Simulation des Grandes Echelles du champ acoustique produit par un écoulement turbulent affleurant une cavité

Xavier Gloerfelt,¹ Christophe Bailly,¹ et Daniel Juvé¹

¹Laboratoire de Mécanique des Fluides et d'Acoustique Ecole Centrale de Lyon & UMR CNRS 5509 BP 163, 69134 Ecully cédex, France

RESUME

On étudie dans ce travail le rayonnement sonore produit par une couche limite affleurant une cavité, afin en particulier de mettre en évidence l'influence de certains paramètres de l'écoulement sur l'acoustique. Des calculs 2-D laminaires et 3-D turbulents illustrent les répercussions des modifications aérodynamiques sur le rayonnement sonore.

I. INTRODUCTION

Lorsqu'un écoulement affleure une cavité, des oscillations aérodynamiques peuvent s'établir, générant un rayonnement acoustique à des fréquences discrètes. Ce phénomène est observé pour une grande famille d'écoulements où une couche cisaillée impacte un obstacle. La présence de l'obstacle induit une forte distorsion des instabilités de nature tourbillonnaire, qui se développent dans la couche cisaillée. Une fraction de ces fluctuations instationnaires est convertie en onde acoustique, conformément à la théorie du vortex sound (bruit produit par les tourbillons). Les perturbations de pression générées sont propagées dans toutes les directions. En particulier, elles vont forcer le développement de la couche cisaillée dans sa zone de grande réceptivité, au bord amont de la cavité. Cette excitation périodique provoque une grande organisation des structures tourbillonnaires et la relation de phase entre les angles amont et aval est verrouillée par le couplage entre la pression et la vorticité. Différentes approches théoriques ont été proposées pour rendre compte de cette boucle de rétroaction. Un modèle simple, très souvent utilisé, consiste à modéliser l'écoulement par des tourbillons discrets et la source acoustique par un monopôle situé à l'angle aval. Ainsi, la formule de Rossiter [8] donne le nombre de Strouhal St= fL/U_{∞} , qui représente la fréquence adimensionnelle des oscillations, en fonction du nombre de Mach M, du mode n, i.e. du nombre de tourbillons entiers contenus dans la cavité, et de deux constantes α et $\kappa = U_c/U_{\infty}$, où U_c est la vitesse de convection des tourbillons. La valeur des deux constantes est déterminée empiriquement et permet de prédire les fréquences des oscillations pour des écoulements rapides (M > 0.4). Cependant, un modèle de ce type ne permet pas de déterminer quel est le mode de cavité n qui sera dominant. Celui-ci dépend de la forme de couche limite incidente, notamment de la valeur du cisaillement. La théorie de stabilité linéaire des écoulements cisaillés parallèles non visqueux peut permettre d'estimer

les modes les plus instables. Par exemple, Sarohia [9] ou Rockwell [7] établissent un critère basé sur l'amplification intégrée des instabilités; ils tiennent compte de l'élargissement de la couche cisaillée en prenant les taux d'amplification fournis par la stabilité des écoulements parallèles pour chaque position longitudinale. Les observations expérimentales indiquent néanmoins la formation rapide de tourbillons de Kelvin-Helmholtz, qui nécessitent une théorie de stabilité non linéaire et visqueuse. De plus, un examen attentif de l'écoulement révèle une zone de recirculation complexe dans la cavité, qui peut être couplée avec les tourbillons de la couche cisaillée et avec le champ de pression. Lorsque la cavité se comporte comme un système résonant pour les ondes acoustiques produites, il faut encore ajouter le couplage avec le résonateur, qui renforce la cohérence des oscillations.

Si les premiers modèles globaux permettent d'estimer les fréquences des oscillations, la détermination de leur amplitude nécessitent donc une connaissance plus approfondie de l'écoulement. On atteint rapidement les limitations des modèles et seules les approches expérimentales ou numériques sont capables d'une telle description. Dans cette étude, en utilisant les développements récents de l'aéroacoustique numérique, on effectue un calcul direct, c'est-àdire que l'écoulement aérodynamique instationnaire et le champ acoustique rayonné sont obtenus simultanément, en résolvant les équations de Navier-Stokes compressibles. L'objectif est de montrer que les propriétés de l'écoulement déterminent le ravonnement sonore et qu'il est indispensable de comprendre tous les mécanismes mis en jeu.

II. APPROCHE PAR SIMULATION NUMÉ-RIQUE DIRECTE 2-D

II.1. Méthode et configuration

Le calcul direct du bruit d'origine aérodynamique est effectué par Simulation Numérique Directe (SND) des équations de Navier-Stokes compressibles (sans modèle de turbulence). L'algorithme de résolution est celui du code aéroacoustique ALESIA [2, 3]. Il s'appuie sur des schémas d'ordre encore élevé et des conditions aux limites autorisant la sortie des fluctuations aérodynamiques ou acoustiques sans réflexion notable.

On reproduit numériquement à l'échelle 1 l'expérience de Karamcheti [5], qui a étudié le rayonnement acoustique de cavités bidimensionnelles. On choisit ici la configuration L/D = 2, où L et D = 2.54 mm sont respectivement la longueur et la profondeur de la cavité, avec un écoulement laminaire à Mach M = 0.7. La cavité est discrétisée par un maillage cartésien de 147×161 points dans la cavité et 501×440 points en dehors, raffiné près des parois. Le nombre de Reynolds basé sur D est $\text{Re}_D = 41000$ et le calcul est initialisé avec une expression polynomiale du profil de Blasius correspondant à une épaisseur de couche limite $\delta \simeq 0.2D$, sans excitation supplémentaire.

II.2. Analyse de l'écoulement

Figure 1: Profils moyens de vitesse longitudinale pour différentes positions \circ : $x_1/D = 0.05$; \Box : $x_1/D = 0.22$; Δ : $x_1/D = 0.56$; $*: x_1/D = 0.94$; \Diamond : $x_1/D = 1.32$.

La séparation au bord amont provoque le passage d'un profil de type couche limite à un profil de couche cisaillée, bien approximé par une fonction tanh. Lorsqu'on représente les profils moyens de \bar{u}_1 en fonction du paramètre $\eta = (x_2 - x_{2_{0.5}})/\delta_{\theta}$, où $x_{2_{0.5}}$ correspond à $\bar{u}_1 = 0.5 U_{\infty}$, sur la figure 1, on met en évidence le caractère autosimilaire de la couche cisaillée. Une visualisation de la vorticité (figure 2) indique la présence de structures tourbillonnaires convectées à la vitesse $U_c = 0.65 U_{\infty}$. Ces tourbillons possèdent une grande cohérence spatio-temporelle, confirmée par la persistance d'un double-pic dans les distributions des fluctuations de vitesse longitudinale moyennées de la figure 3. On retrouve cette propriété pour les tourbillons du modèle de Stuart [12]. Les profils des fluctuations verticales ont une forme en cloche et atteignent des taux de 0.14, conformes aux mesures pour des couches cisaillées excitées et suggérant une bidimensionnalisation de la couche cisaillée. Les déflections des profils dans la cavité semblent surestimées par rapport au mesures

Actes du 6^e Congrès Français d'Acoustique

expérimentales en laminaire de Sinha *et al.* [10] par exemple. En effet, une simulation plane ne permet pas de reproduire le mélange turbulent dans la cavité, nécessairement 3-D.

Figure 3: Profils des fluctuations de vitesse u_{rms} (à gauche) et v_{rms} (à droite) pour différentes positions x_1 comparés au champ de vitesse analytique de Stuart [12]. $O: x_1/D = 0.18; \Box: x_1/D = 0.32; \Delta: x_1/D = 0.70;$ $*: x_1/D = 1.08; \Diamond: x_1/D = 1.27; (------):$ tourbillons de Stuart avec $\alpha = 0.7; (------):$ tourbillons de Stuart avec $\alpha = 0.95$.

II.3. Rayonnement acoustique

La carte des gradients verticaux de masse volumique du champ acoustique calculé par SND est comparée à celle obtenue par Karamcheti sur la figure 4. La fréquence principale $f_0 = 32$ kHz est en très bon accord avec la fréquence mesurée (34 kHz), compte tenu de l'incertitude expérimentale sur δ et du caractère 2D de la simulation. La source principale provient de l'impact du train de tourbillons sur l'angle aval. On retrouve une directivité marquée vers l'amont et la présence de deux types de fronts d'onde. Le renforcement du rayonnement vers l'amont résulte de la convection des fronts d'ondes par l'écoulement et des interférences entre les ondes émises directement et celles qui sont réfléchies par les parois de la cavité. Ces deux types d'ondes sont encore identifiables sur la figure 4. La directivité des ondes réfléchies, marquée dans la direction perpendiculaire à la cavité sur la visualisation expérimentale, est décalée vers l'amont pour la simulation. Il s'agit vraisemblablement d'un effet de réfraction par la recirculation, qui est exagéré en 2-D.

Figure 4: Visualisations strioscopiques correspondant aux gradients verticaux de masse volumique : simulation, à gauche et expérience de Karamcheti [5], à droite.

III. APPROCHE PAR SIMULATION DES GRANDES ECHELLES 3-D

III.1. Méthode et configuration

Les simulations bidimensionnelles surestiment la recirculation dans la cavité. Si la représentation plane de l'écoulement ne pénalise pas les simulations pour une couche cisaillée relativement épaisse, la prise en compte d'une couche limite incidente très fine $(L/\delta_{\theta} > 70)$ conduit à une bifurcation vers un régime de sillage, dominé par la recirculation [4]. Le passage en 3-D est alors nécessaire pour rendre compte du mélange turbulent dans la cavité. Il est également indispensable pour étudier l'effet d'un écoulement turbulent. Cependant, l'augmentation du nombre de Reynolds et la résolution tridimensionnelle amènent très rapidement aux limites actuelles des supercalculateurs. Une approche par Simulation des Grandes Echelles (SGE) peut permettre d'accéder à des dimensions pratiques. Cette méthode est bien appropriée à ce type d'écoulement, dominé par le comportement des grosses structures. Une version 3-D d'ALESIA a été modifiée pour mettre en œuvre de telles simulations par macrosimulation. On utilise le modèle de Smagorinsky et une loi d'amortissement de van Driest près des parois pour rendre compte de la réduction des échelles de la turbulence.

On choisit une configuration L/D = 3, où D = 2.54, mm avec un écoulement turbulent à Mach M= 0.8, également étudiée expérimentalement par Karamcheti [5]. Le maillage cartésien à pas variable comporte $101 \times 101 \times 101$ points dans la cavité et $271 \times 140 \times 101$ points en dehors. Le domaine de cal-

cul s'étend ainsi sur 6.5 D verticalement et 13 D horizontalement et sur 2 D dans la troisième direction. Le nombre de Reynolds basé sur D est $\text{Re}_D = 48600$. Le calcul est initialisé avec le profil d'une couche limite turbulente à $\text{Re}_{\theta} = 1410$, basé sur l'épaisseur de quantité de mouvement θ , fourni par la SND temporelle de Spalart [11]. Les perturbations introduites en entrée autour du profil moyen consistent en une somme de modes de Fourier aléatoires, avec une distribution verticale donnée par les résultats de Spalart et une évolution temporelle basée sur le temps d'Heisenberg[1].

III.2. Analyse de l'écoulement

Figure 5: Champ de vitesse instantanée dans la cavité dans un repère convecté à la vitesse $0.5U_{\infty}$.

Le champ de vitesse instantanée dans un plan de la simulation, tracé sur la figure 5, posséde une forme plus complexe qu'en 2-D. Il ne s'agit plus de simples tourbillons dans la couche cisaillée mais plutôt d'amas (cluster) de vorticité, résultant de la fusion successive de structures de plus petite taille. Cette interaction collective est visible en amont, où les tourbillons, formés à la fréquence la plus instable pour le profil de vitesse, s'agglomèrent. La nouvelle structure cohérente est identifiable sur la figure 6 où une moyenne dans la direction homogène a été réalisée. L'écoulement de recirculation dans la cavité est fortement tridimensionnel et possèdent les propriétés d'un jet plan rétrograde sur la paroi verticale aval et sur la deuxième partie du fond de la cavité. Ce jet plan, mis en évidence expérimentalement sur les visualisations de Lin et Rockwell [6], provient des portions de tourbillons scindés lors de l'impact sur l'angle aval puis projetées dans la cavité et peut influencer le comportement de la couche cisaillée.

Figure 6: Visualisation strioscopique correspondant aux gradients verticaux de masse volumique moyennés dans la troisième direction. Zoom autour de la cavité.

III.3. Rayonnement acoustique

Figure 7: Visualisation strioscopique correspondant aux gradients verticaux de masse volumique dans le plan médiant du domaine de calcul. Le point indique la position d'enregistrement du spectre.

Une visualisation des fronts d'ondes acoustiques est donnée sur la figure 7. On observe une longueur d'onde plus grande que pour la simulation 2-D laminaire. Cette apparition de basses fréquences est confirmée par les mesures strioscopiques de Karamcheti [5]. Si la présence de fines échelles ajoute essentiellement une composante large bande au bruit émis, la structure 3-D de l'écoulement a d'importantes répercussions sur le comportement des structures cohérentes. La présence de plusieurs tailles de tourbillons se traduit par une certaine intermittence de l'impact et par la compétition entre deux modes. Ainsi, deux pics à St=0.33 et St=0.66 ressortent sur le spectre acoustique de la figure 8. conformément aux mesures de Karamcheti (St_{low}=0.31 et $St_{high}=0.64$). Le rayonnement observé sur la figure 7 correspond à St_{low} , qui s'avère dominant sur le court intervalle de temps de la simulation.

Figure 8: Spectre des fluctuations de pression en fonction du nombre de Strouhal St= fL/U_{∞} , au point $x_1/D = -0.04$ et $x_2/D = 2D$.

IV. CONCLUSION

Le calcul 2-D du bruit rayonné par un écoulement laminaire affleurant une cavité se compare favorablement avec les mesures de Karamcheti dans la même configuration. L'étude d'un écoulement turbulent requiert une simulation 3-D par macrosimulation et met en évidence une structure plus complexe avec des amas de vorticité plutôt que des tourbillons discrets et la coexistence de plusieurs modes. Il devient très difficile de modéliser l'écoulement et une simulation aéroacoustique permet à décrire précisément les interactions aérodynamiques complexes.

REMERCIEMENTS

Les calculs ont été réalisés sur le NEC SX-5 du Centre National de la Recherche Scientifique, mis à disposition par l'IDRIS (Institut du Développement et des Ressources en Informatique Scientifique). Les auteurs remercient Christophe Bogey pour avoir fourni les sources du code ALESIA, initialement développé pour des écoulements libres, et pour avoir suivi ce travail avec attention.

REFERENCES

- 1. BAILLY, C., LAFON, P. & CANDEL, S., 1995, A stochastic approach to compute noise generation and radiation of free turbulent flows, *AIAA Paper* 95-092.
- BOGEY, C., BAILLY, C. & JUVÉ, D., 2000, Computation of the sound radiated by a 3-D jet using large eddy simulation, AIAA Paper 2000-2009.
- GLOERFELT, X., 2001, Bruit rayonné par un écoulement affleurant une cavité: Simulation aéroacoustique directe et application de méthodes intégrales, thèse de doctorat, Ecole Centrale de Lyon. No 2001-26.
- GLOERFELT, X., BAILLY, C. & JUVÉ, D., 2000, Simulation numérique directe du bruit rayonné par une cavité excitée par un écoulement, 5ème Congrès Français d'Acoustique, Lausanne, p. 554–557.
- KARAMCHETI, K., 1955, Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces, NACA, *Tech. Note* 3487.
- LIN, J.C. & ROCKWELL, D., 2001, Organized oscillations of initially turbulent flow past a cavity, AIAA Journal, 39(6), p. 1139–1151.
- ROCKWELL, D., 1977, Prediction of oscillation frequencies for unstable flow past cavities, ASME Journal of Fluids Engineering, 99, p. 294–300.
- 8. ROSSITER, J.E., 1964, Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, *Aeronautical Research Council Reports and Memoranda*, Technical Report 3438.
- SAROHIA, V., 1977, Experimental oscillations in flows over shallow cavities, *AIAA Journal*, 15(7), p. 984–991.
- SINHA, S.N., GUPTA, A.K. & OBERAI, M.M., 1982, Laminar separating flow over backsteps and cavities, Part ii: Cavities, AIAA Journal, 20(3), p. 370–375.
- 11. SPALART, P.R., 1988, Direct simulation of a turbulent boundary layer up to $R_{\theta} = 1410$, J. Fluid Mech., 187, p. 61–98.
- STUART, J.T., 1967, On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29(3), p. 417–440.