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Abstract

The goal of this paper is to investigate the acoustic field generated by the flow over a cavity using two
different and complementary numerical methods. First, a Direct Numerical Simulation of the 2-D
compressible Navier–Stokes equations is performed to obtain directly the radiated noise. The results of the
acoustic and aerodynamic fields are compared to the experimental data in the literature. Second,
this reference solution is compared to solutions provided by hybrid methods using the flowfield computed
inside the cavity combined with an integral formulation to evaluate the far-field noise. Numerical
issues of three integral methods are studied: the Ffowcs Williams and Hawkings analogy that extends
Lighthill’s theory to account for solid boundaries and two Wave Extrapolation Methods from a control
surface, the Kirchhoff and porous Ffowcs Williams and Hawkings methods. All methods show a
good agreement with the Direct Numerical Simulation, but the first one is more expensive owing to an
additional volume integral. However, the analogy can help in the analysis of wave patterns, by
separating the direct waves from the reflected ones. The wave extrapolation methods from a surface are
more efficient and provide a complementary tool to extend Computational Aeroacoustics near field to the
very far field.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

Impinging shear layers are known to exhibit strong coherent oscillations associated with intense
noise radiation in a wide range of applications [1]. In this study, the noise radiated by a subsonic
flow past a two-dimensional cavity is investigated. A severe acoustic environment within and
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outside the cavity arises from a feedback loop, locked in by the geometry and the flow
itself, as shown by many experimental observations [2]. However, geometrical simplicity
does not imply a simple self-sustained mechanism, and numerous phenomena are involved.
The direct calculation of the aerodynamic field and the acoustic field in the same compu-
tation by solving the compressible Navier–Stokes equations provides a new tool to investi-
gate how the deformation of flow structures, their interactions with the downstream
edge, the dynamics of the separated shear layer, the internal recirculating flow or the changes
of flow regime with changing geometry and flow parameters are related to the intense radiated
noise.
The direct simulation of aerodynamic noise remains a difficult numerical challenge, and only

basic configurations with moderate Reynolds number flows can be treated with success [3]. Owing
to the great disparities between fluctuations in the flow and in the sound field, specific numerical
techniques must be used such as high order explicit schemes, minimizing dispersion and
dissipation of acoustic waves, and appropriate boundary conditions. The term CAA
(computational aeroacoustics) is therefore used. In conventional computational fluid dynamics
(CFD) acoustics is either not resolved or not resolved accurately because of the numerical schemes
used and inadequate grid cell sizes or time steps.
Approaches specific to aeroacoustics have been developed when the direct calculation

of noise is proscribed. This group of approaches separates the aerodynamic calculation and the
noise propagation problem in order to apply at each step the most appropriate method.
One of the first theories on aerodynamic noise generation was established by Lighthill [4].
It was extended by Ffowcs Williams and Hawkings [5] (FW–H) to take into account the
presence of solid boundaries in arbitrary motion. These integral formulations can be used in
connection with numerical simulations of the Navier–Stokes equations to evaluate noise
radiation. Another class of integral methods rests upon the Kirchhoff–Helmholtz theorem.
The most famous one is the Kirchhoff method, extended by Farassat and Myers [6] for
moving surfaces. The use of the FW–H formulation on a fictitious porous surface was
proposed as an alternative solution in the original paper of Ffowcs Williams and Hawkings [5].
These Wave Extrapolation Methods (WEM) from a control surface, like Kirchhoff’s or porous
FW–H methods, assume that the surface encloses all non-linear sources. All these integral
formulations have similar analytical features based on a Green function formalism and suffer
from the limitation of the observer in a uniform flow. The linear wave equation is assumed valid
outside the source region, and consequently non-linear propagation of acoustic waves is not
described.
The aim of this paper is to study three integral formulations: the Ffowcs Williams and

Hawkings analogy, and two WEMs from a surface, the Kirchhoff and the FW–HWEMmethods,
and to evaluate their practical interest and complementarity. In particular, for the case of cavity
flow it is shown how these different tools can help one to analyze the radiated acoustic field. The
first part of this paper presents the direct computation of the Navier–Stokes equations for a two-
dimensional rectangular cavity with aspect ratio of 2, matching one configuration of Karamcheti’s
experiments [7]. In the second part, the far-field noise, associated with sources computed from the
previous direct numerical simulation (DNS), is obtained using the three integral formulations.
Each method is described and the results are compared with those of direct acoustic simulation
taken as a reference.
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2. Direct computation of cavity noise

2.1. Introduction

As in jet noise simulation, initial attempts have been made in the case of supersonic flows for
cavity noise. These first CFD computations of compressible cavity flows used the 2-D unsteady
RANS (Reynolds Averaged Navier–Stokes) equations with a turbulence model [8]. The
effectiveness of such models for separated flows remains an open question. Slimon et al. [9]
have found that RANS simulations show a strong sensitivity to the choice of turbulence models.
Tam et al. [10] showed that the results are affected by high values taken by the turbulent viscosity.
They even noticed better results for the estimation of the time-averaged surface pressure field with
no model. That is why Rona and Dieudonn!e [11] preferred to study laminar flow motion. The
absence of an eddy viscosity and a second order algorithm give a moderate dispersion and
dissipation. However, this choice, as well as the one of a relaxation length, is often made on an ad
hoc basis. To compute the broadband nature of cavity noise at high Reynolds numbers, it is
important to take account of the turbulent mixing. Zhang [12] developed an approach coupling
the unsteady RANS equations and a k–o model including compressibility corrections. But all
these applications were performed with supersonic flows, simplifying the problem.
The first computations of acoustic radiation from a cavity with a subsonic grazing flow have

been carried out recently by Colonius et al. [13] and Shieh and Morris [14] using 2-D DNS at a
Reynolds number based on cavity depth ReDC5000: These simulations show a transition to a new
flow regime when the ratio L=dy of the cavity length over the momentum thickness becomes large.
This mode is characterized by the shedding of a single vortex which occupies all the cavity. The
periodic ejection of this structure is associated with an increase of the cavity drag. A similar
transition was noted in the experiments of Gharib and Roshko [15] in a water tunnel. The new
regime was called a wake mode because of the drag increase. However, the presence of the wake
mode has not been seen in experiments of compressible cavity flows at subsonic speeds, for these
aspect ratios. The same numerical bifurcation has also been noted by the authors [16]. To
investigate higher Reynolds numbers ðReDC2� 105Þ; Shieh and Morris [17] applied CAA tools to
solve unsteady RANS with a turbulence model: the one equation Spalart–Allmaras turbulence
model and Detached Eddy Simulation have been implemented. The transition to a wake mode is
still observed, demonstrating that it is related to the 2-D constraint rather than to the Reynolds
number. When the cavity length is large compared to the thickness of the incoming boundary
layer, Najm and Ghoniem [18] show in the same manner that the recirculation zone takes the form
of a large-scale eddy that breaks away and migrates downstream, overshadowing the role of the
usual smaller-scale vortices. However, this too strong recirculating flow is fed by the 2-D inverse
cascade of energy. Vortex stretching, necessarily 3-D, should modify significantly the turbulent
mixing between the clipped part of the shear layer and the corresponding counter-rotating vortex
produced by the conservation of vorticity at the downstream edge. This turbulent mixing would
prevent untimely transition to wake mode. In the present 2-D simulation, a short aspect ratio and
a relative thick incoming boundary layer are chosen to ensure the shear layer mode of oscillations.
One configuration of Karamcheti’s experiments [7] is reproduced numerically with the same

dimensions as in the experiment. Karamcheti studied the acoustic radiation from 2-D rectangular
cavities cut into a flat surface at low Reynolds numbers. The acoustic fields were investigated by
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means of schlieren observations, interferometry, and use of a hot-wire anemometer. The
measurement used a cutout spanning the 4� 10 inch transonic wind tunnel and ending by a
moving plate to obtain cavities of various length L; the depth D being the same for all of them,
fixed at 0:1 inch: The case retained is a length-to-depth ratio of 2 (L ¼ 5:18 mm and
D ¼ 2:54 mm); the boundary layer ahead of the cavity is laminar, and the freestream Mach
number is 0.7. The Reynolds number based on cavity depth is ReD ¼ 41 000: The choice of a high
subsonic speed is interesting because the frequency increases slightly with Mach number, and the
cavity is no longer compact relative to the acoustic wavelength. Moreover, the test case is more
relevant for integral methods because mean flow effects on sound propagation become important.

2.2. Numerical methods

2.2.1. Governing equations

A DNS (no turbulence model) of the 2-D compressible Navier–Stokes equations is performed.
The conservative form of these equations in a Cartesian co-ordinate system can be written as

@U

@t
þ

@Ee

@x1
þ

@Fe

@x2
�
@Ev

@x1
�

@Fv

@x2
¼ 0;

where

U ¼ ðr;ru1;ru2;reÞt; Ee ¼ ðru1; p þ ru2
1; ru1u2; ru1hÞ

t;

Fe ¼ ðru2; ru2u1; p þ ru2
2; ru2hÞ

t; Ev ¼ ð0; t11; t12; u1t11 þ u2t12 � q1Þ
t;

Fv ¼ ð0; t21; t22; u1t21 þ u2t22 � q2Þ
t:

The quantities r; p; ui are the density, pressure, and velocity components, while e and h are the
total energy and total enthalpy per mass unit. For a perfect gas,

e ¼ p=½ðg� 1Þr� þ ðu2
1 þ u22Þ=2; h ¼ e þ p=r; p ¼ rrT ;

where T is the temperature, r the gas constant, and g the ratio of specific heats. The viscous stress
tensor tij is modelled as a Newtonian fluid and the heat flux component qi models thermal
conduction in the flow with Fourier’s law, thus

tij ¼ m
@ui

@xj

þ
@uj

@xi

�
2

3
dij

@uk

@xk

� �
; qi ¼ �

mcp

s
@T

@xi

where m is the dynamic molecular viscosity, s the Prandtl number, and cp the specific heat at
constant pressure.

2.2.2. Algorithm

When the above equations are solved numerically, it is imperative that neither the amplitude
nor the propagation speed of acoustic waves be altered by the numerical scheme. Following the
work of Bogey [19], high order algorithms are implemented. The equations are advanced in time
using an explicit fourth order Runge–Kutta scheme, and the Dispersion–Relation Preserving
scheme developed by Tam andWebb [20] is used to obtain spatial derivatives. A selective damping
has also to be introduced in order to filter out non-physical short waves resulting from the use of
finite differences and/or the treatment of boundary conditions.
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2.2.3. Boundary treatment

This is the second key point of an aeroacoustic simulation. Non-reflecting conditions are
required to avoid spurious reflections that can superpose onto the physical waves. To this end, the
radiation boundary conditions of Tam and Dong [21], using a polar asymptotic solution of the
linearized Euler equations in the acoustic far field, are applied to the inflow and to the upper
boundaries. At the outlet, the outflow boundary conditions of Tam and Dong, where the
asymptotic solution is modified to allow the exit of vortical and entropic disturbances, is
combined with a sponge zone to dissipate vortical structures in the region where the shear layer
leaves the computational domain. This sponge zone, represented in Fig. 1, is obtained by making
use of grid stretching and progressive additional damping terms. Bogey et al. [22] have shown its
efficiency in situations where large amplitude non-linear disturbances must exit the domain
without significant numerical reflections.
Along the solid walls, the reflection method is applied by using three rows of fictitious points

outside the computational domain. The fictitious values are defined by antisymmetric reflection of
u1 and u2; and symmetric reflection of p and r: The no-slip condition u1 ¼ u2 ¼ 0 is superimposed,
and the wall temperature Tw is calculated using the adiabatic condition. This formulation ensures
sufficient robustness by keeping centred differencing at the wall. It leads however to an
overspecification of the variables at the wall, and can generate spurious high-frequency waves
which are eliminated by artificial damping.

2.2.4. Numerical specifications

The computational mesh displayed in Fig. 1, is built up from a non-uniform Cartesian grid with
147� 161 points inside the cavity and 501� 440 outside, highly clustered near the walls. The
minimum step size corresponds to Dyþmin ¼ 0:8 in order to resolve viscous scales near the wall. The
computational domain extends over 8:5D vertically and 12D horizontally to include a portion of
the radiated field. The upstream and downstream boundaries are sufficiently far away from the
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cavity to avoid possible self-forcing. The spacing between two points reaches a value Dymax ¼
2:9� 10�5 m in the cavity and Dymax ¼ 5:6� 10�5 m in the acoustic region.
The initial condition is a polynomial expression of the laminar Blasius boundary layer profile

for a flow at Mach 0.7. This velocity profile found for the inflow is extrapolated into the entire
computational domain, with an initial boundary layer thickness d0E0:2D: A corrective term is
added at the inflow during the computation to avoid a numerical drift of the expected inflow
profile. The freestream air temperature TN is 298:15 K and the static pressure pN is taken as
1 atm:
The strongly anisotropic computational mesh induces a very stiff discretized system. For

explicit time marching schemes, an extremely small time step has to be used in order to satisfy the
stability CFL criterion: Dt ¼ 0:7� Dymin=cN ¼ 6:06� 10�9 s: The mesh Reynolds number [20] of
the selective damping is chosen as ReS ¼ 4:5: This artificial dissipation is applied a second time
near the walls in order to damp the numerical oscillations arising at the intersection of cavity
surfaces, which are singular points that cannot be described without ambiguity. It is equivalent to
lowering the artificial dissipation process but, owing to the highly clustered grid used near the
walls, it slightly affects the global accuracy of the simulation. The computation is 4 h long on a
Nec SX-5, with a CPU time of 0:4 ms per grid point and per iteration.

2.3. Results and discussion

2.3.1. Far-field results

Fig. 2(a) gives a monitored pressure history at x1=D ¼ �0:04 and y2=D ¼ 2 in the beginning of
the acoustic region. The flow reaches a self-sustained oscillatory state after a time of about
25D=UN but is still irregular until 65D=UN: During the first period, the natural cavity modes
grow in amplitude and saturate. Then a transient period occurs during the time needed by the
recirculating flow to become installed in the cavity.
The corresponding sound pressure level spectrum is depicted in Fig. 2(b). It displays one

principal peak at St ¼ 0:66; which corresponds to the periodic impingement of coherent structures
at frequency f0: Several secondary peaks are observable at St ¼ 1:30; 1.96 and 2.62 which
correspond to the first 2f0; the second 3f0; and the third 4f0 harmonics. Most of the radiated noise
energy is concentrated at the fundamental frequency and its first harmonics. A schlieren
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visualization, based on vertical gradients of density, shows the structure of the radiated field in
Fig. 3(a). Two wave patterns are visible for the positive gradients (dark), which interfere during
propagation. Their strong upstream directivity arises from the combined effects of the high-speed
convection by the free stream and of the scattering due to the cavity walls. The scattering is mainly
a combination of direct and reflected acoustic waves. These radiations are in qualitatively good
agreement with the schlieren picture of Karamcheti (Fig. 3(b)). The experimental Strouhal
number of the oscillations is St ¼ 0:69; corresponding to an error of 5% in the frequency f0 found
in the present simulation. The 3-D effects or boundary layer characteristics may be responsible for
this difference.
Karamcheti [7] estimated the intensity of acoustic radiation through interferometry. He found

that the acoustic field could be very intense with values greater than 163 dB at a distance of 3D in
the main propagation direction. These high-intensity levels are compatible with the present 2-D
simulation, with a magnitude of sound pressure levels about 163:5 dB at 3D; with an angle of 1201
from the downstream.

2.3.2. Near-field results
The near field is now investigated to identify the noise generation mechanism, and in particular

to determine the origin of the two waves patterns observed previously. Fig. 4 presents the vorticity
field over one period of the well-established self-sustained oscillations. In Fig. 4(a), the shear layer
is seen to reattach at the trailing edge and two vortical structures can be identified in the shear
layer. The first one is just shed from the leading edge separation. This rolled-up vortex travels
downstream in the next pictures, growing with convection. The second structure is located just
upstream of the downstream edge. As it impinges on the edge (Fig. 4(b)), the incident vortex is
clipped at its centre. Part of the vortex spills over the cavity and is convected downstream,
increasing the thickness of the reattached boundary layer. The other component is swept
downwards into the cavity creating recirculating regions (Fig. 4(c)). In Fig. 4(d), the vortex
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generated at the leading edge in the first picture arrives at the trailing edge, sustaining the vortex
impingement process.
The corresponding time-matched pressure field is depicted in Fig. 4, right column. It is not easy

to identify the origins of the noise generation because three different patterns are superposed. The
first one is associated with the two coherent structures evolving in the shear layer. Low-pressure
regions in the shear layer identify vortices, separated by high-pressure regions. The two low-
pressure centres are clearly visible in Fig. 4(h). The first one is associated with the vortex roll-up at
the leading edge. The second one corresponds to the second vortex convected by the flow before it
impinges the upstream edge. The second pressure pattern represents the recirculating flow in the
cavity. As seen in the vorticity snapshots, a main recirculation zone is located in the second half of
the cavity, associated with the low-pressure region inside the cavity, identifiable in Figs. 4(f) and
(g). This large-scale region is not a single vortex but is actually made up of several smaller vortices,
arising from the clipping process, and its central region is vorticity free. Lastly, the third group of
pressure waves is the acoustic radiation generated by the flow. Fig. 4 shows the birth of a positive
pressure wave in the impingement process. The previously generated wave, located at the leading
edge in Fig. 4(e), escapes from the cavity in Fig. 4(h). In the latter picture, the pressure wave seems
to result from the superposition of two acoustic radiations. It is still difficult to identify the two
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sources in the presence of interferences dominated by the aerodynamic pressure. This point will be
discussed again in the next part.

2.3.3. Mean flow
The mean velocity profiles %u1ðx2Þ are shown in Fig. 5(a). In the early stages of the shear layer

growth, the velocity changes from a boundary layer profile to a shear layer profile. Its momentum
thickness is defined as

dy ¼
Z þN

�N

r %u1
r
N

UN

1�
r %u1

r
N

UN

� �
dx2

where UN ¼ 242 m=s and r
N

¼ 1:17 kg=m3 are the velocity and the density of the free stream;
the integration is performed between 7d; where d is the ordinate corresponding to %u1 ¼ 0:99UN:
At the leading edge, the boundary layer is laminar, and has a shape factor H ¼ dn=dy ¼ 2:6; where
dn ¼ 2:6� 10�4 m (displacement thickness), dy ¼ 1:03� 10�4 m; the ratio L=dy ¼ 49:3; and the
Reynolds number is Redy ¼ 1661: The shape factor is in good agreement with the value H ¼ 2:5;
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reported by Sinha et al. [23] or Gharib and Roshko [15] for a laminar boundary layer ahead of the
cavity. The growth of two characteristic thicknesses, the momentum thickness dy; and the vorticity
thickness do; defined as

do ¼ UN=j@ %u1=@x2jmax

are given in Fig. 6. As in the study of Forestier [24] for a transonic, M ¼ 0:8; flow over a
L=D ¼ 0:42 cavity, and a Reynolds number ReL ¼ 8:6� 105; the growth is not linear but shows
several stages. These shapes can be compared to the shear layer growth observed for forced
mixing layers [25,26]. The rate of widening of dy; in the first linear stage between x1=dyR

¼ 0 and
35, is 0.006 in good agreement with the value ddy=dx1C0:006; reported in measurements by
Sarohia [27] for a L=dyR

¼ 52:5 configuration.
A similarity is found when the mean velocity profiles are represented using the similarity

parameter Z ¼ ðx2 � x20:5Þ=dy; where x20:5 corresponds to %u1 ¼ 0:5UN (Fig. 5(b)). In Fig. 5(a),
strong deflections can be noted in the cavity and seem to be overestimated when compared to the
experimental profiles obtained by Sinha et al. [23]. It comes undoubtedly from the too strong
recirculation induced by the 2-D approach of the simulation. Nevertheless, the reverse flow in the
cavity has qualitative features similar to those of a wall jet, observed by Sinha et al. [23] for
laminar flow or by Lin and Rockwell [28] for turbulent cavity flows. Accordingly, these data are
plotted in wall jet co-ordinates %u1=Um versus x2r=2

in Fig. 5(c), where Um is the local maximum of
the velocity %u1; and x2r=2

corresponds to %u1 ¼ 0:5Um: The similarity is reached in the second half of
the cavity. Considerable scatter still occurs near x2=x2r=2

¼ 0:4 and 1 but self-similarity for reverse
flow is noticeable. Fig. 7 shows that the streamlines are closed in the cavity, displaying a large
recirculation between the reverse flow and the shear layer.

2.3.4. Features of the shear layer

The intensity of fluctuations, defined as

ur:m:s: ¼
ffiffiffiffiffiffi
u021

q
=UN; vr:m:s: ¼

ffiffiffiffiffiffi
u02
2

q
=UN; uvr:m:s: ¼

ffiffiffiffiffiffiffiffiffiffiffi
ju0

1u
0
2j

q
=UN

are plotted in Fig. 8(a) and (b). The ur:m:s: profiles show the rapid appearance of a double peak in
the distributions. For a forced shear layer [26], or for cavities with a large ratio L=dy [24,29], the
double peak appears progressively. The present distributions can be compared to those obtained
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by Ziada and Rockwell [30] for the interaction between a shear layer and a wedge. This is
characteristic of the presence of well-aligned vortices in the shear layer due to the resonant vortex
shedding. The widening of the distributions corresponds to the slight growth of vortices with
advection. The profiles are considerably affected by the recirculation zone inside the cavity,
especially for large x1=D; where the wall jet characteristics overshadow the shear layer behaviour.
The scatter observed on the outside edge of the shear layer can be related to the presence of strong
acoustic disturbances in the near field of the downstream corner. The level of the velocity
fluctuations, as high as 0.16, is consistent with previous experimental results by Sarohia [27] for
laminar flow. The vertical velocity fluctuations show a bell-shaped distribution all along the shear
layer (Fig. 9(b)). The vertical intensities are of the same order as the horizontal ones, vr:m:s: ¼ 0:14:
The experiments of Oster and Wygnanski [26], for forced mixing layers, underline a reinforcement
of the vertical component and a decrease of intensities in the spanwise direction, in comparison
with the unperturbed flow. This suggests a bidimensionalization of the flow, which explains why
the vertical intensities are not overestimated in the present 2-D simulation. The maximum shear
stress uvr:m:s: reaches a magnitude of 0.013. Kistler and Tan [31] report a value of 0.012 for a quasi
2-D cavity shear layer, and Gharib and Roskho [15] find the value 0.013.
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To summarize, the characteristics of the shear layer agree with measurements and depict the
behaviour of an excited shear layer. The Strouhal number based on the momentum thickness is
Sty ¼ 0:014; near the value 0.017 for the most unstable frequency of a hyperbolic-tangent velocity
profile in the linear stability analysis. The initial vortex-formation frequency fr is seen to match the
forcing frequency f0: The level of the fundamental f0 suppresses the growth of the subharmonic
f0=2; and vortex pairing is delayed. A row of vortices is generated and interacts with
the downstream edge. The absence of pairing events explains the weak growth rate of the shear
layer, only marked by the vortex passage and by the viscous growth of the convected vortical
structures.

2.3.5. The global feedback in the cavity
A distinguishing feature of the self-sustained oscillations considered here is the existence of a

feedback loop involving the excitation of instabilities in the shear layer near the separation point,
leading to the generation of a row of vortices, and the generation of an unsteady irrotational field
when these perturbations impinge the downstream corner. The upstream influence of this
irrotational field provides further excitation of the unstable shear layer, closing the loop.
Fig. 10(a) depicts the overall phase differences between the two corners of the cavity for the u2

fluctuations and for the pressure disturbances at the fundamental frequency f0: The phase lag is
equal to 1:5� 2p in both cases, indicating a vorticity–pressure coupling with always N ¼ 1:5
aerodynamic cycles in the shear layer. The global criterion for these oscillations to be
self-sustained is provided by the relation N=f0 ¼ L=Uc þ L=cN; where L=Uc is the time
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needed by the aerodynamic perturbations, convected at the speed Uc; to travel from the upstream
to the downstream edge, and L=cN is the time required for the pressure disturbances to
propagate from the downstream to the upstream edge. The Strouhal number based on L is then
given by

StL ¼ fL=UN ¼ N=ðM þ UN=UcÞ: ð1Þ

The value of the convection velocity in the present case is given by the temporal evolution of the
maxima of the cross-correlation coefficients along the line x2 ¼ 0: This evolution is seen to be
linear in Fig. 10(b), and the slope provides the value Uc ¼ 0:65UN: Other simulations have shown
that the value of the ratio Uc=UN depends strongly on the simulation parameters, like the length
L of the cavity. Formula (1), with N ¼ 1:5 and M ¼ 0:7; yields StL ¼ 0:66; in fairly good
agreement with the value obtained by spectral analysis. This simple global model is similar to the
Rossiter formula [32]. Nevertheless, the time lag a; introduced by Rossiter to corroborate
measurements, is not required here. Moreover, N is not necessarily an integer but can take
the form n71=2; with n an integer. Such half integer values have been observed in the studies by
Sarohia [27] or Hussain and Zaman [33].

3. Application of integral methods

3.1. Introduction

In the present simulation, the acoustic part of the mesh represents more than the half of the
total number of grid points, corresponding only to a propagation distance of six cavity depths. In
order to ensure the six points per wavelength required by the numerical stencil for the smallest
acoustic wavelength present in the computational domain (due to the strong steepening of wave
fronts), the acoustic cut-off Strouhal number is Stc ¼ fmaxL=UN ¼ L=ð6DyacousMÞC21: Thus a
reasonable calculation can include only few wavelengths whereas realistic problems require
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observers at a distance of about two or three orders of magnitude greater than the cavity length. A
direct acoustic calculation by DNS is difficult for such distances, especially for 3-D
configurations.
The integral methods, instead, allow one to obtain the acoustic pressure at any point of the

field, with a computational time independent of the observer distance. Typical calculations are
carried out in two steps: an aerodynamic code based on CFD/CAA algorithms is used to evaluate
the flow field, and then an integral formulation is applied to propagate the pressure disturbances
to the far field. Integral methods rest upon two principal physical backgrounds. First, the acoustic
analogies which split the computational domain into an aerodynamic region, where source
terms responsible for the noise generation are built up, and an acoustic region governed by a
linear wave equation. Second, the wave extrapolation methods which allow the evaluation of the
far field once some quantities are known on a control surface. From a physical point of view, it is
important to notice that the wave extrapolation methods are valid for any phenomena governed
by the linear wave equation like optics, acoustics or electromagnetism while the acoustic analogy
is based on the conservation laws of mass, momentum, and energy and is thus dedicated to
aeroacoustics.
Recent advances in integral methods have been essentially developed for the reduction of

helicopter rotor noise [34] and have been recently applied for predicting jet noise [35,36]. Zhang
et al. [37] have used Curle’s spatial formulation to obtain far-field spectra of cavity noise but no
comparison was proposed.

3.2. Acoustic analogy

3.2.1. Formulation
The acoustic analogy was introduced by Lighthill [4] and was extended by Curle [38] and

Ffowcs Williams and Hawkings [5] to include the effects of solid surfaces in arbitrary motion. The
FW–H equation is an exact rearrangement of the continuity equation and Navier–Stokes
equations into the form of an inhomogeneous wave equation with two surface source terms and a
volume source term. The use of generalized functions to describe flow quantities allows one to
embed the exterior flow problem in unbounded space. An integral solution can thus be obtained
by convoluting the wave equation with the free-space Green function.
The original Lighthill analogy is written for an observation region at rest. For the case of a

uniform flow, Ffowcs Williams and Hawkings proposed the use of a Lagrangian co-ordinate
transform assuming the surface is moving in a fluid at rest. Following Goldstein [39], an
inhomogeneous convected wave equation is considered in this study, including the convection
effects in the wave operator.
For bidimensional geometries, it is more convenient to resolve this equation in the spectral

domain [40,41]. A frequency-domain formulation avoids the evaluation of the retarded time,
which can be a critical numerical point. The gain over the time domain applications is enhanced in
2-D because of the presence of the Heaviside function in the 2-D Green function. Whereas the
classical Dirac in 3-D leads to a retarded time expression removing the temporal integration, the
Heaviside function can only change the upper limit of the integration to a finite value, the lower
limit remaining infinite. The spectral formulation removes this constraint. All the details of
the derivation are provided in Appendix A.1, and the integral solution of the convected
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FW–H equation is:

Hð f Þp0ðx;oÞ

¼ �
Z Z

f >0
Tijðy;oÞ

@2Gðxjy;oÞ
@yi@yj

dyþ
Z

f¼0

Fiðy;oÞ
@Gðxjy;oÞ

@yi

dSðyÞ; ð2Þ

where H is the Heaviside function, and the equation f ðyÞ ¼ 0 defines the surface S outside of
which the pressure field is calculated. The general expression of the source terms, given in
Eqs. (A.10)–(A.12), have been simplified using the impermeability condition un ¼ u . n ¼ 0 for
rigid walls to give

Tij ¼ rðui � UN

i Þðuj � UN

j Þ þ ðp � c2
N
rÞdij � tij ; ð3Þ

Fi ¼ �½pdij � tij�nj; ð4Þ

and the contribution of Q is zero in this case. In 2-D, the volume integral is restricted to a surface
Sð f > 0Þ including the aerodynamic sources Tij and the surface integral is calculated on the solid
lines which represent rigid boundaries. The spatial derivatives are applied on the Green function,
by using analytical formulae (A.13) and (A.14) to avoid the numerical differentiation of
aerodynamic quantities, which could lead to numerical errors.

3.2.2. Numerical implementation

The first step is the storage of the aerodynamic quantities during one period of the DNS
computation, using the pseudoperiodic behaviour of the oscillations in the cavity. The acoustic
time step is 40 times the DNS time step which corresponds to 131 points per period. The variables
ðu1; u2; p; rÞ are recorded on the walls of the cavity (broken line of Fig. 11), and in the surface
around it, depicted in Fig. 11: S2 is the surface inside the cavity, and S1 the surface above it. S1 is
1D high, and extends from �2D to 5D in the streamwise direction.
Second, the source terms Tij and Fi are calculated and transformed into the frequency domain

using the Fourier transform defined by (A.6). The integrals are then evaluated for each point of an
acoustic meshgrid. This regular Cartesian grid of 176� 184 points covers a area of ð�5D; 5DÞ �
ð�1D; 8DÞ: Lastly, an inverse Fourier transform is used to recover the acoustic signal in the time
domain.

3.2.3. Results of the FW–H analogy
To obtain the contribution of surface sources (3) in the radiated sound field, the integrals over

S1 and S2 are added (Fig. 12(a)). The line sources (4) are calculated on cavity walls with M ¼ 0:7
(Fig. 12(b)).
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By summing the surface and line contributions (Fig. 13(a)), the total sound field is
reconstructed in reasonably good agreement with the DNS reference solution of Fig. 13(b).
Fig. 14 shows that the pressure profile along the line x1 þ x2 ¼ 2D is consistent with the
direct calculation of sound. However, small errors are visible, especially for long propa
gation distances. These discrepancies are due to truncation effects during the evaluation of
surface integrals of Tij : The principal truncation occurs in the streamwise direction where
the source terms decrease slowly, leading to an extensive source abruptly cut by the end of the
storage domain. This extensive region is due to the presence of advected vortices, ejected from
the cavity during the clipping process, and feeding the reattached boundary layer on the
downstream wall.
An analysis of the structure of the radiated field can be developed from the FW–H analogy

results. Indeed, following the reflection theorem of Powell [42], it can be argued that volume
integrals represent the direct radiated field, and surface integrals are essentially attributed to the
reflected field due to cavity walls. These two fields at the same frequency give an interference figure
where the two wave patterns are still distinguishable in the present case because the cavity is not
compact at the oscillation frequency ðL=l0 ¼ 0:47Þ:
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Fig. 12. Pressure field obtained corresponding to: (a) surface integral of the FW–H analogy, and (b) line integral of the

FW–H analogy. The levels of the grayscale are between �3000 and 3000 Pa in both figures.
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Fig. 13. Pressure field calculated at the same time by (a) FW–H analogy ðlineþ surface integralsÞ; (b) DNS reference

solution. The grayscale levels are the same as in Fig. 12.
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3.3. Wave extrapolation methods

This class of methods allows one to solve a linear wave propagation problem once some flow
quantities are given on a closed fictitious surface surrounding all the sources. The most famous
one is the Kirchhoff method which makes a parallel with electromagnetism by using Kirchhoff’s
theorem [43]. The main advantage with respect to acoustic analogy approaches is that only surface
integrals have to be evaluated because all non-linear quadrupole sources are assumed to be
enclosed within the control surface. The problem is thus reduced by one dimension, which is
particularly interesting from a numerical point of view. However, this approach suffers from the
restriction that Kirchhoff’s surface must strictly be in the linear acoustic region. Brentner and
Farassat [44] and Singer et al. [45] show some misleading results when Kirchhoff’s formulation is
applied respectively to a hovering rotor blade and to the flow past a circular cylinder by using a
control surface too close to the volume sources. The use of the FW–H equation for a permeable
surface provides an alternative extrapolation method as noted in the original Ffowcs Williams and
Hawkings’ paper [5]. This method has been recently implemented by di Francescantonio [46]. At
nearly the same time, Brentner and Farassat [44] demonstrated the relationship between the
FW–H equation and the Kirchhoff equation for moving surfaces. The FW–H and Kirchhoff
formulations solve the same physical problem, the differences between the two methods being due
to some choices made in the derivation process. This FW–H wave extrapolation method combines
theoretically the flexibility of the Kirchhoff method and the physical insights of the FW–H
equation.

3.3.1. The convected FW–H WEM
FW–H WEM denotes the WEM based on the FW–H formulation (A.9) by neglecting the

volume integration (quadrupole source term Tij). The analytical developments are the same as
those of the FW–H analogy but the non-penetration condition un ¼ 0 is no longer required, and,
in order to obtain correct results, one has to allow a fluid flow across S: For a 2-D problem with
uniform subsonic motion, FW–H WEM is given by Eq. (A.9) without the volume integral as

Hð f Þp0ðx;oÞ ¼
Z

f¼0

Fiðy;oÞ
@Gðxjy;oÞ

@yi

dSðyÞ �
Z

f¼0

ioQðy;oÞGðxjy;oÞ dSðyÞ; ð5Þ

where the two source terms are

Fi ¼ �½rðui � 2UN

i Þuj þ pdij � tij�nj; Q ¼ ruini: ð6; 7Þ
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This method is sometimes called porous FW–H because it coincides with the application of
FW–H analogy on a fictitious porous surface enclosing all sound sources.

3.3.2. The convected Kirchhoff method
The 2-D frequency domain form of the Kirchhoff formulation, including the effect of a mean

flow in the observation region is derived in Appendix A.2 and can be written as

Hð f Þp0ðx;oÞ ¼
ib
4

Z
f¼0

@pðy;oÞ
@nb

H
ð2Þ
0

k

b2
rb

� �
þ

k

b2
pðy;oÞ

@rb

@nb
H

ð2Þ
1

k

b2
rb

� ���

�iM
@y1

@nb
H

ð2Þ
0

k

b2
rb

� ��
� exp i

Mkðx1 � y1Þ

b2

� �	
dSb: ð8Þ

3.3.3. Numerical implementation
From an algorithmic point of view, there is almost no difference between the different integral

formulations considered here, and the numerical implementation follows the same steps as for the
FW–H analogy. The recording time step is also 40 times the DNS time step. In the convected
Kirchhoff method, the pressure distribution and its normal derivative over the three lines L1; L2;
and L3 spanning the longitudinal direction are needed to perform the integration. The first line L1

is chosen in the acoustic region at y2 ¼ 1D; the second line L2 is in the near-field region at
y2 ¼ 0:5D; and the third line L3 is still closer to the shear at y2 ¼ 0:2D: The normal derivative
@p=@y2 is not directly available from the near-field solution and is here calculated with the DRP
scheme. The variables ðu1; u2; p;rÞ are recorded on the same three fictitious lines for the FW–H
WEM (Fig. 15). The integrals are then evaluated on the 176� 184 meshgrid, already used for the
application of the FW–H analogy.

3.3.4. Results of porous FW–H
The results of integration over L1; L2; and L3 with source terms defined by Eqs. (6) and (7), and

with M ¼ 0:7 in the observer domain are compared in Fig. 16. The three pressure fields obtained
are consistent with the DNS. The contour plots are sharper when the line is farther from sources.
This is confirmed by the pressure profile of Fig. 17. The three profiles predicted by the FW–H
WEM are in good agreement with the DNS result. The small differences could be attributed to the
fact that not all of the quadrupole sources are taken into account when the integration line is too
close to the walls.
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3.3.5. Results of convected Kirchhoff method
In the Kirchhoff method, the results of the integration of Eq. (8) over L1; L2; and L3 are

depicted in Fig. 18. The computed far-fields are consistent with that of DNS depicted in
Fig. 13(b), even when the control line is located in the near-field region. The contour plots are only
a little sharper when the line is farther from the sources because more non-linear effects are
included in the control line. The pressure profiles along the line x1 þ x2 ¼ 2D of Fig. 19 are also
consistent with direct calculation. The amplitudes, evaluated from L1; L2; and L3; are zero for r

respectively lower than
ffiffiffi
2

p
;
ffiffiffi
2

p
=2; and

ffiffiffi
2

p
=5; since observation points then lie inside the control

line ðHð f Þ ¼ 0Þ:

3.3.6. Comparison of the integral methods
The results obtained with Kirchhoff’s method are similar to those using the permeable form of

the FW–H equation. In this configuration, the additional non-linear terms appearing in the
surface integrals of FW–H WEM but missing in the Kirchhoff formulation, as noted by Brentner
and Farassat [44], do not play a significant role and do not lead to the drastic differences observed
in some previous comparisons when the control surface is too close to the sources [44,45]. Like di
Francescantonio [46] or Prieur and Rahier [47], a similar behaviour of the two extrapolation
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Fig. 16. Pressure field calculated at the same time by (a) FW–H WEM from L1; (b) FW–H WEM from L2; (c) FW–H

WEM from L3: The grayscale levels are the same as in Fig. 12.
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methods is noticed. In the present application, the results are relatively insensitive to the location
of the extrapolation line since the quadrupole sources are essentially below the lower
extrapolation line. The advantage of the porous FW–H method is only the fact that it uses
directly the quantities computed by the direct simulation without the need for further numerical
processing.
Fig. 20 presents the temporal evolutions of the pressure over one period using the three

methods. DNS results show a very stiff slope for the temporal evolution, which indicates a non-
linear propagation. This is due to the high level pressure waves generated by the interaction with
the downstream corner of the cavity. However, the three integral formulation time traces have a
smoother shape. The non-linear propagation is indeed not described by the convected wave
operator derived for the different integral methods. Only the non-linear effects inside the source
surface for the FW–H analogy and below the control lines for the WEM are taken into account.
The temporal evolutions over a period provide the overall sound pressure directivity on a circle

of radius 7D centred on the downstream corner of the cavity, in Fig. 21. The discrepancies for the
two extrapolation methods are of the order of 1 dB: Larger errors are noted for the FW–H
analogy, especially in the downstream direction, where the truncation effects are sensitive. The
FW–H analogy is less accurate than the WEM but provides more information on wave structure.
It is also more expensive in CPU time because of the evaluation of the volume integral
(surface integral in 2-D) whereas wave extrapolation methods need only surface integral
(line integral in 2-D).
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Fig. 18. Pressure field calculated at the same time by (a) Kirchhoff’s method from L1; (b) Kirchhoff’s method from L2;
(c) Kirchhoff’s method from L3: The grayscale levels are the same as in Fig. 12.
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4. Conclusion

In the first part, a direct calculation of the sound radiated by a flow over a 2-D
rectangular cavity is carried out. To this end, a DNS is performed using CAA numerical
methods. This approach is expensive but is able to give all the interactions between flow
and acoustics and provides a powerful tool to determine noise generation mechanisms. The
directly computed sound field is consistent with corresponding results of Karamcheti’s
experiments.
The results of DNS are then successfully compared to three hybrid methods which use the DNS

quantities to solve integral formulations. The wave extrapolation methods, like the Kirchhoff or
the porous FW–H methods, are relatively unaffected by the location of the control surface and
constitute interesting complementary tools to extend CAA near field to the far field. The acoustic
analogy is less efficient because volume integrations are costly and sensitive to truncation effects.
Nevertheless, it allows a separation between direct and reflected sound fields, which is useful for
an analysis of radiation patterns.
To extend the present investigation, a 3-D simulation should be carried out. The recirculation

zone inside the cavity is indeed characterized by a 3-D turbulent mixing, even if the development
of the shear layer is almost 2-D. Such a study is reported in Ref. [48].
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Fig. 21. Overall sound pressure level as function of y measured from streamwise axis, with centre at the downstream

edge of the cavity, evaluated on the sensors reported in Fig. 1. � � �� (in gray), Kirchhoff’s method from L1; � � ��;
FW–H-WEM from L1; — (in gray), FW–H analogy; —, DNS.
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Appendix A

A.1. Derivation of convected FW–H analogy

In order to derive the inhomogeneous, uniformly moving medium wave equation, the
continuity and momentum equations are rewritten using the derivative for an observer moving
along with the mean flow, defined as

DN=Dt ¼ @=@t þ UN

i @=@xi; ðA:1Þ

where UN

i are the components of the uniform mean velocity in the observer domain. The
continuity equation becomes

DN

Dt
r ¼ �

@rui

@xi

þ UN

i

@r
@xi

¼ �
@rðui � UN

i Þ
@xi

¼ �
@r *ui

@xi

;

where *ui ¼ ui � UN

i : To take into account the presence of a surface S; defined by the equation
f ðyÞ ¼ 0; the latter equation is multiplied by the Heaviside function Hð f Þ; and Hð f Þ is introduced
inside the differential operators,

DN

Dt
½ðr� r

N
ÞHð f Þ� þ

@

@xi

½r *uiHð f Þ� ¼ ðr� r
N
Þ
DNHð f Þ

Dt
þ r *ui

@Hð f Þ
@xi

¼ðr� r
N
ÞUN

i

@Hð f Þ
@xi

þ r *ui

@Hð f Þ
@xi

; ðA:2Þ

by noting that S is a stationary surface. Similarly, for the momentum equation, this yields

DN

Dt
ðr *uiÞ ¼

@

@t
½rðui � UN

i Þ� þ UN

j

@

@xj

½rðui � UN

i Þ�

¼ �
@p

@xi

þ
@tij

@xj

�
@ruiuj

@xj

þ UN

i

@ruj

@xj

þ UN

j

@rui

@xj

� UN

i UN

j

@r
@xj

:

By making use of the equality

@

@xj

ðr *ui *ujÞ ¼
@ruiuj

@xj

� UN

i

@ruj

@xj

� UN

j

@rui

@xj

þ UN

i UN

j

@r
@xj

;

the momentum equation reduces to

DN

Dt
ðr *uiÞ ¼ �

@p

@xi

þ
@tij

@xj

�
@r *ui *uj

@xj

;
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which can also be written as

DN

Dt
r *ui þ c2

N

@ðr� r
N
Þ

@xi

¼ �
@Tij

@xj

;

where Tij ¼ r *ui *uj þ ðp � c2
N
ðr� r

N
ÞÞdij � tij:

With the introduction of generalized functions, this yields

DN

Dt
½r *uiHð f Þ� þ c2

N

@

@xi

½ðr� r
N
ÞHð f Þ�

¼ �
@

@xj

½TijHð f Þ� þ ½r *ui *uj þ pdij � tij�
@Hð f Þ
@xj

þ r *uiU
N

j

@Hð f Þ
@xj

: ðA:3Þ

Now the convected wave equation for ðr� r
N
ÞHð f Þ is formed by applying the operator DN=Dt

to Eq. (A.2). The divergence of Eq. (A.3) is taken, and the two equations are substracted. This
leads to

D2
N

Dt2
� c2

N

@2

@x2
i

� 	
½ðr� r

N
ÞHð f Þ� ¼

@2

@xi@xj

½TijHð f Þ� þ
DN

Dt
ððr� r

N
ÞUN

i þ r *uiÞdð f Þ
@f

@xi

� �

�
@

@xi

ðpdij � tij þ r *ui *uj þ r *uiU
N

j Þdð f Þ
@f

@xj

� �
:

The material derivative in the right side is then developed to give

D2
N

Dt2
� c2

N

@2

@x2
i

� 	
½ðr� r

N
ÞHð f Þ� ¼

@2

@xi@xj

½TijHð f Þ� þ
@

@t
ððr� r

N
ÞUN

i þ r *uiÞdð f Þ
@f

@xi

� �

þ
@

@xi

ððr� r
N
ÞUN

i UN

j þ r *ujU
N

i Þdð f Þ
@f

@xj

� �

�
@

@xi

ðpdij � tij þ r *ui *uj þ r *uiU
N

j Þdð f Þ
@f

@xj

� �
:

Lastly, the terms are regrouped in the form

D2
N

Dt2
� c2

N

@2

@x2
i

� 	
½ðr� r

N
ÞHð f Þ� ¼

@2

@t2
þ UN

i UN

j

@2

@xixj

þ 2UN

i

@2

@xit
� c2

N

@2

@x2
i

� 	
½r0Hð f Þ�

¼
@2

@xi@xj

½TijHð f Þ� þ
@

@xi

½Fidð f Þ� þ
@

@t
½Qdð f Þ�; ðA:4Þ

where

Tij ¼ rðui � UN

i Þðuj � UN

j Þ þ ðp � c2
N
ðr� r

N
ÞÞdij � tij;

Fi ¼ �½rðui � 2UN

i Þuj þ r
N

UN

i UN

j þ pdij � tij�
@f

@xj

;

Q ¼ ½rui � r
N

UN

i � @f =@xi: ðA:5Þ

With application of the Fourier transform

F ½fðx; tÞ� ¼ fðx;oÞ ¼
Z

N

�N

fðx; tÞe�iot dt; ðA:6Þ
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and suppressing the time factor expðiotÞ; Eq. (A.4) becomes

@2

@x2
i

þ k2 � 2iMik
@

@xi

� MiMj
@2

@xi@xj

� 	
½Hð f Þc2

N
r0ðx;oÞ�

¼ �
@2

@xi@xj

½Tijðx;oÞHð f Þ� �
@

@xi

½Fiðx;oÞdð f Þ� � ioQðx;oÞdð f Þ; ðA:7Þ

where Mi ¼ UN

i =cN: The Green function G of this convected Helmholtz equation is obtained
from a Prandtl–Glauert transformation of the 2-D free-space Green function in the frequency
domain, which leads to

Gðxjy;oÞ ¼
i

4b
eiðMkðx1�y1Þ=b2ÞH

ð2Þ
0

k

b2
rb

� �
; ðA:8Þ

where rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ

2 þ b2ðx2 � y2Þ
2

q
; H

ð2Þ
0 is the Hankel function of the second kind

and order zero, b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

p
is the Prandtl–Glauert factor, Mo1; x is the observer position,

and y denotes a source point. By convoluting Eq. (A.7) with the Green function (A.8),
and by using the properties of the convolution product, denoted by * ; the solution can be
expressed as

½p0Hð f Þ�ðx;oÞ ¼ �
@2½TijHð f Þ�

@xi@xj
*G�

@½Fidð f Þ�
@xi

*G� io½Qdð f Þ�*G

¼ �
@2

@xi@xj

½TijHð f Þ*G� �
@

@xi

½Fidð f Þ*G� � io½Qdð f Þ*G�

¼ � ½TijHð f Þ�*
@2G

@xi@xj

� ½Fidð f Þ�*
@G

@xi

� io½Qdð f Þ�*G:

By noting that @G=@xi ¼ �@G=@yi; the integral solution of Eq. (A.7) is given by

Hð f Þp0ðx;oÞ ¼
Z

f¼0

Fiðy;oÞ
@Gðxjy;oÞ

@yi

dS�
Z

f¼0

ioQðy;oÞGðxjy;oÞ dS

�
Z Z

f >0
Tijðy;oÞ

@2Gðxjy;oÞ
@yi@yj

dy; ðA:9Þ

where the source terms (A.5) can be written as

Tij ¼ rðui � UN

i Þðuj � UN

j Þ þ ðp � c2
N
rÞdij � tij ; ðA:10Þ

Fi ¼ �½rðui � 2UN

i Þuj þ pdij � tij�nj; Q ¼ ruini: ðA:11;A:12Þ

The function f ¼ 0 is scaled so that @f =@xj ¼ nj; the j-component of the unit normal vector
pointing toward the observer domain ð f > 0Þ: The expressions have also been simplified by
removing the constant terms, c2

N
r
N
dij in Tij; rNUN

i UN

j nj in Fi; and r
N

UN

i ni in Q; which do not
radiate sound.

ARTICLE IN PRESS

X. Gloerfelt et al. / Journal of Sound and Vibration 266 (2003) 119–146142



In expression (A.9), the derivatives of the Green function are evaluated analytically, which gives
for the first derivatives

@Gðxjy;oÞ
@y1

¼ �Aðr1Þ
iMk

b2
H

ð2Þ
0

krb

b2

� �
�

k

b2
r1

rb
H

ð2Þ
1

krb

b2

� �� 	
;

@Gðxjy;oÞ
@y2

¼ Aðr1Þ
kr2

rb
H

ð2Þ
1

krb

b2

� �� 	
; ðA:13Þ

and for the second derivatives

@2Gðxjy;oÞ
@y1@y2

¼ �Aðr1Þ
k2

b2
r1r2

r2b
H

ð2Þ
0

krb

b2

� �
þ

kr2

rb

iMk

b2
�

2r1

r2b

 !
H

ð2Þ
1

krb

b2

� �( )

@2Gðxjy;oÞ
@y21

¼ � Aðr1Þ
k2

b4
M2 þ

r21
r2b

 !
H

ð2Þ
0

krb

b2

� �(

þ
2iMr1

rb
�

b2

k

r21 � b2r22
r3b

 !
H

ð2Þ
1

krb

b2

� �)
ðA:14Þ

@2Gðxjy;oÞ
@y22

¼ �Aðr1Þ
k2r22
r2b

H
ð2Þ
0

krb

b2

� �
þ

k

rb

r21 � b2r22
r2b

 !
H

ð2Þ
1

krb

b2

� �( )
;

where ri ¼ xi � yi; and Aðr1Þ ¼ i
4b expð

iMkr1
b2

Þ:

A.2. Derivation of convected Kirchhoff method

For a moving medium, the acoustic pressure at an arbitrary point x and time t is related to the
distribution Q of sources within V and the distribution of the pressure and its derivative on the
boundary of V ; Sð f ¼ 0Þ; by the generalized Green formula [39]. For a 2-D configuration, with
UN ¼ ðUN; 0Þ in the observer domain, it can be written as

Hð f Þp0ðx; tÞ ¼
Z

N

�N

Z Z
V ð f >0Þ

Qðy; tÞGðx; tjy; tÞ dy dt

þ
Z

N

�N

Z
S

G
@p

@yi

� p
@G

@yi

� 	
ni dS dt

þ
UN

c2
N

Z
N

�N

Z
S

p
DG

Dt
�G

Dp

Dt

� 	
n1 dS dt; ðA:15Þ

where D=Dt ¼ @=@t þ UN@=@x1 is the time rate of change seen by an observer moving along with
the mean flow, and G is the Green function solution to the uniformly moving medium wave
equation. By taking the Fourier transform (A.6), with the time factor expðiotÞ suppressed,
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formula (A.15) reduces to the form

Hð f Þp0ðx;oÞ ¼
Z Z

V ðyÞ
Qðy;oÞGðxjy;oÞ dy

þ
Z
S

Gðxjy;oÞ
@pðy;oÞ

@yi

� pðy;oÞ
@Gðxjy;oÞ

@yi

� 	
ðni � M2n1Þ dSðyÞ

� 2io
M

cN

Z
S

pðy;oÞGðxjy;oÞn1 dSðyÞ; ðA:16Þ

where M ¼ UN=cN: The first derivative of the convected Green function in the frequency domain
(A.8) is expressed as

@Gðxjy;oÞ
@yi

¼
i

4b
exp i

Mkr1

b2

� �
�

k

b2
@rb

@yi

H
ð2Þ
1

k

b2
rb

� �
� i

Mk

b2
@y1

@yi

H
ð2Þ
0

k

b2
rb

� �� 	
;

and, by assuming that all the volume sources Q are included in S; (A.16) becomes

Hð f Þp0ðx;oÞ ¼
i

4b

Z
S

@pðy;oÞ
@yi

H
ð2Þ
0

k

b2
rb

� �
þ

kpðy;oÞ

b2
@rb

@yi

H
ð2Þ
1

k

b2
rb

� ���

þiM
@y1

@yi

H
ð2Þ
0

k

b2
rb

� �
� 2iM

@y1

@yi

H
ð2Þ
0

k

b2
rb

� ��	
� exp i

Mkr1

b2

� �
ðni � M2n1Þ dS: ðA:17Þ

By applying the Prandtl–Glauert transform to n and dS; respectively, denoted nb and dSb;
expression (8) is obtained.
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