has reduced
the relative error to less than 1%, proving that the cause of the discrepancies
was the neglected reflection of the modes undergoing transition. This mecha-
nism also proved to be at the root of the resonance phenomenon for a cascade of
cambered vanes at certain frequencies. Without it, the resonance could not take
place when the corresponding right-running mode is cut-off in the left part of the
channel and vanishes too quickly. In this case, the reflection at the transition
location of the left-running mode replaces it to form a standing wave pattern of
relatively high amplitude in the channels.
The presence of a uniform mean flow reduces the length of the transition areas.
The higher the Mach number, the smaller the transition range. Nevertheless,
transitions are present in a significant range of frequencies even at a Mach number
of 0.45. They cannot be neglected for broadband noise predictions when using
such approximate analytical solutions. It has also been proved that at sufficiently
high Mach numbers, typically above 0.7, the cut-off frequencies of the channel
modes are switched. Hence the modes are no longer cut-off then cut-on but
rather cut-on then cut-off, which could change the tendencies observed in the
acoustic power balance for this range of nearly sonic Mach numbers.

4.6 Conclusion

This chapter highlighted the singularity in the leading-order multiple-scale solution
derived for the acoustic potential inside the cambered inter-vane channels in Chapter
2. The singularity was shown to arise when an acoustic mode undergoes transition from
cut-on to cut-off, or vice-versa, due to the change of cross-section along the channel.
In the vicinity of the transition, the mode no longer varies slowly and another solution
is required. The so-called inner solution has been derived and used to compute the
connection formulas between the outer modal coefficients. These general formulas
can be applied in the particular case of an incident cut-on or cut-off mode to obtain
the reflection and transmission coefficients through the transition. A uniformly valid
solution has then been derived based on Langer’s result [63] and following the work of
Ovenden [86]. This composite solution has been introduced into the mode-matching
equations to form a more general set of equations that works for modes undergoing
transition or not. The method performed well in the transition areas but some non-
converging cases were observed, when resorting to the iterative approach, for transitions
occurring near the leading-edge interface. It seems the problem comes from the mode
q = 1 and its reflection at the turning point, whose amplitude becomes larger and
larger as the transition gets closer to the leading edge. In these cases, its growing
amplitude cannot be compensated while enforcing the continuity equations, due to the
lack of cut-on modes at these frequencies. Using a direct approach that computes all
modal coefficients simultaneously, from a global matrix covering the leading-edge and
trailing-edge continuity equations, fixed the convergence issues. At other frequencies,
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the direct and iterative methods give similar results except in some rare cases. In
conclusion, the direct approach could be used in place of the iterative approach to
avoid convergence issues.

Comparing the acoustic power balances obtained with this model and the model
of Chapter 2 when a transition occurs has shown the necessity to account for transi-
tions when dealing with cambered vanes. If they are neglected, as in Chapter 2, the
acoustic power balance is wrong by many percents while the error is negligible with
the model of the current chapter. The difference is mainly due to the reflected part
of the mode undergoing transition while the regularization at the transition location
is only needed when the transition happens close to an interface. On top of that, this
reflected part has been shown to play a role in resonant phenomena of the cascade.
To not account for it means to miss some resonances that drastically change the way
sound propagates through the cascade. Finally, the distribution of transitions in the
frequency domain and how the mean flow influences it has been explained. The higher
the order of a mode, the higher and numerous its transition frequencies. Also, the
transition frequencies range expands with the camber angle but shrinks with the Mach
number. For the realistic test-case of the fourth NASA CAA workshop, category 3,
problem 2 [24], around 37% of the frequencies between 0 and the ninth BPF contain
at least a transition. In terms of broadband noise prediction, it is indeed necessary
to account for transitions. However, it might not be needed for tonal noise prediction
depending on the architecture and the number of BPF of interest.

About limitations of the current model, the most crucial would be the frequency.
As shown in the previous chapter, the straight-channel approximation only works at
low frequencies or for weakly cambered vanes. For a realistic OGV geometry it would
be needed to derive a new composite solution for a mode undergoing transition in-
side a slowly-varying bent channel. Brambley & Peake [14] paved the way for such a
work and their results could serve as a starting point. Another limit of the current
model is that no energy transfer between neighboring modes at the transition point
is considered whereas it is known to occur at high frequencies, especially for large
modal orders [88, 126, 127]. Some works from Smith [126, 127] highlighted higher-
order scattering mechanisms becoming significant and introducing a coupling between
neighboring modes in the inner region. A new purely geometrical mechanism due to
the slowly-varying cross-section was brought to light with another mechanism induced
by the presence of a mean flow.
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Chapter 5
Sound Generation by Periodic Wake
Impingement on a Linear Cascade of
Cambered Vanes

Introduction

This chapter addresses the problem of sound generation by periodic wake im-
pingement by modeling the wakes as incident vortical gusts. The linearity of the
problem for perturbations of small amplitude allows one to describe the vorti-
cal gusts independently of the acoustic waves generated. Thus, the potentials
defined in the previous chapters can be reused, and only the description of the
gust is needed. This is done in the first section of this Chapter, after a brief
presentation of the problem, in the assumption of an equivalent straight channel
due to yet unresolved complexities for modeling the vortical gust evolution in a
curved channel. The matching equations are then derived and comparisons with
numerical and analytical results are made to assess the validity of the model.
Finally, a parametric study on the effect of camber and acoustic resonance is
performed.
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5.1 General Considerations

In this chapter, noise generated by periodic interactions of the fan wakes with the OGV
is investigated. The difference with the transmission of a sound wave is that the incident
disturbance is now a vortical gust, corresponding to an azimuthal Fourier component of
the wake mean velocity deficit. Different options for obtaining the wake characteristics
at the OGV leading edge have been presented in Chapter 1, Section 1.2.3. Whether the
wake mean velocity deficit is modeled or extracted from a RANS simulation is not a
concern here. The only assumption is that azimuthal Fourier components are available
at the OGV leading edge.

Figure 5.1: Impingement of a vorticity gust on the cascade of cambered vanes.

Figure 5.1 depicts the problem of sound generation tackled in this Chapter. The
fluctuating velocity field is now composed of acoustic (potential) and vortical motions:
u = ∇φ + uR. From the linearized analysis of Chu and Kovásznay [20] for small
perturbations, both motions are independent away from the cascade. Hence, they can
be expressed separately and added up together at the end. The validity of this approach
inside the inter-vane channels will also be assessed in this Chapter.

In the following, only the tonal noise is investigated but the model could be extended
to broadband noise predictions as explained by François et al.[34]. The first section
defines the vortical velocity field in each sub-domain. Then, the matching equations are
derived with the knowledge of the acoustic potentials already derived in the previous
Chapters. The matching equations are the cement that links both motions together,
whereas it is usually done in a mathematically equivalent way at the vane surface.

162



5.2. Wake Model

5.2 Wake Model

5.2.1 Vorticity Field Upstream of the Cascade

The fan, composed of B blades, is assumed to generate B identical and regularly spaced
wakes, which are convected at the speed of the mean flow U and rotate at the rate of
the fan ΩR. This means a given OGV is periodically interacting with a wake at the
characteristic period T = 2π/BΩR. Hence, an azimuthal Fourier component of the
wake of order j, referred to as vortical gust, has a characteristic frequency equals to a
multiple of the Blade Passing Frequency (BPF): ωj = jBΩR.

The axial component of the wake vortical velocity is written as a sum of gusts:

uRi (x, y) · ex = uRix(x, y) =
∞∑

j=−∞

wje
iαjyeikRjxx, j 6= 0, −∞ < x ≤ 0, 0 ≤ y < 2πR,

(5.1)
where the order j = 0 is discarded because it corresponds to the mean part of the
wakes, not a fluctuation, and contributes to the mean loading only. The periodicity
condition in the transverse direction is now reduced to the distance separating two
adjacent wakes. It reads uRix(x, 0) = uRix(x, 2πR/B), which gives

αj =
jB

R
, j ∈ Z∗.

The axial wavenumber kRjx is defined from (1.10), which states that in a uniform and
irrotational mean flow the velocity gusts are purely convected. This reads

(−iωj + U · ∇) uRi (x, y) = 0, −∞ < x ≤ 0, 0 ≤ y < 2πR. (5.2)

The above equation is solved in the flow-attached frame of reference (ζ, η) of Figure 5.1,
which is the same as the vane-attached frame of reference since no angle of attack is
considered. In this frame of reference, the incident vortical velocity reads

uRiζ(ζ, η) =
∞∑

j=−∞

wjζe
i(αj cos Ψ+kRjx sin Ψ)ηei(kRjx cos Ψ−αj sin Ψ)ζ .

Introducing the above expression into equation (5.2) gives

−ωj + U−∞(kRjx cos Ψ− αj sin Ψ) = 0,

which defines the axial wavenumber as

kRjx =
ωj/U−∞ + αj sin Ψ

cos Ψ
=
kj + αjM−∞y

M−∞x
, (5.3)

where kj = ωj/C, M−∞x = U−∞x/C and M−∞y = U−∞y/C.
Finally, since uRi is divergence-free (∇·uRi = 0), its transverse component is defined

by

uRiy(x, y) = −
∞∑

j=−∞

wj
kRjx
αj

eiαjyeikRjxx, j 6= 0, −∞ < x ≤ 0, 0 ≤ y < 2πR. (5.4)
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Hence, the incident vortical velocity field is written as

uRi ·
{

ex
ey

=
∞∑

j=−∞

(
1

−kRjx/αj

)
wje

iαjyeikRjxx, j 6= 0, (5.5)

and the associated vorticity field
(
∇× uRi

)
· ez as

(
∇× uRi

)
· ez = −

∞∑
j=−∞

i

(
α2
j + (kRjx)

2

αj

)
wje

iαjyeikRjxx, j 6= 0, (5.6)

for −∞ < x ≤ 0 and 0 ≤ y < 2πR.

5.2.2 Vorticity Field Inside the Inter-Vane Channels

Triangle ABC

The definition of the velocity gusts in the triangle ABC needs to satisfy the following
conditions: convection by the mean flow, hard-walled channel and inter-vane phase
shift enforced by the trace-velocity matching principle [97]. For a given incident gust of
order j, the longitudinal component of the vortical velocity disturbance in the channel
reference frame reads

uRd · eζ =
∞∑
q=1

ARq cos(αqη)eikRj ζ , η tan Ψ ≤ ζ ≤ a tan Ψ, 0 ≤ η ≤ a, (5.7)

where
αq =

qπ

a
, kRj = kRjx cos Ψ− αj sin Ψ =

kj
M−∞

.

Applying the divergence-free condition leads to the definition of the vortical velocity
field in the transverse direction, such that

uRd ·
{

eζ
eη

=
∞∑
q=1

(
1

−ikRj /αq

)
ARq

(
cos(αqη)
sin(αqη)

)
eikRj ζ , η tan Ψ ≤ ζ ≤ a tan Ψ, 0 ≤ η ≤ a.

(5.8)
The associated vorticity field

(
∇× uRd

)
· ez reads

(
∇× uRd

)
·ez =

∞∑
q=1

(
α2
q + (kRj )2

αq

)
ARq sin(αqη)eikRj ζ , η tan Ψ ≤ ζ ≤ a tan Ψ, 0 ≤ η ≤ a,

(5.9)
The vortical fields in the other channels are then recovered by a phase shift of αjb, in
the same manner as for the acoustic fields.

In order to identify the modal coefficients ARq , a new matching condition is required.
From the linear analysis of Chu and Kovásznay [20], the vorticity can be used as a con-
servative variable through the interface. Since the acoustic velocity field is irrotational,
the vorticity continuity at the leading-edge interface states that

∇× uRi = ∇× uRd , x = 0, 0 ≤ y < 2πR. (5.10)
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Extracting a closed-form solution for the coefficients ARq requires to integrate the above
equation. This is done by projecting onto some sort of a weighted sine basis, the
operator of which is defined as∫ b

0

(•)e−ikRj y sin Ψ sin (ανy cos Ψ) dy, with αν =
νπ

a
, ν ∈ N∗. (5.11)

This allows one to compensate for the remaining exponential term in the channel
vorticity field (5.9) at x = 0 when Ψ 6= 0, thus taking advantage of the orthogonality
of the sine functions. Applying this operator to (5.10) gives

−i

(
α2
j + (kRjx)

2

αj

)
wjJ

R
j,ν =

(
α2
ν + (kRj )2

αν

)
ARν

b

2
(1− δν,0)

where

JRj,ν(Ψ) =

∫ b

0

eiαjye−ikRj y sin Ψ sin (ανy cos Ψ) dy =


νπ/b

(νπ/b)2 − (ϕRj )2

(
1− (−1)νe−ibϕRj

)
,

ib

2
(1− δν,0) if

∣∣ϕRj ∣∣ = νπ/b,

(5.12)
and

ϕRj (Ψ) = kRj sin Ψ− αj.

Consequently, the modal coefficients of the vortical velocity field inside the triangle
ABC are defined by

ARq 6=0 =

−i

(
α2
j + (kRjx)

2

αj

)
wjJ

R
j,q(

α2
q + (kRj )2

αq

)
b

2

. (5.13)

Slowly-Varying Curved Part

Between the interface BC and the trailing-edge interface, in the slowly-varying curved
part of the channel, the evolution of the vortical disturbance becomes more complex
due to the mean flow no longer being uniform and irrotational. Equation (1.10) states
that

(−iωj+U·∇)uRd +
(
uRd · ∇

)
U = − (∇×U)×∇φ, 0 ≤ S ≤ Lc, −h(S)

2
≤ n ≤ h(S)

2
.

(5.14)
Using the notation uRd = uRds · es + uRdn · en, the different terms of the above equation
are expressed under the slowly-varying approach in curvilinear coordinates as (see [78]
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Chapter 1.4 for the differential operators definition)

(U · ∇)uRd = ε
U0s

hs

∂uRd
∂S

+ εU1n
∂uRd
∂n

+
U0s

hs

dhs
dn

(
uRdn · es − uRds · en

)
+O(ε2),

(
uRd · ∇

)
U = ε

uRds
hs

∂U0s

∂S
· es + εuRdn

∂U1n

∂n
· en + ε

U1n

hs

dhs
dn

uRds · es −
U0s

hs

dhs
dn

uRds · en +O(ε2),

(∇×U)×∇φ =


0

0

− U0s

hs

dhs
dn

×


ε

hs

∂φ

∂S
∂φ/∂n

0

+O(ε2)

=
U0s

h2
s

dhs
dn

(
hs
∂φ

∂n
· es − ε

∂φ

∂S
· en

)
+O(ε2).

This leads to the following equations for the longitudinal uRds and transverse uRdn com-
ponents:

− iωuRds + ε
U0s

hs

∂uRds
∂S

+ εU1n
∂uRds
∂n

+
U0s

hs

dhs
dn

uRdn + ε
uRds
hs

∂U0s

∂S
+ ε

U1n

hs

dhs
dn

uRds

= −U0s

hs

dhs
dn

∂φ

∂n
+O(ε2), (5.15)

and

− iωuRdn + ε
U0s

hs

∂uRdn
∂S

+ εU1n
∂uRdn
∂n
− 2

U0s

hs

dhs
dn

uRds + εuRdn
∂U1n

∂n

= ε
U0s

h2
s

dhs
dn

∂φ

∂S
+O(ε2). (5.16)

Then, the WKB expansion is introduced as

{
φ, uRds, u

R
dn

}
(S, n; ε) = exp

(
− i

ε

∫ S

µ(ξ) dξ

) ∞∑
m=0

εm {Am, Sm, Nm} (S, n), (5.17)

for 0 ≤ S ≤ Lc and −h(S)/2 ≤ n ≤ h(S)/2. Introducing expression (5.17) into (5.15)
- (5.16) and keeping only the O(1) terms, yields

iΛS0 −
M

hs

dhs
dn

(
N0 +

∂A0

∂n

)
∼ 0, (5.18)

iΛN0 +
M

hs

dhs
dn

(
2S0 +

iµ

hs
A0

)
∼ 0, (5.19)

where Λ = kj − µM/hs and M = U0s/C. By noticing that Λ is the eigenvalue of
the operator (−iωj + U · ∇), it comes out that the vortical perturbation is not purely
convected because of vortical-vortical and vortical-acoustic coupling terms.

Assuming that the vortical velocity components and the acoustic velocity have the
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same order of magnitude, the different couplings can all be neglected if

M

kjhs

dhs
dn
� 1 ⇔ µRj R̄c � 1,

where the convective axial wavenumber µRj is defined as

µRj =
kjhs
M

. (5.20)

The coupling factor can be developed in terms of the design parameters, such that

µRj R̄c = 2πj
B

V

MΩ

M

(
l

b

cos Ψ/2

sin Ψ
− 1 + cos Ψ

4

)
, (5.21)

where MΩ = ΩRR/C. For a scaled turbofan model such as the SDT baseline con-
figuration composed of B = 22 blades and V = 54 vanes, taking a radius of 22.35
cm (40% of the radius of the 22-inch diameter model) and the shaft-rotation rate in
approach condition of 7808 RPM (MΩ ' 0.55) results in an axial Mach number of
M−∞ ' 0.45. In such condition, the evolution of the coupling factor µRj R̄c, for the first
BPF (j = 1) at S = 0 and n = 0, is plotted in Figure 5.2 for varying camber angles Ψ
and solidity values l/b. For typical OGV design parameters, the vortical-vortical and

Figure 5.2: Evolution of the coupling factor µRj R̄c against the camber angle Ψ for
different solidity values l/b in the NASA SDT baseline configuration.

vortical-acoustic coupling can be neglected in the SDT baseline configuration. This
means that both vortical velocity components uRds and uRdn evolve independently and
are simply convected by the mean flow.

The only remaining influence of curvature on the vortical velocity evolution is the
scale factor hs = 1−κn, in the definition of the convective axial wavenumber µRj (5.20).
Since the curvature is negative, this means that the wavenumber is greater in the upper
part of the channel, and lower at the bottom, in order to compensate for the metric
distortion induced by the curvilinear coordinates. Physically speaking, this means that
the vortical perturbation is convected faster at the bottom of the channel than at the
top. This curvature effect acts in a way similar to the curvature effect on the acoustic
waves. With the latter, the wavefront was too drastically tilted downward when prop-
agating through the cascade when the curvature effects were neglected (Chapter 2).
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Taking the curvature into account in the model (Chapter 3) then allowed to recover a
wavefront similar to the numerical results. Unfortunately, accounting for a wavenum-
ber that varies with n would require a continuous variation of the curvature through
the cascade to avoid a discontinuity at the interface BC and trailing-edge interface,
as was mentioned in conclusion of Chapter 3 for the non-uniform mean flow. Such
a work has not been further developed during the PhD. In the following, curvature
effects are neglected as in Chapter 2, so the results are expected to be valid only at
low frequencies, below the first channel cut-off.

Finally, after matching the expression of the vortical velocity field at the inter-
face BC, between the straight (5.8) and slowly-varying (5.17) descriptions under the
straight-channel assumption, the latter reads at leading order

uRd ·
{

ex
ey
∼

∞∑
q=1

(
1

−iµRj (X)/θq(X)

)
ARq ΥR

jq(X)

(
cos(θq(X) [y + h(X)/2])
sin(θq(X) [y + h(X)/2])

)
eikRj a tan Ψ,

(5.22)
for 0 ≤ X ≤ Lc and −h(X)/2 ≤ y ≤ h(X)/2, where

ΥR
jq(X) =

θq(X)
(
α2
q + (kRj )2

)
αq
(
θ2
q(X) + (µRj )2(X)

) exp

(
i

ε

∫ X

0

µRj (ξ) dξ

)
, (5.23)

and
αq =

qπ

a
, kRj =

kj
M−∞

, θq(X) =
qπ

h(X)
, µRj (X) =

kj(X)

M(X)
. (5.24)

This expression is divergence-free at leading order and fulfills the hard wall boundary
condition: uRdy = 0, at y = ±h(S)/2. The associated vorticity field

(
∇× uRd

)
· ez is

then given by

(
∇× uRd

)
·ez ∼

∞∑
q=1

(
θ2
q(X) + (µRj )2(X)

θq(X)

)
ARq ΥR

jq(X) sin

(
θq(X)

[
y +

h(X)

2

])
eikRj a tan Ψ,

(5.25)
for 0 ≤ X ≤ Lc and −h(X)/2 ≤ y ≤ h(X)/2. The vortical fields in the other channels
are then recovered by a phase shift of αjb, according to the trace-velocity matching
principle [97]. Notice that the vorticity amplitude (5.25) remains constant during its
convection through the slowly-varying part of the channel, while its shape is slowly
stretched in the transverse direction.

5.2.3 Vorticity Field Downstream of the Cascade

Due to its variation of shape through the inter-vane channels, the gust can exhibit a
complex pattern downstream of the OGV. Figure 5.3 shows some numerical results of a
viscous flow past the OGV in a rotor-stator configuration: (a) Mach number obtained
by LES (Lewis [64]) and (b) vorticity obtained by ZDES (François et al. [33]). When
looking at these numerical results, two key features of the wake evolution seem to stand
out:

1. upward or downward tilting;

2. slicing by the vanes.
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(a) (b)

Figure 5.3: Blade-to-blade visualization of fan-OGV flow simulations at mid-span:
(a) Mach number obtained by LES (Lewis [64]) and (b) vorticity obtained by ZDES
(François et al. [33]).

Whether the rotation/tilting is directed upward or downward seems to result mostly
from the inter-vane channel geometry and the mean flow profile in it. The slicing, i.e.
the horizontal shift in the wake segments between two adjacent inter-vane channels
downstream of the OGV, also seems to depend on the case.

Since a vortical gust is simply a Fourier component of the wake, the same behavior
should be expected. Downstream of the OGV, the transverse shape of a given gust
of incident order αj = jB/R can no longer be represented by a single transverse
wavenumber. Furthermore, the gust profile needs to be modeled by layers in order to
account for the slicing/shifting between two adjacent channels. To this end, the two
following gust representations are proposed: shifted gust and smoothly shifted gust.

Shifted Gust Formulation

The shifted gust is given by

uRt ·
{

ex
ey

=
V−1∑
m=0

∞∑
p=−∞

(
1

−kRjt/αp

)
TRp eimαjbeiαp(y′−mb)eikRjtx

′
FR
j , (5.26)

with the associated vorticity field

(
∇× uRt

)
· ez = −

V−1∑
m=0

∞∑
p=−∞

i

(
α2
p + (kRjt)

2

αp

)
TRp eimαjbeiαp(y′−mb)eikRjtx

′
FR
j , (5.27)

for 0 ≤ x′ = x− lx <∞ and 0 ≤ y′ = y −Rc(1− cos Ψ) < 2πR, where

αj =
jB

R
, αp =

pB

R
, kRjt =

kj
M+∞

and FR
j = exp

(
i

ε

∫ Lc

0

µRj (S) dS

)
eikRj b sin Ψ.
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The TRp coefficients are given by the vorticity continuity at the trailing-edge interface,
on a given layer m = 0:

∇× uRd = ∇× uRt +∇× uRK , x′ = 0, 0 ≤ y′ ≤ b, (5.28)

which yields

∞∑
q=1

α2
q + (kRj )2

αq
ARq sin

(qπ
b
y′
)

= −
∞∑

p=−∞

i

(
α2
p + (kRjt)

2

αp

)
TRp eiαpy′+ΩK (δ(y′) + δ(y′ − b)) .

(5.29)
The vorticity field associated to the Kutta condition has been formulated with the
Dirac delta function (see [12]) in order to simplify the following calculation. Since the
ratio of B and V is usually not an integer in a fan-OGV stage 1, the gust does not
have a shared periodicity with the OGV. Hence, the exponential basis exp(iαpy

′) is not
orthogonal with the inner product defined over the channel height. Equation (5.29) is
then projected onto the channel modal basis by means of the operator∫ b

0

(•) sin (ανy
′) dy′, αν =

νπ

b
ν ∈ N∗. (5.30)

This leads to three kinds of integrals, namely JRq,ν , JRp,ν and JRK,ν , such that

∞∑
q=1

α2
q + (kRj )2

αq
ARq J

R
q,ν = −

∞∑
p=−∞

i

(
α2
p + (kRjt)

2

αp

)
TRp J

R
p,ν + ΩKJ

R
K,ν .

The integral based on the channel vorticity field is expressed as

JRq,ν =

∫ b

0

sin
(qπ
b
y′
)

sin
(νπ
b
y′
)

dy′ =

{
b
2
(1− δν,0) if ν = q,

0 if ν 6= q.

Hence, JRq,ν = b/2(1 − δν,0)δν,q, where δ is the Kronecker delta: δν,q = 1 if ν = q, and
δν,q = 0 otherwise. The integral associated with the vorticity field downstream of the
cascade reads

JRp,ν =

∫ b

0

eiαpy′ sin
(νπ
b
y′
)

dy′ =


αν

α2
ν − α2

p

[
1− (−1)νeiαpb

]
,

ib

2
(1− δν,0) if αν = |αp|.

Finally, the integral on the vorticity field associated with the Kutta condition yields

JRK,ν =

∫ b

0

(δ(y′) + δ(y′ − b)) sin
(νπ
b
y′
)

dy′ = sin
(νπ
b

0
)

+ sin
(νπ
b
b
)

= 0.

This results in the the following linear system of equations on the TRp coefficients:

∞∑
p=−∞

(
α2
p + (kRjt)

2

αp

)
TRp J

R
p,ν =

ib

2
(1− δν,0)

α2
ν + (kRj )2

αν
ARν , (5.31)

1This is done to avoid the generation of the plane-wave mode in the annular domain.
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which is numerically solved after a modal truncation (ν ∈ [0, Nν − 1] and p ∈ [−(Np −
1)/2, (Np−1)/2]). Note that, in order to get accurate enough results, it has been found
necessary to use an iterative method with an initial guess set at TRp = wj, if p = j,
and TRp = 0 otherwise. However, the reliability of the result is difficult to assess with
increasing camber angles. Surely this could be improved.

An example of shifted gust downstream of the OGV is represented in Figure 5.4.
The modeling of the gust evolution through the cascade is able to recover both key

Figure 5.4: Vorticity field
(
∇× uRt

)
· ez with the shifted gust formulation.

features observed in the wake evolution in Figure 5.3: tilting and slicing. The different
layers downstream of the OGV are discontinuous in the transverse/azimuthal direction.
Even if this is not an issue in this work, another formulation of the gust is proposed,
which smooths out these discontinuities.

Smoothly Shifted Gust Formulation

The smoothly shifted gust is a direct continuation of the channel gust description that
allows one to smooth out the transverse discontinuity in the previous formulation. It
reads

uRt ·
{

ex
ey

=
V−1∑
m=0

∞∑
q=1

(
1

−ikRjt/αq

)
TRq eimαjb sin

(qπ
b

[y′ −mb]
)

eikRjtx
′
FR
j , (5.32)

with the associated vorticity field

(
∇× uRt

)
· ez =

V−1∑
m=0

∞∑
q=1

(
α2
q + (kRjt)

2

αq

)
TRq eimαjb sin

(qπ
b

[y′ −mb]
)

eikRjtx
′
FR
j , (5.33)
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for 0 ≤ x′ = x− lx <∞ and 0 ≤ y′ = y −Rc(1− cos Ψ) < 2πR, where

αj =
jB

R
, αq =

qπ

b
, kRjt =

kj
M+∞

and FR
j = exp

(
i

ε

∫ Lc

0

µRj (S) dS

)
eikRj b sin Ψ.

Using the vorticity continuity (5.28) with the same projection method (5.30) directly
yields the solution

TRq =
α2
q + (kRj )2

α2
q + (kRjt)

2
ARq . (5.34)

This results in a smoothly shifted gust downstream of the OGV as represented in Fig-
ure 5.5. The latter formulation is interesting because it has a closed-form solution for

Figure 5.5: Vorticity field
(
∇× uRt

)
· ez with the smoothly shifted gust formulation.

the gust coefficients and allows a continuous description of the gust in the transverse
direction. However, it does not tend toward the flat-vane solution of Bouley et al. [12]
when Ψ→ 0 because of the remaining "wakes" in the gust. Therefore, this formulation
is put aside for now and the shifted gust formulation (5.27) will be used in the following.

Wake Model Summary

The vortical gust modeling has been extended to account for stagger at the
leading-edge interface, and the slowly-varying cross-section across the channel.
Curvature effects have been neglected in this work but a particular attention has
been paid to justify the neglected effects:

1. vortical-vortical and acoustic-vortical coupling, the strength of which is
given by the inverse of µRj R̄c;

2. curvature effect resulting in a transverse variation of the convective
wavenumber µRj → µRj (1− κn): the strength of which is given by κb.
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Numerical simulations available in the literature have then been used to extract
the key characteristics of the wake evolution past a cascade of cambered vanes.
This results in two features: slicing and tilting. Both have been incorporated into
an analytical model to complete the formulation of the vortical gust evolution.

5.3 Mode-Matching Equations

5.3.1 Jump Conditions

When the fluctuating velocity field is composed of acoustic and vortical motions:
u = ∇φ + uR, the conservative variables need to be adjusted. Combining mass-flow
conservation (1.13) and stagnation enthalpy conservation (1.17) as (1.17) - (1.13) yields[

β2
x

p

Z
+Myuy

]2

1
= 0,

where β2
x = 1−M2

x . This constitutes the first conservative variable Γ1 as

Γ1 = β2
x

p

Z
+Myuy . (5.35)

Taking the combination (1.13) - M2
x(1.17) gives[

β2
xMxux −M2

xMyuy
]2

1
= 0,

which yields the same second conservative variable Γ2 as in (2.71), when there is no
vortical motion. This reads

Γ2 = β2
xux −MxMyuy. (5.36)

Written like that, it is easy to see that the conservative variables (Γ1,Γ2) tend to the
usual variables (p, ux) when either Ψ→ 0 or M → 0. The latter variables can be used
at the trailing-edge interface. Furthermore, if the fluctuating velocity field is potential:
u = ∇φ, then

Γ1 = ikjβ
2
xφ− β2

xMxux +M2
xMyuy = ikβ2

xφ−MxΓ2.

In this case, using the conservative variables (Γ1,Γ2) is identical to (φ,Γ2), which
is the set of conservative variables used for the scattering of an acoustic wave (see
section 2.3.1). The conservative variables (5.35) and (5.36) are a generalized version
accounting for both acoustic and vortical motions.

5.3.2 Leading-Edge Interface

Acoustic Potentials and Vortical Velocity Fields

When the incident perturbation is a vortical gust, the vortical velocity field is simply
added on top of the existing scattered acoustic fields defined in the previous chapters.
Both vortical and acoustic motions evolve independently in the different sub-domains
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and are only connected through the matching equations at the interfaces. Figure 5.6
shows the different fluctuating fields involved at the leading-edge interface matching.

Figure 5.6: Impingement of a vortical gust on the cascade of cambered vanes at the
leading-edge interface.

Since ∇ ·
(
DuR

)
= 0 in both sub-domains joint by the leading-edge interface, the

acoustic potentials are still defined by:

φr(x, y) =
∞∑

p=−∞

Rpe
iαpyeik−p x, −∞ < x ≤ 0, 0 ≤ y < 2πR,

φ̂d(ζ, η) =
∞∑
q=0

Aq cos (αqη)
[
eik

R
q ζ + Fqeik−q ζ

]
, η tan Ψ ≤ ζ ≤ a tan Ψ, 0 ≤ η ≤ a,

φu(ζ, η) =
∞∑
q=0

Bq cos (αqη) eik
−
q (ζ−a tan Ψ)Ξ−q (0), η tan Ψ ≤ ζ ≤ a tan Ψ, 0 ≤ η ≤ a,

where

αp =
jB + pV

R
, k−p =

−(k − αpMy)Mx −
√
k2 − (β2

x −M2
y )α2

p − 2kαpMy

β2
x

,

αq =
qπ

a
, k±q =

−kM ±
√
k2 − β2α2

q

β2
.

The potential φ̂d corresponds to the sum of the downstream-propagating potential φd
and an eventual reflection inside the slowly-varying part of the channel, added along
with its coefficient Fq (4.34). The potential φu is described by the general modal-
evolution function Ξ−q (4.57) in order to account for the occurrence of transitions.

The vortical velocity fields are given by

uRi ·
{

ex
ey

=

(
1

−kRjx/αj

)
wje

iαjyeikRjxx, j 6= 0, −∞ < x ≤ 0, 0 ≤ y < 2πR,

and

uRd ·
{

eζ
eη

=
∞∑
q=1

(
1

−ikRj /αq

)
ARq

(
cos(αqη)
sin(αqη)

)
eikRj ζ , η tan Ψ ≤ ζ ≤ a tan Ψ, 0 ≤ η ≤ a.
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Continuity of the Stagnation Enthalpy

The first conservative variable Γ1 is decomposed into its acoustic and vortical parts as
Γ1 = Γa1 + ΓR1 . The acoustic part is equal to

Γa1 = ikjβ
2
xφ− β2

xMx∇xφ+M2
xMy∇yφ.

The derivative of the potential with respect to x and y has already been detailed in
section 4.3.1. Thus, the conservative variable Γa1 of the different acoustic fields reads:

Γa1r =
∞∑

p=−∞

iRp

(
kjβ

2
x − β2

xMxk
−
p +M2

xMyαp
)

eiαpyeik−p x, (5.37)

Γa1d =
∞∑
q=0

i

2
Aq

[(
kjβ

2
x − β2

xMxK
+−
q +M2

xMyA
++
q

)
eiA++

q yeiK+−
q x

+
(
kjβ

2
x − β2

xMxK
++
q +M2

xMyA
−+
q

)
eiA−+

q yeiK++
q x

+ Fq
{(
kjβ

2
x − β2

xMxK
−−
q +M2

xMyA
+−
q

)
eiA+−

q yeiK−−q x

+
(
kjβ

2
x − β2

xMxK
−+
q +M2

xMyA
−−
q

)
eiA−−q yeiK−+

q x
}]

, (5.38)

Γa1u =
∞∑
q=0

i

2
Bq

[(
kjβ

2
x − β2

xMxK
−−
q +M2

xMyA
+−
q

)
eiA+−

q yeiK−−q x

+
(
kjβ

2
x − β2

xMxK
−+
q +M2

xMyA
−−
q

)
eiA−−q yeiK−+

q x
]

Ξ−q (0)e−ik−q b sin Ψ,

(5.39)

where
K±±q = k±q cos Ψ± qπ

a
sin Ψ, A±±q = ±qπ

a
cos Ψ + k±q sin Ψ.

On the other hand, the vortical motion being pressure-free, the conservative variable
reduces to the transverse fluctuating velocity as

ΓR1 = Myu
R
y .

The latter reads:

ΓR1i = −My

kRjx
αj
wje

iαjyeikRjxx, (5.40)

ΓR1d =
∞∑
q=1

ARqMy

[
cos(αqη) sin Ψ− i

kRj
αq

sin(αqη) cos Ψ

]
eikRj ζ . (5.41)

The usual projection on the annular modal basis (2.13) is performed with the operator∫ b

0

(•)e−iανy dy, where αν = αj + ν
2π

b
, ν ∈ Z.
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After some algebra, this leads to the following matching condition:

b

(
RνK

−
ν + iMy

kRjx
αj
wjδν,0

)
=
∞∑
q=0

−iARq (1− δq,0) IRj,q,νMy cos Ψ

(
tan Ψ +

kRj cos Ψ

ϕRj,ν

)
+Aq

(
K+
q,νI

+
q,ν + FqK−q,νI−q,ν

)
+BqΞ

−
q (0)e−ik−q b sin ΨK−q,νI

−
q,ν

,

(5.42)
where

K−ν = β2
x(kj − k−ν Mx) +M2

xMyαν ,

K±q,ν = β2
x(kj −Mxk

±
q cos Ψ) +M2

xMyk
±
q sin Ψ−Mx

tan Ψ

ϕ±q,ν

(qπ
b

)2

,

and

IRj,q,ν(Ψ) =


−iϕRj,ν

(ϕRj,ν)
2 − (qπ/b)2

(
(−1)qeibϕRj,ν − 1

)
),

b

2
(1 + δq,0) if

∣∣ϕRj,ν(Ψ)
∣∣ =

qπ

b
,

ϕRj,ν = kRj sin Ψ− αν . (5.43)

The inner product I±q,ν(Ψ) is identical to the above with the adequate change of stag-
gered wavenumber ϕ±q,ν(Ψ) as defined in (2.81).

Continuity of the Mass-Flow

The mass-flow reduces to Γ2 = β2
xux−MxMyuy for both acoustic and vortical motions.

It has already been derived for the acoustic fields as reminded below:

Γa2r =
∞∑

p=−∞

iRp

(
β2
xk
−
p −MxMyαp

)
eiαpyeik−p x, (5.44)

Γa2d =
∞∑
q=0

i

2
Aq

[(
β2
xK

+−
q −MxMyA

++
q

)
eiA++

q y +
(
β2
xK

++
q −MxMyA

−+
q

)
eiA−+

q y

+Fq
{(
β2
xK
−−
q −MxMyA

+−
q

)
eiA+−

q y +
(
β2
xK
−+
q −MxMyA

−−
q

)
eiA−−q y

}]
,

(5.45)

Γa2u =
∞∑
q=0

i

2
Bq

[(
β2
xK
−−
q −MxMyA

+−
q

)
eiA+−

q yeiK−−q x

+
(
β2
xK
−+
q −MxMyA

−−
q

)
eiA−−q yeiK−+

q x
]

Ξ−q (0)e−ik−q b sin Ψ, (5.46)

where
K±±q = k±q cos Ψ± qπ

a
sin Ψ, A±±q = ±qπ

a
cos Ψ + k±q sin Ψ.
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On the other hand, for the vortical fields, it reads

ΓR2i =

(
β2
x +MxMy

kRjx
αj

)
wje

iαjyeikRjxx, (5.47)

ΓR2d =
∞∑
q=1

ARq
[(
β2
x cos Ψ−MxMy sin Ψ

)
cos(αqη) (5.48)

+i
kRj
αq

(
β2
x sin Ψ−MxMy cos Ψ

)
sin(αqη)

]
eikRj ζ . (5.49)

The same projection is performed with the operator∫ b

0

(•)e−iανy dy, where αν = αj + ν
2π

b
, ν ∈ Z.

After some algebra, this leads to the second matching condition as

b
(
RνK−ν −i

[
β2
x +MxMy

kRjx
αj

]
wjδν,0

)
=
∞∑
q=0

−iARq (1− δq,0)IRj,q,ν cos Ψ

×

(
β2 −

kRj sin Ψ

ϕRj,ν

)
+ Aq

(
K+
q,νI

+
q,ν + FqK−q,νI−q,ν

)
+BqΞ

−
q (0)e−ik−q b sin ΨK−q,νI−q,ν

,

(5.50)
where

K−ν = β2
xk
−
ν −MxMyαν ,

K±q,ν =
(
β2
x cos Ψ−MxMy sin Ψ

)
k±q +

tan Ψ

ϕ±q,ν

(qπ
b

)2

.

5.3.3 Trailing-Edge Interface

Acoustic Potentials and Vortical Velocity Fields

At the trailing-edge interface (Figure 5.7), the conservative variables (p, ux) can be used.
Since the vortical motion is pressure-free, this problem only involves two additional
velocity fields compared to the problem already treated in section 4.3.2. Those velocity
fields are given by

uRd · es ∼
∞∑
q=1

ARq ΥR
jq(S) cos(θq(S) [n+ h(S)/2])eikRj a tan Ψ,

for 0 ≤ X ≤ Lc, −h(X)/2 ≤ y ≤ h(X)/2 and

uRt · ex =
V−1∑
m=0

∞∑
p=−∞

TRp eimαjbeiαp(y′−mb)eikRjtx
′
FR
j ,
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Figure 5.7: Exhaust of a vorticity gust from the cascade of cambered vanes at the
trailing-edge interface.

for 0 ≤ x′ <∞, 0 ≤ y′ < 2πR. As a reminder, the TRp coefficients are defined by

∞∑
p=−∞

(
α2
p + (kRjt)

2

αp

)
TRp I

R
p,ν =

ib

2
(1− δν,0)

α2
ν + (kRj )2

αν
ARν .

Continuity Equations

The pressure continuity and axial-velocity continuity equations read, respectively,

∞∑
q=0

[
Aq(kj − τ+

q M)Ξ+
q +Bq(kj − τ−q M)

]
I0
q,ν = bTν(kj − k+

ν M) , (5.51)

and

∞∑
q=0

[
−iARq (1− δq,0)

θq
(
α2
q + (kRj )2

)
αq
(
θ2
q + (µRj )2

)FR
j + Aqτ

+
q Ξ+

q +Bqτ
−
q

]
I0
q,ν = bk+

ν Tν

+
αν

α2
ν + (kRjt)

2
ΩK − ib

∞∑
p=−∞

TRp F
R
j eiπ([p−j]B/V−ν) sinc ([p− j]B/V − ν) ,

(5.52)

where sinc(x) = sin(πx)/(πx). The Kutta condition enforcing a zero pressure jump at
the trailing edge is given by

∞∑
q=0

[
(kj − τ+

q M)AqΞ
+
q + (kj − τ−q M)Bq

]
(1− (−1)qe−iαjb) = 0 . (5.53)

The acoustic modal coefficients can then be computed in an iterative procedure of
leading-edge matching and trailing-edge matching until a sufficient convergence is
reached. However, due to occurrences of transition near the leading edge, it has been
found necessary in the previous Chapter to rely on a direct global approach.
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5.3.4 Global Matching

The global problem represented on Figure 5.8 is solved by gathering all five previous
matching equations in a single matrix, such that

Figure 5.8: Impingement of a vorticity gust on the cascade of cambered vanes.


E1

1 F1
1 I11 0 0

E1
2 F1

2 I12 0 0

0 F2
1 I21 J2

1 0
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2 I22 J2

2 G2
2

0 F2
K I2K 0 0




R
A
B
T

ΩK

 =


H1

1

H1
2

0
H2

2

0

 , (5.54)

where
E1

1(ν, ν) = −bK−ν δν,ν , F 1
1 (ν, q) = K+

q,νI
+
q,ν + FqK−q,νI−q,ν ,

I1
1 (ν, q) = Ξ−q (0)e−ik−q b sin ΨK−q,νI

−
q,ν ,

E1
2(ν, ν) = −bK−ν δν,ν , F 1

2 (ν, q) = K+
q,νI

+
q,ν + FqK−q,νI−q,ν ,

I1
2 (ν, q) = Ξ−q (0)e−ik−q b sin ΨK−q,νI−q,ν ,

F 2
1 (ν, q) = (kj − τ+

q M)Ξ+
q I

0
q,ν , I2

1 (ν, q) = (kj − τ−q M)I0
q,ν ,

J2
1 (ν, ν) = −b(kj − k+
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F 2
2 (ν, q) = τ+

q Ξ+
q I

0
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2 (ν, q) = τ−q I
0
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2
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F 2
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q , I2

K(1, q) = (kj − τ−q M)(1− (−1)qe−iαjb),

and

H1
1 (ν, 1) = ibMy

kRjx
αj
wjδν,0 +

∞∑
q=0

iARq (1− δq,0) IRj,q,νMy cos Ψ

(
tan Ψ +

kRj cos Ψ
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H1
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∞∑
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,
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H2
2 (ν, 1) =

∞∑
q=0

iARq (1− δq,0)
θq
(
α2
q + (kRj )2

)
αq
(
θ2
q + (µRj )2

)FR
j I

0
q,ν

− ib
∞∑

p=−∞

TRp F
R
j eiπ([p−j]B/V−ν) sinc ([p− j]B/V − ν) .

Mode-Matching Equations Summary

The mode-matching equations for the problem of sound generation by periodic
wake impingement have been derived, in the assumption of an equivalent straight-
channel of slowly-varying cross-section. The model is then expected of limited
accuracy above the first channel cut-off frequency. An iterative approach and a
direct global approach have been formulated in order to deal with cut-off/cut-on
transitions of modes, occurring near the leading edge.

5.4 Comparison with Numerical and Analytical Re-
sults

5.4.1 Methodology

In the first instance, Envia’s results for the fourth NASA CAA workshop, category 3,
problem 2 [24] are used as reference for qualitative comparisons at the first three BPF.
These results were obtained with a code called LINFLUX, which solves the frequency-
domain linearized Euler equations. The first BPF is cut-off whereas the second and
third are cut-on. This test case could also be interesting for studying the cut-off/cut-on
transition expected at the second BPF. The dimensionless BPF is interestingly equal
to kbBPF = π/2. Hence, all even harmonics of the BPF are inside a transition range.
Figure 5.9 illustrates the transition areas in gray in the frequency-camber domain, with
dashed lines to indicate the BPF harmonics of the test case.

Figure 5.9: Evolution of the transition areas (painted in gray) with frequency and
camber. The red dashed lines represent the first BPF harmonics of the test case of the
fourth NASA CAA workshop, with an adjusted camber angle of Ψ = 36°.
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The second and third BPF being above the first channel cut-off frequency, the
MMBW model is expected to reach its limit. Limitations in terms of frequency regard-
ing the acoustic waves modeling has already been assessed. The focus is made on the
limitations regarding the vortical gust modeling here.

Quantitative results are also presented at the second and third BPF. The modal
amplitudes of the annular cut-on modes predicted by different CAA solvers [24] are
gathered to get a reference mean estimate. Results from the analytical model of de
Laborderie et al. [25], which models vane camber by using flat vanes with different LE
and TE stagger angles, are also added to the comparisons.

5.4.2 Results

Instantaneous Pressure and Axial Velocity Maps

Figure 5.10 represents the instantaneous pressure maps at the first BPF computed
numerically (LINFLUX [24]) and analytically (MMBW). The cut-off BPF is correctly

(a) (b)

Figure 5.10: Instantaneous pressure maps at the first BPF computed numerically by
LINFLUX [24] (a) and analytically by MMBW (b).

predicted: similar pattern with only a phase shift between the numerical and analytical
results. The amplitude is higher than what LINFLUX predicts but it stays of the
same order of magnitude. Strong oscillations are present at the staggered leading-edge
interface due to the low number of modes used in the modal truncation (N = 15). The
presence of trapped modes at a cut-off frequency makes the resolution of the modal
coefficients more sensitive to numerical errors. If more modes were considered, the
matrix conditioning would be worse and, even if the oscillations at the LE interface
would be slightly mitigated, oscillations at the TE interface would start to develop,
and a pressure jump could appear at some trailing edges despite the Kutta condition.
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This gives the limiting number of modes that can be used in the absence of any power
balance estimation.

(a) (b)

Figure 5.11: Instantaneous axial velocity maps at the first BPF computed numerically
by LINFLUX [24] (a) and analytically by MMBW (b).

Figure 5.11 displays the instantaneous axial velocity maps at the same first BPF.
The axial velocity is composed of the acoustic and vortical motions. The latter is dom-
inant in the plotted maps and therefore gives an insight on the accuracy of the vortical
gust modeling. The shifting between two adjacent channels is in relatively good agree-
ment with the numerical results, as well as the tilting: the mode order pB = 22 is
dominant downstream of the OGV.

Figures 5.12 and 5.13 represent the instantaneous pressure and axial velocity maps
at the second BPF. The predicted amplitude of the pressure and axial velocity is
about ten times what the CAA returns. However, the overall shape of the pressure
field (Figure 5.12b) is well predicted, with the correct propagation angles upstream
and downstream of the OGV, emphasizing the importance of accurately modeling the
evolution of the mean flow.

At this frequency, a cut-off/cut-on transition of the channel mode q = 1 occurs at
40% of the channel length in the approximate geometry of the MMBW model. When
the transition location is far from the leading edge, the reflected cut-off mode cannot
influence sound propagation. Furthermore, in this case, even the reflected cut-on mode
has no significant impact. Sound propagation in the channels is dominated by the
mode q = 0. Hence, even a computation without properly modeling the reflections
gives a similar result (no change at all in the radiated powers).

Figure 5.12a indicates that either a significant cut-off acoustic mode is missing up-
stream of the OGV in the MMBW, or some spurious reflections are present at the
inflow plane (x = −1.5l). Since this second BPF is above the first cut-off frequency of
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(a) (b)

Figure 5.12: Instantaneous pressure maps at the second BPF computed numerically
by LINFLUX [24] (a) and analytically by MMBW (b).

(a) (b)

Figure 5.13: Instantaneous axial velocity maps at the second BPF computed numeri-
cally by LINFLUX [24] (a) and analytically by MMBW (b).

the channels, the MMBW might be outside its validity range and could be missing a
cut-off mode. The limitation is more visible on the vortical velocity field depicted in
Figure 5.13b, which clearly displays an artificial downward tilting of the gust through

183



Chapter 5. Periodic Wake Impingement on Cambered Vanes

the inter-vane channels at this frequency. This observation proves that the vortical
velocity field sensitivity to curvature is also proportional to frequency, as the acoustic
pressure field, thus the proposed criterion (3.42) is useful for both.

Finally, Figures 5.14 and 5.15 display the instantaneous pressure and axial velocity
maps at the third BPF, well above the theoretical validity of the MMBW. At this
frequency, small oscillations start to appear at the trailing-edge interface. Caution has
been taken while reducing the number of modes in the modal truncation in order to
avoid any significant pressure jumps at the trailing edges, while preserving a reasonable
accuracy. Surprisingly, the overall shape of the pressure field is still in good agreement

(a) (b)

Figure 5.14: Instantaneous pressure maps at the third BPF computed numerically by
LINFLUX [24] (a) and analytically by MMBW (b).

downstream of the OGV, even if the amplitude is overestimated. Upstream of the
OGV, the same modes are present (m = jB + pV = −42 and m = 12), but the
modal distribution of energy is not correctly predicted, with too much energy in m =
−42 (see Figure 5.16). However, when looking at the numerical axial velocity field
(Figure 5.15a), the wavefront is weirdly perpendicular to the inflow interface. There
should be no change in the mean flow, so this behavior might be due to the boundary
condition. This rises the question of whether or not some spurious reflections are
present in the upstream pressure field (Figure 5.14a), and maybe at the second BPF
as well (Figure 5.12a). Extending the model of sound generation for curvature effects
will allow to answer that question.

Modal Amplitudes

Figure 5.16 represents the modal amplitudes distribution of the cut-on annular modes at
the second and third BPF. The amplitude is expressed by Sound Presure Levels (SPL)
in dB, calculated as SPL = 20 log10(p/pref ), pref = 20 µPa. The different numerical
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(a) (b)

Figure 5.15: Instantaneous axial velocity maps at the third BPF computed numerically
by LINFLUX [24] (a) and analytically by MMBW (b).

results from the CAA codes [24] are averaged, and the mean value is displayed with an
error bar delimited by the smallest and largest predictions.

(a) (b)

Figure 5.16: Upstream (a) and downstream (b) modal amplitudes computed with: av-
eraged CAA results [24] with error bars ( ), two-stagger angle model of de Laborderie
et al. [25] ( ) and MMBW ( ).

At 2BPF, the modal amplitudes predicted by MMBW are substantially higher than
the CAA mean value: 10 dB at the inflow plane, and 20 dB at the outflow plane. Even
if the pressure pattern is relatively well predicted, the levels are worse than what was
predicted by de Laborderie et al. [25]. The transition modeling has no impact in
this case. If the reflections at the transition location are not modeled, the change in

185



Chapter 5. Periodic Wake Impingement on Cambered Vanes

modal amplitudes is lower than 1 dB. This shows that the MMBW is inadequate at
this frequency, thus that curvature starts to have a significant effect at the 2BPF, as
indicated by de Laborderie et al. [25].

At 3BPF, surprisingly, the modal amplitudes are better predicted. Upstream of the
cascade, the mode m = −42 is predicted at the limit of the uncertainty of the CAA
results, and the mode m = +12 is well predicted. This is a substantial improvement
compared to the two-stagger angles model, which was underestimating the mode m =
+12. Furthermore, the MMBW is able to recover a better balance between both modes.
Downstream of the cascade, both analytical models give relatively the same results,
with this time a more adequate balance predicted by the two-stagger angles model [25].

5.4.3 Discussion

The MMBW has been pushed to its limit in this test case. The results are promising
but, indeed, it is difficult to put trust on them in such a scenario where the only BPF
harmonic lying in the validity range is cut-off. However, this test case presents an
excellent benchmark for the model since it provides: a cut-off BPF harmonic, a cut-
on BPF harmonic with a transition, and a cut-on BPF harmonic without transition.
However, a test case where the transition is closer to an edge would be needed.

Comparison with Numerical and Analytical Results Summary

A test case based on the NASA SDT baseline configuration at a regime slightly
higher than the approach condition has been used. The model performs surpris-
ingly well to predict the acoustic modes and their propagation angle, except at
2BPF where the modal amplitudes are substantially overestimated. The MMBW
model is able to recover a better modal distribution at 3BPF than a previous
analytical model based on two different stagger angles at the LE and TE inter-
faces. However, the vortical gust evolution is more sensitive to the curvature
effects than the acoustic waves, due to its shorter length-scale in subsonic flow
condition. The vortical gust seems to be the limiting factor in terms of frequency
of the developed MMBW model for sound generation.

5.5 Parametric Study

5.5.1 Methodology

A parametric study is done to assess some effects of camber and acoustic resonance
on tonal noise generation by wake impingement. The base configuration used for
this parametric study is the SDT low-count (V = 26), so that the low-order mode
m = jB + pV = −4 is generated at the first BPF. The shaft-rotation rate ΩR is
artificially modulated in order to cover the frequency range 0.05 ≤ kb/π ≤ 2.05, with
j = 1. Power spectra are computed for different camber angles: Ψ = 1°, 12°, 23° and
34°. The fixed geometrical parameters for this test case are listed in Table 5.1.
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B V l/b M−∞ D−∞/Dref C−∞/Cref

Setup 22 26 1.5 0.4 0.90569 0.98088

Table 5.1: Input parameters of the sound generation test case, Dref = 1.2258 kg/m3

and Cref = 340 m/s.

5.5.2 Results

Influence of Stagger and Camber

Figure 5.17 displays the total sound power level SWL = 10 log10([Pt −Pr]/Pref ), with
Pref = 1 pW, and the upstream relative power spectrum −Pr/(Pt −Pr). Notice that,
for the highest camber case (Ψ = 34°), the MMBW is off its validity range for kb/π > 1,
so caution is required when interpreting the results.

(a) (b)

Figure 5.17: Total (a) and upstream (b) radiated acoustic powers against the frequency
for varying camber angles: Ψ = 1° ( ), Ψ = 12° ( ), Ψ = 23° ( ) and Ψ = 34°
( ).

In Figure 5.17a, between the first cut-off frequency of the annular domain (kb/π '
0.28) and the first cut-off frequency of the channels (kb/π = βb(Ψ) ∈ [0.95, 1]), the
total SWL remains flat for a cascade of almost flat vanes (Ψ = 1°). Then, above
the latter frequency, regular peaks of noise emission are observed. When increasing
stagger/camber, the total SWL spectra becomes more complex. In the first half of
the frequency range, noise emission exhibits a large hump and multiple drops. In the
second half, the pattern is similar to those of flat vanes, but flatter and with a higher
mean value. This indicates that staggered and cambered vanes produce more noise
than flat vanes in such conditions, except at particular frequencies.

When looking at the upstream relative power spectra (Figure 5.17b), regular peaks
similar to those observed at resonant frequencies for sound transmission appear. In-
terestingly enough, some peaks, such as the ones at kb/π ' 0.92 and kb/π ' 1.51
for Ψ = 34°, correspond to a drop and a peak of noise efficiency, respectively. This
phenomenon is further investigated in the following.
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Influence of Acoustic Resonance

Figure 5.18 displays the instantaneous pressure maps for the two peaks observed in
Figure 5.17b, at kb/π ' 0.92 and kb/π ' 1.51, for Ψ = 34°. Figure 5.18 displays the
instantaneous pressure maps for the two peaks observed in Figure 5.17b, for Ψ = 34°
below kb/π = 0.95. Acoustic resonances are found at these frequencies, and more

(a) (b)

Figure 5.18: Instantaneous pressure field of the resonance (1,0) at kb/π ' 0.92 (a) and
(2,1) at kb/π ' 1.51 (b), for Ψ = 34°.

precisely the resonances (1,0) and (2,1), respectively. The resonance phenomenon is
not ideal since the periodicity of the incident gust is given by |m| = 4, which is different
from the ideal values V/2 = 13 and 0, respectively. These resonances are "leaky",
contrary to "trapped", in the current condition, as they radiate energy away from
the cascade. An interesting characteristic of these resonances related to the channel
modes q = 0 and q = 1 is that most of the vanes undergo fluctuations of nearly equal
phases (Figure 5.18a) or nearly opposite phases (Figure 5.18b at each side. This seems
to create adverse and favorable conditions, respectively, for noise generation by wake
impingement, which consists in dipoles distributed along the vanes. This explains
why these resonances were associated to either a drop or a peak in the total SWL in
Figure 5.17a.

For the previous resonances, the acoustic power is mostly radiated upstream of the
OGV. This reminds the results observed for acoustically triggered resonances, where it
was interpreted as some sort of acoustic blockage. However, this does not hold for every
wake-triggered resonances. Figure 5.19 represents the resonance (0,0) with Ψ = 34° and
the resonance (1,1) with Ψ = 23°. The acoustic power is mostly radiated downstream
in these cases.

To summarize, when the resonance pattern is such that most of the vanes undergo
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(a) (b)

Figure 5.19: Instantaneous pressure field of the resonance (0,0) for Ψ = 34° (a) and
(1,1) for Ψ = 23° (b).

pressure fluctuations of almost equal phases at both sides, the total sound power level
drops, whereas if the pressure fluctuations at both sides are of almost opposite phases,
the total sound power level peaks. The balance between upstream and downstream
radiated powers then depends on the case.

5.5.3 Discussion

A short parametric study on the influence of stagger/camber on the noise produced by
periodic wake impingement has been carried out. It allowed one to better understand
the effects of camber and acoustic resonances on noise efficiency, and also demonstrated
the possibility to trigger a resonance with an incident wake. The latter is interesting,
due to the occurrence of non-ideal resonances that could be triggered at unexpected
frequencies in a realistic application if only the ideal resonances are anticipated.

Because of the approximations and assumptions in the model, whether or not such
resonances can occur in real turbomachinery stages remains unanswered. However, it
is possible that such a resonance has been observed numerically, by means of LBM, by
Sanjosé et al. [122]. Figure 5.20 represents the resonance they observed in the NASA
Active Noise Control Fan rig with B = 16 blades and V = 26 vanes. Taking a close
look, the alternate pattern of positive and negative lobes is seen sometimes broken,
indicating that half the wavelength is not exactly equal to a channel height (character-
istic of Parker’s β mode). This could be explained by a non-ideal resonance triggered
by the vortical gust m = jB+ sV = 1× 16− 1× 26 = −10, which is close to V/2 = 13
and can generate a resonance (0,0), trapped (Parker’s β mode) or leaky as seen in
Figure 5.19a. The expected resulting modulation is not inconsistent with what is seen
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Figure 5.20: Instantaneous pressure map in the OGV frame of reference obtained by
LBM [122] in the NASA Active Noise Control Fan rig.

in Figure 5.20, although at this stage it remains only a guess. The resonance could
also be due to vortex shedding combined with a modulation in pressure due to another
noise mechanism, as claimed by the authors, which remains the most probable scenario.

Parametric Studies Summary

A short parametric study has been performed to get preliminary assessments on
the influence of camber and acoustic resonances at low frequencies. Stagger and
camber have been shown to generate more noise than flat vanes, and to have
a more complex acoustic power spectra. Peaks and drops in the total sound
power level have been attributed to acoustic resonances. Finally, acoustic reso-
nances giving rise to fluctuations in phase opposition between adjacent channels
proved to amplify wake-interaction tonal noise, whereas resonances resulting in
fluctuations in phase between adjacent channels can mitigate noise.

5.6 Conclusion

Sound generation by periodic wake impingement has been addressed within the frame-
work of the linearized analysis of Chu and Kovásznay [20] for small perturbations. The
latter states that away from the cascade, the acoustic (potential) and wake (vortical)
motions are independent. Within the inter-vane channels, it has been demonstrated
that both motions stay independent in the volume, thus are linked at the leading-edge
and trailing-edge interfaces only through the matching equations. This is mathemati-
cally equivalent to forcing the coupling at the vane surface, through the impermeability
boundary condition, as it is usually done in other analytical models. Hence, the acous-
tic potentials description is the same as for an incident acoustic wave, and the wake
motion is described independently.

The modeling of the fan wakes, from the rotor trailing edge to the stator leading
edge, has not been addressed in this work. The assumption was made that the wake
mean characteristics: velocity deficit and width, are known at the OGV location in
a way that allows an expansion in Fourier series. Each resulting component, called
gust, being independent. The modeling of the gust evolution through the cascade of
cambered vanes relies on the method of multiple scales, and two propositions have been
made for dealing with the wake slicing and tilting observed downstream of the OGV.
The curvature effects were not accounted for in the vortical gust evolution.

Results obtained with the MMBW model for sound generation have been compared
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with a set of numerical results on a tweaked SDT test case, from the fourth NASA
CAA workshop, category 3, problem 2 [24]. Results from an alternative analytical
model accounting for camber [25], by means of a two-stagger angle model, have also
been added to the comparisons. Even if the MMBW model was off its validity range
at the cut-on BPF harmonics, the shape and propagation angle of the acoustic waves
were well predicted. However, regarding the noise power levels, they are constantly
overestimated compared to the numerical results. Compared to the two-stagger model:
results at the 2BPF are worse by more than 10 dB, but the modal power distribution
is better reproduced at 3BPF, especially upstream. The neglected curvature effects are
surely to be blamed and, more precisely, the vortical gust evolution seems to be the
limiting factor. This is due to its shorter wavelength in subsonic flow condition, which
makes it more sensitive to geometrical effects.

Finally, even if the MMBW model has shown its limit on a realistic test case,
parametric studies have been performed on the SDT low-count configuration with
varying shaft-rotation rate. This permits a continuous power spectra related to the
1BPF at different rotational speeds. This highlighted the effect of acoustic resonances
on the total sound power level, which drops at resonances displaying a pattern where
both sides of a vane are in phase, and peaks when the resonant pattern forces both
sides to have opposite phases.
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General Conclusions

Within a collaboration between Safran Aircraft Engines and the Laboratoire de Mé-
caniques des Fluides et d’Acoustique in Lyon, the aim of this PhD thesis was to improve
the modeling of fan-related noise in order to better understand its origin and help en-
gine manufacturers reducing it at its source. Focus has been placed on the periodic
interaction between the fan wakes and the outlet guide vanes downstream.

A wide panel of noise simulation methods exists in the literature. The most com-
monly used in the context of turbomachinery have been presented, with a distinction
between: methods heavily relying on numerical means for solving the fluid dynamics
equations in the most accurate way, and methods trying to find analytical approximate
solutions. The latter provide fast computations in exchange of a simplified geometry
and flow description. These methods are well suited for early design stages, when
the blade/vane geometry is not decided yet and needs to be optimized. Recently, the
analytical model of Bouley et al. [12] showed promising capabilities to address rotor-
stator wake-interaction tonal noise, and has even been extended to broadband noise
by François et al. [34]. The model was closer to a proof of a concept than a finalized
prediction tool, thus many simplifications were made on the vane geometry. In this
context, the choice has been made to further improve this model by considering more
realistic geometries. Hence making one step further to provide engine manufacturers
with fast and accurate noise prediction tools at pre-design stage, when fast computa-
tions are needed within optimization strategies.

A review of analytical models available in the literature has highlighted that vane
camber is still poorly modeled. Multiple studies have demonstrated that this param-
eter has a significant impact on tonal noise predictions, but almost no influence on
broadband noise predictions. Furthermore, accounting for vane camber in the analyt-
ical models would allow one to remove two ambiguities: the choice of an equivalent
stagger angle; the resulting uniform mean flow not representing swirl recovery through
the cascade. That is why this PhD work has been focused on extending the mode-
matching model to thin cambered vanes under periodic wake interactions. To do so,
the modeling was restricted to two dimensions in the first instance.

The first part of this work has been dedicated to transmission and reflection phe-
nomena within a cascade of cambered vanes. Introducing camber has a twofold impact
on sound propagation in the inter-vane channels:

193



Conclusion

• curvature of the channel center line;

• expansion of the channel cross-section.

The expansion effect has been introduced, irrespective of the curvature effect, at first.
It allowed one to give preliminary assessments on the overall effects of camber. Then,
curvature effects have been introduced in the model and results were compared with
and without accounting for them. The channel expansion also modifies the cut-off fre-
quency along the channel. A given acoustic mode propagating in an inter-vane channel
can become cut-off at some point, thus being totally reflected back, similarly to total
internal reflection at an interface between two different fluids. This phenomenon has
been treated apart and was introduced in the first model only, hence neglecting curva-
ture effects on cut-on/cut-off transition.

The expansion effect on sound propagation in the inter-vane channels has been
modeled by means of geometrical and flow approximations. The core geometrical
assumption is that the cross-section varies slowly, allowing an analytical approximate
solution based on a multiple-scale analysis. The flow is assumed to be perfectly aligned
with the vane leading edge (no angle of attack), which results in a nearly uniform mean
flow simply deviated by the vanes from upstream to downstream. The mean loading
effects on the flow are not accounted for.

The curvature effect has then been introduced within the same mathematical frame-
work and physical assumptions, but restating the wave equation in curvilinear coor-
dinates. The latter was solved using a pseudo-spectral method based on Chebyshev
polynomials.

Results for the scattering of an acoustic wave with both models have been compared
with highly accurate numerical results, used as a reference. The Mode Matching for
Bifurcated Wave-guides (MMBW), which does not account for curvature effects, proved
to perform well below the first cut-off frequency of the channels, and even above it if
curvature and frequency remain small. The Mode Matching for Bifurcated Curved
Wave-guides (MMBCW) has been validated at relatively low and high frequencies, up
to a Helmholtz number of about 12 based on the inter-vane spacing. The reliability
of the model has been assessed by comparing results on the realistic vane geometry of
the NASA SDT baseline configuration at mid-span. Results were in good agreement
with the numerical reference, with and without flow. However, numerical results on
the realistic vane geometry in the presence of flow (Mach number of about 0.45), were
only available at a relatively low frequency (Helmholtz number of about 2.75). Further
comparisons would be needed to assess the validity of the model in this case, using the
open-source solver SU2 for example.

Parametric studies have been carried out on the different physical parameters of
the MMBCW model. Apart from the vicinity of the cascade resonant frequencies,
neither stagger/camber, solidity or incident mode order has a significant impact on the
acoustic power balance between reflection and transmission. Although, stagger/camber
and solidity do change the distribution of modal energy in the scattered fields for a
given incident wave. Furthermore, camber induces reflections in the inter-vane channels
even when the incident wavefront is perfectly perpendicular to the vane leading edges.
For flat vanes, such a configuration is sometimes called "Venetian blind" and leads
to a fully transmitted field, without any reflection or scattering. With curved vanes,
reflected scattered waves appear upstream of the cascade, and a resonance can even
take place in it.
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Acoustic resonances occurring above the cut-off frequency of the annular domain,
thus putting aside trapped modes, have also been investigated, but with the MMBW
model. Within the limitations of this model, it appeared that camber has a similar
effect as stagger on resonant frequencies, which consists in an increase of the frequency
when solidity is large enough, depending on the resonance considered. The influence
of incident mode order has also been investigated since usually left aside in the liter-
ature. A peculiar phenomenon of resonance by layers was brought to light, due to a
modulation induced by the incident wave when its wavelength no longer matches the
cascade periodicity.

On the other hand, cut-on/cut-off transitions have been addressed in the MMBW
model by the method of matched asymptotic expansions. A uniformly valid expression
of the acoustic potential in the inter-vane channels has been formulated. This allowed
one to account for both: an upstream-propagating mode generated at the trailing edge
being reflected back at its transition location; a cut-off mode generated at the leading
edge carrying energy to the trailing edge when becoming cut-on. Both solutions were
incorporated into the mode-matching equations.

The accuracy of the model within the transition frequency-ranges has been demon-
strated, highlighting the significant impact a single mode can have on the overall scat-
tering of an acoustic wave. The role of the transition in the development of certain
acoustic resonances was brought to light. The standing-wave pattern formed by the
upstream-propagating mode and its reflection allowing the resonance to take place even
if the mode is cut-off near the leading edge area. The effect of Mach number on the
transition has also been discussed.

Finally, sound generation by periodic wake impingement has been addressed. The
fan wakes are expanded in Fourier series, in which each component is called a gust. The
modeling of the gust evolution through the cascade of cambered vanes relied on the
method of multiple scales without curvature effects, and two propositions have been
made for dealing with the wake slicing and tilting observed downstream of the OGV.

The derived MMBW model for sound generation has been tested on the SDT test
case and results have been compared with the literature. The model was off its validity
range at the cut-on BPF of the test case but showed a good agreement with numerical
results in terms of wavefront inclination outside the OGV cascade, highlighting a proper
description of the mean flow deviation. The model systematically overestimated the
power level of the radiated acoustic modes compared to numerical results, but showed
some improvements compared to another analytical model. Introducing the curvature
in the model of sound generation will give more insights on the capabilities of the
developed approach.

Even if the MMBW model has shown its limit, parametric studies have been per-
formed on the SDT low-count configuration with varying shaft-rotation rate, in order
to obtain a continuous power spectra related to the 1BPF at different rotational speeds.
This highlighted the effect of acoustic resonances on the total sound power level, which
drops at resonances displaying a pattern where both sides of a vane are in phase, and
peaks when the resonant pattern forces both sides to have opposite phases.
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Perspectives

Perspectives are numerous for such a modeling work. Each part of the model has its
own assumptions and limitations, which are listed in the following with possibilities for
improvement.

Concerning sound propagation in slowly-varying curved ducts, the existence of an
analytical solution with flow in two dimensions could be investigated to better under-
stand the influence of Mach number. According to the website Wolfram Alpha [1],
this solution is written as a combination of confluent hypergeometric functions, but its
validity with hard-wall boundary conditions has not been assessed.

The next logical step is to extend the MMBCW model to the occurrence of transi-
tions, with a new composite solution for a mode undergoing transition inside a slowly-
varying bent channel. Brambley & Peake [14] already paved the way for such a work
and their results could serve as a starting point. Another limit of the current model is
that no energy transfer between neighboring modes at the transition location is con-
sidered, whereas it is known to occur at high frequencies, especially for large modal
orders [88, 126, 127]. Detailed explanations and modeling for such scattering can be
found in the work of Smith [126, 127].

Regarding the modeling of the vortical gust evolution through the OGV, an exten-
sion to account for curvature effects is necessary. This could be achieved by formulating
a global system of equations in curvilinear coordinates, on both acoustic and vortical
motions, and solving it by means of a pseudo-spectral method based on Chebyshev
polynomials. All needed equations have been derived through this work and some
tests were performed during the PhD, unfortunately without satisfying results. Such a
numerical resolution could be subject to hydrodynamic instabilities, so caution would
be required to resolve it properly.

Furthermore, accounting for curvature effects in the gust evolution cannot be achieved
with the current description of the vane geometry due to curvature discontinuities, the
gust evolution being directly proportional to it. A new description of the system with
a continuous curvature through the cascade has been tested but is still under devel-
opment. Notice that, such a continuous description would also enable a non-uniform
description of the mean flow, thus addressing mean loading effects.

On the other hand, the model could be extended to account for any leading-edge
and trailing-edge blade angles, irrespective of one another. The model is currently
restricted to zero trailing-edge blade angle, which is representative of OGV. This ex-
tension would allow one to model staggered blades, with low to zero camber, represen-
tative of rotors at blade tip. Then, extending the model to a rotating cascade would
enable the study of fan blades screen effect, which is still an important topic of research.

Finally, with a model of sound propagation through rotating fan blades and a model
of sound generation for cambered OGV, a global model could be derived, accounting
for successive reflections between the fan blades and the OGV. This would allow the
study of eventual trapped modes in the inter stage, in two dimensions, which could be
crucial for understanding sound emission from the fan stage.
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To summarize, this PhD thesis has made one step further toward a unified modeling
of sound generation and transmission in a rotor-stator stage, with realistic blade/vane
geometries.
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Appendix A
Slowly Varying Developments

A.1 Wave Equation and Boundary Conditions

A.1.1 Expansion of the Convected Wave Operator

Starting from the wave equation (1.11) with a change of Fourier-transform convention:

L(φ) =
1

D
∇ · (D∇φ)− (iω + U · ∇)

[
1

C2
(iω + U · ∇)φ

]
= 0, (A.1)

the wave operator is expanded as

L ≡ 1

D
∇ · (D∇)− (iω + U · ∇)

[
1

C2
(iω + U · ∇)

]
≡ ∇2 +

1

D
(∇D)∇−

[
1

C2

(
−ω2 + iω(U · ∇)

)
+ (U · ∇)

(
1

C2
(iω + U · ∇)

)]
≡ ∇2 +

1

D
(∇D)∇+

ω2

C2
− i

ω

C2
(U · ∇)−

(
(U · ∇)C−2

)
(iω + U · ∇)

− 1

C2
(U · ∇)(iω + U · ∇)

≡ ∂xx + ∂yy +D−1 (∂xD∂x + ∂yD∂y) + ω2C−2 − iωC−2 (U∂x + V ∂y)

− iω
[
U∂xC

−2 + V ∂yC
−2
]
−
[
U∂xC

−2 + V ∂yC
−2
]

(U∂x + V ∂y)

− iωC−2 (U∂x + V ∂y)− C−2
[
(U∂x + V ∂y)

2 + (U∂xU + V ∂yU) ∂x

+ (V ∂yV + U∂xV ) ∂y] . (A.2)

Introducing the mean flow expansions from (2.49a-2.49d):

U(X, y) = U0x(X)ex + εU1y(X, y)ey +O(ε2), (A.3a)

C(X, y) = C0(X) +O(ε2), (A.3b)

D(X, y) = D0(X) +O(ε2), (A.3c)

P (X, y) = P0(X) +O(ε2), (A.3d)
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equation (A.2) becomes

L ≡ ∂xx + ∂yy + εD−1
0 ∂XD0∂x + ω2C−2

0 − 2iωC−2
0 (U0x∂x + εU1y∂y)− εiωU0x∂XC

−2
0

− εU2
0x∂XC

−2
0 ∂x − C−2

0

[
U2

0x∂xx + 2εU0xU1y∂xy + εU0x∂XU0x∂x
]

+O(ε2)

≡ ∂xx + ∂yy + C−2
0

[
ω2 − 2iωU0x∂x − U2

0x∂xx
]

+ ε
{
D−1

0 ∂XD0∂x − iωU0x∂XC
−2
0 − U0x∂X

(
U0xC

−2
0

)
∂x − 2iωC−2

0 U1y∂y

−2C−2
0 U0xU1y∂xy

}
+O(ε2). (A.4)

This is equivalent to (2.53) and thus concludes the derivation.

A.1.2 WKB Expansion of the Acoustic Potential

From the above result, the wave equation (2.53) can be expanded as

∂xxφ+ ∂yyφ− C−2
0

[
−ω2φ+ 2iωU0x∂xφ+ U2

0x∂xxφ
]

+ ε
{
D−1

0 ∂XD0∂xφ− iωU0x∂XC
−2
0 φ− U0x∂X

(
U0xC

−2
0

)
∂xφ− 2iωC−2

0 U1y∂yφ

−2C−2
0 U0xU1y∂xyφ

}
+O(ε2) = 0.

(A.5)

Introducing the WKB expansion for the acoustic potential

φ(x, y; ε) = exp

(
− i
ε

∫ X

µ(ξ; ε) dξ

) ∞∑
n=0

εnΦn(X, y; ε), (A.6)

where µ is the axial wavenumber, which is allowed to vary with X [83], it gives the
derivatives

φx = exp

(
− i
ε

∫ X

µ(ξ; ε) dξ

)
(−iµ+ ε∂X)

∞∑
n=0

εnΦn(X, y; ε), (A.7)

and

φxx = exp

(
− i
ε

∫ X

µ(ξ; ε) dξ

)(
−µ2 − iε∂Xµ− 2iεµ∂X + ε2∂XX

) ∞∑
n=0

εnΦn(X, y; ε).

(A.8)
The wave equation (A.5) will be treated by order of magnitude and, from now on,
the Einstein summation convention will be assumed for the index n. Dividing by the
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common exponential term, the first line of (A.5) becomes(
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and the second line of (A.5)
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= ε
{
−i
[
µD−1

0 ∂XD0 + ω∂X
(
U0xC

−2
0

)
− µ∂X

(
U2

0xC
−2
0

)
−(ω − µU0x)C

−2
0 D−1

0 ∂X (D0U0x) + (ω − µU0x)C
−2
0 U0xD

−1
0 ∂XD0

]
Φ0

−2iC−2
0 (ω − µU0x)U1y∂yΦ0

}
+O(ε2). (A.10)

Rewriting together (A.9) and (A.10), and introducing Ω = ω − µU0x, this yields

O(1) ∂yyΦ0 +

(
Ω2

C2
0

− µ2

)
Φ0 = 0, (A.11a)

O(ε) ∂yyΦ1 +

(
Ω2

C2
0

− µ2

)
Φ1 = i∂Xµ

(
1− U2

0x

C2
0

)
Φ0 + 2i

(
ΩU0x

C2
0

+ µ

)
∂XΦ0

+ i

[(
ΩU0x

C2
0

+ µ

)
∂XD0

D0

+ ω∂X

(
U0x

C2
0

)
− µ∂X

(
U2

0x

C2
0

)
− Ω

D0C2
0

∂X (D0U0x)

]
Φ0

+ 2i
Ω

C2
0

U1y∂yΦ0. (A.11b)

While equation (A.11a) has the desired shape, the right-hand side of equation (A.11b)
still needs some simplifications. Using the fact that −∂X (D0U0x) = ∂y (D0U1y) =
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D0∂yU1y +O(ε2), (A.11b) is restated as

O(ε) ∂yyΦ1 +

(
Ω2

C2
0

− µ2

)
Φ1 = i

[
∂Xµ

(
1− U2

0x

C2
0

)
+ ω∂X

(
U0x

C2
0

)
− µ∂X

(
U2

0x

C2
0

)]
Φ0

+ i

(
ΩU0x

C2
0

+ µ

)
∂XD0

D0

Φ0 + 2i

(
ΩU0x

C2
0

+ µ

)
∂XΦ0

+ i
Ω

C2
0

∂yU1yΦ0 + 2i
Ω

C2
0

U1y∂yΦ0

=
i

D0Φ0

{
∂X

[(
ΩU0x

C2
0

+ µ

)
D0Φ2

0

]
+

ΩD0

C2
0

∂y
(
U1yΦ

2
0

)}
,

(A.12)

which concludes the derivations of the wave equation.

The boundary conditions in (2.54) are given by

(∇φ · n)|y=R±(X) = 0⇔ ∂xφn
±
x

∣∣
y=R±(X)

+ ∂yφn
±
y

∣∣
y=R±(X)

= 0, (A.13)

with

n+ =
ey + ε sin

(
2 cos Ψ

h0
X −Ψ

)
ex√

1 + ε2 sin2
(

2 cos Ψ
h0

X −Ψ
) , n− = −

ey − ε sin
(

2 cos Ψ
h0

X −Ψ
)
ex√

1 + ε2 sin2
(

2 cos Ψ
h0

X −Ψ
) . (A.14)

The symbol ± is used to denote the upper (+) and lower (−) boundary conditions.
Substituting these expressions into (A.13) and dividing by the common integral term,
the result is straight-forward:

[(−iµ+ ε∂X) εnΦn]y=R±(X)

ε sin
(

2 cos Ψ
h0

X −Ψ
)

√
1 + ε2 sin2

(
2 cos Ψ

h0
X −Ψ

)± [∂yε
nΦn]y=R±(X)√

1 + ε2 sin2
(

2 cos Ψ
h0

X −Ψ
) = 0,

⇒ −iµε sin

(
2

cos Ψ

h0

X −Ψ

)
Φ0|y=R±(X)±

(
∂yΦ0|y=R±(X) + ε ∂yΦ1|y=R±(X)

)
+O(ε2) = 0,

which is equivalent to

O(1) ∂yΦ0|y=R±(X) = 0,

(A.15a)

O(ε) ∂yΦ1|y=R±(X) = ±iµ sin

(
2

cos Ψ

h0

X −Ψ

)
Φ0|y=R±(X) . (A.15b)

A.2 Solvability Condition

The solvability condition used by Rienstra [107] is based on the Fredholm alternative
as detailed with plenty of examples in Nayfeh’s book [81]: Introduction to perturbation
techniques, chapter 15.
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It has been demonstrated, from (2.63), that the solvability condition in this case
reduces to ∫ R+(X)

R−(X)

Φ0fh(Φ0) dy = [Φ0∂yΦ1]R
+

R− − [Φ1∂yΦ0]R
+

R− , (A.16)

which is basically Green’s second identity. From equations (2.56) and (2.57), this is
also equal to

(1)︷ ︸︸ ︷∫ R+

R−
∂X

[(
ΩU0x

C2
0

+ µ

)
D0Φ2

0

]
dy+

(2)︷ ︸︸ ︷∫ R+

R−

ΩD0

C2
0

∂y
(
U1yΦ

2
0

)
dy

= µD0 sin

(
2

cos Ψ

h0

X −Ψ

)(
Φ2

0

∣∣
y=R+ + Φ2

0

∣∣
y=R−

)
︸ ︷︷ ︸

(3)

.

(A.17)

Term (1) can be developed by application of the Leibniz’s rule for differentiation under
the integral sign. This gives∫ R+

R−
∂X

[(
ΩU0x

C2
0

+ µ

)
D0Φ2

0

]
dy

= ∂X

[(
ΩU0x

C2
0

+ µ

)
D0

∫ R+

R−
Φ2

0 dy

]
− ∂XR+(X)

(
ΩU0x

C2
0

+ µ

)
D0 Φ2

0

∣∣
y=R+

+ ∂XR
−(X)

(
ΩU0x

C2
0

+ µ

)
D0 Φ2

0

∣∣
y=R−

= ∂X

[(
ΩU0x

C2
0

+ µ

)
D0N

2

]
+D0 sin

(
2

cos Ψ

h0

X −Ψ

)(
ΩU0x

C2
0

+ µ

)(
Φ2

0

∣∣
y=R+ + Φ2

0

∣∣
y=R−

)
.

(A.18)

Term (2) is derived as

ΩD0

C2
0

∫ R+

R−
d
(
U1yΦ

2
0

)
=

ΩD0

C2
0

[
U1yΦ

2
0

]R+

R−

=
ΩD0

C2
0

(
U1yΦ

2
0

∣∣
y=R+ − U1yΦ

2
0

∣∣
y=R−

)
=

ΩD0

C2
0

U1y|y=R+

(
Φ2

0

∣∣
y=R+ + Φ2

0

∣∣
y=R−

)
.

The last part assumed symmetry of the boundaries with respect to the channel center
line in order to write U1y|y=R+ = − U1y|y=R− . Further simplifications are obtained by
using the no-slip condition of the mean flow at the boundaries:

U · n± = 0, at y = R±(X). (A.19)

Hence,

U1y|y=R± = ∓U0x sin

(
2

cos Ψ

h0

X −Ψ

)
, (A.20)

where the ∓ sign on the right-hand side is chosen accordingly with the boundary
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considered, respectively y = R+ and y = R−. Term (2) is finally rewritten as

−D0
ΩU0x

C2
0

sin

(
2

cos Ψ

h0

X −Ψ

)(
Φ2

0

∣∣
y=R+ + Φ2

0

∣∣
y=R−

)
. (A.21)

Combining terms (2) and (3) cancels the second part of (1), which leaves only the
following condition:

∂X

[(
ΩU0x

C2
0

+ µ

)
D0N

2

]
= 0. (A.22)

Introducing

σ =

√
1− (C2

0 − U2
0x)

θ2

ω2
, (A.23)

the solvability condition is recast into its final form√
ωD0(X)σ(X)

C0(X)
N(X) = Q (a constant). (A.24)
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Appendix B
Orthogonal Curvilinear Coordinates

B.1 Scale Factor

This section focuses on the particular case of the two-dimensional curvilinear coordi-
nates used in this thesis. For more general considerations on curvilinear coordinates,
the book Methods of Theoretical Physics from Morse & Feshbach [78], Chapter 1.3, is
recommended.

Looking at Figure B.1, a small variation dx or dy in its respective coordinate
produces an equal displacement ds = dx (segment [OA]) or ds = dy (segment [OB]).
With polar coordinates (r, θ), a change dθ along the azimuthal coordinate produces

Figure B.1: Displacement produced by a small change of a coordinate.

a displacement ds = rdθ from point A to point C in Figure B.1. The so-called scale
factor for the coordinate θ is defined by

hθ =
ds

dθ
= r. (B.1)

Note that the scale factor is usually not a constant in space. On the other side, a
change dr along the radial coordinate, from point C to point D, produces an equal
displacement dr. Hence

hr =
ds

dr
= 1. (B.2)

The scale factors of each coordinate can be different !
The scale factors hr and hθ have been derived by simple geometrical knowledge.

Noticing that the general expression of the displacement in Cartesian coordinates is
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ds =
√

dx2 + dy2, simple substitution in (B.1) and (B.2) shows that

hr =

√(
∂x

∂r

)2

+

(
∂y

∂r

)2

, hθ =

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

. (B.3)

Thus

hr =

√(
∂r cos θ

∂r

)2

+

(
∂r sin θ

∂r

)2

= 1, hθ =

√(
∂r cos θ

∂θ

)2

+

(
∂r sin θ

∂θ

)2

= r.

The scale factors are the norm of the column vectors composing the Jacobian matrix
J of the mapping (r, θ) 7→ (x, y). The Jacobian matrix is given by

J(r, θ) =

(
∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

)
.

It gives information about the metric distortion occurring when going from the r-θ space
to the x-y space. Since the coordinates are orthogonal, the vectors (∂x/∂r, ∂y/∂r) and
(∂x/∂θ, ∂y/∂θ) are orthogonal as well. Thus, the determinant of the Jacobian matrix
is simply

det(J(r, θ)) =

∣∣∣∣∣∣∣∣(∂x/∂r∂y/∂r

)∣∣∣∣∣∣∣∣
2

·
∣∣∣∣∣∣∣∣(∂x/∂θ∂y/∂θ

)∣∣∣∣∣∣∣∣
2

= hrhθ.

The scale factors are the eigenvalues of the Jacobian matrix ! As explained geometri-
cally in (B.1) and (B.2), the scale factors measure how volume or surface area is scaled
in each direction. This is evidently related to the property of the determinant of the
Jacobian J(r, θ)1. An infinitesimal surface element in the polar reference frame, such
as delimited by the points ACDE in Figure B.2, is scaled/distorted when projected
into the Cartesian reference frame (Figure B.1) with a distortion factor equal to the
product of the metric distortions in each direction. Its surface area is then equal to

Figure B.2: Infinitesimal surface element in the polar reference frame.

hrhθdrdθ = rdrdθ. In general, the volume of an elementary rectangular parallelepiped
in any orthogonal coordinate system (ξ1, ξ2, ...) is defined by

dv =
∏
i

hidξi. (B.4)

1A nice illustrative explanation can be found on 3Blue1Brown YouTube channel. [Online]. Avail-
able: https://youtu.be/Ip3X9LOh2dk
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B.2 Inter-Vane Channel Coordinates

Notice that the curvilinear coordinates used in this thesis are just polar coordinates in
disguise. Looking at Figure B.3, the definition of (s, n) is given by equations (B.5).

Figure B.3: Curvilinear coordinates definition.

{
s = −Rcθ,
n = r −Rc.

(B.5)

It follows that
∂

∂s
=

∂

∂θ

∂θ

∂s
= − 1

Rc

∂

∂θ
,

∂

∂n
=

∂

∂r

∂r

∂n
=

∂

∂r
,

and so

hn = hr = 1 , hs =
n+Rc

Rc

= 1 +
n

Rc

= 1− κn , (B.6)

where κ = −1/Rc because the curvature is negative in the chosen curvilinear reference
frame.

B.3 Differential Operators

Here is a list of useful differential operators expressed in a two-dimensional orthogonal
curvilinear space ξ1-ξ2 (except for the curl), with unit vectors e1 and e2, extracted from
Morse & Feshbach [78]:

∇φ =
e1

h1

∂φ

∂ξ1

+
e2

h2

∂φ

∂ξ2

(B.7)

(U · ∇)φ =
U1

h1

∂φ

∂ξ1

+
U2

h2

∂φ

∂ξ2

(B.8)

[(U · ∇) V] · e1 =
U1

h1

∂V1

∂ξ1

+
U2

h2

∂V1

∂ξ2

+
V2

h1h2

[
U1
∂h1

∂ξ2

− U2
∂h2

∂ξ1

]
(B.9)

[(U · ∇) V] · e2 =
U1

h1

∂V2

∂ξ1

+
U2

h2

∂V2

∂ξ2

+
V1

h1h2

[
U2
∂h2

∂ξ1

− U1
∂h1

∂ξ2

]
(B.10)

∇ ·U =
1

h1h2

[
∂

∂ξ1

(U1h2) +
∂

∂ξ2

(h1U2)

]
(B.11)

∇2φ =
1

h1h2

[
∂

∂ξ1

(
h2

h1

∂φ

∂ξ1

)
+

∂

∂ξ2

(
h1

h2

∂φ

∂ξ2

)]
(B.12)
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[∇×U] · e3 =
1

h1h2

[
∂

∂ξ1

(h2U2)− ∂

∂ξ2

(h1U1)

]
(B.13)
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Appendix C
Transition Analysis

C.1 Airy functions

The NIST Handbook of Mathematical Functions [85] states that

lim
s→−∞

Ai(−s) =
exp

(
−2

3
(−s)3/2

)
2
√
π(−s)1/4

+O(s−3/2),

lim
s→−∞

Bi(−s) =
exp

(
2
3
(−s)3/2

)
√
π(−s)1/4

+O(s−3/2),

and

lim
s→+∞

Ai(−s) =
cos
(

2
3
s3/2 − π

4

)
√
πs1/4

+O(s−3/2),

lim
s→+∞

Bi(−s) =
− sin

(
2
3
s3/2 − π

4

)
√
πs1/4

+O(s−3/2),

where s ∈ C.

C.2 Velocity Potential

C.2.1 Downstream-Propagating Part

The acoustic potential corresponding to the downstream-propagating modes is given
in the slowly-varying part of the channel by

φd(S, n) =
+∞∑
q=0

DqΞ
+
q (S) cos

(
θq(S)

[
n+

h(S)

2

])
, (C.1)

where

Ξ+
q (S) =


Γq(S)

Γq(0)

Bi(rq(S)) + iAi(rq(S))

Bi(rq(0))
eik

+
q a tan Ψ if ∃St ∈ [0, εLc], σ

2
q (St) = 0,

Υ+
q (S)/Υ+

q (0) eik
+
q a tan Ψ otherwise,
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Γq(S) =

∣∣∣∣ rq(S)

ρ2(S)k2(S)h2(S)σ2
q (S)

∣∣∣∣1/4 exp

(
− i
ε

∫ S

St

k(ξ)M(ξ)

β2(ξ)
dξ

)
,

rq(S) =


(

3

2ε

∫ St

S

k|σq|
β2

dξ

)2/3

if S < St,

−
(

3

2ε

∫ S

St

k|σq|
β2

dξ

)2/3

if St ≤ S,

and

Υ+
q (S) =

exp
(
i/ε
∫ S

0
µ+
q /β

2 dξ
)

√
ρµ+

q h
, µ+

q =
−kM + kσq

β2
.

The stream-wise acoustic velocity is expressed by

∂φd
∂s

(s, n) = ε
∂φd
∂S

(S, n). (C.2)

Since θq(S) = qπ/h(S) and h is a function of the slow variable S, the derivative of the
cosine term in (C.1) is O(ε). Therefore

ε
∂φd
∂S

(S, n) = ε
+∞∑
q=0

Dq

∂Ξ+
q

∂S
cos

(
θq(S)

[
n+

h(S)

2

])
+O(ε). (C.3)

In the absence of any transition, the derivative simply reads, at leading-order

ε
∂Ξ+

q

∂S
= ε

eik
+
q a tan Ψ

Υ+
q (0)

∂Υ+
q

∂S
∼ iµ+

q

Υ+
q (S)

Υ+
q (0)

eik
+
q a tan Ψ = i

−kM + kσq
β2

Ξ+
q . (C.4)

Otherwise, when a transition occurs, it reads

ε
∂Ξ+

q

∂S
= ε

eik
+
q a tan Ψ

Γq(0)Bi(rq(0))

∂

∂S
{Γq [Bi(rq) + iAi(rq)]}︸ ︷︷ ︸

D

. (C.5)

The derivative-term D can be expressed as

D = Γ′q [Bi(rq) + iAi(rq)] + Γqr
′
q [Bi

′(rq) + iAi
′(rq)] ,

where at first order
Γ′q ∼

(
1

4

|rq|′

|rq|
− i

ε

kM

β2

)
Γq,

and

|rq|′ ∼


−1

ε

k|σq|
β2|rq|1/2

if S < St,

+
1

ε

k|σq|
β2|rq|1/2

if St ≤ S,

while
r′q ∼ −

1

ε

k|σq|
β2|rq|1/2

.
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Hence the derivative of Ξ+
q at first order reads, in this case,

ε
∂Ξ+

q

∂S
∼ i
−kM + kς+

q

β2
Ξ+
q , (C.6)

where

ς+
q = i|σq| ×


1

|rq|1/2
Bi
′(rq) + iAi

′(rq)

Bi(rq) + iAi(rq)
+

1

4|rq|3/2
if S < St,

1

|rq|1/2
Bi
′(rq) + iAi

′(rq)

Bi(rq) + iAi(rq)
− 1

4|rq|3/2
if St ≤ S,

(C.7)

C.2.2 Upstream-Propagating Part

The acoustic potential corresponding to the upstream-propagating modes is given in
the slowly-varying part of the channel by

φu(S, n) =
+∞∑
q=0

UqΞ
−
q (S) cos

(
θq(S)

[
n+

h(S)

2

])
, (C.8)

where

Ξ−q (S) =


Γq(S)

Γq(Lc)

Ai(rq(S))

Ai(rq(Lc))
if ∃St ∈ [0, εLc], σ

2
q (St) = 0,

Υ−q (S)/Υ−q (Lc) otherwise,

and

Υ−q (S) =
exp

(
i/ε
∫ S
Lc
µ−q /β

2 dξ
)

√
ρµ−q h

, µ−q =
−kM − kσq

β2
.

When no transition occurs, the derivative of Ξ−q (S) reads

ε
∂Ξ−q
∂S
∼ i
−kM − kσq

β2
Ξ−q , (C.9)

and otherwise

ε
∂Ξ−q
∂S
∼ i
−kM − kς−q

β2
Ξ−q , (C.10)

where

ς−q = −i|σq| ×


1

|rq|1/2
Ai
′(rq)

Ai(rq)
+

1

4|rq|3/2
if S < St,

1

|rq|1/2
Ai
′(rq)

Ai(rq)
− 1

4|rq|3/2
if St ≤ S,

(C.11)
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