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The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound
propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound
propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries.
A transform from the physical coordinate system to the curvilinear coordinate system has been
applied to solve more arbitrary geometries. For applicability of this method near the boundaries,
the acoustic velocity variables are solved for their curvilinear components. The performance of the
curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propa-
gation over an impedance strip for various types of shapes. Accuracy is shown to be related to the
maximum grid stretching ratio and deformation of the boundary shape and computational efficiency
is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilin-
ear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of
sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate
and efficient results for sound propagation over smoothly varying ground surfaces with high impe-
dances can be obtained. © 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4922954]
[VEO]

I. INTRODUCTION

Partly driven by the advances in computer power, wave-
based modeling for atmospheric sound propagation purposes
has attracted increased attention in recent years. Wave-based
modeling is especially of interest for treating problems
including effects of the ground surface, obstacles, and mete-
orology. Some recently reported methods are the finite-
difference time-domain method (FDTD),! the three dimen-
sional parabolic equation (PE) method,” and the transmission
line model (TLM).> Another time-domain method is the
Fourier pseudospectral time-domain method (PSTD).*®
PSTD is an attractive full volume-discretization method as
only two spatial points are required to resolve a wavelength
at spectral accuracy. It enables to solve the linearized Euler
equations (LEE), and effects as reflection, diffraction and
meteorological conditions are accurately accounted for.*> A
limitation in PSTD is the modeling of boundary conditions,
but treatment of rigid boundaries and boundaries with a dif-
ferent density have successfully been presented in Ref. 4.
Also, a local grid refinement technique has been proposed.’
The current PSTD method can only accurately solve
staircase-type geometries. For non-staircase-type geometries
that occur in real-life, e.g., oblique or curved surfaces, the
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method is only approximate. The error related to staircase-
type modeling of non-staircase-type boundaries is similar as
in FDTD methods, when the same discretization is used, and
has been reported before in Ref. 7. In related numerical
methodologies to the Fourier PSTD method, i.e., the
Chebyshev PSTD method and the FDTD method, a trans-
form of the coordinate system has been employed in order to
relax the constraints imposed by the Cartesian grid. An
often-used approach is the curvilinear coordinate trans-
form,® ' and also other approaches to model non-staircase
boundaries in FDTD have recently been presented in Refs.
11 and 12. Although application of the curvilinear coordinate
transform for the Fourier PSTD method has appeared in ear-
lier work by Nielsen,'? and in recent work by Albin ef al. in
combination with the Fourier continuation PSTD method,®
the combination with appropriate boundary conditions has
not been encountered. Here, a curvilinear transformation is
therefore applied to the extended Fourier PSTD method as
presented in Ref. 4 with the purpose to obtain an efficient
and accurate wave-based method for atmospheric sound
propagation with frequency independent real-valued imped-
ance boundary conditions. It needs to be stressed that the
current work should be considered as an intermediate step
towards a method with frequency-dependent impedance
boundary conditions.

The used methodology to solve atmospheric sound prop-
agation in the presence of non-staircase surfaces is presented
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in Sec. II. The governing equations are described, as well as
the curvilinear transform approach as adopted in this work,
including the algorithm used to map an arbitrary geometry
onto a Cartesian grid in a rectangular domain. The Fourier
PSTD method, the numerical methodology to solve the equa-
tions, is also described. In Sec. III, the geometrical configu-
rations as studied in this work are presented, as well as the
used boundary and initial conditions of the computations.
Results are presented in Sec. IV.

The performance of the Fourier PSTD method to solve
the curvilinear acoustic equations is first investigated in free
field. Then, the accuracy of treating a boundary with various
impedance properties is addressed, as well as propagation
over a trapezoidal and Gaussian shaped profile. Finally, the
ability of the method to model outdoor sound propagation
over a hill in a nocturnal boundary layer is demonstrated.

Il. METHODOLOGY
A. Curvilinear transformed linearized Euler equations

Atmospheric sound propagation can be described by the
LEE. For outdoor applications with sound propagating mostly
horizontally, the effective sound speed approach is often a
good assumption to include effects of moving media as well
as a spatially-dependent temperature, e.g., Ref. 14. It needs to
be stressed however that this is a simplification not correctly
handling meteorological effects for all configurations. For dry
air, the effective sound speed can be computed as

Cett = \/YR[273.15 + T(r)] /M + ug (r), (D)

where r = (x, z) is the coordinate vector in two dimensions,
y = 1.4 the specific heat ratio for air, R =8.3145 J/mol K the
molar gas constant, M = 0.0290 kg/mol the mean molar mass
of air, T the temperature in °C, ug, the mean velocity of the
medium in x-direction.

With the effective sound speed approach, the linearized
Euler equations in a two dimensional (2D) coordinate system
read
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with the acoustic velocity u= (u,, u.) and the acoustic pressure
p, and where the medium density p is allowed to vary through-
out the domain. In this work, air absorption has been neglected
and we have used p=1.2 kg/m3 and c.¢= 340 m/s for homo-
geneous medium configurations. The acoustic problem is
described by Eq. (2), completed by boundary and initial condi-
tions. A popular way to solve such a problem is by meshing the
whole domain by a Cartesian mesh and to approximate the so-
lution at every mesh point through numerically solving Eq. (2)
by FDTD or PSTD methods. However, the Cartesian mesh as
used in these methods will not capture arbitrarily shaped
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boundaries, i.e., non-staircase-type boundaries, in an accurate
way without having to over resolve the mesh. To be able to use
a solution method as FDTD and PSTD with a Cartesian mesh
for problems with non-staircase-type boundaries, a coordinate
transform is applied from the physical domain (an arbitrary
shape and with coordinates x,z) to the curvilinear domain (a
rectangular shape with coordinates &, #). The curvilinear coor-
dinates can thus be expressed as a function of the physical coor-
dinates, i.e., {=£&(x, z) and n=mn(x, z). Using a chain-rule
expansion, the relations Eq. (2) then read

a 9 9
81 pcetfli(éxaé+nxa > (5 a_€+'/’~_) 7:|;

814)(_ Z 0
8t - \aé n\ar, p?
o, o s

where the notation i; = 0i/0j is employed to express the par-
tial derivatives of the coordinate functions. Note that the
Chebyshev PSTD method is a special case of a transform of
the curvilinear Fourier PSTD method, with £ =arccos (x)
and n =arccos (z), with —1 <x, z< 1.

B. Fourier PSTD method

The numerical method adopted here to solve Eq. (2) in
the curvilinear coordinate system is the Fourier PSTD
method. The interested reader is referred to Ref. 4 for a more
rigorous presentation of the method. In PSTD, the geometries
of interest are discretized by an equidistant Cartesian mesh
with spatially staggered pressure and velocity nodes. The
equations are marched in time by a low-storage optimized
six-stage Runge-Kutta method.'> At every discrete time step,
the spatial derivatives are computed using the Fourier pseudo-
spectral method. For evaluation of the £-derivative of pressure
and a velocity u: along an unbounded ¢-direction with dimen-
sion MAE, the following expressions are used:

+
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where mAE" denotes mAE + (AE/2), F¢ is the forward and
F g?l the inverse discrete Fourier transform over and to the ¢&-
variable, and 0 <n, m <M. The spatial derivatives are multi-
plied in the wave number domain by e™/*:(A%/2) to evaluate
the derivatives at positions staggered by +(A&/2). Since fast
Fourier transforms (FFTs) are used to calculate derivatives,
only two spatial points per (projected) wavelength are
needed with this method. To account for reflecting bounda-
ries, derivatives along directions with a boundary medium
with a different density from air are used, as presented in
Refs. 4 and 16. According to these references, for the ¢-de-
rivative of pressure and velocity component u: along ¢-
direction with a boundary interface at £ =0 and dimension
—MAE < £ < M>AE, the following expressions are obtained
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For the derivatives of the pressure and normal velocity component in medium 1, i.e., £ <0, the following is used

Pi(mAL) = {Rl,m(—mA:) + Taap(mAQ),
ué(MAE—)’

ug 1 (mAE) =
g,l( ) { —Rlvlui(—mAfﬂ + lezug(mAg%)

_Ml SmS_L
0<m<M,—1,

_Mlgmg_la
OSmSMz—l.

Note that for p; and u; ;, derivatives are computed for —M ;A < & <M,AE, but are only physically valid and used for £ <0.

For the derivatives in medium 2, i.e., ¢ > 0, the following is used

Roop(—mAE) + Ty ,p(mAE),

pa(mAc) = {p(mA@,

Af) _ —Rz‘zug(—mAf"') +T2,1M§(mAf+)7
ugv(mAﬁ),

Here, R;; and T}, are the physical reflection and transmission
factors from medium j to medium j or /. In this work, the
transform of (x, z), the coordinates of the physical domain,
to (&, 1), the coordinates of the curvilinear domain, is
obtained using a Schwarz-Christoffel (SC) transform, utiliz-
ing the SC toolbox.'”'® A second transform is then made to
transform the curvilinear domain (a rectangle) that arises
from the SC transform into a rectangle for which an equidis-
tant mesh can be generated. A major interest of the SC trans-
form is that it preserves, from the physical to the curvilinear
domain, the grid angles between the grid lines. In particular,
it allows us to obtain an orthogonal grid. However, stretch-
ing of the physical grid relative to the curvilinear grid [see,
e.g., Fig. 1(a)] causes enlarged grid spacing in the physical
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FIG. 1. Excerpt of computational grid with staggered positions of pressure
(circles) and velocity components (triangles) (a) for configuration (A) and
(b) for configuration (B4) near the trapezoid, see Fig. 2. Gray-colored posi-
tions indicate the locations of the grid in the locally reacting medium, in
which derivatives are only computed perpendicular to the medium interface.
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coordinate system. The consequence is a lower maximum
resolved frequency, which will be reported in Sec. I'V.

The relations of Eq. (5) to compute the velocity compo-
nent normal to the boundary will only be approximate for the
computation of the ¢-derivative of the u, and u. components,
as they are generally not perpendicular to the &-direction. This
will be a limitation when solving Eq. (3) by the Fourier PSTD
methodology. To overcome this issue, the velocity compo-
nents u; and u,, of the curvilinear coordinate system are com-
puted instead of the velocity components u, and u, of the
physical coordinate system. For this purpose, u: and u, need
to be expressed as a function of u, and u,. Two main bases are
used to express the curvilinear components of a vector. In the
first one, which is the covariant basis, the basis vectors are
tangent to the curvilinear coordinates. In the second one,
which is the contravariant basis, the basis vectors are orthogo-
nal to the curvilinear coordinates. As the physical grid used in
this work is orthogonal, these two approaches are identical.
Denoting the unit vectors of the contravariant basis in the ¢
and n directions by e*=V¢/|V¢| and e'=Vy/|Vy|, with
VE= (¢, &) and Vip = (17,, 11.), the components of the acous-
tic velocity in the curvilinear coordinate system are given by

4 éxux + ézuz
Ue=u-€ = —F—,
yare
Uy =u-el = Nlhy + 1 U (6)
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In addition, the orthogonality of the curvilinear coordinate

system leads to the relation ¢°-¢”= 0, which implies

Sl + &:n. = 0. @)
Introducing Eq. (6) in Eq. (3) and using Eq. (7), we then
find

dp 0 0

9 —pCi <A1 + Ay 8_E> u: + (Bl + B> 8_77) ”n] )

Ous 1,9

o p rOE
Ouy 1. 0p
Zn_ _— g, X
ot o on’
with
Vf . (V?’])n éx(”x)” + éz(”z)n
| =— - _
Vel JE+e
A =|VE =&+ &,
B] _ V’7 : (Vi)f _ nx(éx)f + ”z(é:)f

V| ORI
By = |V = y/n? +n2. (8)

The spatial derivatives of the acoustic variables in Eq. (8)
are computed using Eq. (4) in free field and Eq. (5) in the
presence of a boundary medium. The boundary medium is
approached as being locally reacting by not computing
derivatives in the boundary medium, parallel to the interface.
This approach is approximative, as the Fourier PSTD
method of Eq. (5) is strictly valid for extendedly reacting
media with equal speeds of sound. Modelling an extendedly
reacting boundary medium by the curvilinear Fourier PSTD
method would imply that a separate conformal map of the
boundary medium should be made. The location of the grid
points at the media interfaces, i.e., the normal velocity com-
ponents, would however be different at both sides of the
interface. The local reaction approach is therefore adopted
here [see Fig. 1(b)], and the following equations are solved
in a boundary medium with the boundary parallel to the ¢&-
direction:

Op , Ou

o _pbdceffa_nna

Ouy, 1 op

= ©
ot Pra O

Subscript bd denotes the boundary medium and the sound
speed c.¢ for a homogeneous atmosphere is used. The first
order spatial derivatives of the metric quantities &, and 7, in
Eq. (8) are directly obtained from numerical evaluations of
the Schwarz-Christoffel mapping function. The cross deriva-
tives &, and 7, are obtained from using the Cauchy-Riemann
equations. Second order spatial derivatives are computed by
high order finite differences.
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All these derivatives are computed once, prior to march-
ing the acoustic variables in time. The metric quantities
should respect the Geometric Conservations Laws (CGL),
see Ref. 9. For the 2D case and the used non-conservative
form of the equations, the approach followed is not expected
to introduce large errors.

C. Non-reflecting boundaries and stability

Non-reflecting boundaries are obtained by imposing a
perfectly matched layer (PML), either to the boundary media
as well as to the outer boundaries of the air domain, and are
used as proposed for the Fourier PSTD method in Ref. 4.
This PML implies that the pressure is split into its compo-
nents p =p, + pe These relations are used when imposing
initial conditions, as described in Sec. III. In this work, the
following equations are used to include non-reflecting
boundary conditions:

8]): 0
7; = —pcy [(Al + A 8_§> Mg’} — a¢(r)pe,

ap, 0
7; = —pciy [(Bl +B; 3_71> ”n} — ay(r)py,

aué o 1 8p

E - _pAZ aé - Gé(r)ui’

Ouy, 1 0Op

E— —5328—’7—0”([’)1’{”7 (10)

with the PML coefficients o(r) =[o(r), a,,(r)]T being zero
or positive in the PML and zero elsewhere, see Ref. 4 for
their values. The equations are solved as in Ref. 4.

The stability of the Fourier PSTD method is determined
by the stability criteria arising from the used Runge-Kutta
method,15 i.e., the discrete time step should obey the follow-
ing condition:

1

At < m, (11)
with
A€ -1
fmax = \/5<—) )
Ceff / min

where fi,.« 1 an estimate of the maximum frequency related
to the discretization using the Fourier pseudospectral
method. Note that in 2D, this frequency is larger than the fre-
quency up to which accurate results are expected. Further D
is the dimensionality of the problem and (A/ces),,, the
minimal value of the ratio of the spatially dependent grid
spacing in the physical grid A over the speed of sound. For
a medium with a constant speed of sound, this implies

A€ A
Ceff / min Ceff
where A[; = min(S¢min,Symin)A is the smallest spatial

discretization of the physical grid and S = ,/x 4z and
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Sy = \/X; + z; are the stretching factors in ¢ and n direc-
tions. This leads to

Atslab < (1 3)

1 (A")
0.8v/D \Ceft / min
The estimate of the frequency up to which accuracy results
are expected is f = 1 (A°/ Ceft) - It is important to note that
the accuracy constraints originating from the Runge-Kutta
method requires Afyee < 5 (A°/ceff)na, for accurate results
up to this frequency. A value of Ar=min (At,.., Aty.p) has
been used in this manuscript.

lll. CONFIGURATIONS

To investigate the applicability of the curvilinear
Fourier PSTD method, various configurations have been
defined. The first configuration is a free field case. Figure
2(A) shows the source and receivers locations in free field.
Receivers are located in an arc around the source at a dis-
tance of 20A. The second configuration is a sound source

over an outdoor impedance surface or a rigid surface with an
impedance strip, see Fig. 2(B). The impedance strip is either
flat, or is shaped as a trapezoid or Gaussian shape according
to the following functions:

6A

XIA H for —6A<x<-2A
Ztp =\ H for —2A <x<2A

—x + 6A

— <x<

oy H for 2A <x <6A,
~(1/2)(6x/w) _ ,—~(1/2)3)’

e e

ZGauss = H ,

1 — e~ (/267

for—w/2 <x<w/2 (14)

with H the height of the trapezoid or Gaussian shape, and w
the width of the Gaussian shape.

The impedance strip has been assigned a real valued
impedance of Z = (p,;/p) = —(R, +1)/(R, — 1), with R,
= /1 — o, the reflection factor for sound waves normal inci-
dent to the surface and o, the absorption coefficient for
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B1) .................... p——— A (B2) ......... S (B) A
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: 30A : 0A lines represent reflection free bounda-
Receivers | ", Receivers ries, which are surrounded by a 50
Source E Source E cell-wide PML layer. Non-rigid ground
(10462) o (108.62) o surfaces are 50 cells wide (including
[ i >x" PML). (A) Free field, (B) ground sur-
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) with strip, (B3) Gaussian shaped strip,
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normal sound incidence. Three values have been used,
o, =0, a,=0.2, and o, =0.8. The source is located at coor-
dinates x = —10A, z=6A, and receivers are located around
the source as in the free field configuration (A). Finally, con-
figuration (C) is designed to demonstrate the applicability of
the method, i.e., combining a non-staircase boundary with an
inhomogeneous medium. The configuration includes a hill
whose center is located at a horizontal distance of 100 m
from the source position. The shape of the hill is described
by zgauss I Eq. (14), with w=50m and H=5m. Sound
propagation in a nocturnal boundary layer (NBL) is consid-
ered in Fig. 2(C), with temperature gradient (according to
Ref. 14)

T=Ty+AT(1 —e ) +T7, (15)

with To=14.4°C, AT=11.1°C, 2=0.021m ' and
I'=0.00975°C/m. The quantity z’ is here defined as the
height above the ground surface. The effect of the hill on the
meteorological conditions is not considered here. The wind
profile is computed according to

log(z'/h)

= Up, W; (16)

up ()

with u;, =3.3m/s, h,=3.4m, h; =0.1 m and 1y (z’) =0m
for z/ < hy. The NBL is ill behaved and difficult to quantify.
Typically, it is associated with low wind speeds near the
surface as the air layer above has a thermal profile that is
stratified.'” The temperature and wind velocity effects are
incorporated by using the effective sound speed approach
[see Eq. (1)]. In all configurations, acoustic waves are
excited by either prescribing a time-dependent pressure
function at a certain location in the domain, or by imposing
non-zero initial pressure conditions. For the investigation
in configurations (A) and (C), a time-dependent pressure
function is used at a specified grid point. In that case, the
right side of the first two equations in Eq. (10) gets the
source term —s(1)d(r|ry) = —s(H)o(p|py)/(S:S,), with p(&, 1)
the coordinate vector in curvilinear coordinates and rg and
ps the position of the source in the physical and curvilinear
domain, respectively. The time-dependent function s(¢) is
given by

s(f) = Asin (an;vt)e"’(”"y, 17

with t.=27.2A/cq the center time of the source, A=1/D,
f.=co/(16A) and a = 3¢}/ (64A2). The parameter ¢ is the
reference sound speed set to 340 m/s. As the discrete position
of the source does not necessarily coincide with a grid point
for the other configurations, non-zero initial pressure condi-
tions have been imposed for the configurations B,

plr.r=0) = e Pt

pe(r,t = 0) = cos*(0)p(r, o),
pﬂ(r7 = 0) = Sil’lz(e)p(l‘, tO)?
ug(r,t=0) =u,(r,to) =0, (18)
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with 0 the angle from a grid point to the source in the physi-
cal domain, see Fig. 2(A), and f§ = 3¢ °c3 /A%,

IV. RESULTS

Results in this section are presented as a function of the
number of grid points per wavelength N, = co/(fA). For this
purpose, a discrete Fourier transform has been applied to
the computed time dependent pressure signals at the
receivers positions. Level differences have statistically been
averaged over receiver positions and are computed as A—Lp

= (1/N)N, AL,, with N the number of receiver posi-
tions, AL, =|Lpn — Lpyrer|, With Ly, the computed result
and Ly, ;¢ the reference result, which is different for the vari-
ous configurations.

A. Free field

To study the effect of stretching and compression of the
grid, the scale of the vertical dimension of the physical do-
main is varied, while the number of discrete grid points is
kept equal, i.e., Se(x, z)=1 and S,(x, z) =C, and C ranges
from 1/8 to 8. Figure 3 shows the results of AL, ,,, with L, ;.
the computed level for C = 1. In Fig. 3(a) AL, , is displayed
for C=4. The error can be seen to appear for N, <8.
The error is largest in the z-direction, corresponding to a re-
ceiver angle 6 =90°. In Fig. 3(b), Ep is plotted for the vari-
ous values of C. The white circles in the plot correspond to
the expected smallest resolved wavenumber, expressed

180
150
120
90
60
30

0 (deg.)

NSRS}

—_

s, )

172
1/4

1/%4 32 16 8 4 2 0

N,

FIG. 3. (Color online) Results for configuration (A) with §,(x, z) =C. (a)
AL, , (dB) as a function of the receiver position and the grid resolution for
C=4.(b) Ep (dB) as a function of the grid stretching and the grid resolu-
tion. Circles correspond to the theoretical minimum resolved wave number.
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by 2An./A, with A =max(Se maxs Symax)A=CA. The
results indeed show values of Ep larger than 0dB for N,
numbers smaller than indicated by the circles. For values of
C <1, the accuracy remains close to N; =2. However, the
stability and accuracy criterion for As should be respected as
taking into account the various grid spacing.

B. Reflecting surface
1. Impedance plane

The accuracy of the locally reacting approach in the
PSTD method is first demonstrated for a flat surface with a
constant impedance, and a flat rigid surface with an imped-
ance strip with width w=12 A, see configurations (B1) and
(B2) in Fig. 2. Three impedance values have been taken, as
printed in Fig. 2, and represent a rigid ground surface or a
ground surface with an absorption coefficient for normal
incident sound waves of 0.2 and 0.8, respectively. For this
configuration, no curvilinear approach needs to be taken,
implying that the accuracy of the impedance approach is
shown separate from the curvilinear approximation.
Calculations are initiated with the conditions from Eq. (18).
For the three impedance values, results are shown in Fig. 4
for AL, w=|Lpn — Lpyrer|s With L, ¢ the reference result
computed with an analytical solution according to Ref. 20
for configuration (B1) and with the boundary element
method utilizing the openBEM toolbox*' for configuration

(B2). In the boundary element method, at least 10 elements
per wavelength have been used for all calculations. The
results are shown as a function of the receiver angle 6 and
the N, number. The rigid ground case performs best and
PSTD gives largest deviations for the softest ground (strip).
The error increases with frequency and for angles close to
grazing incidence. The results show that the finite strip width
does not introduce additional errors compared to the surface
with the constant impedance value. The results show that
PSTD is most useful to represent locally reacting boundary
surface with a high surface impedance. It can be noticed that
the Fourier PSTD method has a high accuracy for extendedly
reacting boundaries for real-valued surface impedances,'®
but this approach does not fit into the current framework of
the curvilinear Fourier PSTD method as already pointed out.

2. Trapezoidal and Gaussian shaped impedance strip

For investigating the accuracy of the curvilinear
Fourier PSTD method, configurations (B3) and (B4) from
Fig. 2 are now considered. As for the flat ground surface,
three values of the normalized surface impedance of the
trapezoidal and Gaussian shaped strip with width w=12 A
have been used. The same source and receiver positions
have been adopted as in configurations (B1) and (B2).
Calculations have been carried out for various heights of
the trapezoid and Gaussian shape, i.e., H in Eq. (14) ranges

(@) (b)
180 Q 180 Q
150 1 150 1
5 120 0758 5 120 0.75
3 90 ) < 90 ~
< 60 0.5 @ 60 05
30 025 30 0.25
0 0
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FIG. 5. Mesh close-up around a (a) Gaussian shape and (b) trapezoid, with
(thick) modelled geometry (thin) u,-mesh.
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from O to 10A, and for two discretizations A and A’ = A/2.
For the discretization of A, Ep is plotted in Fig. 5 as a
function of the N; number and H. As for configuration
(B2), the boundary element method has been used to pro-
duce the reference results. For all three impedance values, a
clear decrease of the accuracy is visible for an increasing
height of the trapezoid. The error from the curvilinear
PSTD method can be attributed to three causes. The first is
the lower accuracy for the lower value of the surface im-
pedance, as shown for configuration (B2). The second is
the local stretching in the physical domain. Figure 5 indeed
shows that the cells are locally larger near the Gaussian
shape and trapezoid. To estimate the error from this stretch-
ing, the largest grid spacing is computed from the grids,
and the corresponding smallest resolved wavelength is
derived. These values will not fully explain Ep of Fig. 6,
in contrast to the free field configuration (A). The third
error is namely due to the approximation of modeling the
boundary shape, and may be related to the maximum angu-
lar change of the surface shape that a grid cell needs to han-
dle. To account for the latter two effects, the minimum N
number in all numerical calculations expressed by N, num,
for highest two impedance values, is fitted to the next
model, the apparent resolved number of points per wave-
length expressed by N 4pp,

0.75
0.5
0.25
0
1 FIG. 6. (Color online) Results for con-
figuration left, (B3) and right, (B4).
0.75 AL, results for grid spacing A as a
function of the Gaussian shape or tra-
0.5 pezoid height H and N, for [(a), (b)]
Z, =00, [(¢), (D] Z,=17.9, [(e), (D]
0.25 Z,=2.6.
0
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with Af,,.x the maximum angular change of the boundary in
the configuration and k=1.1¢ % and f=1.64 coefficients
found from fitting to the computed N, ., Which is deter-
mined to be the N, value above which AL, >0.5dB. The
values of N, ,p, are also shown by the circles in Fig. 6, indi-
cating that a rather good prediction can be made from this
model for the studied configurations. In Fig. 7, the numerical
computed N ,,,, values for all computed configurations are
plotted against N; ,pp. The performance of the curvilinear
PSTD for the configurations (B3) and (B4) from Fig. 2 is
also compared with results from the staircase PSTD method,
as shown in Fig. 8. This means that Eqs. (2) are directly
solved by the PSTD method with Cartesian mesh. In the
staircase PSTD method, boundary interfaces are located at
acoustic velocity components, where the nearest velocity
components to the shape of the trapezoid or Gaussian shape
are taken as boundary interface. The staircase PSTD method
performs worse than the curvilinear PSTD method, espe-
cially for the highest two impedance values and lower
heights of the trapezoid and Gaussian shape. To emphasize
the accuracy of the curvilinear Fourier PSTD method for
N; >N, app, Fig. 9 shows the excess attenuation EA =L,
— Ly, frec from the boundary element method as well as the
curvilinear Fourier PSTD method for the configurations
(B2), (B3), and (B4) as a function of the receiver position for
N,=28. The plot also shows the impact of the changed

(b)
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FIG. 9. (Color online) Excess attenuation for the three configurations (B)
with Z,=17.9 as a function of the receiver position for f = ¢/8A. Heights
of the Gaussian shape and the trapezoid is 3A.

configuration, as the location of the interferences in the spec-
trum depends strongly on the ground profile. This is also
visible from Fig. 10, where the computed impulse responses
with the curvilinear Fourier PSTD method at receiver posi-
tion 0 =90° are shown. The first arrival around 7 =200Az is
the direct wave and is the same for the three configuration as
it does not depend on the boundary conditions. The second
arrival around 7=2300A¢, corresponding to the wave
reflected/diffracted by the ground, is however seen to be
modified by the ground profile. Furthermore, a third arrival
can be distinguished around 7= 500A¢ for the configuration
(B4).

C. Inhomogeneous atmosphere

To demonstrate the applicability of the curvilinear
Fourier PSTD method, sound propagation over a hill in an
NBL is computed. In the configuration of Fig. 2(C), the
direction of the wind velocity is from the source to the re-
ceiver positions. Since the temperature increases with height,
temperature and wind velocity cause the sound waves to be
bent downwards from source to receiver. Figure 11(a) shows
the level difference ALy n =L, n ngL — Lp, n, With L, ; nBL
the level at the receiver positions in the presence of the noc-
turnal boundary layer and L, ,, the levels for an atmosphere
with a constant speed of sound of 340m/s. The results are
shown in 1/3 octave bands up to the band for which this
computation is valid according to Eq. (19), which is the
1250 Hz 1/3 octave band with A=0.1m, and N;_,,,=2.6.
Clearly, the large influence of the NBL is visible, with
increased levels for the lower and higher frequencies, and

0.1F
£ 005
3
= 0
—% 0.05
< , Strip (B2)

— — - Gaussian (B3)
-0.1 ) ‘ ‘ ‘ —TraPezoid (B4)[|
0 100 200 300 400 500 600

Time (At)

FIG. 10. Computed impulse responses with PSTD at receiver position with
0 =90 degree, for the three configurations (B) with Z, = 17.9.
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FIG. 11. (Color online) Results for configuration (C). (a) Excess level AL, ,
due to the nocturnal boundary layer (NBL) as a function of 1/3 octave band
and receiver height, (b) computed impulse responses at receiver position
(500 and O m). Results are calculated for sound propagation in an homoge-
neous atmosphere and in a NBL (thick and thin line, respectively).

lower levels around the 315Hz 1/3 octave band. Figure
11(b) shows the computed impulse response at the receiver
position at the ground, illustrating the earlier time of arrival
in the presence of the NBL, as well as the longer response
due to multiple reflections of the sound waves with the
ground surface.

V. CONCLUSIONS

To compute atmospheric sound propagation in the pres-
ence of non-staircase type boundaries with the Fourier PSTD
method, an efficient time-domain wave-based prediction
method, a curvilinear approach has been taken for 2D config-
urations with real valued impedance boundary conditions. In
free field, results show that a higher demand on discretiza-
tion is needed as the grid gets more stretched. For configura-
tions involving boundaries, an orthogonal curvilinear map is
applied, yielding the advantage of applicability of computing
pressure derivatives and velocity components normal to the
boundaries as in the staircase PSTD method. Results have
been compared with calculations using the boundary element
method. The curvilinear Fourier PSTD method requires a
higher number of discrete spatial grid points to resolve a sin-
gle wavelength, i.e., higher than the two points per wave-
length criterion of the Cartesian equidistant PSTD method
and this number is shown to be related to the largest grid
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spacing and the deformation of the boundary shape
expressed in a maximum angular value. This approach is
valid for boundaries with a high surface impedance, for
which the used locally reacting approach is more applicable
than for surfaces with low impedance values. The Fourier
PSTD method has a lower accuracy for low-valued surface
impedances. The applicability of the curvilinear Fourier
PSTD method to compute outdoor sound propagation in the
presence of a hill in a nocturnal boundary layer is finally
demonstrated. The higher number of discrete points per
wavelength, as well as the decreased discrete time step
related to the smallest grid cell in the physical domain
reduce the efficiency of the Fourier PSTD method for severe
grid deformations. Therefore, from the investigated configu-
rations, it may be concluded that the current curvilinear
PSTD approach holds for problems with low grid deforma-
tions and boundaries with high surface impedances. The cur-
vilinear PSTD method has shown to clearly outperform the
staircase PSTD method for these cases. An extension to 3D
configuration in which the third dimension may be modeled
by a Cartesian mesh is straightforward. Further work also
includes the application of the curvilinear method to the
Fourier Continuation PSTD method where the geometry is
divided into subdomains. Such a methodology does not
require an orthogonal mapping as boundaries can be mod-
eled by imposing boundary conditions. This increases the ef-
ficiency as the grid stretching values of S will remain
modest. Also the combination of the curvilinear method with
more advanced boundary conditions, i.e., boundary condi-
tions with arbitrary impedance values, will be addressed.
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