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We experimentally study the unsteady forcing of the turbulent wake of a three-dimensional
blunt body for drag reduction purposes. The forcing is provided by pulsed jets coupled
to small flush-mounted curved surfaces and affects the dynamics of the shear layer at
separation from the trailing edge of the model. The systematic analysis of the influence of
various parameters (forcing frequency and amplitude, radius of curvature r of the surfaces,
free-stream velocity U0) on the base drag reduction provides key ingredients to identify
proper scaling laws of the mechanisms involved and to model them. The flow reattachment
and separation on the curved surfaces result in a boat-tailing of the wake leading to drag
reductions of up to 12 % and are noticeably influenced by the time scale of unsteadiness
of the forcing. For high frequencies of the order of O(U0/r), strong vortical coherent
structures produced by the interaction between the pulsed jets and the separating shear
layer promote the interaction of the flow with the curved surfaces. Moreover, the local
curvature and pressure gradients across the separating shear layer in the vicinity of flow
separation are noticeably modified to result in a further pressure drag reduction for a
given forcing amplitude. A simple inviscid-flow model illustrates the peculiar induced
effect of these coherent structures on the flow, which explains both the curvature effects
leading to additional drag decrease and the saturation in drag decrease for increasing
forcing amplitude. The results point to the need for careful combination between forcing
frequency and size of the curved surfaces to achieve all the potential in drag reduction of
the unsteady Coanda effect. The effort to propose scaling laws and models of the unsteady
Coanda effect is a step towards implementing this control strategy at an industrial scale or
on different fluid dynamics problems.

Key words: drag reduction, wakes, separated flows

1. Introduction

The increasing need for energy saving in the land transport sector has brought many
challenges for ground vehicle manufacturers to curb gas emissions, to face the depletion of
fossil energy sources and to improve the range of green vehicles. An important part of the
energy consumption of ground vehicles at highway speeds is related to their aerodynamic

† Email address for correspondence: yann.haffner@ensma.fr
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drag: it ranges from one-third for heavy trucks to four-fifths for passenger cars. The
common feature between most of these ground vehicles is a blunt-based geometry
inducing a massively separated flow with a low-pressure wake. These wakes have been
an important subject of both academic and industrial research for years, and, as such,
many studies (e.g. Littlewood & Passmore 2012; Grandemange, Gohlke & Cadot 2013b;
Zhang et al. 2018) have focused on simplified vehicle geometries, such as the Ahmed
body (Ahmed, Ramn & Faltin 1984) for passenger cars or more recently the simplified
heavy truck model introduced by Szmigiel (2017) and Castelain et al. (2018), among other
academic geometries. The main goal of these studies is to investigate and describe the
pressure drag generation mechanisms in these wakes in order to provide general means of
efficient flow control for drag reduction.

In an effort to reduce the pressure drag of three-dimensional blunt bodies, many
techniques of flow control, both passive and active, have been developed (see the reviews
of Choi, Jeon & Kim (2008) and Choi, Lee & Park (2014) on the topic). The distinction
between these two general families of flow control relies on the introduction of additional
external energy (Choi et al. 2008). Several passive flow control devices have long been
introduced and viewed as an efficient means to reduce the drag of bluff blunt bodies.
A popular passive technique is the so-called boat-tailing, which consists of large
geometrical modification of the base of the body leading to a gradual reduction of the
bluff body’s cross-section. This passive technique has been successfully applied to reduce
the pressure drag of various types of bluff blunt bodies like two-dimensional bodies (Maull
& Hoole 1967), axisymmetric bodies (Mair 1969) or square-section bodies (Wong & Mair
1983; Bonnavion & Cadot 2018, 2019). These boat-tails are generally formed either by
constant-angle surfaces with a salient edge at the upstream junction with the rest of the
body, or by curved surfaces leading to a smooth junction. For constant-angle surfaces, also
named flaps, Chaligné (2013), Grandemange et al. (2013c), Schmidt et al. (2015), Perry,
Pavia & Passmore (2016), de la Cruz, Brackston & Morrison (2017) and Szmigiel (2017)
showed how, with small angles up to 10–15◦, the flow could stay attached to the surface,
leading to drag reduction. Nevertheless, for higher angles, the flow naturally detaches
from the flaps and may even lead to drag enhancement. Recently Mariotti et al. (2017)
proposed an adaptation of boat-tails by adding contoured transverse grooves on them to
further delay the flow separation for aggressive boat-tailing angles, leading to improved
drag reductions. Nevertheless, all these passive flow control techniques impose important
geometric modifications to the basic geometry to achieve a quantifiable effect on the
aerodynamic drag, with boat-tailings or flaps of typical length between 0.1H and 0.5H,
where H is the characteristic dimension of the model’s cross-section. These important
modifications are not always suited to the geometrical constraints imposed in the road
vehicle industry and they imply a definitive change of the geometry. In addition, their
robustness and adaptivity are not always insured for changing flow conditions, which are
of great practical interest.

Nevertheless, active control techniques have been proven to tackle efficiently the
pressure drag problem without posing the problem of geometrical modifications. Oxlade
et al. (2015), for an axisymmetric blunt body, and Barros et al. (2016), for the Ahmed body,
have shown how the use of high-frequency (decoupled from the natural instabilities of the
wake) pulsed jets just below the rear separation edge all around the base could lead to a
base pressure recovery and drag reductions. By a combination of a fluidic boat-tailing
effect (Smith & Glezer 2002) and a broadband stabilization of the wake (Dandois,
Garnier & Sagaut 2007; Vukasinovic, Rusak & Glezer 2010), they showed important
drag reductions for both geometries. However, these drag reductions were limited to small
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free-stream velocities and were shown by Barros et al. (2016) to dramatically decrease
when the free-stream velocity is increased regardless of the forcing amplitude. The partial
coupling of active and passive control techniques can also be used to achieve further drag
reductions for bluff blunt bodies through the use of the Coanda effect (Wille & Fernholz
1965). By putting curved surfaces or inclined straight flaps tangent to small steady blowing
jets, Freund & Mungal (1994), Englar (2001) and Pfeiffer & King (2018) showed how the
flow could be reattached on those surfaces in order to lead to a boat-tailing effect even more
important than in the passive control case. These adjacent surfaces were further coupled
to small unsteady pulsed jets by Chaligné (2013), Barros et al. (2016), Li et al. (2017)
and Szmigiel (2017) in order to increase the drag reductions observed with the use of
high-frequency pulsed jets alone by Oxlade et al. (2015) and Barros et al. (2016). However,
the particular mechanisms involved in the pressure drag reduction and any proper scaling
laws of the phenomenon involving the main parameters, like free-stream velocity, pulsed
jet frequency and amplitude or the size of the adjacent surfaces, were not made extensively
explicit in these studies.

The main difference between passive boat-tails or flaps and their combination with
steady or pulsed jets is the ability for the jets to reattach the flow on the surface where it
would be naturally detached. The jet dynamics is of primary importance in the interaction
between the separated flow and the flap geometry. Greenblatt & Wygnanski (2000) and
Darabi & Wygnanski (2004a,b) studied this reattachment and separation of the flow over
a canonical flap geometry of length one order of magnitude higher than the flaps used
in the work of Szmigiel (2017) for instance. They showed how the optimal jet frequency
for reattaching the flow over the flap directly scaled with the free-stream velocity and
the length of the flap. These aspects are of primary practical importance in large-scale
applications such as the control of flow separation over an airfoil to prevent stall, as shown
by Glezer, Amitay & Honohan (2005) for instance. The work of Rinehart (2011) and
Lambert, Vukasinovic & Glezer (2019) partially studied this interaction with smaller flaps
and higher jet frequency but without looking for proper scaling laws of the phenomena
involved and with a focus on the control of cross-flow forces rather than drag. To the
best of the authors’ knowledge, no work in the literature has extensively focused on the
interaction of highly unsteady pulsed jets with small surfaces of high degree of curvature
and its impact on the pressure drag generation problem for bluff blunt bodies. Recently,
several studies, for instance Berk, Medjoun & Ganapathisubramani (2017) and Stella et al.
(2018), have focused on the fine-scale dynamic interaction between pulsed or synthetic
jets and recirculating wake flows such as backward-facing steps in order to draw general
scaling laws involving the formation of the pulsed jets and its influence on the recirculating
wake.

The present work aims to exhaustively describe what we will call in the remainder of
this paper an ‘unsteady Coanda effect’, which is shown to differ considerably from the
steady Coanda effect used in a broad range of applications in the fluid mechanics field.
For that, we will focus on describing the peculiar effect of small-scale curved surfaces
coupled to adjacent high-frequency pulsed jets. These jets are blown at frequencies of
the order of O(U0/r) (where U0 is the free-stream velocity and r is the size of the
curved surface). Compared with blowing frequencies one order of magnitude smaller, they
offer an additional advantage in reducing the pressure drag of an Ahmed-like body. The
final focus of the paper is put on providing more general scaling laws of the described
phenomena, which will be of primary importance for further practical applications. The
experimental apparatus designed and used for this work is detailed in § 2. A global view
of the drag changes observed with extensive variation of the parameters of the problem
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is presented in § 3. Based on these variations, a physical discussion on the time scales
of the unsteadiness of the separation from the curved surface is introduced. From then
on, a finer investigation into the vorticity dynamics at separation relates the observed
drag changes to the way the flow is manipulated, and we provide scaling laws describing
the involved mechanisms through an inviscid-flow model in § 4. A detailed picture of
the peculiar flow mechanisms leading to additional drag reduction at high frequency is
presented in § 5 with particular attention paid to the flow curvature near the separation. The
inviscid-flow model is additionally extended to further discuss the coupling between f and
r and to identify an optimal forcing frequency. Finally, in § 6 we extend the discussions
to provide more general implications of the present work before giving our concluding
remarks.

2. Experimental set-up

This section describes the set-up of the bluff body in the wind tunnel and the different
measurement techniques used. In addition, we give the details of the pneumatic forcing
system used for drag manipulation and describe the data analysis.

2.1. Wind-tunnel facility and model geometry
The experiments are performed inside the working section of a subsonic closed-loop wind
tunnel of 2.4 m width and 2.6 m height. The turbulence intensity of the upstream flow is
of the order of 0.3 % at most operating conditions, with flow homogeneity better than
0.5 %. A sketch of the bluff-body arrangement inside the working section is given in
figure 1(a). The front of the model consists of curved edges rounded with a non-constant
radius leading to a smooth curvature transition with the flat side surfaces of the model. This
is aimed at minimizing the flow detachment just after the rounded front surface, limiting its
impact on the downstream wake flow (Spohn & Gilliéron 2002). The model with height
H = 0.3 m, width W = 0.36 m and length L = 1 m (with an aspect ratio H/W = 0.83
slightly higher than the original geometry of Ahmed et al. (1984)) is fixed on a raised
false floor with a ground clearance G = 0.05 m, which corresponds to approximately five
times the thickness of the turbulent boundary layer upstream of the model. The influence
of flow blockage above the raised floor was neglected due to a low blockage ratio of
2.2 %. An inclinable flap fixed at an upward angle of α = 1◦ ends the raised floor in order
to compensate for the lift and the streamwise pressure gradient generated by the whole
set-up.

For the present investigations, free-stream velocities U0 = {20, 25, 30, 35, 40} m s−1 in
the test section were considered, corresponding to Reynolds numbers based on the height
of the model ReH = U0H/ν = {4, 5, 6, 7, 8} × 105, where ν is the kinematic viscosity of
the air at operating temperature. We use conventional notation in the Cartesian coordinate
system with x , y and z, respectively, for the streamwise, spanwise and cross-stream or
transverse directions (accordingly u = (ux , uy, uz) for the velocity field) with the origin
O arbitrarily located on the floor in the vertical plane of symmetry of the model. Unless
otherwise specified, all physical quantities are normalized by U0 and H and by the dynamic
pressure 0.5ρU2

0 , where ρ is the air density at operating conditions. In the remainder of
the paper, the time average of a quantity χ is denoted by an overbar χ and a Reynolds
decomposition into its time-averaged part and fluctuating part χ ′ is introduced, such that
χ = χ + χ ′.
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FIGURE 1. Experimental set-up. (a) Arrangement of the model and the false floor inside the
test section. (b) Distribution of pressure taps along the model and on the rear surface: points
indicate the locations of mean pressure measurements and circles the locations of time-resolved
pressure measurements. (c) Position of the particle image velocimetry measurement planes.

2.2. Pressure measurements
To perform surface pressure measurements on the model, two different systems have been
used. First, a 64-channel ESP-DTC pressure scanner linked to 1 mm diameter pressure
tappings around the model (35 taps on the base, see figure 1b) by 80 cm long vinyl tubing
was used for static pressure measurements sampled at 200 Hz with a range of ±1 kPa. In
addition, 16 differential pressure sensors (SensorTechnics HCLA 02X5DB) – 12 tappings
on the base, the distribution of which is given in figure 1(b), and four tappings of diameter
reduced to 0.7 mm on the curved surfaces, the distribution of which is given in figure 2(a)
– are used with a reduced 25 cm tubing length and proper frequency response calibration
for time-resolved measurements with a bandwidth of 2 kHz (Ruiz et al. 2009). These
operate in a range of ±250 Pa (±1250 Pa for measurements on the curved surfaces) and
acquisition is performed at twice the cut-off frequency, hence 4 kHz. The measurement
uncertainty of both systems lies, respectively, below ±1.5 Pa and ±0.7 Pa (±3.2 Pa for the
measurements on the curved surfaces), which represents <2 % of the mean base pressure.

Pressure measurements are expressed in terms of the pressure coefficient Cp defined as

Cp = p − p0

0.5ρU2
0
. (2.1)

The reference pressure p0 is taken at x/H = −2 above the model by a Pitot tube mounted
at the ceiling of the test section. For each configuration studied, pressure measurements are
performed over a time window of at least t = 120 s, which corresponds to 104 convective
time units H/U0 at U0 = 25 m s−1. As the unforced flow behind our model presents a
lateral bimodal behaviour on long time scales of the order of O(103H/U0) (Grandemange
et al. 2013b), which persists when global forcing all around the base of the model is
applied, this time window is not sufficient to obtain complete statistical convergence.
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FIGURE 2. Actuation system used for forcing. (a) Arrangement of one solenoid valve, tubing
system and additional curved surface generating the pulsed jets. The inset picture from the
small PIV FOV visualizes small-scale vortical structures forming at the exit of the slit.
(b) Phase-averaged velocity profile at the centre of the exit plane of a slit for the forcing at
f = 350 and 975 Hz and various inlet pressures pi. (c) Evolution of the maximal velocity Vjmax

with the input pressure pi for the different forcing frequencies used.

Nevertheless, due to the important number of configurations studied involving all the
parameter sweeps in this work, this time window was chosen as a compromise to
keep a reasonable experiment duration and was considered as satisfactory regarding the
convergence of the mean base pressure based on comparison with longer experiments
and on the standard deviation of repeated measurements (<2 % deviation from the
mean value for the mean base pressure). Indeed, care was taken over the repeatability
of the results by reproducing a couple of parameter sweeps. For all the configurations
investigated with particle image velocimetry (PIV), the measurements were repeated
1–5 times during the PIV acquisitions for a duration of t = 240 s for the cases where
phase-locked measurements were taken. For the configurations involving phase-locked
PIV, this leads to a total of t = 1320 s (110 000 convective time units at U0 = 25 m s−1),
which is sufficient to achieve full statistical convergence.

2.3. Aerodynamic force measurements
To quantify the effects of forcing on the drag, the model was directly mounted on a
six-component aerodynamic balance (9129AA Kistler piezoelectric sensors and 5080A
charge amplifier). The balance has been calibrated in-house using known masses and a
system of pulleys applying pure forces, pure moments or a combination of both on the
balance. A whole volume including the expected application point of the aerodynamics
tensor of the model has been covered for calibration by using various level arm lengths
for moments. Total measurement uncertainty is <0.6 % of the full-scale range, which
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Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-7

represents <1 % uncertainty in the mean drag force Fx for instance. The pulsed jet system
used for forcing induces a small thrust, which is included in the drag force measurement.
In order to evaluate the contribution of the pulsed jet thrust in the measured drag, each
forcing configuration is also tested at quiescent free-stream conditions. At U0 = 25 m s−1,
for example, the thrust contribution to the total measured drag Fx is <3 % (at maximum
when forcing is operated at the highest velocities). Drag measurements are expressed as a
non-dimensional drag coefficient

Cx = Fx

0.5ρU2
0HW

. (2.2)

Measurements were performed simultaneously with the pressure measurements, leading
to similar conclusions concerning their statistical convergence.

2.4. Velocity measurements and pressure field reconstruction
Particle image velocimetry is used to gain insight into the flow structure. Two planar
two-component set-ups are used, as shown in figure 1(a): a large field of view (FOV)
covering the whole recirculation region in the wake in the vertical plane of symmetry of
the model (plane y = 0); and a smaller FOV localized in the same plane covering the
beginning of the top shear layer until x/H ∼ 0.35. Both FOVs are imaged by a LaVision
Imager LX 16 Mpx equipped with, respectively, a Zeiss Makro-Planar ZF 50 mm lens and
a Nikon AF Micro-Nikkor 200 mm lens. A laser light sheet of 1 mm thickness is provided
by a Quantel EverGreen 2 × 200 mJ laser, and the flow is seeded from downstream of
the raised floor by atomization of mineral oil, producing 1 μm diameter particles. For
the small FOV, although the pulsed jets are not directly seeded, the aspiration phase of
the forcing (discussed in detail in § 2.5) still allows for a weak presence of particles in the
laminar flow coming from the jets when the forcing is used, which leads to satisfactory
seeding of the flow. A total of 1000 image pairs are acquired at a rate of 4 Hz for
each configuration studied, which is satisfactory for convergence of the second-order
statistics. Image pairs are processed with Davis 8.4 with a final interrogation window
of 16 × 16 pixels and overlap of 50 %, leading to a velocity vector each 1.2 mm and
0.15 mm, respectively, for each field of view. Additional phase-locked measurements using
as reference the command signal of the forcing system are performed for the small FOV.
In this case, between 500 and 1000 images are acquired for each phase, and each pulsing
period is split into 7–13 phases. For the small FOV, specific surface treatment (a thin
oil coating) is applied on the curved surfaces in order to limit the influence of laser light
reflections near the surface. Two additional steps are used in the processing of image pairs:
a sliding minimum subtraction in order to eliminate residual laser light reflections near
the curved surface; and an image translation to correct for the small displacements of the
model due to relative flexibility of the aerodynamic balance, which can result in 1–2 pixels
displacement on this high-magnification-factor PIV set-up.

Pressure fields were calculated from the mean PIV velocity fields using a method
similar to the one used by Oxlade (2013) by explicit integration of the two-dimensional
Reynolds-averaged momentum equations. Details on and validation of the method are
given in appendix B.

2.5. Actuation system
In order to force the wake of the model, a series of solenoid valves are used to generate
pulsed jets. A 12 litre pressurized air tank is contained inside the model (see figure 1a).
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899 A36-8 Y. Haffner, J. Borée, A. Spohn and T. Castelain

Frequency f (Hz) StH (U0 = 25/35 m s−1) Stθ (U0 = 25/35 m s−1)

Steady 0 0
350 4.2/3 0.031/0.022
975 11.7/8.4 0.086/0.061
1050 12.6/9 0.092/0.066

TABLE 1. Characteristic dimensional ( f ) and non-dimensional (StH and Stθ ) frequencies used
for forcing: StH = fH/U0 is the Strouhal number based on the height of the model and Stθ =
f θ/U0 is that based on the momentum thickness θ of the boundary layer at the trailing edge of
the model. Non-dimensional frequencies are given as indication at U0 = 25 and 35 m s−1. For
this flow, global absolute instability of the wake or vortex shedding is occurring at StH ∼ 0.2
(Grandemange et al. 2013b) and convective instability of the surrounding shear layers at Stθ ∼
0.021 (Zaman & Hussain 1981). The chosen forcing frequencies are thus mainly decoupled from
the characteristic frequencies of the wake except for f = 350 Hz at U0 = 35 m s−1.

By controlling the pressure pi inside the tank, the magnitude of the forcing, i.e. the exit
velocity of the pulsed jets, can be changed, and by controlling the actuation parameters of
the solenoid valves, the frequency and duty cycle (the fraction of period during which
the valve is opened) can be changed. The pressure pi is regulated continuously by a
proportional–integral–derivative (PID) feedback controller and a flow regulator placed
upstream with a precision better than ±0.02 bar.

Pulsed jets are issued all around the base of the model through 26 slits of h = 1 mm
thickness and 40 mm width. Each slit is separated from its neighbours by 4 mm and
localized 0.5 mm below the base edges. The h value is approximately θ/2, where θ is
the momentum thickness of the boundary layer at the trailing edge, measured by hot-wire
anemometry (HWA) just after the separation edge. Each solenoid valve supplies two
slits and is linked to them through semi-rigid tubing and carefully designed diffusers
to allow for a smooth transition to the slit geometry. The total equivalent length of
the tubing from the valve down the slit is denoted Leq. This length fixes the frequency of the
acoustic Helmholtz resonance (Kinsler et al. 1999), which has an important impact on the
exit velocity of the pulsed jets (details can be found in Haffner 2020). The fundamental
Helmholtz resonance frequency was found to be f = 350 Hz. To take advantage of the
resonance, we focus on driving the forcing at this particular frequency and at its odd
harmonics (as the tubing system can be modelled by a closed–open acoustic duct), hence
the choice of two forcing frequencies investigated in this work f = 350 and 1050 Hz
(which is the highest accessible frequency for our forcing apparatus) in addition to the
steady blowing case. To check for robustness of the results for the highest frequency
forcing, we also chose a forcing frequency f = 975 Hz close enough to the first odd
harmonic f = 1050 Hz but with sufficient margin compared with the limit of the forcing
apparatus. These two frequencies lead to very similar results. They are specified but used
indifferently in the paper for completeness of the analysis in order to take advantage of all
the data acquired. These frequencies and their non-dimensional equivalents are given in
table 1.

A detailed sketch of the actuation system is given in figure 2(a) with flow visualization
using the small FOV set-up where the formation of small-scale vortical structures with a
characteristic size O(h) can be seen. HWA measurements were performed at the centre of
the exit plane of the slits in order to characterize the forcing conditions. Additional PIV
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Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-9

measurements (not presented here) have shown the existence of an aspiration phase at the
end of the forcing cycle during which the flow is reversed. Correction of the velocity sign
has thus been performed in the hot-wire time signal for the aspiration phase identified in
these complementary PIV measurements. The evolution of the corrected phase-averaged
exit velocity Vj when varying pi on the whole operating range at f = 350 and 975 Hz is
given in figure 2(b). The exit velocity profile is composed of a main peak followed by a
trough. The peak occurs at approximately t/T ∼ 0.15 and has a well-defined triangular
shape. Its amplitude Vjmax increases with increasing pi, as shown in figure 2(c). The
trough, occurring at approximately t/T ∼ 0.7, is less pronounced and with more negligible
variations in amplitude.

Detailed measurements at the centre of all 26 slits have allowed the homogeneity of the
forcing to be quantified. The maximal velocity and the root-mean-square (r.m.s.) velocity
at each slit are contained in a band of ±5 % around the average value between all slits.
The forcing amplitude is defined by

Cμ = dc
SjV2

jmax

SU2
0

, (2.3)

where Sj is the total section of the slits, Vjmax is the peak velocity of the pulsed jets, S = HW
is the cross-section of the model, and dc is the effective duty cycle of the forcing based
on the HWA measurements and defined as the relative period over which Vj > 0. We
choose an amplitude definition based on the peak velocity in order to more fairly compare
unsteady and steady forcing.

Additional curved surfaces of radius of curvature r = {5, 7, 9, 16}h are placed flush to
the slits in order to take advantage of a Coanda effect and to investigate their coupling with
the pulsed jet forcing. The two bigger curved surfaces are instrumented with four pressure
taps as sketched on figure 2(a), which were chosen to have a diameter of 0.7 mm to limit
their impact on the curvature of the surfaces.

It will be shown that two characteristic time scales have to be defined in order to analyse
the interaction of the pulsed jets with the curved surfaces and the consequences on the
evolution of the global drag force. First, the sudden rise of the jet velocity imposes a time
scale on the flow at separation. This time scale ta is defined as

ta = Vj(t′)[
dVj

dt

]
(t′)

, (2.4)

where t′ = arg maxt(dVj/dt) is the time of maximal jet acceleration. The typical values
of ta and ta f for the three forcing frequencies investigated are gathered in table 2. These
values are rather constant over the range of pi studied except at low pi for f = 975 Hz and
especially for f = 1050 Hz due to the solenoid valve closing dynamics evoked previously.
For the remainder, forcing is only performed at pi sufficient to guarantee a good opening of
the valves at high frequencies. We will show that the rate of variation of Vj characterized
by ta has indeed a great influence on the coherent structures generated during the forcing.
The time scale ta will be called the jet acceleration time scale or simply the acceleration
time scale in what follows. As the acceleration phase is rather linear, another estimation
of this acceleration time scale is obtained from the time at which the blowing velocity is
maximal, called thereafter peaking time. From a physical viewpoint, this time scale may
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899 A36-10 Y. Haffner, J. Borée, A. Spohn and T. Castelain

Frequency f (Hz) ta (s−1) ta f (–)

350 1.43 × 10−4 0.05
975 5.84 × 10−5 0.057
1050 5.05 × 10−4 0.053

TABLE 2. Characteristic dimensional (ta) and non-dimensional (ta f ) acceleration times of the
pulsed jet velocity used for forcing. This time scale represents a fair estimation of the acceleration
imposed by the pulsed jets. An average estimation of ta is provided over the whole range of inlet
pressure pi investigated as its dependence on pi is weak (ta is not evolving by more than 10 %
over the range of pi investigated).

also be interpreted as

tp = Vjmax〈
dVj

dt

〉
[0;tp]

, (2.5)

where 〈 · 〉[0;tp] denotes a time average over the time horizon [0; tp]. In practice, tp is
evaluated as the time of maximum blowing velocity over one actuation cycle and is used
to model the coherent structure dynamics. Similarly to ta f , tpf has a rather constant value
when varying pi and for the three different forcing frequencies, which is approximately
0.13.

The second time scale is, of course, the period T = 1/f of the signal. We will show
that T has to be compared with characteristic convective time scales in order to quantify
the influence of the periodicity of the generation of these structures on the flow over the
curved surfaces.

3. Global effects of forcing: scalings and evidence of an unsteady effect

In this section, we first describe the global impact of forcing on the base pressure and
aerodynamic drag of the model. To this end, we consider the evolution of three main global
aerodynamic quantities of interest, each characterized by a non-dimensional coefficient:
the base pressure parameter γp, the pressure drag parameter γ c

p and the drag parameter γD,
respectively defined as

γp = Cpb

Cpb0
, γ c

p = Cc
pb

Cc
pb0

, γD = CD

CD0
, (3.1a–c)

where the subscript 0 indicates the unforced case. Here, Cpb represents the time-averaged
base pressure

Cpb = 1
Nb

Nb∑
i=1

Cp( yi, zi), (3.2)

with Nb the number of pressure taps on the base; and Cc
pb is the time-averaged base pressure

that accounts for the time-averaged pressure changes along the curved surfaces. With this
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Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-11

definition, the pressure drag of the model becomes

SCc
pb = (S − Scs)Cpb + Scs

Ncs

Ncs∑
i=1

Cp(θi) sin θi, (3.3)

with Ncs the number of pressure taps along the curved surface of total area
Scs ∼ 2(H + W)πr/2. Angle θi indicates the local angular position of the pressure tap i
along the curved surface starting from the slit.

In (3.3), the curved surface is discretized in four facets centred at each pressure tap
and tangent to the curved surface at each pressure tap location. As only four pressure
taps are situated in the vertical plane of symmetry along the curved surface at the top
edge of the base, we assume that the pressure distribution is homogeneous both along
the span of the curved surface and between the curved surfaces on each edge of the
base. The former assumption is justified by the fact that forcing conditions are close to
spanwise homogeneity and that they impose the pressure over the curved surfaces. The
latter assumption is justified by the unforced global equilibrium of the wake, which leads
to a nearly homogeneous mean pressure distribution on the base.

All three parameters, γp, γ c
p and γD, highlight a base pressure recovery (respectively,

pressure drag reduction, aerodynamic drag reduction) when below unity (<1), and
conversely a base pressure decrease (respectively, pressure drag increase, aerodynamic
drag increase) when above unity (>1).

All the results will be discussed by referring to dimensional forcing frequencies, and
references to the corresponding non-dimensional St numbers will only be made for
physical discussion. Systematic reference to peculiar St numbers will be made when
detailed mechanisms of the unsteady Coanda effect will be introduced.

3.1. Aerodynamic drag variations of the forced wake: evidence of a peculiar unsteady
Coanda effect

We analyse in figure 3(a, b) the base pressure changes when the order of magnitude of the
forcing frequency is varied at a given free-stream velocity U0. From the evolution of γp
at both U0 = 25 m s−1 and U0 = 35 m s−1 (corresponding, respectively, to ReH = 5 × 105

and ReH = 7 × 105), there are two main effects of the change in forcing frequency over
the chosen range of frequencies: (i) the magnitude of base pressure recovery is strongly
dependent on the choice of the forcing frequency f , and (ii) the trends in the evolution of
γp with forcing amplitude Cμ are fundamentally different depending on f .

The first aspect is clearly illustrated by the evolution of γp in figure 3(b). Steady forcing
is found to be inefficient to recover base pressure (γp remains between 0.98 and 1). This
is surprising given the established efficiency of steady Coanda blowing for base drag
reduction across the literature (Freund & Mungal 1994; Englar 2001; Barros et al. 2016).
Nevertheless, it should be pointed out that in the studies of Freund & Mungal (1994)
and Englar (2001) noticeably higher values of r/h or r/H are used (r/h approximately
50). For unsteady forcing, a notable difference exists at given Cμ between forcing at
f = 350 Hz and at f = 975–1050 Hz. Indeed, forcing at f = 1050 Hz always produces a
greater base pressure recovery in the range of investigated Cμ. For U0 = 35 m s−1, the
difference culminates at 8 % around Cμ ∼ 1.6 × 10−2. Nevertheless, as made explicit in
table 1, f = 350 Hz corresponds to Stθ of the order of 0.02, which is the most amplified
frequency in a free-shear layer (Zaman & Hussain 1981). This forcing frequency has been
shown to induce base pressure decrease by Oxlade et al. (2015) on a bullet-shaped body.
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899 A36-12 Y. Haffner, J. Borée, A. Spohn and T. Castelain

0.06

ReH = 5 × 105

ReH = 5 × 105

ReH = 7 × 105

ReH = 4 × 105

ReH = 7 × 105

ReH = 5 × 105

ReH = 7 × 105

ReH = 4 × 105

ReH = 4 × 105

Cμ

γD

γp

γp
c

Cμ

0.050.040.030.020.01

0.060.050.040.030.020.01

0.060.050.040.030.020.01

0.85

0.90

0.95

1.00

0.8

0.9

1.0

0.9
f = 350 Hz

f = 975 Hz
f = 1050 Hz

Steady

0.8

1.0

0.85

0.90

0.95

1.00

0.8

0.9

1.0

0.9

0.8

1.0

0 0.01 0.02 0.03

0 0.01 0.02 0.03

0 0.01 0.02 0.03

(e)

(b)(a)

(c) (d )

( f )

FIGURE 3. Evolution of (a,b) the base pressure parameter γp, (c,d) the corrected base pressure
parameter γ c

p and (e,f ) the aerodynamic drag parameter γD with forcing amplitude Cμ for the
curved surfaces of dimension r = 9h at (a,c,e) ReH = 5 × 105 and (b,d,f ) ReH = 7 × 105.
Results for steady forcing in (b,d,f ) were obtained for ReH = 4 × 105 in order to span a range of
forcing amplitudes Cμ comparable with those of unsteady forcing. Filled markers are the cases
further analysed in § 5 for the detailed description of the drag reduction mechanisms and the
unsteady Coanda effect. Vertical dashed lines indicate the Cμ at which saturation defined as a
minimum in γp occurs.
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Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-13

0
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(b)(a)

FIGURE 4. Scaling of the base pressure parameter γp variations with forcing amplitude Cμ and
Reynolds number ReH for curved surfaces of dimension r = 9h with forcing at (a) f = 350 Hz
and (b) f = 975 Hz.

Similar conclusions can be drawn from the results at U0 = 25 m s−1 in figure 3(a). For
this case, f = 350 Hz is above the most amplified frequency in the shear layers and thus
decoupled from it. At this free-stream velocity, the difference in γp between the two forcing
frequencies culminates at 6 % for Cμ ∼ 3 × 10−2.

Nevertheless, for higher Cμ ∼ 3.6 × 10−2, there is the beginning of an inversion in terms
of base pressure recovery efficiency between both forcings. This point leads to the second
aspect introduced previously concerning the difference of trend observed in the evolution
of γp. Indeed, a clear saturation of the base pressure recovery takes place when forcing at
f = 975–1050 Hz starting at Cμ ∼ 3 × 10−2 at U0 = 25 m s−1 (respectively, Cμ ∼ 1.6 ×
10−2 at U0 = 35 m s−1). Above this threshold, the base pressure recovery is degraded.
Such a saturation regime is not found at lower forcing frequency f = 350 Hz for which
the decrease in γp with Cμ is monotonic. This aspect points to the peculiar mechanisms of
the unsteady Coanda effect for the highest frequencies investigated, which lead to a higher
efficiency in base pressure recovery.

To further investigate this saturation regime at high forcing frequencies, a systematic
variation of ReH by changing the free-stream velocity U0 is operated for forcing at
f = 350 Hz and f = 975–1050 Hz in order to evidence scaling laws of the base pressure
recovery. The evolution of γp presented in figure 4 for ReH in the range (4–8) × 105

confirms that the amplitude coefficient Cμ defined by relation (2.3) is the right scaling
parameter to explain the base pressure changes at f = 350 Hz. Indeed, all the data gathered
when forcing at f = 350 Hz and varying ReH collapse fairly well onto a single curve
in figure 4(a). However, the scaling based on the defined Cμ completely fails when
forcing at higher frequencies ( f = 975 Hz in figure 4b) as the saturation threshold in
γp occurs at different Cμ depending on ReH and all the curves are horizontally offset.
This complete lack of scaling using Cμ confirms the evidence of a peculiar mechanism of
unsteady Coanda effect at high frequency, quite different from a classical Coanda effect
as evidenced at f = 350 Hz. In § 4, we will propose a scaling parameter to explain this
peculiar effect. It is worth mentioning that the conclusions are equivalent when building
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899 A36-14 Y. Haffner, J. Borée, A. Spohn and T. Castelain

a momentum coefficient Cμ not with the peak jet velocity Vjmax (as also done by Oxlade
2013) but with the r.m.s. velocity as done by Barros et al. (2016), for instance. Moreover,
Oxlade et al. (2015) on an axisymmetric blunt body and Barros et al. (2016) on an Ahmed
body also evidenced such a saturation mechanism in base pressure recovery using simple
high-frequency forcing without additional curved surfaces. This mechanism appeared to
be governed by the pulsed jet dynamics.

As approximately 70 % of the aerodynamic drag of such a body originates from the
low-pressure region at the base (Grandemange et al. 2013b; Barros et al. 2016), monitoring
the base pressure is a good indicator of the drag changes obtained. Nevertheless, as
the curved surfaces are expected to be the location of a low-pressure region due to the
local acceleration of the flow and thus to penalize the base pressure recovery obtained,
we present in figure 3(c– f ) the same evolutions as in figure 3(a, b) but for the base
drag parameter γ c

p (figure 3c,d) and for the aerodynamic drag parameter γD (figure 3e,f )
defined in (3.3b,c). Globally, the tendencies in the evolution of γ c

p and γD confirm the
observations made concerning the base pressure parameter γp. Maximal drag reduction
of 12 % (respectively, 11 %) at U0 = 25 m s−1 (respectively, U0 = 35 m s−1) occurs at
saturation for the high-frequency forcing at f = 975–1050 Hz and is at least 5 % more
important than the drag decrease measured at f = 350 Hz. The penalization resulting
from the low-pressure flow over the curved surfaces is clearly visible from the evolution
of γ c

p in figure 3(c, d). Indeed, on the one hand, the saturation in base drag decrease is
even more pronounced at high frequencies than observed on the γp curves with a higher
penalization once the saturation threshold Cμ ∼ 3 × 10−2 has been exceeded. On the other
hand, whereas forcing at f = 350 Hz led to a monotonic decrease in γp with Cμ, it here
leads to a saturation in the decrease of γ c

p above Cμ ∼ 2.5 × 10−2 at U0 = 25 m s−1. Thus
the penalization from the curved surfaces cannot be neglected and has to be carefully taken
into account in our analysis.

As any active flow control strategy requires input energy in order to work, it is of
important practical interest to know whether the developed control strategy is efficient.
To assess the energetic performance of our control strategy, we follow energetic analyses
discussed in a variety of previous studies (Freund & Mungal 1994; Choi et al. 2008; Barros
et al. 2016; Li et al. 2019). A forcing efficiency can be defined as the ratio between the
energy saved by the drag reduction and the mechanical energy of the pulsed jets. For
the best case investigated here at f = 1050 Hz around saturation at U0 = 35 m s−1, this
efficiency ratio is approximately 11. Nevertheless, it should be noted that the forcing
apparatus and strategy have not been optimized for energetic efficiency and this aspect
remains a key research direction for practical applications, which should be tackled by
further studies.

3.2. Unsteady Coanda blowing along curved surfaces: coupling between forcing
frequency and radius of curvature

These first observations are here extended by varying the radius of curvature r of the
curved surface by almost halving and doubling the value of the radius (r/h = 9) previously
analysed.

Base pressure and drag reduction depend not only on the forcing amplitude Cμ but also
on the combination of the forcing frequency and the radius of curvature of the curved
surfaces. Figure 5 illustrates the rather intriguing evolution of γp and γD for Re = 5 ×
105 (figure 5a,c) and Re = 7 × 105 (figure 5b,d) as function of Cμ with r/h and f as
parameters.
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f = 1050 Hz
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Cμ

γD

γp

Cμ

FIGURE 5. Evolution of (a, b) the base pressure parameter γp and (c, d) the aerodynamic drag
parameter γD as a function of the forcing amplitude Cμ with variable dimension and radius of
curvature r/h = {5, 7, 9, 16} of the curved surfaces at (a, c) ReH = 5 × 105 and (b, d) ReH =
7 × 105. Markers are coloured according to the radius of curvature r/h. Similarly to figure 3,
results for steady forcing are shown for ReH = 4 × 105 in order to keep forcing amplitudes Cμ

comparable with those of unsteady forcing. Thick lines give the trend of each set of data in
order to highlight the tendency of each curve. Main quantities and qualitative description of the
recovery of γp and γD are gathered in table 3.

In order to highlight the trends, the tendency of each curve has been qualitatively
sketched in thick lines. Table 3 provides a summarized description of the main results of
figure 5, the qualitative description for a couple ( f , r/h) to succeed – or not – in reducing
the pressure drag.

The results gathered in figure 5 emphasize the strong coupling existing between forcing
frequency and radius of curvature of the add-ons. Clearly, combinations of r/h and f
with a maximum of base pressure recovery and drag decrease exist. Over the range of
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899 A36-16 Y. Haffner, J. Borée, A. Spohn and T. Castelain

r/h

f (Hz) 5 7 9 16

Steady — — 0.99 0.90
350 0.98 0.89 0.84 0.78
975–1050 0.92 0.88 0.82 0.79

TABLE 3. Minimal values of γp to illustrate the qualitative efficacy of the Coanda effect to
reduce the pressure drag depending on the pair of frequency and radius ( f and r/h) based on
results compiled in figure 5. Italic and bold qualitatively indicate if the pressure drag is (italic)
or is not (bold) efficiently reduced by the Coanda effect.

Cμ investigated, higher reduction of γp requires higher forcing frequencies as the radius
of curvature decreases. While significant base pressure recovery and drag decrease are
obtained at high forcing frequencies even for the smallest radius investigated r/h = 5
(respectively 8 % and 6 % of base pressure increase and drag decrease on figure 5a, c),
it is not the case at the lower forcing frequency f = 350 Hz (figure 5a, b and table 3).
Moreover, the steady blowing forcing requires greater radius of curvature to work and
to have a clear impact on the drag as drag reduction is only obtained for r/h = 16. This
is globally consistent with previous studies, which mostly focused on steady or pulsed
blowing coupled to curved surfaces of greater dimensions r/h > 20 (Freund & Mungal
1994; Englar 2001; Abramson, Vukasinovic & Glezer 2011; Lambert et al. 2019).

For every curved surface radius, the high-frequency forcing always outpasses at a given
Cμ the lower-frequency f = 350 Hz forcing both in γp and γD even if for the biggest radius
r/h = 16 the difference in base pressure recovery at a given Cμ is reduced (see figure 5b
at ReH = 7 × 105).

These differences in pressure drag penalties due to the curved surface underline a
difference in the base pressure recovery mechanisms involved. Even if the base pressure
recovery is approximately the same for r = 9h and r = 16h (respectively 22 % and 25 %
recovery at maximum), the penalization induced by the low-pressure region extending
along the curved surface is noticeably higher, resulting in a lower aerodynamic drag
decrease (respectively 12 % and 7 % decrease). As the curved surface radius is decreased,
the penalization is reduced according to the maximal base pressure recovery and drag
decrease observed. For all radii r/h < 16, the saturation effect persists and occurs at
smaller Cμ as r/h is decreased. Only for r/h = 16 does the saturation in γp disappear
over the investigated range of Cμ.

3.3. Time scales of the unsteady separation over the curved surface

3.3.1. Role of the jet acceleration time scale
Guided by Van Dyke (1969) and Bradshaw (1973), we can derive the equation for

the tangential momentum balance along a mean streamline of the separating wall jet.
In order to retain the effects of coherent time fluctuations introduced by the forcing, we
perform a phase-averaged decomposition of the flow so that the phase-averaged tangential
momentum balance reads:

1
ρ

∂〈p〉
∂s

= −∂〈Us〉
∂t

− 〈Us〉∂〈Us〉
∂s

− ∂〈u′
su

′
s〉

∂s
− ∂〈u′

sv
′
n〉

∂n
+ viscous terms. (3.4)
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Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-17

r/h

f (Hz) 5 9 16

350 1.75 0.97 0.55
975 0.7 0.39 0.22
1050 0.6 0.33 0.19

TABLE 4. Evolution of the ratio ta/tcr between the jet acceleration time ta and the local
convective time scale tcr = r/U0 for the different frequencies and radii of curvature investigated
at U0 = 25 m s−1.

Here, the phase-averaged decomposition of a quantity χ with respect to phase t/T of the
forcing cycle is defined as

〈χ(x, t/T)〉 = 1
N

N∑
n=0

χ(x, t/T + n). (3.5)

The viscous terms are not given explicitly for the sake of simplicity but are kept in the
equation in order to perform a time-scale analysis which emphasizes the importance of
unsteady effects along the curved surfaces. Two main aspects appear:

(a) On the one hand, if evaluating the viscous diffusion effects in (3.4), δ = √
ν/f allows

one to estimate which thickness from the surface is impacted by the viscosity during
the forcing cycle. For the typical high-frequency forcing time scales used in our
study, f = 1050 Hz, δ ∼ 10−4 m, which is one order of magnitude smaller than h and
two orders of magnitude smaller than r. It thus means that viscous diffusion only has
time to affect a small thickness of the flow near the curved surface during a forcing
period. As a consequence, the flow momentum near the curved surface is higher,
preventing the jet from separating from the curved surface under the influence of
an adverse pressure gradient imposed by the curvature. This effect explains to some
extent the inefficacy of steady blowing when decreasing the curved surface radius
(δ ∼ h/2 for a Poiseuille flow in this case).

(b) On the other hand, in (3.4), the time derivative of the tangential velocity partly
equilibrates the tangential pressure gradient along the curved surface. Given the sign
of each quantity, one would expect this term to allow the pulsed wall jet to sustain
a stronger adverse pressure gradient along the curved surface during the peaking
phase of the forcing cycle. For a positive time derivative of the tangential velocity
corresponding to the acceleration phase of the pulsed jet, the adverse pressure
gradient along the curved surface diminishes and thus the flow can remain attached
farther on the surface. As a consequence, a strong positive tangential acceleration
∂Ũs/∂t, i.e. small ta (see table 2), would allow the unsteady Coanda blowing to still
work with smaller radius of curvature.

We compare in table 4 for different couples ( f , r/h) the ratio between the jet
acceleration time scale ta and the characteristic convective time scale related to the curved
surface tcr = r/U0. This ratio for the configuration ( f = 350 Hz, r/h = 5) is significantly
larger than the other values and this configuration was indeed shown to be the only one
inefficient in reducing the base drag (see table 3). In this case, the unsteady term may no
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899 A36-18 Y. Haffner, J. Borée, A. Spohn and T. Castelain

longer be sufficient for the pulsed jet to sustain the strong adverse pressure gradient along
the curved surface, and thus flow detachment over the curved surface is likely to appear and
prevent base drag reduction. This comparison of the local convective time scale tcr with
the pulsed jet acceleration time scale ta allows one to qualitatively predict the occurrence
of the Coanda effect indicated in table 3.

3.3.2. Adaptation of the forcing frequency to the curved surface
To characterize the unsteadiness of the dynamics of flow separation and reattachment

over the curved surfaces, we consider now a Strouhal number Str based on the convection
time scale over the curved surface tcr:

Str = ftcr = f
r

U0
. (3.6)

This leads to values of Str ∼ 0.13 for f = 350 Hz and 0.39 for f = 1050 Hz. For
Str ∼ 1, the forcing time scale is similar to the characteristic convection time scale over
the curved surface. Thus when a new forcing period begins and produces a new pulsed jet,
the previous one is still interacting with the curved surface. In this sense the interaction
between the curved surface and the pulsed jet is called adapted. When Str is much smaller
than one (here, for f = 350 Hz, Str = 0.13), the forcing is unadapted because the flow
perturbation from the forcing has sufficient time to be completely convected away from
the curved surface before a new forcing period occurs. As a result, the dynamics of the
flow over the curved surface becomes more unsteady, with a detrimental impact on the
base pressure recovery.

The dynamics of flow reattachment and separation over the curved surface (Waldon
et al. 2008) is investigated in more detail for the two different forcing frequencies of
interest with the curved surface r/h = 9. To this purpose, we focus on the spanwise
vorticity defined as (for the left-handed system defined in figure 1)

ωy = ∂ux

∂z
− ∂uz

∂x
. (3.7)

To characterize the evolution of the flow state over the curved surface during one forcing
period, we introduce a criterion based on the phase-averaged vorticity 〈ωy〉 to estimate
the location of flow separation on the curved surface. It is defined as the minimal angular
position near the curved surface (with origin taken at the slit as indicated on figure 6a)
where positive phase-averaged vorticity is found (opposite sign of the vorticity present in
the separated shear layer):

θS = min
θ

(〈ωy〉 ≥ 0). (3.8)

Moreover, to confirm the pertinence of this local criterion, we define a global indicator
ΓS characterizing the strength of the flow separation along the curved surface. It is defined
as the total positive circulation in a contour surrounding the detached region over the
curved surface (see figure 6a):

ΓS =
∫∫

C∩{〈ωy〉≥0}
〈ωy〉 dx dz. (3.9)

The region C is chosen so as to capture only the positive vorticity induced by the
recirculating flow over the downstream part of the curved surface. Indeed, all the positive
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FIGURE 6. Phase-averaged description of the dynamics of the unsteady reattachment and
separation over the curved surface for forcing at f = 350 Hz and f = 1050 Hz at similar forcing
amplitude Cμ ∼ 3 × 10−2 with the r/h = 9 curved surfaces. (a) Phase-averaged evolution of the
separation angle θS and the positive circulation ΓS in the separated region over the curved surface.
Horizontal lines denote the time-averaged quantities. (b) Tangential–normal Reynolds stresses
−u′

sv
′
n and (c) normal–normal Reynolds stresses −v′

nv
′
n . (d) Vertical profiles of Reynolds

stresses shown in (b,c) at selected streamwise locations x/H = 0.028 (just after the mean
location of flow separation from the curved surface) and x/H = 0.04 (just after the end of the
curved surface).
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FIGURE 7. Evolution of the wall pressure coefficient Cp for forcing at f = 1050 Hz with various
amplitudes Cμ = {1.9, 2.5, 3, 3.6}. Darker shades of blue indicate increasing forcing amplitude
Cμ. (a) Phase-averaged base pressure coefficient Cpb. (b) Evolution of the time-averaged
pressure coefficient Cp along the curved surface. Horizontal lines indicate the corresponding
mean pressure coefficient averaged along the curved surface Cpc. (c) Phase-averaged pressure
coefficient along the curved surface. Horizontal lines indicate the corresponding time-averaged
pressure coefficient Cp. In (c) the insets indicate the position of the considered pressure
measurement. Horizontal dashed black lines correspond to the unforced flow.

vorticity originating from the pulsed jets and their interaction with the shear layer is always
out of the chosen contour. The separation dynamics presented in figure 6 shows that the
mean separation angle θS is higher and the mean separation strength ΓS is lower for the
high-frequency case f = 1050 Hz than for the lower-frequency case f = 350 Hz at Cμ ∼
3 × 10−2 around saturation. Moreover, the lower-frequency forcing at f = 350 Hz exhibits
stronger fluctuations of both quantities, which accounts for the strong unsteadiness in the
reattachment and separation dynamics. This leads to high values of both tangential–normal
u′

sv
′
n and normal–normal v′

nv
′
n Reynolds stresses near the curved surface, especially in

the vicinity of the mean flow separation from the curved surface, as made explicit in
figure 6(b–d). A further penalization of the base pressure recovery is thus due to the
highly unsteady dynamics of the separation and reattachment process when forcing at
f = 350 Hz.

3.4. Effect of the unsteady reattachment and separation on the surface pressure
The dynamics of the base pressure Cpb (figure 7a) and the pressure over the curved surface
(figure 7c) for forcing at f = 1050 Hz for amplitudes Cμ = {1.9, 2.5, 3, 3.6} spanning the
whole investigated range are in complete phase opposition and dictated by the dynamics
imposed by the pulsed jets. The evolution of Cpb indicates that the base pressure recovery
is directly related to the importance of the flow reattachment over the curved surface,
which dictates the boat-tailing imposed to the wake. A large depression is created over the
curved surface during the peaking phase of the pulsed jet velocity followed by an important
recompression in the following phase. The amplitude of this recompression can be seen to
evolve monotonically with Cμ until the saturation with a following decrease at higher Cμ.
This pressure dynamics is completely in line with the flow separation dynamics previously
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Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-21

presented in figure 6. Moreover, it should be noted that the pressure dynamics over the
curved surface and at the base for forcing at f = 350 Hz (not shown here for brevity)
follows a similar behaviour as ΓS and θS with variations of quite large amplitude over a
forcing cycle compared with f = 1050 Hz (for instance, at the optimum Cμ ∼ 3 × 10−2,
the base pressure Cpb undergoes fluctuations of amplitude 60 % higher at f = 350 Hz),
confirming the difference in adaptation of the pulsed jet/curved surface interaction.

The flow acceleration over the curved surface results in a low-pressure region as
expected in the common Coanda effect, which is penalizing the base pressure recovery.
This penalization was observed to further increase after the saturation in base pressure
recovery at high frequencies of forcing (see figure 3). The average pressure distribution
over the curved surface given in figure 7(b) shows the important depression created on the
curved surface in the vicinity of the slit. This depression grows with Cμ and is attenuated
when progressing towards the end of the curved surface. It thereby highlights the creation
of a low-pressure region whose extent is time-dependent. The first pressure tap considered
in figure 7(c) is located upstream of θS and therefore the local pressure value is below
the value of the naturally detached unforced flow. The second pressure tap is located in
the vicinity of θS where the flow detaches. When comparing Cp at each location with the
average pressure distribution over the curved surface in the unforced case, we can see how
the flow detaches farther downstream as Cμ is increased. This appears very clearly from
Cp being below the unforced average value at the third pressure tap location only for the
highest Cμ (see figure 7b). This observation accounts for the overly increased penalization
induced by the curved surface after the saturation in base pressure recovery.

Now that the main effects of forcing on the pressure drag of the body have been
characterized and interpretations of the main time scales governing the unsteady Coanda
effect have been introduced, the remainder of the paper focuses on analysing in detail the
mechanisms of base drag decrease and trying to build a pertinent model incorporating all
the mechanisms behind the unsteady Coanda effect.

4. Scaling the base drag changes: unsteady vorticity dynamics

In this section, an analysis of the unsteady vorticity dynamics driven by the forcing is
performed. The aim is to derive a scaling for the base pressure and drag changes observed
at high frequency in § 3, able to physically explain the saturation effect.

The following analysis focuses on changes along the top edge of the model, although
similar forcing is applied along all four edges of the base. As a matter of generality,
the unforced flow conditions along each edge of the model are qualitatively very similar
according to the boundary layer measurements of Haffner (2020). As a consequence, we
are confident that the local phenomena discussed here along the top edge can be translated
to the other edges of the base. Moreover, Barros et al. (2016) provides evidence that the
flow behaviour along each edge of the base is qualitatively similar under forcing.

4.1. Local vorticity-flux dynamics at separation
We focus on a fine-scale analysis of the flow interaction with the forcing near the
separating edge from a dynamical point of view. This is motivated by the unsteady
separation analysis in the previous section having shown the important differences in
separation dynamics and their relation to drag changes.

First, it should be noted from the time-averaged spanwise vorticity field depicted in
figure 8(a) that the unforced flow is completely detached from the curved surface. This is
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FIGURE 8. Phase-averaged description of the spanwise vorticity ωy dynamics under forcing
for the curved surfaces of dimension r = 9h at ReH = 5 × 105. (a) Time-averaged vorticity
ωy of the unforced flow. (b, c) Phase-averaged vorticity for flow forced (b) at f = 1050 Hz
and Cμ = 3 × 10−2 at times t/T = {0.15, 0.3, 0.46, 0.62, 0.68, 0.74, 0.84, 0.99}, and (c) at
f = 350 Hz and Cμ = 3 × 10−2 at times t/T = {0.07, 0.15, 0.23, 0.32, 0.4, 0.48, 0.75, 0.91}.
Annotations on the panels correspond to the negative coherent structure forming during the
pulsed jet acceleration phase I, the same coherent structure persisting from the previous forcing
period (I−1), the positive coherent structure forming from the pulsed jet II, and the region where
the flow is detached from the curved surface (D).

expected because of the boundary condition imposed at the salient edge over the curved
surface. A strong negative vorticity sheet is formed in the continuity of the detachment of
the boundary layer at the edge of the base. A weaker positive vorticity sheet is formed from
the recirculating flow in the wake interacting with the lower edge of the curved surface
(zone denoted D), which was previously used to describe the flow separation dynamics.

As the pulsed jets are responsible for the modulation of the vorticity flux in the vicinity
of separation, the wake dynamics is investigated through a phase-averaged description over
the forcing cycle starting at the beginning of the blowing phase. The vorticity dynamics
is described in figure 8(b, c) at ReH = 5 × 105 for the two forcing frequencies f = 350
and 1050 Hz, both at Cμ ∼ 3 × 10−2, the latter corresponding to the highest base drag
reduction case.
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Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-23

At f = 1050 Hz (figure 8b), the strong negative vortex sheet is partially attached on
the curved surface over a length that can be seen to fluctuate throughout the forcing
cycle. The vorticity dynamics during the forcing cycle exhibits the formation of two
main coherent structures of opposite vorticity denoted, respectively, I and II. These are
convected downstream while interacting with the curved surface and the outer potential
flow. The structure with negative vorticity denoted I appears to be formed during the first
instants of the forcing cycle (until t/T ∼ 0.15, corresponding to the peaking time of the
pulsed jet velocity) by the pinch-off of the separating boundary layer. The vorticity sheet
formed at the separation of the boundary layer at the edge of the base is brutally perturbed
by the beginning of the blowing phase of the pulsed jets and thus pinches off because of
the sudden change in the orientation of separation. It then rolls up to form a structure of
apparent size h. The positive coherent structure II is formed just after I around t/T ∼ 0.3.
This positive vorticity coherent structure is likely to originate from the flux of vorticity
from the pulsed jet as there is no other source of positive vorticity in the flow (Gharib,
Rambod & Shariff 1998). It is then convected away in a pair with I and they pass over
the curved surface where they play a key role in the flow dynamics. At the end of the
forcing cycle the two counter-rotating structures have reached approximatively x ∼ 2r and
still remain coherent enough to be detected. Thus, this leads to the formation of a train of
coherent structures over a couple of forcing cycles, which is materialized by the structure
denoted I−1, which is the structure I persisting from the previous forcing cycle. This
train of coherent structures seems characteristic of this type of high-frequency forcing,
as it was already observed through similar measurement techniques by Oxlade et al.
(2015).

The formation of the negative coherent structure I at the lower frequency of f = 350 Hz
in figure 8(c) does not appear clearly and is more likely absent. Nevertheless, the positive
coherent structure II is still formed in a similar fashion. Moreover, as the forcing cycle
is three times longer at this forcing frequency, most of the forcing cycle is marked by
the absence of coherent structures in the vicinity of the curved surface. This appears
as one of the most striking differences with the high-frequency forcing and should
consequently affect the interaction with the flow reattachment process over the curved
surface.

To further characterize the formation, evolution and convection of these coherent
structures I and II, and to analyse their role in the unsteady Coanda effect, we describe
their strength by their total circulation ΓI and ΓII. The circulation of a coherent
structure is estimated with the following procedure. The structure is identified using a
two-dimensional swirling strength criterion (Zhou et al. 1999), the threshold of which is
chosen high enough to isolate it from the background noise and make the identification
unambiguous. Then a rectangular contour C is manually drawn around the identified
structure to have a supporting contour containing the whole structure where the circulation
will be evaluated. (There is only very weak sensitivity of the estimated circulations
to the choice of this contour as the vorticity decays rapidly to zero when going away
from the centre of the identified region (see figure 17 for instance).) The circulation ΓI
(respectively, ΓII) is computed as the summation over only negative (respectively, positive)
phase-averaged vorticity 〈ωy〉:

ΓI =
∫∫

C∩{(x,z);〈ωy〉<0}
〈ωy〉 dx dz, ΓII =

∫∫
C∩{(x,z);〈ωy〉>0}

〈ωy〉 dx dz. (4.1a,b)
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FIGURE 9. Circulation dynamics in the base pressure recovery saturation mechanism for
forcing at f = 1050 Hz. (a) Tracking of the circulation Γ of the two counter-rotating coherent
structures I and II identified in figure 8 when forcing at Cμ = {2.1, 3, 3.6} × 10−2 at ReH =
5 × 105 for r/h = 9. Each marker is coloured according to the circulation Γ of the coherent
structure. The vertical grey line indicates the position of I after one period T of forcing.
(b) Phase-averaged sequence of the spanwise vorticity ωy dynamics for Cμ = 3.6 × 10−2 after
saturation of the base pressure recovery. The red arrows qualitatively illustrate the induced
velocity from II entraining I away from the curved surface.

The position xI = [xI, zI] of the structure I (and analogously for the structure II) is finally
evaluated as the barycentre of the identified coherent vorticity:

xI =

∫∫
C∩{(x,z);〈ωy〉<0}

x〈ωy〉 dx dz∫∫
C∩{(x,z);〈ωy〉<0}

〈ωy〉 dx dz
. (4.2)

The unsteady flow induced by the pulsed jet over the curved surface leads to the unsteady
attachment and separation of the flow and to the mean boat-tailing of the wake. However,
the results obtained in this study cannot be completely understood without taking into
account the coherent structures I and II. In particular, the structure I, of negative vorticity,
induces a downwash velocity downstream. We will show in § 5 that this plays an important
role in the curvature of the wake separatrix in the vicinity of the separation from the curved
surface. On the contrary, the circulation ΓII of the coherent structure II induces an upward
velocity on both the structure I and the flow attached on the curved surface. This may
mitigate the positive effect of the structure I and the unsteady attachment. Therefore, we
expect this competition to be directly linked to the observed saturation in base pressure
recovery.
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FIGURE 10. Evolution and scaling of the circulation Γ of the two counter-rotating structures I
and II at f = 975 Hz. (a) Formation and evolution in time for different forcing amplitudes Cμ.
The coloured horizontal dashed lines indicate the approximate maximal circulation reached by
each structure. (b) Evolution of the peak values of Γ with Cμ: experimentally measured Γ in red
and blue, theoretical model of circulation in grey. II: pulsed jet-based circulation from (4.5) in
light grey empty symbols. I: boundary layer-based circulation from (4.6) in grey filled symbols,
pulsed jet-based circulation from (A 1) in empty light and dark grey symbols (see appendix A
for further description). As in figure 4, circles are for ReH = 5 × 105 and left-pointing triangles
for ReH = 7 × 105. The horizontal blue dashed lines indicate approximately ± the maximal
circulation reached by I.

The influence of the structure II when increasing Cμ above the base pressure saturation
threshold appears clearly in figure 9. Indeed, while the trajectory of I remains only
moderately influenced by II below Cμ ∼ 3 × 10−2 – which can be seen from the
undisturbed trajectory of I curving inwards tangentially to the curved surface – its
formation and trajectory are strongly disturbed by the presence of structure II above the
saturation threshold at Cμ ∼ 3.6 × 10−2. As a consequence, I is entrained by II and has
an upwards trajectory towards the end of the curved surface. This lift-off movement is
clearly seen from the phase-averaged dynamics detailed in figure 9(b). The global upwards
trajectory and rolling-up movement of I induced by II at the end of its formation highlight
the dominance of II in the dynamics after saturation.

The evolution of the strength of the coherent structures is more finely analysed in
figure 10 in order to further describe their origin and formation. The time evolutions
of ΓI and ΓII are described for forcing at f = 975 Hz and varying Cμ spanning both
below and above saturation regimes ( f = 975 Hz is chosen to take advantage of the
more important phases available in our measurements, but the evolutions are qualitatively
and quantitatively similar at f = 1050 Hz). For both structures, in all the cases, a clear
distinction can be made between the formation period and the convection and dissipation
period. The formation period occurs with a fast time scale for both structures, until
maximal absolute circulation has been reached, compared with the dissipation time
scale of the structure, which is one order of magnitude longer. Circulation quasi-linearly
increases during the formation period before exponential decay occurs during the
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dissipation of the structure. Careful examination of the formation times of each structure
I and II leads to the following estimations:

(a) Formation of structure I starts at t/T = 0 and lasts a time roughly equivalent to the
peaking time tp of the pulsed jet velocity Vj.

(b) Formation of structure II starts when Vj begins to exceed the surrounding flow
velocity at the location of formation (of order U0) which allows the vorticity to
positively roll up, against the vorticity of the shear layer. Similarly it stops when Vj
ceases to exceed the surrounding velocity at the location of formation of order U0.

These time scales are further exemplified in figure 17(a) on a particular example to
highlight their accordance with the measured circulation dynamics.

4.2. Scaling the saturation in base pressure recovery
We propose to describe the vorticity dynamics in the vicinity of the separating edge by
an inviscid-flow model. The aim is to explain the increased drag reduction observed when
forcing at high frequencies of the order of O(U0/r) and the concomitant saturation effect
at high forcing amplitude Cμ. Further comments on the scalings on the model introduced
in this section are provided in appendix A.

Following Shariff & Leonard (1992) and Berk et al. (2017), under the local
two-dimensional flow assumption, the vorticity flux per unit width can be expressed as

dΓ

dt
=
∫

〈ωy〉〈ux〉 dz =
∫

∂〈ux〉
∂z

〈ux〉 dz = 1
2
〈ux〉2(t), (4.3)

with the notation referring to the case of the top shear layer. When further integrating over
a period t, the total amount of circulation Γ created over a given time period is given by

Γ = 1
2

∫ t

0
〈ux〉2 dt. (4.4)

As, from the vorticity dynamics described in the previous section, we identified two main
coherent structures forming during the forcing cycle, we want to link their formation to the
dynamics of the shear layer and the pulsed jets. To do so, figure 11(a, b) conceptualizes
the formation process of the identified counter-rotating structures I and II.

The formation of the structure II is determined by the vorticity flux occurring from the
pulsed jet and its interaction with the surrounding flow. It is thus dictated by the difference
between the pulsed jet velocity Vj and a local surrounding flow velocity Uf at the location
where the structure is formed, in the vicinity of the separating edge. Further insights about
this formation velocity are given in appendix A.

Besides, this formation process can only occur if the jet velocity Vj exceeds Uf , which
is a sine qua non condition for positive circulation to be generated. The time horizon
corresponding to this condition is highlighted in red in figure 11(b). It thus leads for the
theoretical circulation ΓII to

ΓII = 1
2

∫
t∈{t;Vj(t)>Uf }

(Vj(t) − Uf )
2 dt. (4.5)

This theoretical circulation estimation is in agreement with the experimentally measured
circulation ΓII as shown in figure 10(b).
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(a) (b) (c)
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Uf

{Vj > Uf}

Vj
Vj

ΓI

tp t/T

ΓI ΓI

ΓII ΓIIh
uindI

uindII→I

FIGURE 11. Theoretical inviscid-flow model for the interaction between the pulsed jet and the
shear layers surrounding the recirculating wake. (a) Pinch-off of the separating boundary layer
by the pulsed jet during the peaking time tp leading by rolling-up of the boundary layer vorticity
to the formation of structure I inducing velocity uindI on the potential region of the wake flow.
(b) Formation of the counter-rotating structure II during the phase where jet velocity Vj exceeds
the local surrounding flow velocity Uf . (c) Saturation in base pressure recovery mechanism
where the upward velocity induced by II uindII→I prevents the Coanda effect.

Structure I forms from the rolling-up of the vorticity of the model’s boundary layer. As
such, the total circulation ΓI contained in I is derived from (4.4) and reads as

ΓI = −1
2

∫ tp

0
U2

0 dt = −tp
U2

0

2
, (4.6)

where tp is the peaking time of the pulsed jets (the time to reach the maximal jet velocity
Vjmax as defined in figure 11b) and U0 is the free-stream velocity, as the formation process of
I involves the vorticity contained in the model’s boundary layer at separation. The choice
of tp as time horizon for the formation of structure I is physically based on the sudden
change in acceleration occurring at the end of the peaking phase. This ends the disruption
and roll-up process of the vorticity contained in the boundary layer. It is confirmed by the
circulation dynamics analysed in figures 8 and 10 and exemplified on a particular example
in figure 17. The physical origin of structure I is validated by the comparison of relation
(4.6) with measured circulations in figure 10(b).

The following are two important aspects of these circulation models for ΓI and ΓII:

(i) the high sensitivity of ΓII to the amplitude of the forcing Cμ contrary to ΓI, which
remains fairly constant across the investigated configurations; and

(ii) the optimality of the pressure drag decrease obtained for values of ΓI and ΓII of
similar order of magnitude (|ΓI| ∼ |ΓII|) that appears on figure 10.

As such, the interplay between structures I and II points naturally to a possible
mechanism explaining the saturation in pressure drag, which we will further detail.

Using the Biot–Savart law, the velocity induced by structure II on structure I is given by

uindII→I = ΓII

2π

ey × dII→I

|dII→I|2 ∼ ΓII

2π

ey × dII→I

h2
, (4.7)
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FIGURE 12. Scaling of the base pressure parameter γp variations with the non-dimensionalized
induced velocity by structure II on structure I uindII→I/U0 for the various Reynolds numbers
ReH = {4, 5, 6, 7, 8} × 105 studied for forcing at f = 975 Hz with the curved surface r/h = 9.
The vertical grey shading indicates the approximate constant saturation velocity ratio observed
for all ReH .

where dII→I is the distance between structures II and I whose norm is of the order of h.
Equation (4.7) holds under the assumption of infinitely long structure II in the spanwise
direction, which is relevant according to the very high aspect ratio of the slits from which
the pulsed jets emanate and the low Reh value of this rectangular jet flow.

In figure 12 we scale the evolution of the base pressure parameter γp with the
velocity ratio uindII→I/U0. All the γp curves for the investigated range of ReH have a
saturation collapsing onto a single value of the induced velocity ratio at approximately
uindII→I/U0 ∼ 0.5. This confirms that the interaction between the boundary layer and the
pulsed jet coherent structures is responsible for the saturation and the pertinence of
the model and scaling proposed. The good scaling obtained for the complex interaction
between the forcing and the wake flow near separation also justifies a posteriori the
approximations made in order to model a local formation velocity Uf discussed in (4.5).
Moreover, from the obtained scaling, the flow mechanisms involved in the base drag
reduction are operating rather differently from what was observed by Barros et al. (2016)
without curved surfaces, where a saturation in base pressure increase was observed at
a constant r.m.s. jet velocity at all U0, therefore purely dictated by the dynamics of the
pulsed jet.

5. Mechanisms of pressure drag decrease: a matter of flow curvature near separation

The peculiar flow mechanism resulting in additional pressure recovery for
high-frequency forcing is now scrutinized. As briefly evoked in the previous section,
the focus is on a fine-scale analysis of the curvature of the separatrix, which is
highly influenced by the identified negative vorticity structure I in the reattachment
process.
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FIGURE 13. Global view of the wake. (a) Wake separatrix for the unforced (black) and
for the forced wake at f = 350 Hz (red) and f = 1050 Hz (blue) at Cμ ∼ 3 × 10−2. Grey
lines represent the projected streamlines in the vertical midplane of the unforced wake.
(b) Pressure field obtained by direct integration of the momentum equations (see appendix
B) with superimposed streamlines for the unforced wake and the wake forced at f = 1050 Hz
and increasing Cμ = {2.1, 3, 3.6} × 10−2 (respectively from left to right) at ReH = 5 × 105

for r/h = 9. (c) Mean turbulent kinetic energy k for the unforced and for the forced wake at
f = 350 Hz and f = 1050 Hz at Cμ ∼ 3 × 10−2.

5.1. Global picture of the wake
The effects of forcing on the wake are first presented from a global viewpoint in figure 13.
In figure 13(a) the focus is directed on a comparison between unforced and forced wakes at
both f = 350 and 1050 Hz at ReH = 5 × 105 at similar Cμ ∼ 3 × 10−2, around saturation
in high-frequency forcing (see figure 3a). Despite a notable difference of 6 % in base
pressure recovery between the two forced cases, both wakes remain very similar: the wake
separatrix presents a similar shape for both forcings. It is thinner and shorter than the
unforced wake, which is qualitatively similar to the observations of Oxlade et al. (2015),
for instance, on an axisymmetric blunt body. Such a thinner wake is in accordance with
the theories of Roshko (1993) and Sychev et al. (1998), resulting in a lower momentum
deficit and thus increased base pressure as measured. The fact that this shorter wake
is associated with base pressure recovery is rather opposite to the conventional relation
between increased recirculation length and base pressure recovery found throughout the
literature for square-back geometries (Grandemange, Gohlke & Cadot 2013a; Mariotti,
Buresti & Salvetti 2015; Lorite-Díez et al. 2020). In this case, there exists a relatively
simple relation between the base pressure and the recirculation length Lr since the flow
curvature can be estimated by the ratio Lr/H. On the contrary, in the present case,
the important local changes in flow curvature around the separation due to the flow
reattachment noticeably alter this relation and make it more complex. Nevertheless, no
clear distinction between the different forcing frequencies can be made on the basis of a
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global observation of the wake topology. Furthermore the turbulent fluctuations visualized
in figure 13(c) by the turbulent kinetic energy k = 0.5(u′

x u′
x + u′

zu′
z) are globally similar in

both forced wakes, suggesting a similar activity in the shear layers and flow entrainment
in the recirculating wake at a large scale. The pressure field reconstructed from PIV
measurements presented in figure 13(b) are consistent with the changes in wake topology,
as a recompression throughout the whole wake is observed, resulting in the measured
base pressure recovery. It is also worth mentioning that the equilibrium of the wake is
fundamentally not affected by the global forcing applied at the base and that the unforced
lateral bimodal dynamics persists with qualitatively similar features (Haffner 2020). Thus
differences in base pressure are not due to wake asymmetries in the present study.

As no fundamental differences between the two forced wakes emanate from a global
point of view of the recirculating wake, our investigation further focuses on the flow
differences in the vicinity of separation from the curved surfaces.

5.2. Flow curvature in the vicinity of separation
We build on the theory of Sychev et al. (1998), which shows the peculiar importance of the
curvature of the separatrix around separation to the problem of base pressure generation
in the wake of a bluff blunt body. (Trip & Fransson (2017) recently experimentally
showed the importance of flow curvature around separation on the base pressure of a
two-dimensional blunt body.) Following Van Dyke (1969) and Bradshaw (1973), the
normal momentum balance along a mean streamline with tangential coordinate s can be
written as

1
ρ

∂ p̄
∂n

= κUs
2 − ∂u′

sv
′
n

∂s
− ∂v′

nv
′
n

∂n
, (5.1)

where n is the coordinate along an axis locally normal to the streamline and κ =
det(x ′, x ′′)/‖x ′‖3 is the local streamline curvature, with x(s) = (x(s), z(s)). Equation (5.1)
is of fundamental interest in analysing the normal pressure gradient across the wake
separatrix, which allows one to interpret the pressure changes in the recirculating wake
and near the base. The normal gradient of normal velocity fluctuations ∂v′

nv
′
n/∂n in (5.1)

can be neglected in our first-order analysis: it is one order of magnitude smaller than the
curvature term for forced cases and it acts only by locally generating a low-pressure region
inside the shear layer without contributing notably to the pressure gradient across the
separatrix on large scales. Moreover, the tangential gradient of normal–tangential velocity
fluctuations ∂u′

sv
′
n/∂s appears also as one order of magnitude smaller than the curvature

term after careful investigation (not detailed here for brevity).
We therefore first focus on the curvature term κUs

2
, which is preponderant in

establishing the pressure gradient, and analyse the simplified balance of (5.1) on the
separatrix near the curved surface in figure 14. To this purpose, a series of five adjacent
mean streamlines are chosen as exemplified in figure 14(a) to scrutinize the curvature
effects. Streamlines originate around a location z ∼ G + H + θ , thus one momentum
thickness above the trailing edge. The local curvature of each streamline is estimated
from the PIV measurements and results are averaged across all streamlines to reduce the
influence of measurement noise in the second-order spatial derivatives required by the
curvature estimation. The separatrices of the analysed cases are depicted in figure 14(b).
For all the forcing cases, the separatrix is importantly deviated inwards compared with
the unforced separatrix. This results in a lowered momentum deficit in the wake, and
therefore a wake recompression and base pressure recovery as a regular boat-tailing effect

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 C
en

tr
al

e 
de

 L
yo

n,
 o

n 
29

 Ju
l 2

02
0 

at
 0

6:
37

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
49

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.494


Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-31

x/H

x/H x/H x/H x/H x/H

x/H

z/H

0

n
s

0.05 0.10 0 0.05 0.10

1.13

1.15

1.17

1.19

1.13

1.15

1.17

1.19

0.1 0.20

0

10

−5

5

−10

−15

−20

0

10

−5

5

−10

−15

−20

0

10

−5

5

−10

−15

−20

0

10

−5

5

−10

−15

−20

0

10

−5

5

−10

−15

−20
0.1 0.20 0.1 0.20 0.1 0.20 0.1 0.20

Cμ = 3 × 10−2 Cμ = 1.9 × 10−2 Cμ = 2.5 × 10−2 Cμ = 3 × 10−2 Cμ = 3.6 × 10−2
f =350 Hz f =1050 Hz f =1050 Hz f =1050 Hz f =1050 Hz

κ
U

s2
—

(a) (b)

(c)

FIGURE 14. Streamwise evolution along the separating streamline of the normal pressure
gradient ∂p/∂n related to curvature obtained from (5.1). (a) Example of an ensemble of five
streamlines originating at approximately z ∼ G + H + θ used for averaging the curvature κ and
the normal pressure gradient ∂p/∂n estimation. (b) Separating streamlines originating from
the same point for unforced and various forced cases. The colours are defined the same as in
(c). (c) Streamwise evolution of the normal pressure gradient estimated from the curvature
part of (5.1) for forcing at f = 350 Hz and Cμ = 3 × 10−2, and at f = 1050 Hz and Cμ =
{1.9, 2.5, 3, 3.6}. The unforced case is additionally shown in black in the first graph. Thin vertical
grey lines indicate the streamwise extent of the curved surface.

would do. Nevertheless, the separatrices with the higher deflection angles at the end of
the considered region, for forcing at f = 350 Hz and Cμ ∼ 3 × 10−2 and for forcing at
f = 1050 Hz and Cμ ∼ 3.6 × 10−2, are not those resulting in the highest base pressure
recovery or equivalently lowest base drag. Indeed, for forcing conditions around the
saturation ( f = 1050 Hz and Cμ ∼ 3 × 10−2), even if the deflection angle is less important
at the end of the region of interest, the separatrix exhibits greater curvature in the vicinity
of the curved surface. This is further assessed through the tangential evolution of the
curvature term of the normal pressure gradient κUs

2
in figure 14(c).

When forcing is applied, an important peak in the term can be seen around the end
of the curved surface at x/H ∼ 0.04, corresponding to a local curvature inversion due
to the presence of an inflection point in the separatrix. Such a curvature inversion is
interpreted through (5.1) as a local inversion of the normal pressure gradient across the
separatrix and thus as leading to a recompression inside the recirculating wake region and
base pressure recovery. Around the saturation in base pressure recovery at Cμ ∼ 3 × 10−2

the peak in curvature is notably higher at f = 1050 Hz than at f = 350 Hz, approximately
30 % more, which explains the observed difference in base pressure recovery. Conversely
at f = 1050 Hz, the peak of curvature is seen to increase monotonically with Cμ until the
saturation in base pressure is reached before this amplitude collapses, being thus in line

with the measured base pressure changes. The maxima of the curvature term maxs(κUs
2
)
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Frequency f (Hz) Cμ maxs(κUs
2
) 〈κUs

2〉{s;κUs
2
>0}

Unforced — — —
350 0.019 5.85 2.10
350 0.03 7.89 2.45
350 0.05 7.25 2.34
1050 0.019 7.62 2.40
1050 0.025 9.11 2.81
1050 0.03 11.71 3.79
1050 0.036 6.38 2.29

TABLE 5. Quantitative characteristics of the curvature inversion. Extreme values of κUs
2

and
spatial average value 〈κUs

2〉{s;κUs
2
>0} where the sign of the quantity is reversed corresponding

to the curvature inversion region.

and the averaged curvature over the region where curvature is reversed 〈κUs
2〉{s;κUs

2
>0}

for the different forcing conditions are gathered in table 5 to confirm our reasoning.
These curvature changes implied by the induced velocity effects discussed previously are
therefore the supplemental mechanism behind the unsteady Coanda effect allowing for
further base pressure recovery. These peculiar curvature inversion changes complement
the other known effect of wake thinning seen from the inward deviation of the separatrix
in the base pressure recovery mechanism.

To further augment and confirm our curvature analysis from the use of (5.1), we show
in figures 15 and 16 the pressure fields obtained by direct integration of the momentum
equations from the PIV velocity fields. The method is briefly described and carefully
validated in appendix B. The effect of forcing frequency at Cμ ∼ 3 × 10−2 around
saturation is first exposed in figure 15. Two main observations can be made for both
forcings based on these Cp fields:

(a) A region of strong depression is formed around the trailing edge due to the local
acceleration of the flow, which extends over the curved surface, thus penalizing
the aerodynamic drag reduction, as confirmed by the pressure measurements on the
curved surface.

(b) A global recompression takes place in the wake, which extends by continuity to the
pressure at the base of the model.

The region of strong depression can be seen to extend farther at f = 350 Hz, which is
clearly quantified by the vertical pressure profiles at x/H = 0.04. This explains the further
penalization at these unadapted frequencies for this choice of r/h and the advantage given
by the unsteady Coanda effect. A low-pressure trace at f = 1050 Hz in the flow can be
identified, coinciding with the trajectory of the coherent structures I and II formed by the
forcing at high frequency, as was also observed by Oxlade et al. (2015). On the wake
side of the separatrix, locally around the end of the curved surface, the recompression
in the flow is more important at f = 1050 Hz. This is visible in particular from the
vertical profile at x/H = 0.04 at the end of the curved surface in figure 15(b), where
very locally below the separatrix the pressure is further increased to its highest value
and by continuity spreading in the wake then. This location coincides with the location
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FIGURE 15. Mean pressure coefficient Cp obtained by integration of the momentum equations
in the (x, z) plane. (a) The Cp fields for unforced, and f = 350 and 1050 Hz at similar
forcing amplitude Cμ = 3 × 10−2 around the saturation in base pressure recovery at ReH =
5 × 105 with the r/h = 9 curved surfaces. The blue shades colour map allows for scrutinizing
the very-low-pressure region near the separating edge when forcing. (b) The corresponding
Cp vertical profiles at different streamwise locations x/H = {0.04, 0.1, 0.2, 0.3}. The mean
separating streamlines are given in grey, and black vertical dashed lines in the first field give
the streamwise position of the profiles plotted in (b).

of the peak in curvature presented in figure 14, which confirms the peculiar effect of
flow curvature in the unsteady Coanda effect for obtaining further drag decrease. Finally,
when looking at high forcing frequency f = 1050 Hz for increasing Cμ in figure 16,
the depression around the trailing edge can be seen to increase monotonically with Cμ

whereas the recompression on the wake side saturates for Cμ ∼ 3 × 10−2 to weaken when
further increasing the forcing amplitude. This further highlights the advantage of flow
curvature resulting from the unsteady Coanda effect in producing a recompression of the
wake without important penalties on the contrary of a common inwards flow deviation
which induced strong penalization from the low-pressure region extending over the curved
surface.

5.3. An inviscid-flow model to evaluate frequency–radius coupling effects
As was stated in the previous section, the flow curvature just after separation is the key
mechanism explaining the differences in base drag changes. We thus seek to relate these
additional curvature changes to the coherent circulation dynamics previously described.
This is done by further developing the inviscid-flow model previously introduced with
the aim of taking into account the frequency–radius coupling in the unsteady Coanda
effect.
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FIGURE 16. Effect of forcing amplitude on the mean pressure coefficient Cp obtained by
integration of the momentum equations in the (x, z) plane. (a) The Cp fields for f = 1050 Hz
at Cμ = {2.5, 3, 3.6} × 10−2 around the saturation in base pressure recovery at ReH = 5 ×
105 with the r/h = 9 curved surfaces. The blue shades colour map allows for scrutinizing
the very-low-pressure region near the separating edge when forcing. (b) The corresponding
Cp vertical profiles at different streamwise locations x/H = {0.04, 0.1, 0.2, 0.3}. The mean
separating streamlines are given in grey.

Inspired by the study of Berk & Ganapathisubramani (2019) about the induced velocity
effects of a pulsed jet in a cross-flow using an inviscid-flow model, the model from § 4
is further refined to describe the influence of the coherent circulation dynamics on the
wake separatrix. To this purpose, the inviscid-flow model from (4.5), (4.6) and (4.7) is
extended to characterize the flow induced by the peculiar coherent structures at high-Str
forcing. Figure 17(a,b) shows the ingredients of this extended model on one peculiar case,
which is chosen to be the forcing at f = 1050 Hz (Str ∼ 0.39) around the saturation where
the base drag decrease is maximal. The measured time evolutions of the circulation of
structures I and II are fitted with a physical model building on the approach of (4.6) and
(4.5) (full lines in figure 17a):

ΓI(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t
tp

ΓI0 exp
(

− tp

τI

)
, t < tp,

ΓI0 exp
(

− t
τI

)
, t > tp,

(5.2)
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and

ΓII(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t < tminII,

t − tminII

tmaxII − tminII

ΓII0 exp
(

− tmaxII

τII

)
, tminII < t < tmaxII,

ΓII0 exp
(

− t
τII

)
, t > tmaxII .

(5.3)

Here tminII = mint{t; Vj(t) > Uf }, tmax II = maxt{t; Vj(t) > Uf } and ΓI0 (<0), τI, ΓII0 (>0)
and τII are the fitting parameters of the model. Each time evolution of the circulation is
based on a linear increase of Γ during the formation period, followed by an exponential
decay primarily dictated by the dissipation of the coherent structures. If assuming a
constant tp/T in concordance with our HWA measurements on the pulsed jets, tminII/T
and tmax II/T are also constant and it allows for a forcing frequency parametrization of the
model with a circulation Γ scaling as T .

In a similar way, the evolution of the position of the centre of the coherent structures
xI and xII is fitted with linear time evolutions as appeared from the constant convection
velocities estimated in figure 20. Using the modelled circulation, the associated spatial
distribution of vorticity is accurately approximated by that of a Gaussian or Lamb–Oseen
vortex, which gives for structure I, for instance,

ωyI(x, t) = ΓI(t)
π|x − xI|2 exp

(
−|x − xI|2

rI(t)2

)
. (5.4)

Here rI is the radius of structure I given as a fitting parameter from the measurements
whose evolution during time can be approximated as constant and of the order of h (thereby
justifying the exponential decay of circulation completely dominated by dissipation over
diffusion). An example of the experimentally measured vorticity compared with the model
of (5.4) for one time instant is given in figure 17(c) confirming the pertinence of the model.
The total vorticity field ωy(x, t) of the train of coherent structures identified is then the sum
of the vorticity distribution from all structures I and II and their equivalent from previous
forcing periods.

In order to satisfy the no-penetration condition on the curved surface, for each external
vorticity source at a location xS, an image vortex of equal but opposite circulation is
located at the inverse square point x ′

S defined as (xS − xC) · (x ′
S − xC) = r2, where xC

is the centre of the circle defining the curved surface. Finally, a vortex of equal circulation
to each of the external vorticity source is located at xC to cancel the total circulation of
the internal vorticity sources of the images (Saffman 1992; Pitt Ford & Babinsky 2013).
An example of the total vorticity field obtained at a given time instant is provided in
figure 17(c).

As discussed by Berk & Ganapathisubramani (2019), the associated induced velocity
field is then obtained by application of the Biot–Savart law

uind(x, t) =
∫∫

ωy(x ′, z′, t)
2π max(|x ′ − x|, rR)

ey × (x ′ − x)

|x ′ − x| dx ′ dz′. (5.5)

Here the summation is performed over the vorticity contributions from each location
(dx ′, dz′) of the field; and rR is an equivalent Rankine vortex radius used to
keep a finite velocity everywhere in the field and which is empirically chosen as
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FIGURE 17. Inviscid model for the velocity induced by the identified coherent structures.
(a) Fitting of the temporal evolution of the circulation Γ of counter-rotating coherent structures
I and II for the case of optimal base pressure recovery at f = 1050 Hz (Str ∼ 0.39) and Cμ ∼
3 × 10−2. Squares are experimental results, and full lines the fit to these points from (5.2) and
(5.3). (b) Fitting of the spatial evolution of the spanwise vorticity ωy of counter-rotating coherent
structures I and II. Squares are experimental results, and full lines the fit to these points from
(5.4) describing a Lamb–Oseen vortex. (c) Example of spanwise vorticity ωy (top) and induced
vertical velocity uind

z (bottom) fields at a given time instant of the forcing cycle obtained from
the inviscid model. The vorticity field includes the vorticity images inside the curved surface.

√
(0.5 dx ′)2 + (0.5 dz′)2 related to the field pitch. An example of the induced velocity field

uind(x, t) thus computed is given in figure 17(c).
It should be noted here that the proposed model is also implicitly parametrized in

forcing frequency through the time dependence in relations (5.2) and (5.3). Indeed, the
peak in circulations |ΓI| and |ΓII| will by definition theoretically scale with 1/f (Shariff
& Leonard 1992; Berk & Ganapathisubramani 2019). In addition, as all the formation
time parameters in relations (5.2) and (5.3) are expressed relative to the forcing period
duration T , the assumption is then that the time evolution of circulation is homothetic
when frequency is varied in the model. This is in line with the properties of our pulsed
jets discussed in § 2.5. Indeed, the time evolution of the pulsed jet velocity is close to
homothetic at the investigated forcing frequencies, with constant duty cycle used, and
near-constant non-dimensional peaking time tp/T . As a consequence, the inviscid-flow
model discussed herein and built on the experimental results of the optimal base drag
decrease ( f = 1050 Hz and Cμ ∼ 3 × 10−2) can be reasonably used to at least qualitatively
investigate the forcing frequency effects on the velocity induced by the coherent structures.

To analyse the influence of these coherent structures on the mean flow in the vicinity of
the curved surface, we examine the mean vertical induced velocity uind

z in figure 18. The
uind

z field at f = 1050 Hz (Str = 0.39) exhibits two distinct zones with opposite velocities:
a region near the slit and the curved surface with positive uind

z , followed by a region with
negative uind

z . The latter region contributes to the flow deviation and to the curvature of
the wake separatrix that lead to an additional base pressure recovery. To quantify the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 C
en

tr
al

e 
de

 L
yo

n,
 o

n 
29

 Ju
l 2

02
0 

at
 0

6:
37

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
49

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.494


Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-37

0.1

0.100.050

0.100.050

0.100.050

0.100.050

1.14

1.16

1.18

1.14

1.16

1.18

1.14

1.16

1.18

1.14

1.16

1.18

0

0.02

–0.05

0

0.10

uz
ind

uz
ind

·uz
indÒ

0.04

0.5 1.0

Str = 1.95

Str = 0.78

Str = 0.39

Str = 0.13

Str

x/r

Str

x/H

z/H

z/H

z/H

z/H

4.0

3

50.50.05

210
–0.05

–0.02

0

0.05

0.10

(b)(a)

(b)

(c) (c)

FIGURE 18. Inviscid model for the velocity induced by the identified coherent structures.
(a) Time-averaged vertical induced velocity uind

z for the nominal case Str = 0.39 and for lower
(Str = 0.13) and higher (Str = 0.78 and Str = 1.17) frequencies. (b) Time-averaged induced
vertical velocity uind

z on a line originating at the trailing edge and following the mean direction
of convection of the coherent structures (depicted in (a)) for various forcing frequencies
Str = {0.04, 0.13, 0.26, 0.39, 0.78, 1.17, 1.95, 3.9}. Colour map appears in logarithmic scale.
(c) Evolution with Str of the time-averaged induced vertical velocity 〈uind

z 〉 averaged over the
zone (x, z) ∈ [0.03, 0.1] × [1.14, 1.175] (depicted in (a)) around the peak in flow curvature and
where flow curvature is inverted in figure 14.

importance of this influence, the induced vertical velocity is approximately one-fifth of
the vertical velocity measured by the PIV in the same region. This mean negative vertical
induced velocity only appears farther downstream (x/r > 2) when forcing at f = 350 Hz
(Str = 0.13) and the vicinity of the curved surface is characterized by the presence of
positive vertical induced velocity.

The effect of forcing frequency variation is further scrutinized in the profiles of uind
z on a

line following the mean direction of convection of the coherent structures in figure 18(b).
These forcing frequency variations show that Str ∼ 0.5 appears as an optimum to
maximize the negative induced vertical velocity just at the end of the curved surface for
the peculiar r = 9h dimension. Indeed, forcing frequencies one order of magnitude below
lead to the vanishing of the induced velocity effects. Similarly, forcing frequencies one
order of magnitude above lead to a reduced peak of negative induced velocity displaced
towards the trailing edge and a progressive vanishing of the velocity towards the end of
the curved surface. To quantify this optimality, the evolution with Str of the mean induced
vertical velocity 〈uind

z 〉 averaged over the zone (x, z) ∈ [0.03, 0.1] × [1.14, 1.175] is shown
in figure 18(c). This zone corresponds to the location of the peak in flow curvature and its
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vicinity where flow curvature is inverted as shown in figure 14. The induced velocity effect
is only downwards for sufficiently high Str, and an optimum in the downwards induced
velocity occurs at approximately Str ∼ 0.5. The present model shows unambiguously the
strong coupling effect existing between the size of the curved surface used and the forcing
frequency in the additional induced velocity effect in base pressure recovery, and provides
a scaling of this coupling through Str.

6. Concluding remarks and further discussions

The impact of periodic forcing coupled to small-scale surfaces on the wake and
aerodynamic drag of a canonical blunt body is investigated. Pulsed jets with variable
frequency f and amplitude Cμ are blown at the edges of the base over flush-mounted
curved surfaces with characteristic radius of curvature one order of magnitude greater
than the pulsed jet size h. Complementary drag and pressure measurements as well as
highly spatially resolved PIV help to reveal the main mechanisms and draw fundamental
scaling models of the unsteady Coanda effect allowing for up to 12 % reduction of the
pressure drag of the body.

Our study highlights the relatively different base pressure recovery mechanisms
involved in the forcing depending on the relation between the time scale of the periodic
forcing and the convective time scale over the curved surface r/U0. For any forcing time
scale above the natural wake time scales investigated, the flow reattachment over the
curved surfaces results in a deviation of the separatrix associated with a thinning of the
wake, leading to drag reductions of the order of 10 %. Experimental results show that when
the time scale of the forcing is of the same order as the convective time scale r/U0, an
additional 6 % in base pressure recovery and 5 % in drag decrease are observed compared
with a forcing with a time scale one order of magnitude greater than the convective time
scale for the same forcing amplitude Cμ. Although the two forced wakes present similar
qualitative features (length, width, form) at a global scale, differences at the local scale in
the vicinity of the curved surface explain the drag difference.

Local pressure gradients across the separatrix are found to behave radically differently,
highlighting two different mechanisms for base pressure recovery. A conventional inwards
flow deviation and wake thinning are observed for all forcing time scales, very similar to
the effect of a boat-tail. Nevertheless, at the forcing time scale of r/U0, additional flow
curvature effects take place and the flow curvature inversion in the vicinity of the end
of the curved surface leads to pressure gradient inversion and local recompression on
the wake side of the separatrix, explaining the additional drag decrease. This curvature
mechanisms is not only observed to provide additional drag decrease, but also it prevents
the drag penalization from the low-pressure region extending over the curved surfaces
when the base pressure recovery is mainly achieved by flow deviation. Furthermore, it
allows for important drag reduction with only very small geometric additions of order
r/H at high free-stream velocities. This is rather important, as the performance of simple
high-frequency forcing (Oxlade et al. 2015; Barros et al. 2016) was found to deteriorate
significantly with increasing free-stream velocity.

The fundamentally different evolution in the drag changes with Cμ and U0 between
the two different periodic forcing time scales accounts for the difference in mechanisms
governing the base pressure recovery. Whereas the base pressure recovery satisfactorily
scales with the injected momentum by the pulsed jets at the lower forcing frequency, this
scaling fails for the forcing frequency of order U0/r. In addition, for the latter, a saturation
in the base pressure recovery occurs (with a recovery of 22 % and an associated drag
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decrease of 12 %) for a Cμ depending on the free-stream velocity U0 with a subsequent
degradation in the drag decrease at higher amplitudes.

A theoretical inviscid-flow model is developed in order to scale the drag changes
and the saturation mechanism based on the tracking and characterization of the peculiar
pair of counter-rotating coherent structures resulting from the forcing. The first coherent
structure with circulation of the same sign as the surrounding shear layer is formed by
the pinch-off and subsequent roll-up of the vorticity sheet originating from the boundary
layer of the body during the peaking phase of the pulsed jet. The second structure of
opposite-sign circulation is formed by the interaction roll-up of the pulsed jet when its
velocity exceeds the velocity of the surrounding flow. The model is able to satisfactorily
scale the saturation in base pressure recovery with the ratio between the velocity induced
by the second structure on the first one and the free-stream velocity. This highlights the
mechanism of outwards flow entrainment operated by the second structure after saturation.
Finally, an extension of the model parametrized with the forcing frequency allows for
the identification of the velocity induced by these transient coherent structures as the
mechanism leading to additional flow curvature effects for drag reduction. The model
also shows the optimality of the forcing time scale of order O(r/U0) in the induced flow
curvature effect. Further variations of the curved surface radius r confirm the strong
coupling between r and the forcing time scale in the efficiency of the unsteady Coanda
effect in drag reduction, pointing to the need for careful combination between forcing
frequency and size of the curved surfaces to achieve all the potential of the unsteady
Coanda effect in drag reduction.

A simplified description of the observed unsteady Coanda effect is given in
figure 19. Two fundamental time scales are at the origin of the unsteady Coanda effect
mechanisms.

(i) A time scale 1/f is associated with the periodicity of the forcing, and accounts for
the following:
(a) The unsteady interaction between the coherent structures formed by the periodic

forcing, the curved surface and the outer potential flow. Providing the time scale
is of the order of r/U0, this results in an optimality of the interaction between
coherent structures and flow separation to produce flow curvature leading to
further drag decrease.

(b) An adaptation of the unsteadiness of the flow separation from the curved surface
when the time scale is of the order of r/U0 resulting in a reduced unsteadiness
of the separation and reattachment dynamics.

(ii) Another time scale is associated with the peaking time tp of the forcing, which
grants importance to the velocity profile of the forcing. This time scale quantifies
the acceleration effects of the forcing and allows for the following:
(c) Attachment or not of the pulsed jet to the curved surface to promote or not a

base pressure recovery through a Coanda effect. This results in a conventional
thinning of the wake, resulting in lower flow momentum deficit in the wake and
thus to a recompression in the near wake.

(d) The possible formation of the negative coherent structure I from the roll-up of
the separating boundary layer leading to additional flow curvature effects and
drag reduction.

Even if in the current study we performed all the analyses on a given form of curved
surface with constant curvature, an interesting aspect would be to extend and confront
the present mechanisms and scalings involved in the unsteady Coanda effect to straight
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+ curvature inversion
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Jet attachment over the surface

Jet-curved surface interaction

Formation of coherent structures Adaptation of reattachement unsteadiness

Optimal coherent structures/separation interaction

uind effect on separatrix curvature

uind

uind = O ((Vjmax
 – Uf )
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U0

r
U0ta � r
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FIGURE 19. Simplified description of the unsteady Coanda effect. (a) Time scales involved
in the unsteady Coanda effect. A fast time scale (in brown) corresponding to the pulsed
jet peaking time governs the attachment of the pulsed jet over the curved surface (and the
possibility of having or not an efficient base pressure recovery) and the formation of coherent
structures involved in the unsteady Coanda effect. The corresponding non-dimensional scaling
is ta(U0/r). A slower time scale (in blue) corresponding to the pulsed jet period governs the
interaction between the coherent structures created by the pulsed jet and the curved surface for
the appearance or not of the induced velocity effect on the curvature of the separatrix, and pilots
the unsteadiness of the separation from the curved surface. The corresponding non-dimensional
scaling is f (r/U0). The negative structure formed by the roll-up of the separating boundary
layer induces flow curvature effects leading to further drag reduction. The positive structure
scales with the pulsed jet velocity excess from the local flow velocity and pilots the saturation
of the unsteady Coanda effect. (b) Base pressure recovery/pressure drag decrease mechanism.
Regular wake thinning is a consequence of the flow deviation by a conventional Coanda effect,
and additional induced curvature effects stemming from the unsteady Coanda effect.

surfaces as flaps which have been widely used for the flow control of blunt bodies
(Chaligné 2013; Schmidt et al. 2015). Furthermore, the acceleration effects related to ta are
highly forcing-apparatus-dependent. Here we tried to investigate quite a canonical forcing
velocity profile with a triangular shape in order to introduce the ta time scale. However,
the formation process of the coherent structures and pulsed jet attachment over the curved
surface may depend on the forcing velocity profile. The extension of the present results to
other canonical jet velocity profiles (such as a step function with finite acceleration) would
be of great interest.

The unsteady Coanda effect analysed in this study and its scaling laws and models
identified provide both an efficient drag reduction mechanism for blunt bodies and a
framework for adapting the strategy at real-world scales or on fundamentally different
fluid mechanics problems involving flow separation. In particular, the unsteady dynamics
involved in the unsteady Coanda effect discussed here is very reminiscent of the optimal
dynamics of separation and reattachment over a forced flap at a higher spatial scale studied
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by Amitay & Glezer (2002) or Darabi & Wygnanski (2004a,b) for the control of stalled
airfoils.

The peculiarity of the phenomenon involving small-scale pulsed jets and a curved
surface makes it a promising strategy to be applied on road vehicles and heavy trucks
where strong geometric constraints are imposed in the design and only minor geometric
modifications are allowed. The generalization to square-back geometries has been assessed
by our group on a more complex geometry representative of lorries similar to the one
used by Castelain et al. (2018) with inverted aspect ratio H/W > 1 and different shapes
of flush-mounted surfaces. These results suggest that a generalization to real vehicles
with simple square-back shape (lorries, utility vehicles, vans) is quite plausible. For
more complex geometries such as real cars, the generalization is less straightforward.
Different aspects such as the roof slant or the natural curvature of the edges complicate
the flow conditions at separation and may considerably alter the three-dimensional wake
organization. In this regard, the authors are currently pursuing the test of the drag reduction
strategy on more realistic car geometries.

The unsteady Coanda effect involving a strong interaction between high-frequency
forcing and small-scale curved surfaces produces a strong cross-flow momentum. It is
thus also currently being investigated as an active fluidic flap device in order to act on
the asymmetries of the Ahmed body by controlling the shear layer interaction mechanism
described by Haffner et al. (2020) and extend and generalize the recent findings about yaw
asymmetries control of Li et al. (2019).
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Appendix A. Scaling of coherent structures and pulsed jet model

Further details are given on the modelling of the coherent structures produced by the
interaction of the pulsed jets with the wake flow and their induced effects introduced in
§ 4.

A.1. Convection of the coherent structures
The strength Γ and the streamwise position of the tracked coherent structures I and II are
shown in figure 20 for the forced cases at Cμ ∼ 3 × 10−2 around the saturation in base
pressure recovery for both forcing frequencies. The tracking highlights the formation of a
train of vortices at high frequency f = 1050 Hz, which increases the presence density of
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FIGURE 20. Streamwise convection and evolution of the circulation Γ of the two
counter-rotating coherent structures I and II identified in figure 8 when forcing at Cμ = 3 × 10−2

at (a) f = 350 Hz and (b) f = 1050 Hz at ReH = 5 × 105 and at (c) f = 1050 Hz at Cμ ∼
3 × 10−2 and ReH = 7 × 105 for r/h = 9. Each marker is coloured according to the circulation
Γ of the coherent structure. Black lines indicate an estimation of the mean convection velocity
of coherent structure I.

coherent structures in the vicinity of the curved surface during the whole forcing period.
There is hence an important interaction between these structures and the flow near the
curved surfaces, which is absent when forcing at f = 350 Hz, where structures are only
present in the vicinity of the curved surface for a reduced amount of time (approximately a
quarter of a forcing period). This confirms the strong coupling between forcing frequency
and radius of curvature discussed in § 3. The convection velocity of the coherent structures
can also be evaluated based on their tracking. Interestingly, when comparing similar pulsed
jet velocity forcing conditions at f = 1050 Hz at different Reynolds numbers ReH = 5
and 7 × 105 in figure 20(b,c), the convection velocity Uc can be seen to remain globally
constant during the forcing period but with quite different values depending on ReH
varying from 0.8U0 to 0.6U0 at increasing ReH . As the convection velocity is globally
set by the mean velocity around the structure, this informs us that coherent structures are
not positioned in the same way relative to the mean separatrix of the wake depending on
Cμ. Indeed, as discussed from figure 13(b), the wake gets narrower with increasing Cμ

as the mean separatrix is deflected inwards by the interaction with the curved surfaces.
As a consequence, the coherent structures that are formed at a constant vertical position
are evolving in a different surrounding flow: a high velocity close to or exceeding U0 for
high Cμ when the flow is importantly deviated, and a lower velocity close to the shear
layer velocity U0/2 for low Cμ when the flow is less importantly deviated. This convection
velocity Uc could be used as a further refinement in the definition of the local Strouhal

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 C
en

tr
al

e 
de

 L
yo

n,
 o

n 
29

 Ju
l 2

02
0 

at
 0

6:
37

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
49

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.494


Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-43

number introduced in relation (3.6), as it represents the actual velocity governing the
interaction of the coherent structures with the flow above the curved surface.

A.2. Formation of structure II
The formation velocity Uf in the vicinity of the slit defined and used in (4.5) to describe the
formation of structure I depends on the relative position between the structure and the wake
separatrix, which is highly influenced by the flow reattachment over the curved surface
and the flow deviation dictated by the curved surface (similarly as discussed previously
for Uc). As such, it is highly unlikely that this local flow velocity is directly the reference
free-stream velocity U0. Rather, Uf will depend more on a combination of both U0 fixing
the velocity farther from the separating edge and the ratio Vjmax /U0 dictating the flow
deviation over the curved surface and the flow acceleration when circumventing the salient
edge. Therefore, a pertinent, albeit gross, approximation of this complex formation process
is to set the velocity Uf involved in the formation process of structure II as a constant. To
partially support this approximation, we can turn back to the convection velocity Uc of the
coherent structures analysed in figure 20, which is also a local mean flow velocity over the
curved surface where the structures are transported. The convection velocity Uc of these
structures was found to vary from 0.8U0 at ReH = 5 × 105 to 0.6U0 at ReH = 7 × 105

for the same forcing conditions at high frequency. Nevertheless, these two convection
velocities represent approximately the same dimensional velocity. The local formation
velocity is set at a constant of Uf ∼ 30 m s−1 as a gross approximation in our analysis
based on a fit of the theoretical circulation ΓII to the measured circulation in figure 10(b).

A.3. Formation of structure I
The other possible origin of structure I would be circulation produced directly by the
pulsed jet similarly to the creation of II, but this hypothesis is rejected by the pulsed
jet-based estimation of circulation on figure 10(b). Analogously to relation (4.5), a pulsed
jet origin of the circulation contained in I would be captured by a relation

Γ = −1
2

∫ Tf

0
Vj(t)2 dt, (A 1)

where Tf could be either the time horizon for which Vj reaches Uf (on similar grounds
as those given for II) or tp. Both estimations are inadequate to capture either the order of
magnitude or the trend in the evolution of ΓI with Cμ on figure 10(b).

Appendix B. Pressure field reconstruction validation

The method used in this study to reconstruct the mean pressure field Cp from the
PIV measurements is similar to the one used by Oxlade (2013) with adjustments on the
integration algorithm to improve the efficiency of the method.

Direct integration of the mean two-dimensional momentum equations is performed
where we neglect the viscous terms as we focus on a high-Reynolds-number turbulent
wake flow. Hence the two-dimensional equations used for mean pressure coefficient Cp
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FIGURE 21. Validation of the mean pressure field Cp reconstruction over the small FOV under
different forcing conditions. (a) Streamwise evolution on the line z/H = 1.06. Circles are
pressure measurements at the base, lines the reconstructed pressure field. (b) Comparison of
pressure measurements (grey circles) and reconstructed pressure (light violet circles) over the
curved surface r/h = 9.

integration are

− 1
ρ

∂ p̄
∂x

= Ux
∂Ux

∂x
+ Uz

∂Uz

∂z
+ ∂u′

x u′
x

∂x
+ ∂u′

x u′
z

∂z
(B 1)

and

− 1
ρ

∂ p̄
∂z

= Ux
∂Uz

∂x
+ Uz

∂Uz

∂z
+ ∂u′

x u′
z

∂x
+ ∂u′

zu′
z

∂z
. (B 2)

The direct integration procedure is described as follows:

(i) A point Nk = (i, j) is randomly chosen in the domain and a random integration
path mk is generated from this origin. Every point in the domain is given an order
corresponding to its place in the path. The pressure coefficient is initialized at the
origin of the path Cp(m0

k) = 〈Cp(m0
k)〉k−1 by the mean pressure estimated over the

first k − 1 integration paths.
(ii) The pressure is integrated to the next point in the path mn+1

k according to the order
given by the previously generated path and using a trapezoidal rule:

Cp(mn+1
k ) = Cp(mn

k ) + Δx

2

(
∂Cp

∂x
(mn+1

k ) + ∂Cp

∂x
(mn

k )

)

+ Δy

2

(
∂Cp

∂y
(mn+1

k ) + ∂Cp

∂y
(mn

k )

)
. (B 3)

(iii) The following point in the path is taken and steps 2 and 3 are repeated until all the
domain is solved.

(iv) Step 1 and the rest of the procedure is repeated with a different origin and different
path until statistical convergence is reached for the estimation of Cp.

The convergence criterion used is based on the residual average pressure in the domain
and approximately 1500 iterations are necessary to reach satisfactory convergence.
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Finally, the integration constant C is determined from using as a boundary condition
Bernoulli’s law on a streamline located in the potential flow region outside the wake where
hypotheses linked to Bernoulli’s law are satisfied:

C = (u2
BC − 1) + CpBC (B 4)

Examples of systematic comparison between pressure measurements on the base and
reconstructed pressure field are presented in figure 21 for both unforced and forced
conditions. The relative difference between the reconstructed pressure fields and the
pressure measurements is <2 % (respectively, 5 %) at maximum at a single location for
taps on the curved surface. The higher discrepancy over the curved surface is attributed to
the difficulty of completely properly resolving the flow with PIV near the surface due to
residual laser light reflections and to the absence of seeding in the pulsed jets.
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Experimental analysis of the effect of local base blowing on three-dimensional wake modes. J. Fluid
Mech. 883, A53.

MAIR, W. A. 1969 Reduction of base drag by boat-tailed afterbodies in low-speed flow. Aeronaut. Q. 20
(4), 307–320.

MARIOTTI, A., BURESTI, G., GAGGINI, G. & SALVETTI, M. V. 2017 Separation control and drag
reduction for boat-tailed axisymmetric bodies through contoured transverse grooves. J. Fluid Mech.
832, 514–549.

MARIOTTI, A., BURESTI, G. & SALVETTI, M. V. 2015 Connection between base drag, separating
boundary layer characteristics and wake mean recirculation length of an axisymmetric blunt-based
body. J. Fluids Struct. 55, 191–203.

MAULL, D. & HOOLE, B. 1967 The effect of boat-tailing on the flow round a two-dimensional blunt-based
aerofoil at zero incidence. J. R. Aeronaut. Soc. 71 (684), 854–858.

OXLADE, A. 2013 High-frequency pulsed jet forcing of an axisymmetric bluff body wake. PhD thesis,
Imperial College London.

OXLADE, A. R., MORRISON, J. F., QUBAIN, A. & RIGAS, G. 2015 High-frequency forcing of a turbulent
axisymmetric wake. J. Fluid Mech. 770, 305–318.

PERRY, A. K., PAVIA, G. & PASSMORE, M. 2016 Influence of short rear end tapers on the wake of a
simplified square-back vehicle: wake topology and rear drag. Exp. Fluids 57 (11), 169.

PFEIFFER, J. & KING, R. 2018 Robust control of drag and lateral dynamic response for road vehicles
exposed to cross-wind gusts. Exp. Fluids 59 (3), 45.

PITT FORD, C. W. & BABINSKY, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720,
280–313.

RINEHART, C. S. 2011 Aerodynamic forces induced by controlled transitory flow on a body of revolution.
PhD thesis, Georgia Institute of Technology.

ROSHKO, A. 1993 Free shear layers, base pressure and bluff-body drag. Tech. Rep. DTIC Document.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 C
en

tr
al

e 
de

 L
yo

n,
 o

n 
29

 Ju
l 2

02
0 

at
 0

6:
37

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
49

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.494


Unsteady Coanda effect and drag reduction for turbulent wake 899 A36-47

RUIZ, T., SICOT, C., BRIZZI, L. E., LAUMONIER, J., BORÉE, J. & GERVAIS, Y. 2009 Unsteady near
wake of a flat disk normal to a wall. Exp. Fluids 47 (4-5), 637.

SAFFMAN, P. G. 1992 Vortex Dynamics. Cambridge University Press.
SCHMIDT, H. J., WOSZIDLO, R., NAYERI, C. N. & PASCHEREIT, C. O. 2015 Drag reduction on a

rectangular bluff body with base flaps and fluidic oscillators. Exp. Fluids 56 (7), 151.
SHARIFF, K. & LEONARD, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24 (1), 235–279.
SMITH, B. L. & GLEZER, A. 2002 Jet vectoring using synthetic jets. J. Fluid Mech. 458, 1–34.
SPOHN, A. & GILLIÉRON, P. 2002 Flow separations generated by a simplified geometry of an automotive

vehicle. In IUTAM Symposium: Unsteady Separated Flows.
STELLA, F., MAZELLIER, N., JOSEPH, P. & KOURTA, A. 2018 Mass entrainment-based model for

separating flows. Phys. Rev. Fluids 3 (11), 114702.
SYCHEV, V. V., RUBAN, A. I., SYCHEV, V. V. & KOROLEV, G. L. 1998 Asymptotic Theory of Separated

Flows. Cambridge University Press.
SZMIGIEL, M. 2017 étude du flux de soubassement sur la dynamique du sillage d’un corps non profilé

à culot droit: application du contrôle actif pour la réduction de traînée de véhicule industriel. PhD
thesis, Ecole Centrale de Lyon.

TRIP, R. & FRANSSON, J. H. M. 2017 Bluff body boundary-layer modification and its effect on the
near-wake topology. Phys. Fluids 29 (9), 095105.

VAN DYKE, M. 1969 Higher-order boundary-layer theory. Annu. Rev. Fluid Mech. 1, 265–292.
VUKASINOVIC, B., RUSAK, Z. & GLEZER, A. 2010 Dissipative small-scale actuation of a turbulent shear

layer. J. Fluid Mech. 656, 51–81.
WALDON, M., PEACOCK, T., JACOBS, G. B., HELU, M. & HALLER, G. 2008 Experimental and

numerical investigation of the kinematic theory of unsteady separation. J. Fluid Mech. 611, 1–11.
WILLE, R. & FERNHOLZ, H. 1965 Report on the first European mechanics colloquium, on the Coanda

effect. J. Fluid Mech. 23, 801–819.
WONG, D. T.-M. & MAIR, W. A. 1983 Boat-tailed afterbodies of square section as drag-reduction devices.

J. Wind Engng Ind. Aerodyn. 611, 1–11.
ZAMAN, K. B. M. & HUSSAIN, A. K. M. F. 1981 Turbulence suppression in free shear flows by controlled

excitation. J. Fluid Mech. 103, 133–159.
ZHANG, B. F., LIU, K., ZHOU, Y., TO, S. & TU, J. Y. 2018 Active drag reduction of a high-drag Ahmed

body based on steady blowing. J. Fluid Mech. 856, 351–396.
ZHOU, J., ADRIAN, R. J., BALACHANDAR, S. & KENDALL, T. M. 1999 Mechanisms for generating

coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 C
en

tr
al

e 
de

 L
yo

n,
 o

n 
29

 Ju
l 2

02
0 

at
 0

6:
37

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
49

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.494

	1 Introduction
	2 Experimental set-up
	2.1. Wind-tunnel facility and model geometry
	2.2. Pressure measurements
	2.3. Aerodynamic force measurements
	2.4. Velocity measurements and pressure field reconstruction
	2.5. Actuation system

	3 Global effects of forcing: scalings and evidence of an unsteady effect
	3.1. Aerodynamic drag variations of the forced wake: evidence of a peculiar unsteady Coanda effect
	3.2. Unsteady Coanda blowing along curved surfaces: coupling between forcing frequency and radius of curvature
	3.3. Time scales of the unsteady separation over the curved surface
	3.3.1. Role of the jet acceleration time scale
	3.3.2. Adaptation of the forcing frequency to the curved surface

	3.4. Effect of the unsteady reattachment and separation on the surface pressure

	4 Scaling the base drag changes: unsteady vorticity dynamics
	4.1. Local vorticity-flux dynamics at separation
	4.2. Scaling the saturation in base pressure recovery

	5 Mechanisms of pressure drag decrease: a matter of flow curvature near separation
	5.1. Global picture of the wake
	5.2. Flow curvature in the vicinity of separation
	5.3. An inviscid-flow model to evaluate frequency--radius coupling effects

	6 Concluding remarks and further discussions
	A Appendix A. Scaling of coherent structures and pulsed jet model
	A.1. Convection of the coherent structures
	A.2. Formation of structure II
	A.3. Formation of structure I

	B Appendix B. Pressure field reconstruction validation
	References

