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I. Introduction

N ONIDEALLY expanded supersonic jets generate three basic
noise components, namely, the turbulent mixing noise, the

broadband shock-associated noise, and the screech noise [1]. The
mixing noise, obtained for both subsonic and supersonic jets, is most
intense in the downstream direction; and it occurs at Strouhal
numbers of around 0.15. The broadband shock-associated noise is
radiated mainly in the radial direction, and it has a central frequency
varying with the emission angle. The screech noise consists of tones
measured in the upstream direction. These tones are due to an
aeroacoustic feedback mechanism establishing between turbulent
structures propagating downstream and acoustic waves propagating
upstream, whichwas described by Powell [2] and then by Raman [3],
among others. According to these authors, the structures developing
in the jet shear layers interact with the quasi-periodic shock-cell
structure of the jet, which creates upstream-propagating acoustic
waves. The sound waves are reflected back at the nozzle lips, which
excites the shear layers and closes the feedback loop.
At the screech tone frequencies, the jets undergo strong oscillations.

For round jets, Powell [2] identified four oscillation modes (A, B, C,
andD) on the basis of the variations of the screech frequency with the
jet ideally expandedMach numberMj. Eachmodewas observed over
a specific range of Mach number, and frequency jumps were noted
between the modes. Later, Merle [4] showed that mode A could be
divided into modes A1 and A2. Davies and Oldfield [5] studied the
oscillation modes of the jets associated with the screech modes. They
found that modesA1 andA2 corresponded to axisymmetric oscillation
modes, mode C corresponded to helical modes, and modes B and D
corresponded to flapping and sinuousmodes. Powell et al. [6] and Tam

et al. [7] suggested that the mode switching phenomenon was due to
the change in thegrowth rate of the shear-layer instabilitywaves asMj

varied. Using numerical simulations, Shen and Tam [8] also provided
evidence that two screech tones could coexist. As an explanation, they
proposed that therewere twoways bywhich the screech feedback loop
was accomplished. In the first one, the feedback acoustic waves were
generated by the interactions between the jet instability waves and the
shock-cell structures, as was done for the broadband shock-associated
noise. Using the formula [9] giving the frequency of this noise in
the upstream direction, good agreement was thus noticed for the
frequencies of screechmodesA1 andB. In the secondway to complete
the screech loop, the feedback link was provided by upstream-
propagating acoustic wave modes of the jets. By comparing the
screech tone wavelengths predicted when the frequency of these
modes was calculated using a vortex sheet model of the ideally
expanded equivalent jet with experimental data, Shen and Tam [8]
showed that thiswasmost probably the case for screechmodesA2 and
C. However, the acoustic modes of the ideally expanded equivalent
were not directly observed in the jet.
In this Note, the origin of the oscillation modes of screeching round

jets is investigated by assuming that the feedback part of the
aeroacoustic loop responsible for screech noise can be modeled by
considering the neutral acoustic wave modes of the equivalent ideally
expanded jets, as in the work of Shen and Tam [8]. Such modes are
characterized in Sec. II by a simple wave analysis using a vortex sheet
model. The validity of the present assumption is assessed from
reference experimental data in Sec. III, as well as from simulation
results in Sec. IV. In the latter section, an attempt is made to detect
upstream-propagating waves in a screeching jet, as was done recently
in ideally expanded impinging jets [10]. In particular, based on
the frequency-wave-number spectra of density fluctuations, high-
amplitude patterns corresponding to neutral acoustic wave modes of
the ideally expanded equivalent jet are observed inside the jet, for the
first time (to the best of our knowledge), in nonideally expanded jets.
Concluding remarks are given in Sec. V.

II. Modeling of the Feedback Waves in Screeching Jets

In the present Note, as in the work by Shen and Tam [8], it is
assumed that the feedback loop causing screech noise in nonideally
expanded jets is closed by acoustic waves belonging to the family
of the upstream-propagating acoustic wavemodes of the equivalent
ideally expanded jet. This hypothesis seems natural, given that,
experimentally [2,4,5,11,12], the screech frequencies and the
corresponding oscillationmodes of the jets depend primarily on the
ideally expanded Mach number of the jets.
The dispersion relations of these instability waves are approximated

by using a vortex sheet model of the jets as proposed by Lessen et al.
[13]. By starting from the linearized governing equations for a
compressible inviscid fluid, and noting that the waves are neutral for a
vortex sheet model (i.e., that they have both a real wave number k and
angular frequency ω), these authors obtained the following relations
for an ideally expanded round jet of diameterDj, exit velocity uj, and
Mach numberMj:

jξ�jJn�jξ−αj�
Kn−1�jξ�αj� � Kn�1�jξ�αj�

Kn�jξ�αj�

� C2jξ−j
�a0C∕aj −Mj�2

�Jn−1�jξ−αj� − Jn�1�jξ−αj�� � 0 (1)

wherea0 andaj are the sound speeds in the ambientmediumand in the
jet,C � ω∕�ka0�, Jn is the nth order Bessel function of the first kind,
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ξ� � jC2 − 1j1∕2, ξ− � j�a0C∕aj −Mj�2 − 1j1∕2, α � kDj∕2, and
Kn is the nth order modified Bessel function.
The dispersion relations obtained for a round jet at a Mach number

of Mj � 1.56 (similar to the screeching jet to be considered in
Sec. IV) for the axisymmetric modes (n � 0) and the first helical
modes (n � 1) are represented in Fig. 1 as functions of the Strouhal
number St � fDj∕uj and the wave number kDj, where f is the
frequency.Aspointedout byTamandHu [14], discrete acousticmodes
can be seen. More precisely, an infinite number of modes exist, and
they can be ordered by increasing Strouhal numbers of their lower
limits. The lower limits of the modes, given by Tam and Ahuja [15],
are also represented in Fig. 1. Within the frequency range considered,
three axisymmetric neutral acousticwavemodes (referred to asS1,S2,
and S3) and three helical modes (denoted byH1,H2, andH3) appear.
For the different modes, the upstream-propagating acoustic waves

are situated on the part of the dispersion curves colored in red, where
the slope dSt∕dk and, hence, the group velocity dω∕dk are negative,
which leads to the existence of allowable frequency ranges.
Typical eigenfunction distributions obtained for axisymmetric

modes S1, S2, and S3 and helical modesH1,H2, andH3 are plotted
in Fig. 2 as a function of the radial distance. They are calculated here
for the maximum Strouhal number of each mode, but the results are
similar for other positions on the same mode.

III. Assessment of the Modeling Using
Experimental Data

The allowable frequency ranges obtained for the axisymmetric and
the helical upstream-propagating neutral wavemodes are represented
in Fig. 3 as a function of the Mach numberMj. They are determined
from the maximum and minimum Strouhal numbers of each mode,
which are taken from the dispersion curves in the first case, and are
calculated in the second case as in thework of TamandAhuja [15]. To
assess the validity of themodeling proposed by Shen andTam [8] and
examined in the present Note, the tone frequencies acquired in the

reference experiments of Powell et al. [6] and Ponton and Seiner [16]
for different screech modes are also depicted. For Ponton and Seiner
[16], the results represented were those for jets with a nozzle
thickness equal to 0.625D, where D was the exit diameter. The
semiempirical relation developed by Tam et al. [9] was also plotted in
the figure. The relations are written as

St� 0.62

�M2
j −1�1∕2

�
1�0.65Mj

�
1� γ−1

2
M2

j

�−1∕2�T0

Tr

�−1∕2�−1

(2)

where T0 and Tr are the ambient temperature and the total
temperature of the jet, respectively; γ � 1.4 is the ratio of specific
heats; and a mean convection velocity equal to 65% of the ideally
expanded jet velocity is considered.
Overall, as observed by numerous researchers [11,12,17], the

screech frequency decreases with the ideally expandedMach number
[9], following the semiempirical relation developed by Tam et al. [9].
Moreover, the variations of the screech frequencies withMj closely
follow those of the allowable frequency ranges. This is the case for the
dominant screech modeC in both experiments and for the secondary
screech mode c in the experiment of Powell et al. [6], for which the
frequencies strikingly fall on the line corresponding to the lower limit
of the band for the helical mode H1. This is also true for dominant
screech modes A1 and A2 and secondary screech mode u, for which
the frequencies are located near the lower limit of the band for
axisymmetric mode S2. These results suggest that the former screech
modes are helical and that the latter are axisymmetric, which is in
agreement with experimental observations for screechmodesA1,A2,
C, and c, as well as with expectations [6] for screech mode u. It is
interesting to note that the screech tones are located mainly near the
lower limits of the allowable frequency ranges. At these positions, the
neutral upstream-propagating acoustic waves have group and phase
velocities both close to the ambient speed of sound. In the present

−15 −10

a) b)

−5 0
0

0.2

0.4

0.6

0.8

1

−15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

Fig. 1 Dispersion relations of a) axisymmetric and b) helical neutral acoustic wave modes; (×) lower limits of the modes, (dashed) k � −ω∕a0.
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Fig. 2 Eigenfunction distributions of neutral acoustic modes: a) axisymmetric modes S1 (solid line), S2 (dashed), and S3 (dash–dotted); and b) helical
modesH1 (solid line),H2 (dashed), andH3 (dash–dotted).
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model, the waves closing the feedback loop therefore appear to
propagate at the same speed as the acoustic waves considered to
complete the loop outside the jet flow in the classical screech
mechanism model [2,3].
Similar observations have been made by Tam and Norum [18],

Gojon et al. [19], andBogey andGojon [10] for impingement tones in
supersonic ideally expanded jets. It thus appears that the present
modeling of the feedback waves allows us to predict the variations of
the frequencies of these screech modes with Mj, as well as their
axisymmetric or helical natures. Note that the frequencies of screech
modesB andD, as well as of modes b and d, lie outside the allowable
frequency ranges for the axisymmetric and helical upstream-
propagating neutral acoustic wave modes. This can be explained by
the fact that these modes are associated with more complex flapping/
sinuous jet oscillation modes.

IV. Further Assessment of the Modeling Using
Numerical Data

The results obtained for a round screeching jet in a recent study
[20] using large-eddy simulation (LES) are now examined.

A. Parameters and Methods

At the exit of a straight pipe nozzlewith a diameter ofD � 2r0 � 2
mm and a thickness of 0.1r0, the jet is characterized by a nozzle
pressure ratio ofpr∕p0 � 4.03 and a temperature ratio of Tr∕T0 � 1,
where suffixes r and 0 denote, respectively, stagnation and ambient
values. The jet is underexpanded; has a fully expanded Mach number
of Mj � uj∕aj � 1.56; an exit Mach number of Me � 1 (i.e., it
simulates a jet exiting from a convergent nozzle); and a Reynolds
number of Rej � ujDj∕νj � 6 × 104, where uj and aj are the
velocity and the speed of sound in the equivalent ideally expanded
jet with a diameter of Dj � 2.2 mm; and νj is the kinematic
molecular viscosity.
The LES is performed by solving the unsteady compressible

Navier–Stokes equations on a cylindrical mesh (r, θ, z). The time
integration and spatial derivation are performed using an explicit six-
stage Runge–Kutta algorithm and low-dispersion and low-dissipation
explicit finite differences [21,22], respectively. At the end of each time
step, a high-order filtering is applied to the flow variables in order to
remove grid-to-grid oscillations and to dissipate subgrid-scale
turbulent energy [23–25]. The boundaries are treatedwith the radiation
conditions of Tam and Dong [26], and a sponge zone is employed to
damp the turbulent fluctuations. No-slip adiabatic conditions are
imposed at the nozzle walls. Finally, a shock-capturing filtering is
applied in order to avoid Gibbs oscillations near shocks [27]. The
simulation has been carried out using an OpenMP-based in-house
code solving the unsteady compressible Navier–Stokes equations
in cylindrical coordinates (r, θ, z) using low-dispersion and low-
dissipation finite difference schemes [21,27–29]. The mesh contains
400million points, and it exhibits aminimal spacing of 0.0075r0 in the

jet shear layers and at the nozzle exit, as well as a maximum spacing of
0.06r0, allowing properly propagated acoustic waves with Strouhal
numbers up to St � fDj∕uj � 5.3. The simulation time, after the
transient regime, is equal to 500Dj∕uj.

B. Flow Snapshot and Near-Nozzle Pressure Spectrum

Three isosurfaces of density in the jet flow and the pressure
fluctuations in the planes θ � 0 and θ � π are represented in Fig. 4.
In the jet, a shock-cell structure and the jet mixing layers are well
visible. Outside, strong acoustic waves clearly appear to propagate in
the upstream direction. More information about the hydrodynamic
and acoustic fields of the jet can be found in a dedicated paper [20].
The pressure spectrum obtained near the nozzle exit at z � 0 and

r � 2r0 is displayed in Fig. 5 as a function of the Strouhal number.
Two tones emerge 15 dB above the broadband noise at Strouhal
numbers of St1 � 0.28 and St2 � 0.305, and a secondary tone is
found atSt3 � 0.38. Such a result is typical of a screeching jet; see, for
instance, in the work of Westley and Woolley [11], Panda [12], and
André [17]. Moreover, Eq. (2) gives St � 0.285 for the simulated jet,
which is in good agreement with the frequency of the two dominant
tones. The present jet thus generates screech tones. According to the
classification of the screech modes used in Fig. 3, the two dominant
tones belong tomodeC, and the secondary tone belongs tomodeu. An
in-depth analysis of those tones was given in a previous paper [20].

C. Near-Pressure Field

A Fourier transform has been applied to the near-pressure field
recorded in the (z, r) plane in order to determine the amplitude and
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Fig. 3 Allowable frequency ranges for the axisymmetric (dark gray) and helical (light gray) upstream-propagating neutral acoustic modes; tone
frequencies (symbols) in experiments a) [6] and b) [16]; (red dashed) semi empirical relation [9].

Fig. 4 Density isosurfaces for 0.8 and 2.5 kg ⋅m−3 (purple and red) and

1.25 kg ⋅m−3 colored by the Mach number; pressure fluctuations at
θ � 0 and π using a color scale from −2000 to 2000 Pa from blue to red;
nozzle in gray.
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phase fields associated with the different screech tones. These fields
are represented in Fig. 6.
At the three tone frequencies, the amplitude fields in Figs. 6a–6c

exhibit cell structures. Such structures have been observed, for
instance, experimentally by Panda et al. [30] in screeching jets and
numerically by Gojon et al. [19] in ideally expanded planar impinging
jets. They are due to the formation of hydrodynamic–acoustic standing
waves. The levels on the jet axis are negligible at the two first
frequencies but strong at the third one. The phase fields of Figs. 6d–6f,
as well as the results obtained using Fourier decomposition in the
azimuthal direction at z � 0 and r � 2r0 (not shown here for
brevity), provide additional information on the spatial organization of
the pressure field. They indicate that the jet undergoes helical
oscillations at St1 � 0.28 and St2 � 0.305 but an axisymmetric
oscillation at St3 � 0.38. These findings are consistent with the
screech modes associated with the different tones, namely, mode C
for the two first tones and mode u for the third tone. In particular, the
axisymmetric nature of the mode u suggested by the model in Sec. II
clearly appears.

D. Wave-Number-Frequency Density Spectra in the Jet

To detect upstream-propagating waves in the present jet, as was
recently done by Towne et al. [31] in a subsonic free jet and by Bogey
and Gojon [10] in ideally expanded impinging jets, a space–time
Fourier transform has been applied to the density fluctuations at
different radial positions between r � 0 and r � r0 along a line
extending from the axial position of z � 0 to z � 10r0. The
frequency-wave-number spectra obtained for azimuthal modes of
n � 0 and n � 1 at r � 0.1r0, r � 0.5r0, and r � r0 are represented
in Fig. 7 as functions of the Strouhal number of St � fDj∕uj and of
the normalized axial wave number kDj. Only the negative wave
number part is shown. The dispersion relations of the neutral acoustic
wavemodes of the equivalent ideally expanded jet are also displayed.
For the azimuthal mode of n � 0, significant levels are found in

Figs. 7a, 7c, and 7e that are slightly above the theoretical curves
associated with modes S1 and S2. The discrepancies with respect to
the model may be due to the presence of shock motions in the
simulated jets, as well as to the use of an infinitely thin shear layer in
the vortex sheet model [15,10]. Moreover, the amplitude of those
bands decreases with the radial position at which the frequency-
wave-number spectrum is represented, following the eigenfunction
distributions in Fig. 2a. In Figs. 7b, 7d, and 7f for the azimuthal mode
of n � 1, strong components appear along modeH2 at r � 0.1r0 in
Fig. 7b and along modes H1 and H2 at r � 0.5r0 in Fig. 7d. Those
results are again in agreement with the eigenfunction distributions of
the two first helical neutral acoustic wave modes in Fig. 2b.
The eigenfunction profiles presented in Fig. 2 are now compared

with the adimensional amplitude profiles extracted from the
frequency-wave-number spectra of density fluctuations at 11 radial
positions from r � 0 to r � r0. They are estimated at the tone
Strouhal numbers of St � 0.38 and St � 0.28 for S2 and H1,
respectively, and at themaximumStrouhal number of themode forS1
and H2. In the first case, the amplitude seems to be well converged
because of the high-energy content at the tone Strouhal numbers. In
the latter case, the maximum Strouhal number corresponds to the
position where the eigenfunction profiles have been calculated using
the vortex sheet model. The comparisons are given in Fig. 8. A good
agreement is obtained for all the modes. The same observation has
beenmade for round, ideally expanded, impinging jets [10]where the
amplitude fields obtained for the pressure fluctuations at the tone
frequencies bear similarities with the eigenfunction distributions of
the neutral acoustic wave modes of the jet. These results provide
strong evidence, for the first time (to the best of the authors’
knowledge), that a vortex sheet model of the corresponding ideally
expanded jet is capable of predicting the wave modes of a nonideally
expanded supersonic jet. However, among thosewaves, the oneswith
a positive group velocity that have been observed in Fig. 7 cannot be
involved in the proposed feedback loop model.
Peak levels are reached in the spectra on the line k � −ω∕a0 at the

Strouhal number of St3 � 0.38 of the axisymmetric screech tone for
the azimuthal mode of n � 0 in Figs. 7a, 7c, and 7e, as well as at the
Strouhal numbers of St1 � 0.28 and St2 � 0.305 of the helical
screech tones for the mode of n � 1 in Figs. 7a, 7c, and 7e. They are
located very near the lower limits of the dispersion relations of the
neutral acoustic wave modes of the equivalent ideally expanded jet.
Therefore, the associated waves propagate upstream inside the jet
with group and phase velocities both close to the ambient speed
of sound.
In the spectra of Fig. 7, energy is distributed along a wide range of

spatial wave numbers for each tonal frequency, which seems in
contradiction with the model proposed by Shen and Tam [8] and in
the present Note, in which the waves closing the feedback loop exist
only at a single wave number for each frequency. This is most likely
due to the interaction of the upstream-propagating acoustic waves
with the turbulence in the jet shear layer and the shock cells, which
leads to a redistribution of the energy to the close wave numbers. To
quantify the energy redistribution in the wave number space, the
spectra of the density fluctuations are plotted in Fig. 9 as a function of

Fig. 6 a–c)Amplitudeandd–f) phase fields obtained for thepressure fluctuationsat a,d)St1 � 0.28, b,e)St2 � 0.305, and c,f)St3 � 0.38, usingcolor scales
from 60 to 100 dB∕St and −π to π from blue to red.

10 -1 10 0120

130

140

150

160

Fig. 5 Sound pressure levels (SPLs) obtained at z � 0 and r � 2r0 as a
function of Strouhal number St.
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Fig. 7 Frequency-wave-number spectra of density fluctuations at a,b) r � 0.1r0, c,d) r � 0.5r0, and e,f) r � r0 for modes a,c,e) n � 0 and b,d,f) n � 1;
(solid lines) dispersion relations of the axisymmetric (left) and helical (right) neutral acoustic modes; (×) mode lower limits; (dashed) k � −ω∕a0; screech
tone frequencies for axisymmetric (diamonds) and helical (squares) modes; color-scale levels over 60 dB from blue to red.

0 0.1 0.2

a) b)

0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 8 Eigenfunction distributions of the neutral acousticmodes: a) axisymmetricmodesS1 (black line) andS2 (red line), and b) helicalmodesH1 (black
line) andH2 (red line); (solid dotted line) results from the LES.
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thewave number for themain axisymmetric and helical screechmode
frequencies for the radial positions of r � 0.1r0, r � 0.5r0, and
r � r0. In all cases, the energy peak is found very near the wave
number of corresponding upstream-propagating neutral acoustic
wavemodes S2 andH1. Finally, at the peak wave numbers, energy is
strongest at r � 0.1r0 for the axisymmetric mode in Fig. 9a and at
r � 0.5r0 for the helical mode in Fig. 9b. This is consistent with the
eigenfunction distributions of modes S2 and H1 in Fig. 2.
The frequency-wave-number spectra obtained at r � r0 are

replotted in Fig. 10 by showing both the negative and the positivewave
number parts of the spectra. In this way, both the downstream- and
the upstream-travelingwaves can be seen. The formerwaves consist of
aerodynamic broadband disturbances convected in the flow direction
in the shear layers at an average velocity of uc ≃ 0.75uj. The latter are
acoustic waves propagating at the ambient speed of sound at the
screech tone frequencies. They are very likely to close the feedback
loop in the jet.

V. Conclusions

In this Note, the origin and the properties of the oscillation modes
in screeching, nonideally expanded, round jets are investigated on the
basis of the hypothesis of Shen and Tam [8] that the acoustic waves
completing the feedback loop in these jets are linked to the upstream-
propagating acoustic wave modes of the equivalent ideally expanded
jets. Using a jet vortex sheet model to describe the dispersion
relations of these modes, it is found that this hypothesis allows us to
explain the axisymmetric or helical jet oscillations and the variations
with theMach number of the tone frequencies for screech modes A1,
A2, and u and modes C and c observed in the experiments. For an
underexpanded round jet atMj � 1.56 generating screech tones of

modesC and u, which was considered in a previous study [20] using
large-eddy simulation, it is also shown that at the screech frequencies,
there exist acoustic waves in the jet flow that are propagating in the
upstream direction at the ambient speed of sound, which belongs to
the neutral acoustic wave modes of the equivalent ideally expanded
jet. These results provide strong evidence that a vortex sheet model of
the corresponding ideally expanded jet is capable of predicting the
wave modes of a nonideally expanded supersonic jet. They also
suggest that the feedback path of the mechanism causing screech
noise in nonideally expanded jets is achieved, at least for the screech
modes mentioned previously, by these waves.
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