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Abstract
The quantification of the spectrum of wall-pressure fluctuations under a turbulent boundary layer has a fun-
damental role in problems of aerodynamic noise generation and structural vibration. Advanced analytic
formulations of the wall-pressure spectrum involve multi-dimensional integrals. The computation of these
integral formulations with quadrature methods proves computationally expensive, especially if many flow
configurations are taken into account. For this reason, Monte-Carlo methods are used to distribute a pre-
defined number of samples of the integrand function in the integration space and obtain a rapid and accurate
estimate of the integral value. This work reviews the expression of the wall-pressure spectrum based on the
Poisson equation for pressure fluctuations in a turbulent field and then applies three different Monte-Carlo
methods to its computation: the quasi-uniform sampling, the recursive stratified sampling and the importance
sampling. The criteria for the choice of the most appropriate Monte-Carlo method are finally discussed.

1 Introduction

The problem of estimating of the spectrum of wall-pressure fluctuations under a turbulent boundary layer
arises in the description of aeroacoustic and structural phenomena. From the aeroacoustic point of view,
Amiet’s model and its extension [1, 30] state that the spectrum of trailing-edge noise emitted by a station-
ary airfoil is directly proportional to the spectrum of wall-pressure fluctuations generated by the turbulent
boundary layer that develops over the airfoil surface. This model is extended to the prediction of noise from
low-speed fans [31, 33]. The scattering of the wall-pressure fluctuations at the trailing edge of a blade is one
of the main contributions to the broadband noise emitted by subsonic fans [21] and it represents the minimum
level of noise emitted by a fan when all leading-edge and tip interactions are removed. Also, the turbulent
boundary layer that develops on the external surfaces of air, ground and marine transportation vehicles gener-
ates unsteady loads that can excite the underlying structure and propagate towards the interior of the vehicle
as sound and vibration [4]. These facts justify the introduction of a fast and accurate prediction of the wall-
pressure spectrum in the design process of many different industrial applications. Empirical models of the
wall-pressure spectrum scaled with boundary layer variables have been developed most notably by Corcos
[9], Chase [6], Schlinker and Amiet [34], Efimtsov [10], Goody [13], Rozenberg et al. [32] and Caiazzo
et al. [4], among others. The advantage of these models consists in their easy mathematical formulation,
which poses no problems of numerical implementation. However, they do not provide an explicit correla-
tion between the statistics of the wall pressure and those of the overlying turbulent field. This correlation is
formulated in the models based on the Poisson equation of the pressure fluctuations in a turbulent field. The
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disadvantage, in this case, is that the formulations of the wall-pressure spectrum resulting from the Poisson
equation involve multi-dimensional integrals that require a high computational time when solved with tradi-
tional quadrature techniques. This problem was circumvented in the TNO-Blake family of models by making
simplifying assumptions on the turbulence statistics that allowed to reduce the dimensionality of the integral
formulation (see e.g. Kamruzzaman et al. [15] and Bertagnolio et al. [2]). However, these assumptions have
recently been dismissed as non-physical by Fischer et al. [11]. In other works, such as those of Panton and
Linebarger [22], Remmler et al. [28], Peltier and Hambric [23] and Slama et al. [35], the multi-dimensional
integral formulations are computed in a reasonable time with different numerical techniques, particularly
Monte-Carlo methods and Kriging. This work explores the application of different Monte-Carlo methods to
a possible solution of the wall-pressure spectrum based on the Poisson equation considering especially the
efficiency and the ease of implementation of these methods.

2 Analytic formulation of the wall-pressure spectrum

2.1 Solution of the Poisson equation

The Poisson equation governing the pressure fluctuations in a turbulent boundary layer derives from the
divergence of the incompressible momentum equation, introducing Reynolds decomposition into mean and
fluctuating quantities, then subtracting the time-averaged equation. As a result,
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where lowercase letters indicate fluctuating quantities and uppercase letters indicate mean quantities. The
Laplacian of the unsteady pressure field is equal to the sum of two source terms: the turbulence-mean shear
and the turbulence-turbulence interaction. In this work, it is assumed for mathematical simplicity that the
main contribution to the wall-pressure spectrum is that of the turbulence-mean shear interaction, accord-
ing to the estimation made by Kraichnan [16]. However, recent research has highlighted the importance of
turbulence-turbulence interaction term on the lower frequency range of the spectrum (see e.g. [35]). Equa-
tion (1) is solved for the fluctuating pressure in the domain represented in Fig. 1 using the Neumann boundary
condition at the wall and assuming that p vanishes at infinity. The mean flow speed is aligned with the x1
coordinate and is uniform with respect to x1 and x3 As a result, the only significant mean-velocity gradient
is in the normal-to-wall direction and the source term of the Poisson equation is reduced to −2∂u2

∂x1

∂U1
∂x2

. The
turbulent field is considered homogeneous in planes parallel to the wall (having constant x2 coordinate).
Therefore, Eq. (1) can be Fourier-transformed in the x1 and x3 directions, yielding the following modified
Helmholtz equation:
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Figure 1: Turbulent boundary layer over an infinite flat plate.
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where (̂·) represents the double spatial Fourier transform and κ =
√
k21 + k23 . The solution of Eq. (2) is

obtained with the following Green’s function (see Gerolymos et al. [12] for a complete derivation):

G (x2, X2;κ 6= 0) = −e−κ|x2−X2|

2κ
− e−κ(x2+X2)

2κ
(3)

hence the wall pressure is

p̂(κ, x2 = 0) = 2 i ρ
k1
κ

∫ ∞

0

∂U1(X2)

∂x2
û2(κ,X2)e

−κX2dX2. (4)

The spectrum of wall-pressure fluctuations is obtained by multiplying Eq. (4) by its complex conjugate
and taking the ensemble average. The result is integrated over the transverse wavenumber k3, yielding the
streamwise-wavenumber wall-pressure spectrum:

ϕpp(k1) = 8ρ20

∫∫∫ ∞

0

k21
κ2

e−(X2+X′2)κ
∂U1(X2)

∂x2

∂U1(X
′
2)

∂x2
〈û2(κ,X2) · û2(κ,X ′2)〉dX2 dX

′
2 dk3. (5)

According to the hypothesis of ’frozen’ convection of the turbulence (see e.g. [22, 11]), the frequency
spectrum, ϕpp(ω), is a function of the streamwise wavenumber spectrum, ϕpp(k1), as ϕpp(ω) = ϕpp(k1 →
ω/Uc)/Uc.

2.2 Cross-spectrum of vertical velocity fluctuations

The vertical velocity fluctuation statistics that appear in Eq. (5) is modeled with the following relationship:

〈û2(κ,X2) · û2(κ,X ′2)〉 =

√
u22(X2)u22(X

′
2)S22(κ,X2, X

′
2) (6)

where S22 is the normalized cross-spectrum of u2. The analytic expression of S22 is derived as follows.

The normalized vertical velocity correlation coefficient is defined for a homogeneous turbulent field as

R22 (r1, r2, r3) = F (r) +
r21 + r23

2r
F ′ (r) (7)

where r =
√
r12 + r22 + r23 and F (r) is the longitudinal correlation function. For the present calculations,

the correlation function is assumed to be a Gaussian:

F (r) = exp

(
− r

2

Λ2
g

)
. (8)

where Λg is an integral length scale. Other functions can be chosen to represent F (r) (see [36] for an
extensive discussion) but the Gaussian has the advantage of providing a simple closed-form solution of the
cross-spectrum, S22, and is therefore well-suited for numerical validation. The cross-spectrum of vertical
velocity fluctuations is defined as the real part of the double spatial Fourier transform ofR22 in the streamwise
and transverse directions:

S22(κ,X2, X
′
2) =

1

4π2

∫ ∞

0

∫ 2π

0
R22 cos(k1 r1,3 cos(θ)) cos(k3 r1,3 sin(θ))dθdr1,3 (9)

where the polar coordinates r1,3 =
√
r21 + r23 and θ = arcsin(r3/r1) have been used. It can be shown that

the integral in dθ of Eq. (9) has an analytic solution, which yields

S22(κ,X2, X
′
2) =

1

2π

∞∫

0

R22J0 (r1,3 κ) r1,3dr1,3 (10)
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Figure 2: Boundary layer profiles of the CD airfoil used as input to the wall-pressure spectrum calculation.

where J0 is the Bessel function of the first kind of order 0. The last equation states that the cross-spectrum of
u2 is the Hankel transform of R22 in the r1,3 direction. Finally, the solution of the integral of Eq. (10) yields

S22(κ,X2, X
′
2) =

1

2π
e
− (X2−X′2)2

Λ2
g

κ2Λ4
g

8
e−

κ2Λ2
g

4 (11)

where the X2 and X ′2 coordinates are written explicitly due to the inhomogeneity of the turbulence in the
normal-to-wall direction. The introduction of Eqs. (9), (10) or (11) in Eq. (5), although formally indifferent,
yields a five-dimensional, a four-dimensional or a three-dimensional integral formulation of the wall-pressure
spectrum, respectively. The computation of the wall-pressure spectrum with classical quadrature techniques
requires an amount of computational time that increases with the number of dimensions in the integral formu-
lation. However, this mathematical model provides a useful test case to assess the efficiency of Monte-Carlo
methods working with a pre-defined number of samples of integrand functions of increasing complexity.

3 Test Case

The application case for the computation of wall-pressure spectra is a controlled-diffusion (CD) airfoil for
which it exists a large experimental and numerical database [19, 33]. The present profile corresponds to the
mid-span section of the H380EC1 fan blade [18]. It has a 4% relative thickness and a camber angle of 12o.
The airfoil chord length is c = 0.1356 m. It is set at a geometrical angle of attack of αw = 8o. The reference
velocity is U0 = 30 m/s, defining a Reynolds number based on the airfoil chord length Rec = 2.8 · 105.
A LES and a RANS simulation of the flow over the CD airfoil have been performed with OpenFOAM [7].
The turbulence model selected for the RANS simulation was the k-ω SST. The boundary-layer quantities
necessary for the wall-pressure spectrum prediction have been extracted from the RANS simulation using
BATMAN, the VKI in-house code for noise prediction. The results of the extraction are depicted in Fig. 3,
where the x2 coordinate is normalized by the boundary layer thickness, δ. Details of the computation of√
u22 and Λg from a RANS simulation are given in the paper of Remmler et al. [28]. The wall-pressure

spectrum directly computed from the LES simulation is retained throughout this study for comparison with
the predicted spectra.

The frequency wall-pressure spectra presented in the following figures are computed from the corresponding
wavenumber spectra given by Eq. (5). The convective speed of pressure fluctuations over the blade surface,
Uc, is supposed to be independent of the wavenumber and equal to 70% of the reference velocity U0. This
is a common value for turbulent boundary layer convection velocity (see [29, p. 50] and [20, Tab. 1]). The
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treatment of length scale anisotropy in the turbulent field and of its effect on S22 is described in detail by
Remmler [28].

4 Monte-Carlo methods

Various numerical schemes have been devised in the past for the numerical calculation of multi-dimensional
integral, and the reader is referred to [26] for a brief overview. However most of the classical quadrature
schemes can be computationally demanding if the dimension of the integral is high [17]. As an estimate
if 100 points are required for calculation of a single independent variable, then the required cost for N
dimensional integral using a classical quadrature technique would be 100N . Furthermore this would be the
cost for a single streamwise-wavenumber calculation, in principle then if one wants to calculate the pressure
spectra at M different streamwise wavenumber this cost will go uptoM×100N . This can be computationally
heavy if N is large, even by current state of the art computer. Whereas as noted if we want to estimate wall
pressure spectra from a pre-design perspective where a hundred of test cases are to be tested and as such a
large computational cost for a single case can prove to be detrimental. With this in mind the Monte-Carlo
method for numerical integration has been used, which is computationally much cheaper and can converge
with just a moderate 3000 − 5000 iterations per streamwise wavenumber as noted previously by [22], [17]
and [28] using a similar formulation for the calculation of wall-pressure spectra.

4.1 Quasi uniform sampling

The simplest way to integrate a generic function f : Rn → R with Monte-Carlo schemes is to generate N
random vectors, xi, over the integration domain. Following the review made by Press and Farrar [25], we
can define the estimator of f , which is obtained by calculating the mean of theN randomly sampled function
values:

〈f̃〉 =
1

N

N∑

i=1

f(xi). (12)

An indication of the error of the Monte-Carlo integration is given by the square root of the variance of the
estimator, Var(〈f̃〉). The variance of the estimator, in its turn, is related to the variance of the function as

Var(〈f̃〉) =
Var(f)

N
(13)

so that the following asymptotic relation holds for the error of the estimation:

ε = O
(

σ√
N

)
(14)

where σ =
√

Var(f). However it is a known fact that generating random numbers using a deterministic
computer is not possible, since a deterministic computer will always generate the same output if the starting
conditions and inputs are the same. On the other hand one can generate so called pseudo random numbers
using built-in libraries. However such random number generators are based on recurrence relations, and as
such they would repeat afterwards. Although, there exists a random number generators which can take care
of this problem of short-periods [26], nevertheless variance reduction obtained by generating pseudo-random
sequence is quite slow and it converges with a rate of N−1/2 [26], where N is the number of samples. To
avoid this [22] and [17] used quasi-random sequences to sample the integral, this can improve the rate of
convergence of the integral to N−1 under certain boundary conditions [26]. Thus for our test cases we use
the Sobol sequence for generating Quasi-Random (QR) numbers using the function sobseq taken directly
from [27].
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4.2 Recursive stratified sampling/Miser algorithm

A different technique, the recursive stratified sampling, has been developed by Press and Farrar and imple-
mented in the MISER algorithm [25]. The fundamental idea is to divide the integration region V into two
equal and disjoint subvolumes, a and b, and sample them with Na and Nb = N −Na uniformly distributed
points, respectively. Then, a new estimator of 〈f〉 is defined as

〈f̃〉′ = 1

2

(
〈f̃〉a + 〈f̃〉b

)
(15)

where the 〈f̃〉a,b terms are computed according to Eq. (12). The variance of the newly defined estimator is

Var
(
〈f̃〉′

)
=

1

4

(
Vara(f)

Na
+

Varb(f)

N −Na

)
(16)

which is minimized when
Na

N
=

σa
σa + σb

. (17)

In case Na satisfies the previous equation, the variance of the function mean estimator is

Var
(
〈f̃〉′

)
=

(σa + σb)
2

4N
. (18)

The advantage of this method is that Var
(
〈f̃〉′

)
is never larger than the variance of the estimator computed

in the general Monte-Carlo method, defined in Eq. (13). The stratified sampling can be applied recursively
to solve high-dimensional problems; the details of this procedure are given in [25]. The MISER algorithm is
available in the Scikit-Monaco package for Python [3].

4.3 Importance sampling

Another way to accelerate the convergence by reducing variance the technique of Importance Sampling (IS)
method can be used as done previously by [22], [17] and [28]. The method of importance sampling is based
on the simple idea that by introducing a change in variable the function could be made flatter in the new
co-ordinate system and hence fewer samples would be required to reach convergence. In fact if the function
is flat just a single sample would be required.

Mathematically importance sampling can be defined as

Ef [h(X)] =

∫

X
h(x)g(x)dx (19)

In the above equation we seek to determine the expectation E of function h(x) under the Probability Density
Function (PDF) g(x).

Generally we need to either find the PDF g(x) that mimics the function h(x) in case if such a function is
not present intrinsically in the integral. Then from there on samples could be drawn from the function g(x)
using the technique known as Inverse transform sampling.

The algorithm for inverse transform sampling can be summarized as-

1) Determine the PDF function g(x) which ”resembles” h(x).

2) Determine its Cumulative Distribution Function (CDF) u(x).

3) Find its inverse u−1(x) either numerically or analytically.

4) Generate uniformly distributed random numbers using Sobol sequence and plug it to u−1(x), this would
generate random number based on the PDF g(x).
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5) Solve Eq. (19).

Before importance sampling was realised, the Quintuple Integrals was further simplified in order to facilitate
its numerical implementation. Firstly all the length scales in the equation were normalised using δ (the
boundary layer thickness) as follows : k = kδ , x2 = x2/δ , λg = λg/δ and r = r/δ. Secondly the integral
is split in two different terms ϕ(K1) = I1 − I2 as was done by [22],with I1 :





I1 =
2αk1

2ρ2

π2

∫ 2π

0

∫ ∞

0

∫ 1

0

∫ 1

0

∫ ∞

0

1

κ2
× e(−κ(X2

′+X2))...

√
u22(X2)u22(X

′
2) δ

3 ×
[(
r
)
× exp

(
−
(
r2 + (X2 −X2

′)2

Λg
2

))]

∂U

∂x2

∂U

∂x2′
cos(k1αr cos θ) cos(k3r sin θ)dθdrdX2dX2

′dk3





(20)

and I2 :





I2 =
2αk1

2ρ2

π2

∫ 2π

0

∫ ∞

0

∫ 1

0

∫ 1

0

∫ ∞

0

1

κ2
× e(−κ(X2

′+X2))...

√
u22(X2)u22(X

′
2) δ

3 ×
[(

r3

Λg
2

)
× exp

(
−
(
r2 + (X2 −X2

′)2

Λg
2

))]

∂U

∂x2

∂U

∂x2′
cos(k1αr cos θ) cos(k3r sin θ)dθdrdX2dX2

′dk3





(21)

For the variance reduction for the variables x2 and x2′ a normal distribution is used,while tailored design
of the PDF’s used for these variables are driven from previous observations on wall-pressure spectra. In
particular the design is motivated by the fact that high frequency and high wave-number contributions comes
from the inner part of boundary layer, while at low wavenumber contributions are usually due to external
parts of the boundary layer [5]. Secondly the higher frequency contributions are much more localised or
stratified, while low frequency contributions are more spread out [22]. Lastly the inner most part of viscous
sub-layer part of the boundary layer will have very low contribution towards overall spectra due to the fact
that vertical velocity fluctuations tend to zero. By taking these considerations into account, the Eq. (22) is
devised :

g(x) = 2 ∗
√

(b ∗ k1)×
[ [

exp[−(b ∗ k1 ∗ (x− ah
k1

)
2
)]
]

[√
π[erf(a∗

√
b∗h√
k1

) + erf(
√
b(−a∗h+k1)√

k1
)]
]
]

(22)

where erf is the Error function. Here K1, corresponds to the streamwise wavenumber, while b, a and h are
empirical constants, to accomplish the above mentioned objectives. The CDF of Eq. (22) turns out to be
fairly complicated such that it cannot be analytically inverted. To do this Brent’s method of finding the root
was used [27]. Brent’s method of finding root is a hybrid method [26], and it uses a combination of bisection
method, the secant method and inverse quadratic interpolation root , to find roots. An advantage is that, such
a method compared to other classical root finding method such as the method of false position used by [17],
it performs better even when the function is not smooth near the root [26].

The variance reduction for the variable k̃3 was realised by using the following PDF:

g(x) = (a× exp(−(x2 × a2/4)))/(
√

(π) ∗ erf ∗ (ad/2)) (23)

where d is the upper limit of integration for the variable k̃3. Finally a in Eq.(23) is meant to emulate the
behaviour of λg. The PDF used for variance reduction for the variable r in the integral I1 Eq. (20) and I2
Eq. (21), have following form respectively.
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g(x) =

[
2 ∗ x

[
exp(−[x

2+c2

L2 ])
]

L2 exp[−( c
2

L2 )]

]
(24)

g(x) =

[
2 ∗ x3

[
exp(−[x

2+c2

L2 ])
]

L2
[
L2 × exp[− c2

L2 ]
]
]

(25)

Here the variable c is meant to emulate [x2 − x2′]. L mimics Λg.

Lastly for the variable θ, the variable selection turns out to be quite tricky; this was the reason why [22],
[17] used a uniform distribution to sample it. However, we know that the variable θ behaves like a Bessel
function of the first kind of order 1. But due to its oscillatory behaviour we cannot construct a PDF directly.
Although there is an option to take the absolute value of the function and then create the PDF in a piecewise
fashion. However this would be a complicated step to implement numerically. A more realistic way is then
to note that a Bessel function decreases with a rate of 1/

√
x. And since this function is simple enough, it is

more amenable to mathematical and programming procedure involved. Hence the PDF chosen for variance
reduction for the variable θ is :

g(x) =
1

2×
√

(x ∗ 2 ∗ π)
(26)

5 Adaptive Quadrature method

The techniques described in section 6 have already been used in the past by numerous other authors e.g. [22],
[17] and more recently by [28] to calculate the wall-pressure spectra. However due to mathematical com-
plexities and high computational cost associated with performing a numerical quadrature scheme, a direct
one to one comparison between MC integration scheme and a quadrature scheme has not been realized yet in
the context of wall-pressure spectra calculations. This is important since while performing such a stochastic
integration scheme a notion of absolute or relative accuracy cannot be devised. Rather only the variance
of the integral can be controlled. Hence the notion of variance reduction exists which was discussed in the
sections before. Be it as it may, this does not let one to determine the accuracy of results. Hence although
[22] have extensively tested reduction in variance while using such a stochastic scheme, it is unknown if
there solution did or did not converge to the right answer. Also as discussed in section 6 that variance re-
duction while using importance sampling scheme (as was employed by all the previous authors [22], [17]
and [28]) is very sensitive to the choice of distribution function. A wrong choice of distribution function
while may lead to an efficient reduction in variance it can nevertheless certainly make the solution digress
from the correct solution. In order to quantify the relative accuracy of the calculated wall-pressure spectra
using various Monte-Carlo schemes we employ an adaptive quadrature schemes wherein relative errors can
be set a-priori, which then can be considered as the reference. This indirect method provides an alternative
way of quantifying errors, in a relative sense. The method used for adaptive quadrature integration scheme
was tplquad, which can be simply imported from the Python inbuilt scipy.integrate library [14]. For the case
where limits of integration are finite, this package uses Clenshaw-Curtis method of cubature [24]. The way it
is implemented in Python, user has a choice of either specifying absolute or relative accuracy or both. Since
the value of the integral being calculated is below the default absolute accuracy limit, this value was modified
and ascribed an arbitrary low value that cannot be achieved numerically, and the relative accuracy was set as
0.9× 10−3. This forces the integral to converge within the prescribed limits of relative accuracy.
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Figure 3: Convergence of different integration schemes Legends: MC MISER sampling error calculated
at lowest frequency ; MC QR sampling error calculated at lowest frequency; MC IS sampling error
calculated at highest frequency

6 Compare the convergence of the three algorithms against the quadra-
ture scheme

Methods discussed above for the calculation of wall pressure spectra were tested and comparisons are pre-
sented in this section. All the cases were run on a Intel(R) Xeon(R) CPU E3 − 1270 v5 Linux worksta-
tion with memory base frequency of 3.60GHz and 8 processors with a total of 32 Gb of ram and 8 Mb
cache memory. It is worth noting that while both the Monte-Carlo schemes (the importance sampling and
the Quasi-random sampling) were written in Fortran90, the MISER algorithm and adaptive quadrature
scheme-tplquad are both standard Python libraries. Moreover the Fortran90 codes were not parallelized
while MISER algorithm is. Therefore the differences in time taken for calculation of wall pressure spectra do
not necessarily correlate with efficiency of the scheme. Nevertheless time taken for calculation remains an
important metric especially, if this method for wall-pressure calculations has to be used in conjunction with
pre-design. For the 3 dimensional Quasi-random sampling the rate of calculation per sample was found to
be around 2.9× 10−5 seconds. 2 million samples were calculated under 1 minute. For 4 and 5 dimensional
Quasi-random sampling the calculation rate was found to be around 4.4 × 10−5 seconds and 1.4 × 10−4

seconds respectively. Whereas due to inherent complexity involved in coding and number of supplementary
operations required in the case of importance sampling meant that the solver takes longer to calculate integral
for a single sample. For example in case of 5D integral using importance sampling scheme takes 0.9× 10−3

seconds to calculate a single sample. For a 4 dimensional integral the cost of calculating integral is about
0.84 × 10−3 seconds, while for a 3 dimensional integral it costs about 1.02 × 10−3 seconds for a single
sample. The differences in the latter results are most probably caused by an optimization issue with the code.
In any case, it is an order of magnitude higher compared with the time taken by Quasi-random sampling
technique for an integral of 5 dimensions. Lastly the [MISER or the Recursive stratified sampling] [25], as
implemented in Python [3] is parallelized, hence the time taken per sample is no longer linear as function of
sample. The rate is now a function of number of Monte-Carlo samples. For comparison purposes we only
report that it takes about 7 minutes to perform Recursive stratified sampling technique on 2 million sam-
ples, irrespective of the dimension of the integral. Finally, one should now compare the time taken by these
stochastic integration techniques against deterministic quadrature technique. The time taken for the tplquad
solution is about 1 hour and 15 minutes with the errors specified. This then clearly shows that Monte-Carlo
schemes are several orders of magnitude faster then adaptive quadrature method for integration and it also
gives reasonable estimate on a dB scale. Also the Monte-Carlo Quasi-random sampling scheme for integra-
tion converges very quickly at higher frequencies while the variance at low frequency is relatively high, this
has also been reported in a previous study by Christophe et al. [8]. Figure 3 compares the convergence of

AEROACOUSTICS AND FLOW NOISE 593



(a) 3D integral calculations (b) 4D integral calculations

(c) 5D integral calculations

Figure 4: Wall pressure spectra at x1/chord = 0.98 for MC QR sampling. Legends: Quadrature solution
using tplquad ; Reference LES ; With 10k samples; With 50k samples ; With 100k samples
; With 200 k samples ; With 500k samples ; With 2M samples
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(a) 3D integral calculations (b) 4D integral calculations

(c) 5D integral calculations

Figure 5: Wall pressure spectra at x1/chord = 0.98 for MC MISER. Legends: Quadrature solution using
tplquad ; Reference LES ; With 10k samples; With 50k samples ; With 100k samples ;

With 200k samples ; With 500k samples ; With 2 M samples
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(a) 3D integral calculations (b) 4D integral calculations

(c) 5D integral calculations

Figure 6: Wall pressure spectra at x1/chord = 0.98 for MC IS. Legends: Quadrature solution using
tplquad ; Reference LES ; With 100 samples; With 1k samples ; With 5k samples ;
With 10k samples ; With 100k samples ; With 200 k samples
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the three Monte-Carlo methods to the adaptive quadratures solution with the number of samples for a given
frequency. In this case, the advantage of importance sampling appears clearly.

The wall-pressure spectra computed with the three Monte-Carlo methods are presented in Figs. 4 to 6. First,
it can be noticed that the Quasi-Random sampling (Fig. 4) and the MISER algorithm (Fig. 5) exhibit a
similar behavior. In fact, for the 3D integration test both algorithms provide a solution consistent with that
of the adaptive quadratures already at the lowest number of samples of the integrand function. When the
dimensions of the integral formulation are increased to 4 and 5, both methods require a larger number of
samples (the order of 105) to converge to the reference solution in the lower frequency range. The slow
statistical convergence at low frequencies of a Monte-Carlo method for the computation of the wall-pressure
spectrum based on the Poisson equation was already noticed by Christophe et al. [8]. In their work, a
slightly different formulation of the turbulence cross-spectrum was used, assuming an exponential longitu-
dinal correlation function instead of a Gaussian, following [17] and [22]. Figure 6 presents the results of the
application of the Importance sampling method to the three integral formulations. These plots demonstrate
the advantage of using a variance-reduction method tailored to the integrand function: a converged solution
can be obtained with a lower number of samples than the previous Monte-Carlo methods irrespective of the
number of dimensions of the integral.

7 Conclusions and future work

This work has presented the application of three different Monte-Carlo techniques to integrand functions of
increasing complexity that are of great interest in the study of sound and vibration generated by turbulent
boundary layers. The methods taken into account range from the simplest application of Monte-Carlo in-
tegration, in which the samples of the function are selected quasi-randomly, to a technique tailored to the
specific problem, such as Importance sampling. The results of the convergence tests presented in Sec. 6 show
that the Importance sampling technique requires a significantly lower amount of computational resources to
obtain the same result as the Quasi-random sampling or the MISER algorithm. However, the drawback of the
Importance sampling technique is the necessity of developing an algorithm tailored to every given problem
of integration. The MISER algorithm, on the contrary, can be applied to a very wide range of functions of
any dimension and is efficiently parallelized in Python and therefore it constitutes a valid alternative.

The analytic modeling of wall-pressure spectra under turbulent boundary layers will be extended in future
works to the use of different longitudinal correlation functions of the turbulent field, which are possibly not as
mathematically convenient as the Gaussian (see [36]). Furthermore, the effect of the turbulence-turbulence
interaction source term in the Poisson equation can be taken into account, leading to six-dimensional inte-
gral formulations, as shown in [23] and [35]. In light of these analytic developments, the use of efficient
integration techniques illustrated in this paper will be all the more necessary.
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[12] G. A. Gerolymos, D. Sénéchal, and I. Vallet, Wall effects on pressure fluctuations in turbulent channel
flow, Journal of Fluid Mechanics 720 (2013), 15–65.

[13] M. Goody, Empirical spectral model of surface pressure fluctuations, AIAA Journal 42 (2004), no. 9,
1788–1794.

[14] Eric Jones, Travis Oliphant, Pearu Peterson, et al., SciPy: Open source scientific tools for Python,
2001–, [Online; accessed May 27th 2018].

[15] M. Kamruzzaman, Th. Lutz, W. Würz, W. Z. Shen, W. J. Zhu, M O. L. Hansen, F. Bertagnolio, and
H. Aa. Madsen, Validations and improvements of airfoil trailing-edge noise prediction models using
detailed experimental data, Wind Energy 15 (2012), 45–61.

[16] R. C. Kraichnan, Pressure fluctuations in turbulent flow over a flat plate, Journal of the Acoustical
Society of America 28 (1956), no. 3, 378–390.

[17] J. H. Linebarger, Computation of the spectra of turbulent boundary layer surface-pressure fluctuations,
Ph.D. thesis, Oklahoma State University, 1972.

[18] S. Magne, S. Moreau, and A. Berry, Subharmonic tonal noise from backflow vortices radiated by a
low-speed ring fan in uniform inlet flow, Journal of the Acoustical Society of America 137 (2015),
no. 1, 228–237.

[19] S. Moreau, Symposium on the cd airfoil - introduction, https://www.researchgate.net/
publication/304582435_CD-day_S-Moreau, 2016.

[20] S. Moreau and M. Roger, Effect of airfoil aerodynamic load on trailing edge noise, AIAA Journal 43
(2005), no. 1, 41–52.

598 PROCEEDINGS OF ISMA2018 AND USD2018



[21] Stephane Moreau and Michel Roger, Competing broadband noise mechanisms in low-speed axial fans,
AIAA journal 45 (2007), no. 1, 48–57.

[22] R. L. Panton and J. H. Linebarger, Wall Pressure Spectra Calculations for Equilibrium Boundary Lay-
ers, J. Fluid Mech. 65 (1974), no. 02, 261–287.

[23] L. J. Peltier and S. A. Hambric, Estimating turbulent-boundary-layer wall-pressure spectra from cfd
rans solutions, Journal of Fluids and Structures 23 (2007), 920–937.

[24] Robert Piessens, Elise de Doncker-Kapenga, Christoph W Überhuber, and David K Kahaner, Quad-
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