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Abstract: Analytical or empirical models of the wall-pressure power spectral density under a tur-
bulent boundary layer are often validated on test cases in an incompressible flow regime. In this
work, an analytical model based on the compressible Poisson equation for the unsteady pressure in a
turbulent boundary layer is developed. The Large Eddy Simulation of the flow over a controlled-
diffusion airfoil at Mach 0.5 is used to validate the assumptions made on the statistical properties
of the boundary layer turbulence and to validate the prediction of the statistics of the wall-pressure
fluctuations. The predicted wall-pressure spectrum also compares favorably with experimental data.

Keywords: analytical model; turbulent boundary layer; computational fluid dynamics; trailing-edge
noise source

1. Introduction

The quantification of the statistical properties of the pressure fluctuations on a rigid
surface under a turbulent boundary layer is a topic related to many industrial applications
and has been a matter of investigation for several decades (see, for instance, the early review
of Willmarth [1]). Turbulent boundary layers develop on the surfaces of all sorts of means
of transportation, generating wall-pressure fluctuations which cause structural vibrations
and cabin noise. From the acoustic point of view, turbulent wall-pressure fluctuations are
scattered as sound waves at the trailing edge of any lifting surface. This is the dominant
noise generation mechanism in fans operating with a laminar inlet flow and without
interaction with other lifting surfaces [2].

Several empirical models of the single-point wall-pressure power spectral density
(PSD) are available in literature [3]. The extensive review made by Lee [4] shows that
they all assume the same universal wall-pressure shape and then fit the coefficients of this
generic function to a given database. The limitation of these kinds of models is that their
scope of application depends on the characteristics of the database on which they have
been calibrated.

Another category of models is based on the Poisson equation linking the unsteady
pressure to the characteristics of the turbulent flow in the boundary layer. Thanks to this
link to the flow physics, these models have a potentially broader scope of application than
empirical models. Some models use an exact analytical solution to the Poisson equation,
such as [5–7]. Other models are based on the Fourier transform of the Poisson equa-
tion in the frequency-wavenumber domain, which yields an inhomogeneous Helmholtz
equation. The TNO–Blake model (see the reviews by [8,9]) and the model of Lysak [10]
use an approximate solution of the Helmholtz equation. This approximation has been
demonstrated to be based on a questionable hypothesis concerning the statistics of the
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boundary-layer turbulence. The exact analytical solution to the Helmholtz equation can
be used as demonstrated in the works of Panton and Linebarger [11], Remmler et al. [12]
and Fischer et al. [13], at the price of a slight increase of computational time. An extensive
review of the application of empirical or analytical models of wall-pressure statistics to the
prediction of airfoil trailing-edge noise can be found in the work of Lee et al. [14].

The predictive approach based on the exact solution of the Helmholtz equation has
been investigated in [15] with the help of direct numerical simulations of the Navier–Stokes
equations [16] and experiments [17] conducted on a controlled diffusion (CD) aifoil [18] in
the incompressible flow regime. In particular, the dependence of wall-pressure statistics
on those of the turbulent flow in the boundary layer has been elucidated. The prediction
method presented in [15] has been applied in [19] to the direct numerical simulation of the
same test case with the Lattice–Boltzmann method, in order to study its sensitivity to input
data variations, and it has proved its robustness. The present work aims at extending the
method to the subsonic compressible flow regime by re-deriving the analytical formulation
starting from the compressible form of the Poisson equation. The database selected for
the validation of the model presented in this work consists of the Large Eddy Simulation
(LES) of the flow around a CD airfoil, analogous to that studied in [15–17], at Mach 0.5,
Rec = 2.29× 106 and 4◦ angle of attack performed by ISAE-Supaéro (see [20,21] for an
exhaustive description of the computational technique and in-depth analysis of the results).
The CFD data will be used to extract the information about the boundary layer turbulence
that feeds the wall-pressure power spectral density model and it will also be used to
compare the predicted versus the directly computed wall-pressure spectra.

The model presented in this work may be used in the context of shape optimization
of blades, for instance. In fact, due to the high number of possible geometries that are
analyzed, it is most common to use steady-state simulations, which do not compute the
wall-pressure fluctuations directly. This information can be recovered by applying the
predictive model to the steady-state velocity and turbulent kinetic energy profiles, while
making a few assumptions on the statistical properties of the boundary layer turbulence,
especially concerning the shape of its correlation function, its integral length scale and its
anisotropy. The analysis of the LES simulation data presented in this work will guide the
reader in making these assumptions.

The single and multi-point statistics of the wall-pressure fluctuations calculated in
this work can be used directly in the prediction of airfoil broadband trailing-edge noise
with Amiet’s statistical model and its extensions, for instance [2,22–26]. Indeed, within this
approach, the PSD of radiated sound is demonstrated to be directly proportional to the
product of the single-point wall-pressure PSD by the transverse coherence length, with
both quantities taken in the close proximity of the trailing edge. Moreover, the convective
speed of wall-pressure fluctuations, Uc, is used in Amiet’s theory to calculate the convective
wavenumber, Kc = ω/Uc, which is the sole responsible for the noise emitted at frequency
ω in the hypothesis of frozen turbulence convection.

2. Theoretical Background

This section summarizes the demonstration of the expression of the unsteady pressure
beneath a turbulent boundary layer in compressible flow conditions, laid out in the paper
of Gerolymos et al. [7]. The compressible Navier–Stokes equations form the basis for this
analytical model. The rationale is the same as in the incompressible problem developed
in [15], but with the additional density variable. The first step consists in taking the
divergence of the compressible momentum equations, which yields

∂2

∂xi∂t
(ρui) +

∂2

∂xi∂xj
(ρui uj) = −∇2 p +

∂2τij

∂xi∂xj
+

∂

∂xi
(ρ fVi) (1)
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where fVi is the body acceleration. Subtracting from Equation (1), its Reynolds average
yields the following form of the Poisson equation for the fluctuating pressure

∇2 p′ =

[
−2ρ̄

(
∂u′i
∂xj

∂uj

∂xi

)]
+

−ρ̄

∂u′i
∂xj

∂u′j
∂xi
− ∂u′i

∂xj

∂u′j
∂xi


︸ ︷︷ ︸

Quasi-incompressible terms

+

[
−
(

ρ′
∂ui
∂xj

∂uj

∂xi
− ρ′

∂ui
∂xj

∂uj

∂xi

)]
+

[
−2

(
ρ′

∂ui
∂xj
− ρ′

∂ui
∂xj

)
∂uj

∂xi

]

+

[
−ρ′

∂ui
∂xj

∂uj

∂xi

]
+

δ2τ′ij
∂xi∂xj

+
∂

∂xi
(ρ fVi − ρ fVi)

+

[
ρ

D
Dt

(
1
ρ

Dρ

Dt

)]′
+

[
−DV

Dt
· ∇ρ

]′
(2)

with the following definitions:

D(·)
Dt

=
∂(·)
∂t

+ ui
∂(·)
∂xi

=
∂(·)
∂t

+ ui
∂(·)
∂xi

+ u′i
∂(·)′
∂xi

and [
D(·)
Dt

]′
=

D(·)
Dt
− D(·)

Dt
.

The subscripts i, j ∈ {1, 2, 3}, where the indices correspond to the coordinate system
depicted in Figure 1. The first two source terms on the right-hand side of Equation (2) are
known as quasi-incompressible terms and correspond respectively to the turbulence-mean
shear and turbulence–turbulence interaction source terms of the incompressible Poisson
equation, reproduced below for simplicity:

∇2 p′ = −2ρ0
∂u′i
∂xj

∂uj

∂xi︸ ︷︷ ︸
Turbulence-mean shear

− ρ0

∂u′i
∂xj

∂u′j
∂xi
− ∂u′i

∂xj

∂u′j
∂xi


︸ ︷︷ ︸

Turbulence-turbulence

. (3)

Figure 1. Reference frame for the calculation of wall-pressure statistics based on turbulence and
mean flow statistics. The classical boundary layer model for which the mean flow speed is aligned
with the x1 direction, and it varies only in the normal-to-wall, x2 direction, is also depicted.
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The quasi-incompressible terms scale with the mean density component, ρ, whereas
the remaining terms scale with the density fluctuations, ρ′, as demonstrated by the di-
mensional analysis of ([7] Appendix A). Morkovin’s hypothesis [27] implies that for a
low-Mach-number flow, the effects of compressibility on turbulence are due to the gradient
of the mean density, the influence of the density fluctuations being a higher-order effect.
This holds true in the limit of ρ′/ρ̄� 1. Within this hypothesis, it is justified to retain only
the quasi-incompressible terms in the solution to the compressible Poisson equation gov-
erning pressure fluctuations in a compressible boundary layer, thus obtaining an equation
of the same structure as Equation (3). Furthermore, it is possible to discard in first approxi-
mation the turbulence–turbulence interaction quasi-incompressible term. This is a widely
used assumption, following the work of Kraichnan [28] and Hodgson [29], who estimated
that the turbulence–turbulence term makes up 4–6% of the mean-square unsteady pressure.
In particular, the analytical solution of Equation (3) with the turbulence–turbulence compo-
nent alone on the right-hand side, developed by Hodgson, was re-derived and generalized
in [15] and applied to the CD airfoil configuration in the incompressible flow regime. It
was thus confirmed that the turbulence–turbulence component is negligible with respect
to the turbulence–mean shear over the low-to-middle frequency range. Therefore, the
quasi-incompressible Poisson equation is

∇2 p′ = −2ρ̄
∂u′i
∂xj

∂uj

∂xi
. (4)

The mean density, ρ̄, at the right-hand side of Equation (4), varies in space, which is
the mean difference between this equation and the incompressible one. Performing the
Fourier transform of Equation (4) in space along the wall directions (x1, x3) in time and
applying the classical boundary-layer approximation, for which the mean flow speed is
aligned with the x1 axis, and the only non-vanishing mean velocity gradient is that of the
stream-wise velocity u1 in the wall-normal direction x2 (as depicted in Figure 1), we obtain
the following inhomogeneous Helmholtz equation:

∂ p̂(ω, k, x2)

∂x2
2

− k2 p̂(ω, k, x2) = −2ρ(x2)ik1
∂u1(x2)

∂x2
û2(ω, k, x2), (5)

where k = (k1, k3). The boundary-layer model used in the derivation of the previous
equation is valid for actual boundary layers as long as their thickness is much smaller than
the local radius of curvature of the surface (i.e., quasi-parallel flow). Assuming that the
unsteady pressure vanishes at an infinite distance from the wall, that is

lim
x2→∞

p′ = 0,

and adopting the rigid-wall model whereby

∂p′

∂x2

∣∣∣∣
x2=0

= 0

we can write the well-known Green’s function solution (see for instance [7]) to the differen-
tial equation above as

p̂(ω, k, x2 = 0) = 2i
k1

k

∫ +∞

0
ρ(X2)û(ω, k, X2)

∂u1(X2)

∂x2
e−k X2 dX2. (6)
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Multiplying Equation (6) by its complex conjugate and taking the ensemble average
of the result yields the general expression of the wall-pressure power spectral density:

ΦTM
pp (ω, k1, k3) =4

k2
1

k2

∫
ω′

∫
k′

∫∫ ∞

0
ρ̄(X2)ρ̄(X′2)e

−(X2+X′2)k
∂U1(X2)

∂x2

∂U1(X′2)
∂x2

× 〈û(ω, k, X2)û(ω′, k′, X′2)〉dX2 dX′2 dk′ dω′. (7)

The superscript TM reminds one that this solution only takes into account the turbulence–
mean shear interaction source term.

Due to the statistical orthogonality of the turbulence wave-vectors [30], the ensemble
average of the product of vertical velocity fluctuations can be written as

〈û(ω, k, X2)û∗(ω′, k′, X′2)〉 = ϕ22(ω, k, X2, X′2)δ(k− k′)δ(ω−ω′)

and then the wall-pressure PSD becomes

ΦTM
pp (ω, k1, k3) =4

k2
1

k2

∫∫ ∞

0
ρ̄(X2)ρ̄(X′2)e

−(X2+X′2)k
∂U1(X2)

∂x2

∂U1(X′2)
∂x2

× ϕ22(ω, k, X2, X′2)dX2 dX′2. (8)

According to Equation (8), the frequency-wavenumber PSD of the wall-pressure
flucutation is directly proportional to the normal-to-wall variation of mean density, mean
shear and to the cross-spectral density of vertical velocity fluctuations, ϕ22. The first two
quantities can be computed by means of a steady-state compressible flow simulation.
The latter, however, needs to be modeled for practical applications. The turbulent cross-
spectral density can be expressed as the product of a wavenumber cross-spectrum and a
moving-axis spectrum, where the latter expresses the frequency dependency:

ϕ22(ω, k, X2, X′2) = ϕ22(k, X2, X′2)Φm(ω−Uc k1). (9)

The wavenumber term can be represented with various analytical formulations ac-
cording to different theories. The Generalized von Kármán Spectrum, as defined in [31,32],
is a useful formulation of the wavenumber term because, depending on the value of one
parameter, it reduces to either the classical von Kármán, the Liepmann or the Rapid Distor-
tion Theory turbulence spectrum. Assuming homogeneous and isotropic turbulence, the
Generalized von Kármán spectrum has the following expression:

ϕ22
(
k, x2, x′2

)
=

√
u2

2(x2) u2
2(x′2) l2 k̃2 ζν+2

Γ(ν)π 2ν+1
(
1 + k̃2

)ν+2 Kν+2(ζ) (10)

with the parameter

ζ =
‖x2 − x′2‖

l

√
1 + k̃2. (11)

and the characteristic length scale

l =
Γ(ν)√

π Γ(ν + 1/2)
Λ, (12)

where Λ is the turbulent longitudinal integral length scale. If ν = 1/3, Equation (10)
corresponds to the model of von Kármán [33], if ν = 1/2 to Liepmann’s model [34] and
if ν = 7/6 to the rapid distortion theory (RDT) [35]. In order to close the model, in
earlier works [15,19] Taylor’s hypothesis of frozen turbulence convection has been applied,
whereby the moving axis spectrum is a Dirac delta function centered at the convective
frequency ω = Uc k1:

ΦD
m(ω−Uc k1) = δ(ω−Uc k1), (13)
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where Uc is the convective speed of velocity fluctuations. In this case, the wall-pressure
spectral density at a given frequency ω is uniquely determined by turbulent fluctuations
at the streamwise wavenumber K1 = ω/Uc. However, the Dirac formulation of the
moving-axis spectrum does not ensure the decay of the wall-pressure coherence function
in the streamwise direction, x1. Furthermore, it can be interesting to keep the functional
dependency of the wall-pressure PSD expressed in Equation (8) on both ω and k1. To solve
both problems, the formulation of the moving-axis spectrum given in the TNO-Blake model
(see [8]) as a Gaussian function centered around the convective frequency, can be used:

ΦG
m(ω−Uc k1) =

1
α2
√

2π
exp

[
− (ω−Uc k1)

2

2α2
2

]
(14)

with
α2 =

c6 Uc

Λ2
.

In the original TNO model, the coefficient c6 is assumed constant and equal to 0.05.
Finally, this model needs to account for the anisotropy of turbulent structures, defined

as the ratio of longitudinal-to-transverse integral length scales, α. Following Schlinker and
Amiet [36], the anisotropic turbulence vertical cross-spectral density, ϕNI

22 , is defined with
respect to the isotropic formulation of Equation (10), ϕI

22, as

ϕNI
22 (k1, x2, x′2, k3) = α ϕI

22(α k1, x2, x′2, k3). (15)

In principle, the anisotropic coefficient α varies in the normal-to-wall direction; how-
ever, it has been shown in [15,19] that a constant representative value of α may suffice for
the prediction of the wall-pressure spectral density in the frequency range of interest.

3. Study of the Controlled-Diffusion Airfoil Test Case
3.1. Large Eddy Simulation of the Flow around a Controlled-Diffusion Airfoil

This section presents the post-processing of the LES of the flow around the CD airfoil,
which was in turn performed at ISAE-Supaéro [20,21] in the framework of the European
project SCONE. The wall-resolved LES (WRLES) has been performed by means of the
massively parallel compressible solver CharLESX, which offers a low dissipation cell-
centered finite-volume scheme. The numerical solution method is second-order accurate in
space and third-order accurate in time, using a low-storage Runge–Kutta–Wray scheme
for explicit time advancement. The sub-grid turbulent scales (SGS) are represented by
Vreman’s model. The unstructured computational grid has an O-grid topology and is made
up of 225.5 M cells. The computational domain extends 20c, where c is the airfoil chord, in
both the streamwise and normal-to-wall directions and 0.1c in the transverse direction. The
dimensionless wall distance, y+, on the CD airfoil surface is below 1.12. The normalized
time step is 2.68× 10−5. The mesh resolution quality has been verified by means of Pope’s
criterion [37], which measures the ratio of resolved to total (i.e., sum of resolved and SGS)
turbulent kinetic energy. This ratio is found to be at least 0.94 for all the WRLES simulations
performed in the SCONE project, meaning that the resolution level is close to that of a
DNS mesh.

3.2. Boundary Layer Profiles Close to the Trailing Edge of the Airfoil

As observed in the previous section, the boundary layer profiles and the statistical
properties of the turbulent flow are the necessary input data to the wall-pressure PSD
analytical model. These quantities are extracted from the LES simulation close to the
trailing edge of the CD airfoil, at 2% of chord upstream of the trailing edge, corresponding
to the position of pressure sensor number 26 in the experimental setup (see Figure 2). It is
interesting to predict the wall-pressure statistics as close as possible to the edge of the profile,
because they determine the amplitude and frequency distribution of the corresponding
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radiated noise (see [26] for an investigation of this dependence). Figures 3 and 4 show the
mean stream-wise and the RMS normal-to-wall velocities, respectively. The mean density,
ρ̄, has a moderate 4% variation from the wall to the edge of the boundary layer, as can be
observed in Figure 5.

Figure 2. Positions of the mesh layers on which the correlation coefficients have been computed,
courtesy of ISAE-Supaero. The black circle indicates the position of pressure sensor number 26 in the
experimental setup.

0.0 0.2 0.4 0.6 0.8 1.0
U1/U∞

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x 2
/δ

Figure 3. Mean stream-wise velocity profile at pressure sensor 26.

0.00 0.02 0.04 0.06 0.08
u2/uτ

0.0

0.5

1.0
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2.5
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3.5

4.0

x 2
/δ

Figure 4. RMS normal-to-wall velocity profile at pressure sensor 26.
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ρ/ρ0
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2.0
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3.0

3.5

x 2
/δ

Figure 5. Normal-to-wall mean density profile at pressure sensor 26.

3.3. Turbulence Statistics
3.3.1. Streamwise and Transverse Velocity Correlation Coefficient

Unsteady velocity time series have been extracted from the LES only on three mesh
layers parallel to the airfoil surface, depicted in Figure 2. Furthermore, as can be observed
in Figure 2, the upper mesh layer lays outside the boundary layer; therefore, the study of
turbulence statistics will be focused on the two inner mesh layers.

The first statistical property of the turbulent field that is calculated is the correlation
coefficient. Considering a homogeneous turbulence field, this quantity is defined as

Rij(η1, η2, η3) =
〈ui(x1, x2, x3) · uj(x1 + η1, x2 + η2, x3 + η3)〉

σ2 (16)

where σ2 is the variance of turbulent velocity fluctuations. In the framework of the Gener-
alized von Kármán theory, this correlation coefficient is expressed analytically as

Rij(η1, η2, η3) =
1

2ν−1Γ(ν)

(η

l

)ν
{

ηiηj

η2 Kν

(η

l

)
+δij

(
1− ηiηj

η2

)[
(ν + 1)Kν

(η

l

)
− 1

2
η

l
Kν+1

(η

l

)]}
(17)

where η =
√

η2
1 + η2

2 + η2
3 and Kν is the modified Bessel function of the second kind of

order ν. The correlation coefficient R22 is of particular interest because it is related to the
vertical velocity cross-spectral density, ϕ22, by the double spatial Fourier transform:

ϕ22(k1, η2, k3) =
σ2

4π2

∫∫ +∞

−∞
R22(η1, η2, η3) cos(η1 k1) cos(η3 k3)dη1 dη3. (18)

Therefore, the choice of the analytical formulation of ϕ22 could be validated directly
by calculating the vertical velocity correlation coefficient, R22(η2), from the CFD data and
comparing it with Equation (17) (see [15], Figure 12 for an example of this comparison).
However, as the unsteady velocity time series has been recorded only on two mesh layers
inside the turbulent boundary layer, there are not enough points for comparing the analyti-
cal and the directly computed correlation. For this reason, the choice of the value of ν in
Equations (10) and (17) will be based on the calculation of the streamwise (R11(η1)) and
transverse (R33(η3)) velocity correlation coefficients, under the assumption that the vertical
correlation behaves in the same way.

Figures 6 and 7 depict the streamwise velocity correlation coefficient calculated on
mesh layers 1 and 2, respectively. The following Figures 8 and 9 depict the transverse ve-
locity correlation coefficient on the same mesh layers parallel to the airfoil surface. It can be
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observed in these plots that the Rapid Distortion Theory (RDT) [35] convincingly describes
both the longitudinal and the transverse correlation coefficients inside the boundary layer.
This is consistent with the finding of Magnaudet (see [38]) that the RDT is the leading-order
approximation describing the short-term and long-term evolution of turbulent boundary
layers in the limit of the large Reynolds number. Furthermore, the fundamental assumption
of the RDT is that the turbulence–turbulence interaction is negligible with respect to the
turbulence–mean shear interaction (see also [30]), which is exactly the same hypothesis that
has been made in the derivation of Equation (8). Therefore, the use of the RDT to model
the vertical velocity cross-spectral density, ϕ22, is arguably the most consistent choice with
the fundamental assumption of the model that has been laid out in Section 2.

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

η1/c

0.0

0.2

0.4

0.6

0.8

1.0

R
1
1

Average

ν = 7/6

Figure 6. Streamwise velocity correlation coefficient—layer 1.
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0.0

0.2

0.4
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1.0

R
1
1

Average

ν = 7/6

Figure 7. Streamwise velocity correlation coefficient—layer 2.
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0.4

0.6

0.8

1.0

R
2
2
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Figure 8. Transverse velocity correlation coefficient—layer 1.

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

η3/c

0.0

0.2

0.4

0.6

0.8

1.0

R
2
2

Average

ν = 7/6

Figure 9. Transverse velocity correlation coefficient—layer 2.

3.3.2. Integral Length Scale and Anisotropy Coefficient

The longitudinal and transverse integral length scales are available only at three
locations above the wall, as shown in Figure 10. However, a continuous function of Λ versus
the distance from the wall, x2, is necessary in order to calculate the integral in Equation (8).
For this reason, a working hypothesis is made to represent the transverse length scale
with a physically-consistent model based on the hyperbolic tangent function, following
the empirical considerations of Parchen [39] (see also [8] and [15], Equation (2.38)). The
model is here re-scaled in order to match the transverse length scale as closely as possible.
Considering the available values of the ratio between the longitudinal and transverse scales,
the value of α = 3.5 will be used in the prediction of wall-pressure statistics.
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Figure 10. Integral length scale of turbulent structures. Blue: integral of streamwise velocity correla-
tion coefficient. Orange: integral of transverse velocity correlation coefficient. Dashed line: hyperbolic
tangent model used as a working hypothesis.

4. Direct Computation and Empirical Modeling of Wall-Pressure Statistics

The time series of wall-pressure fluctuations, p′, recorded on the airfoil-surface grid,
can be used to compute directly various statistical properties. Figure 11 shows the coherence
function of p′ for various values of the Strouhal number, St, taking the reference point at
12% of the chord upstream of the trailing-edge and shifting the second point in the stream-
wise direction. This reference point has been taken more upstream in order to be able to
assess the coherence function both upstream and downstream. The plot shows a faster
decay of the correlation function for a higher St. Figure 12 represents the phase of the cross
spectrum of wall-pressure fluctuations versus the stream-wise coordinate. Assuming that
the phase is linear, its slope is directly proportional to the convective speed of wall-pressure
fluctuations, Uc, for a given frequency, ω. Following the method described in [40], the
linear function ωη1/Uc is fitted to the phase in order to estimate the value of Uc. This value
is needed for the prediction of the wall-pressure PSD because it is part of the definition
of the moving-axis spectrum. Furthermore, it is needed in the analytical modeling of the
trailing-edge noise, according to Amiet’s model, as mentioned in the introduction. As can
be observed in the plots, the linear fit is not a trivial operation, neither at low nor at high
frequency, due to the scarcity of the sample points.

The variation of Uc with the frequency is shown is Figure 13. Interestingly, Smol’yakov’s
empirical model [41] predicts a peak at the same value of the normalized abscissa ωδ1/U∞,
where δ1 is the boundary layer displacement thickness. However, the amplitude of the peak
is subject to the uncertainty of the linear interpolation. On the contrary, for normalized
frequencies above 0.6, the ratio stabilizes around Uc/U∞ = 0.5. It is therefore safer to use
this constant value of Uc in the predictions presented in the next section.

Finally, Figure 14 presents the transverse coherence function γ2(ω, η3), as a function
of the chord-based Strouhal number, for various separations η3 in the span-wise direction.
As expected, the coherence decreases with a separation at any frequency. It exhibits a
maximum for some relatively low frequencies and a drop at very low frequencies. Yet, this
drop is hard to estimate accurately because of the suspected lack of convergence in the
numerical simulations. A log-normal distribution of the coherence has often been found
in previous low-speed experiments, as reported for instance in [42]. Attempting such a fit
on the present data is less convincing at high frequencies, as illustrated in Figure 15. The
theoretical expression plotted as the blue mesh reads

γ2( f , η3) =
A

σ
√

2π St
e−(log10(St)−log10(St0))

2/(2 σ2) ,
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with St0 = 1.5− 0.06 η3, A = 20.5 e−0.19 η3 , σ = 0.53− 0.02 η3, the separation being in mm.
In particular, the high-frequency behavior deviates from the trend at larger separations. It
is also worth noting that the decay with η3 at a given frequency is not exactly exponential,
according to both the fit and the extracted data. Further investigation is needed to elucidate
whether the coherence includes specific effects of compressibility.
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Figure 11. Wall-pressure longitudinal coherence.

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

η1/c

−1.0

−0.5

0.0

0.5

1.0

1.5

φ
(R

p
p
(S

t,
η 1
))

St=4. 678

(a)

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

η1/c

−3

−2

−1

0

1

2

3

4

φ
(R

p
p
(S

t,
η 1
))

St=9. 357

(b)

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

η1/c

−4

−2

0

2

4

6

φ
(R

p
p
(S

t,
η 1
))

St=14. 035

(c)

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

η1/c

−6

−4

−2

0

2

4

6

8

φ
(R

p
p
(S

t,
η 1
))

St=18. 713

(d)

Figure 12. Examples of calculation of the phase of the wall-pressure streamwise correlation coeffi-
cient and linear interpolation for the calculation of the wall-pressure fluctuations convective speed.
(a) St = 4.678; (b) St = 9.357; (c) St = 14.035; (d) St = 18.713.
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Figure 14. Wall-pressure transverse coherence function.



Fluids 2022, 7, 161 14 of 19

Figure 15. Fit of the coherence plot with a log-normal distribution. Same data as in Figure 14.

5. Prediction of Wall-Pressure Statistics with the Analytical Model Based on the
Poisson Equation
5.1. Single-Point Statistics

As a first example of the application of the model based on the Poisson equation, the
single-point PSD of wall-pressure fluctuations is predicted by means of Equation (8). In this
case, the wavenumber component of the cross-PSD of vertical velocity fluctuations is mod-
eled by means of the RDT. Taylor’s hypothesis completes the turbulence model and allows
us to reduce the computational time by eliminating one dimension of integration. The same
strategy has been followed successfully in [15,19]. The input data are the boundary layer
profiles presented in Section 3.2 and the integral length scale presented in Figure 10, along
with the values of α and Uc determined empirically from the LES results. The integration of
Equation (8) is performed by means of a recursive stratified sampling Monte-Carlo method
(see [15,43] for further details) implemented in the Python scikit-monaco library [44]. The
wall-pressure PSD prediction is shown in Figure 16, where it is compared with a measured
spectrum, obtained by NLR in the framework of the CRORTET project [45], and with the
spectrum calculated directly from the LES. The measured and LES spectra are taken at 2%
of the chord upstream of the trailing edge, consistently with the extraction of the boundary
layer profiles. The convincing overall agreement confirms the relevance of the model. In
particular, the high-frequency roll-off is very well captured.

5.2. Multi-Point Statistics

Equation (8) can also be used to model the wall-pressure coherence function. Assum-
ing homogeneity of the wall-pressure fluctuations on the wall surface, the corresponding
wall-pressure coherence function can be formulated as the (normalized) inverse spatial
Fourier transform of the wall-pressure PSD:

γ2(ω, ηj) =

∣∣∫∫ ∞
0 Φpp(ω, k1, k3) cos(k jηj)dk1 dk3

∣∣2∣∣∫∫ ∞
0 Φpp(ω, k1, k3) dk1dk3

∣∣2 (19)
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where j ∈ {1, 3}. The substitution of the frequency-wavenumber wall-pressure spectrum
given by Equation (8) in Equation (19) for the calculation of the coherence implies the use
of the Gaussian moving-axis spectrum formulation of Equation (14) in order to separate
the frequency and wavenumber variables.
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2 e
)

Analytical

Numerical

Experimental

Figure 16. Prediction of the wall-pressure PSD at 2% of the chord upstream of the trailing edge,
compared with measurement and LES computation.

The Dirac formulation of the moving-axis spectrum following the hypothesis of frozen
turbulence, on the contrary, is not applicable to the calculation of the coherence function
because it does not ensure the decay of the coherence with distance. For this reason,
Blake [46] proposes the following empirical correction to the Dirac formulation, which
introduces an exponential decay in the longitudinal direction:

Φm(ω−Uc k1, η1) = δ(ω−Uc k1) e−γB |ω η1/Uc | (20)

where γB is an empirical parameter ranging between 0.2 and 0.3. Substituting Equation (20)
in Equation (8), the longitudinal coherence function is simply

γ2(ω, η1) = e−2γB |ω η1/Uc |. (21)

Figure 17 compares the longitudinal wall-pressure coherence extracted from the LES
simulation and predicted by means of the numerical integration of Equation (19), using the
Gaussian formulation of the moving-axis spectrum given in Equation (14). The empirical
exponential decay of Equation (21) is also plotted in Figure 17, using the value γB = 0.3.
The reference point is the same for which the single-point statistics have been computed;
the η1 coordinate is directed upstream. The Gaussian formulation of the moving-axis spec-
trum better captures the LES-predicted trend at the lowest Strouhal number, whereas for
increasing frequency the difference between the two formulations decreases. Interestingly,
the Gaussian formulation predicts a second smaller local maximum of the longitudinal
coherence function, which is difficult to see in the LES data, especially at high frequencies,
due to the relative coarseness of the surface mesh.

Figure 18 shows the transverse correlation as a function of the Stouhal number for
two values of the transverse separation, since the LES time series of pressure fluctuations
have been recorded for a smaller number of points in the η3 direction. The LES transverse
coherence is compared with the model based on the Gaussian moving axis spectrum alone,
since Equation (21) does not apply to the transverse direction. The modeled curve is close
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to the LES data for low Strouhal numbers, but the LES decays faster after St = 10. This
divergence may be partially explained with the limited length of the time series available
for the Fourier transform.
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Figure 17. Examples of prediction of the longitudinal coherence function for various Strouhal
numbers by means of the analytical model based on Equations (8), (14) and (19). Comparison with
the empirical exponential decay model by Blake.
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Figure 18. Examples of prediction of the transverse coherence function for various transverse
separations (η3) by means of the analytical model based on Equations (8), (14) and (19).

6. Conclusions

This work has extended a model of the statistical properties of wall-pressure fluctua-
tions, initially developed within the assumption of incompressible flow, to the subsonic
compressible flow regime. A simple analytical formulation is obtained thanks to the as-
sumption that the effect of density fluctuations in the boundary layer is negligible with
respect to that of the spatial variation of mean density. The LES simulation of the flow over
a CD airfoil at Mach 0.5 has been taken as validation test case. Similarly to what was found
in previous incompressible-regime test cases [15,19], the RDT model reasonably predicts
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the correlation function of boundary-layer turbulence; it has therefore been used for the
prediction of wall-pressure PSD with good agreement with the experimental and directly
computed results.

Empirical and semi-analytical models are usually developed separately for the single-
point wall-pressure PSD and for the multi-point coherence function. In this work, on
the contrary, a unified analytical framework for the prediction of both single and multi-
point statistics has been presented. Although the comparison of the model with directly
computed coherence functions suffers from the limited length of the recorded time signal,
the model captures the main trends. It will be interesting to apply the same analysis
presented in this work to the results of scale-resolving simulations, where the flow is
extracted at more mesh layers above the wall and for longer time intervals.

The model hereby presented will be used to estimate the sources of the trailing-edge
noise of airframe operating in subsonic conditions on the basis of steady-state flow simula-
tions, thus enabling the implementation of a low-computational cost acoustic evaluation in
the early stages of the design of innovative geometries.
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