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The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound

propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound

propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries.

A transform from the physical coordinate system to the curvilinear coordinate system has been

applied to solve more arbitrary geometries. For applicability of this method near the boundaries,

the acoustic velocity variables are solved for their curvilinear components. The performance of the

curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propa-

gation over an impedance strip for various types of shapes. Accuracy is shown to be related to the

maximum grid stretching ratio and deformation of the boundary shape and computational efficiency

is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilin-

ear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of

sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate

and efficient results for sound propagation over smoothly varying ground surfaces with high impe-

dances can be obtained. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4922954]

[VEO] Pages: 425–435

I. INTRODUCTION

Partly driven by the advances in computer power, wave-

based modeling for atmospheric sound propagation purposes

has attracted increased attention in recent years. Wave-based

modeling is especially of interest for treating problems

including effects of the ground surface, obstacles, and mete-

orology. Some recently reported methods are the finite-

difference time-domain method (FDTD),1 the three dimen-

sional parabolic equation (PE) method,2 and the transmission

line model (TLM).3 Another time-domain method is the

Fourier pseudospectral time-domain method (PSTD).4,6

PSTD is an attractive full volume-discretization method as

only two spatial points are required to resolve a wavelength

at spectral accuracy. It enables to solve the linearized Euler

equations (LEE), and effects as reflection, diffraction and

meteorological conditions are accurately accounted for.4,5 A

limitation in PSTD is the modeling of boundary conditions,

but treatment of rigid boundaries and boundaries with a dif-

ferent density have successfully been presented in Ref. 4.

Also, a local grid refinement technique has been proposed.5

The current PSTD method can only accurately solve

staircase-type geometries. For non-staircase-type geometries

that occur in real-life, e.g., oblique or curved surfaces, the

method is only approximate. The error related to staircase-

type modeling of non-staircase-type boundaries is similar as

in FDTD methods, when the same discretization is used, and

has been reported before in Ref. 7. In related numerical

methodologies to the Fourier PSTD method, i.e., the

Chebyshev PSTD method and the FDTD method, a trans-

form of the coordinate system has been employed in order to

relax the constraints imposed by the Cartesian grid. An

often-used approach is the curvilinear coordinate trans-

form,8–10 and also other approaches to model non-staircase

boundaries in FDTD have recently been presented in Refs.

11 and 12. Although application of the curvilinear coordinate

transform for the Fourier PSTD method has appeared in ear-

lier work by Nielsen,13 and in recent work by Albin et al. in

combination with the Fourier continuation PSTD method,6

the combination with appropriate boundary conditions has

not been encountered. Here, a curvilinear transformation is

therefore applied to the extended Fourier PSTD method as

presented in Ref. 4 with the purpose to obtain an efficient

and accurate wave-based method for atmospheric sound

propagation with frequency independent real-valued imped-

ance boundary conditions. It needs to be stressed that the

current work should be considered as an intermediate step

towards a method with frequency-dependent impedance

boundary conditions.

The used methodology to solve atmospheric sound prop-

agation in the presence of non-staircase surfaces is presenteda)Electronic mail: m.c.j.hornikx@tue.nl
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in Sec. II. The governing equations are described, as well as

the curvilinear transform approach as adopted in this work,

including the algorithm used to map an arbitrary geometry

onto a Cartesian grid in a rectangular domain. The Fourier

PSTD method, the numerical methodology to solve the equa-

tions, is also described. In Sec. III, the geometrical configu-

rations as studied in this work are presented, as well as the

used boundary and initial conditions of the computations.

Results are presented in Sec. IV.

The performance of the Fourier PSTD method to solve

the curvilinear acoustic equations is first investigated in free

field. Then, the accuracy of treating a boundary with various

impedance properties is addressed, as well as propagation

over a trapezoidal and Gaussian shaped profile. Finally, the

ability of the method to model outdoor sound propagation

over a hill in a nocturnal boundary layer is demonstrated.

II. METHODOLOGY

A. Curvilinear transformed linearized Euler equations

Atmospheric sound propagation can be described by the

LEE. For outdoor applications with sound propagating mostly

horizontally, the effective sound speed approach is often a

good assumption to include effects of moving media as well

as a spatially-dependent temperature, e.g., Ref. 14. It needs to

be stressed however that this is a simplification not correctly

handling meteorological effects for all configurations. For dry

air, the effective sound speed can be computed as

ceff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cR½273:15þ TðrÞ�=M

p
þ u0;xðrÞ; (1)

where r¼ (x, z) is the coordinate vector in two dimensions,

c¼ 1.4 the specific heat ratio for air, R¼ 8.3145 J/mol K the

molar gas constant, M¼ 0.0290 kg/mol the mean molar mass

of air, T the temperature in �C, u0,x the mean velocity of the

medium in x-direction.

With the effective sound speed approach, the linearized

Euler equations in a two dimensional (2D) coordinate system

read

@p

@t
¼ �qc2

eff

@ux

@x
þ @uz

@z

� �
;

@ux

@t
¼ � 1

q
@p

@x
;

@uz

@t
¼ � 1

q
@p

@z
; (2)

with the acoustic velocity u¼ (ux, uz) and the acoustic pressure

p, and where the medium density q is allowed to vary through-

out the domain. In this work, air absorption has been neglected

and we have used q¼ 1.2 kg/m3 and ceff¼ 340 m/s for homo-

geneous medium configurations. The acoustic problem is

described by Eq. (2), completed by boundary and initial condi-

tions. A popular way to solve such a problem is by meshing the

whole domain by a Cartesian mesh and to approximate the so-

lution at every mesh point through numerically solving Eq. (2)

by FDTD or PSTD methods. However, the Cartesian mesh as

used in these methods will not capture arbitrarily shaped

boundaries, i.e., non-staircase-type boundaries, in an accurate

way without having to over resolve the mesh. To be able to use

a solution method as FDTD and PSTD with a Cartesian mesh

for problems with non-staircase-type boundaries, a coordinate

transform is applied from the physical domain (an arbitrary

shape and with coordinates x,z) to the curvilinear domain (a

rectangular shape with coordinates n, g). The curvilinear coor-

dinates can thus be expressed as a function of the physical coor-

dinates, i.e., n¼ n(x, z) and g¼ g(x, z). Using a chain-rule

expansion, the relations Eq. (2) then read

@p

@t
¼�qc2

eff nx
@

@n
þ gx

@

@g

� �
ux þ nz

@

@n
þ gz

@

@g

� �
uz

� �
;

@ux

@t
¼� 1

q
nx
@

@n
þ gx

@

@g

� �
p;

@uz

@t
¼� 1

q
nz
@

@n
þ gz

@

@g

� �
p; (3)

where the notation ij ¼ @i=@j is employed to express the par-

tial derivatives of the coordinate functions. Note that the

Chebyshev PSTD method is a special case of a transform of

the curvilinear Fourier PSTD method, with n¼ arccos (x)

and g¼ arccos (z), with �1� x, z� 1.

B. Fourier PSTD method

The numerical method adopted here to solve Eq. (2) in

the curvilinear coordinate system is the Fourier PSTD

method. The interested reader is referred to Ref. 4 for a more

rigorous presentation of the method. In PSTD, the geometries

of interest are discretized by an equidistant Cartesian mesh

with spatially staggered pressure and velocity nodes. The

equations are marched in time by a low-storage optimized

six-stage Runge-Kutta method.15 At every discrete time step,

the spatial derivatives are computed using the Fourier pseudo-

spectral method. For evaluation of the n-derivative of pressure

and a velocity un along an unbounded n-direction with dimen-

sion MDn, the following expressions are used:

@p nDnþ
� �
@n

¼ F�1
n jkne�jkn Dn=2ð ÞF n p mDnð Þ½ �
n o

;

@un nDnð Þ
@n

¼ F�1
n jknejkn Dn=2ð ÞF n un mDnþ

� �h in o
; (4)

where mDnþ denotes mDnþ ðDn=2Þ, F n is the forward and

F�1
n the inverse discrete Fourier transform over and to the n-

variable, and 0� n, m�M. The spatial derivatives are multi-

plied in the wave number domain by e6jknðDn=2Þ to evaluate

the derivatives at positions staggered by 7ðDn=2Þ. Since fast

Fourier transforms (FFTs) are used to calculate derivatives,

only two spatial points per (projected) wavelength are

needed with this method. To account for reflecting bounda-

ries, derivatives along directions with a boundary medium

with a different density from air are used, as presented in

Refs. 4 and 16. According to these references, for the n-de-

rivative of pressure and velocity component un along n-

direction with a boundary interface at n¼ 0 and dimension

�M1Dn< n<M2Dn, the following expressions are obtained
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@p nDnþ
� �
@n

¼ F�1
n jkne�jkn Dn=2ð ÞF n

p1

p2

" # !
;
�M1 � n � �1;

0 � n � M2 � 1;

@un nDnð Þ
@n

¼ F�1
n jknejkn Dn=2ð ÞF n

un;1

un;2

" # !
;
�M1 � n � �1;

0 � n � M2 � 1:
(5)

For the derivatives of the pressure and normal velocity component in medium 1, i.e., n� 0, the following is used

p1ðmDnÞ ¼
pðmDnÞ;
R1;1pð�mDnÞ þ T2;1pðmDnÞ;

�M1 � m � �1;

0 � m � M2 � 1;

(

un;1ðmDnÞ ¼
unðmDnþÞ;
�R1;1unð�mDnþÞ þ T1;2unðmDnþÞ

�M1 � m � �1;

0 � m � M2 � 1:

(

Note that for p1 and un,1, derivatives are computed for �M1Dn� n<M2Dn, but are only physically valid and used for n� 0.

For the derivatives in medium 2, i.e., n� 0, the following is used

p2ðmDnÞ ¼
R2;2pð�mDnÞ þ T1;2pðmDnÞ;
pðmDnÞ;

�M1 � m � �1;

0 � m � M2 � 1;

(

un;2ðmDnÞ ¼
�R2;2unð�mDnþÞ þ T2;1unðmDnþÞ;
unðmDnþÞ;

�M1 � m � �1;

0 � m � M2 � 1:

(

Here, Rj,j and Tj,l are the physical reflection and transmission

factors from medium j to medium j or l. In this work, the

transform of (x, z), the coordinates of the physical domain,

to (n, g), the coordinates of the curvilinear domain, is

obtained using a Schwarz-Christoffel (SC) transform, utiliz-

ing the SC toolbox.17,18 A second transform is then made to

transform the curvilinear domain (a rectangle) that arises

from the SC transform into a rectangle for which an equidis-

tant mesh can be generated. A major interest of the SC trans-

form is that it preserves, from the physical to the curvilinear

domain, the grid angles between the grid lines. In particular,

it allows us to obtain an orthogonal grid. However, stretch-

ing of the physical grid relative to the curvilinear grid [see,

e.g., Fig. 1(a)] causes enlarged grid spacing in the physical

coordinate system. The consequence is a lower maximum

resolved frequency, which will be reported in Sec. IV.

The relations of Eq. (5) to compute the velocity compo-

nent normal to the boundary will only be approximate for the

computation of the n-derivative of the ux and uz components,

as they are generally not perpendicular to the n-direction. This

will be a limitation when solving Eq. (3) by the Fourier PSTD

methodology. To overcome this issue, the velocity compo-

nents un and ug of the curvilinear coordinate system are com-

puted instead of the velocity components ux and uz of the

physical coordinate system. For this purpose, un and ug need

to be expressed as a function of ux and uz. Two main bases are

used to express the curvilinear components of a vector. In the

first one, which is the covariant basis, the basis vectors are

tangent to the curvilinear coordinates. In the second one,

which is the contravariant basis, the basis vectors are orthogo-

nal to the curvilinear coordinates. As the physical grid used in

this work is orthogonal, these two approaches are identical.

Denoting the unit vectors of the contravariant basis in the n
and g directions by en¼rn/jrnj and eg¼rg/jrgj, with

rn¼ (nx, nz) and rg¼ (gx, gz), the components of the acous-

tic velocity in the curvilinear coordinate system are given by

un ¼ u � en ¼ nxux þ nzuzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
z

q ;

ug ¼ u � eg ¼ gxux þ gzuzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x þ g2
z

p : (6)

FIG. 1. Excerpt of computational grid with staggered positions of pressure

(circles) and velocity components (triangles) (a) for configuration (A) and

(b) for configuration (B4) near the trapezoid, see Fig. 2. Gray-colored posi-

tions indicate the locations of the grid in the locally reacting medium, in

which derivatives are only computed perpendicular to the medium interface.
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In addition, the orthogonality of the curvilinear coordinate

system leads to the relation en�eg¼ 0, which implies

nxgx þ nzgz ¼ 0: (7)

Introducing Eq. (6) in Eq. (3) and using Eq. (7), we then

find

@p

@t
¼ �qc2

eff A1 þ A2

@

@n

� �
un þ B1 þ B2

@

@g

� �
ug

" #
;

@un

@t
¼ � 1

q
A2

@p

@n
;

@ug

@t
¼ � 1

q
B2

@p

@g
;

with

A1 ¼ �
rn � rgð Þg
jrnj ¼ �

nx gxð Þg þ nz gzð Þgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
z

q ;

A2 ¼ jrnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
z

q
;

B1 ¼ �
rg � rnð Þn
jrgj ¼ �

gx nxð Þn þ gz nzð Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x þ g2
z

p ;

B2 ¼ jrgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x þ g2
z

q
: (8)

The spatial derivatives of the acoustic variables in Eq. (8)

are computed using Eq. (4) in free field and Eq. (5) in the

presence of a boundary medium. The boundary medium is

approached as being locally reacting by not computing

derivatives in the boundary medium, parallel to the interface.

This approach is approximative, as the Fourier PSTD

method of Eq. (5) is strictly valid for extendedly reacting

media with equal speeds of sound. Modelling an extendedly

reacting boundary medium by the curvilinear Fourier PSTD

method would imply that a separate conformal map of the

boundary medium should be made. The location of the grid

points at the media interfaces, i.e., the normal velocity com-

ponents, would however be different at both sides of the

interface. The local reaction approach is therefore adopted

here [see Fig. 1(b)], and the following equations are solved

in a boundary medium with the boundary parallel to the n-

direction:

@p

@t
¼ �qbdc2

eff

@ug

@g
;

@ug

@t
¼ � 1

qbd

@p

@g
: (9)

Subscript bd denotes the boundary medium and the sound

speed ceff for a homogeneous atmosphere is used. The first

order spatial derivatives of the metric quantities nx and gz in

Eq. (8) are directly obtained from numerical evaluations of

the Schwarz-Christoffel mapping function. The cross deriva-

tives nz and gx are obtained from using the Cauchy-Riemann

equations. Second order spatial derivatives are computed by

high order finite differences.

All these derivatives are computed once, prior to march-

ing the acoustic variables in time. The metric quantities

should respect the Geometric Conservations Laws (CGL),

see Ref. 9. For the 2D case and the used non-conservative

form of the equations, the approach followed is not expected

to introduce large errors.

C. Non-reflecting boundaries and stability

Non-reflecting boundaries are obtained by imposing a

perfectly matched layer (PML), either to the boundary media

as well as to the outer boundaries of the air domain, and are

used as proposed for the Fourier PSTD method in Ref. 4.

This PML implies that the pressure is split into its compo-

nents p¼ pgþ pn. These relations are used when imposing

initial conditions, as described in Sec. III. In this work, the

following equations are used to include non-reflecting

boundary conditions:

@pn

@t
¼ �qc2

eff A1 þ A2

@

@n

� �
un

� �
� rn rð Þpn;

@pg

@t
¼ �qc2

eff B1 þ B2

@

@g

� �
ug

� �
� rg rð Þpg;

@un

@t
¼ � 1

q
A2

@p

@n
� rn rð Þun;

@ug

@t
¼ � 1

q
B2

@p

@g
� rg rð Þug; (10)

with the PML coefficients r(r)¼ [rn(r), rg(r)]T being zero

or positive in the PML and zero elsewhere, see Ref. 4 for

their values. The equations are solved as in Ref. 4.

The stability of the Fourier PSTD method is determined

by the stability criteria arising from the used Runge-Kutta

method,15 i.e., the discrete time step should obey the follow-

ing condition:

Dtstab <
1

0:8fmax

; (11)

with

fmax ¼
ffiffiffiffi
D
p Dc

ceff

� ��1

min

;

where fmax is an estimate of the maximum frequency related

to the discretization using the Fourier pseudospectral

method. Note that in 2D, this frequency is larger than the fre-

quency up to which accurate results are expected. Further D
is the dimensionality of the problem and ðDc=ceffÞmin the

minimal value of the ratio of the spatially dependent grid

spacing in the physical grid Dc over the speed of sound. For

a medium with a constant speed of sound, this implies

Dc

ceff

� �
min

¼ Dc
min

ceff

� �
; (12)

where Dc
min ¼ minðSn;min; Sg;minÞD is the smallest spatial

discretization of the physical grid and Sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
n þ z2

n

q
and
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Sg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
g þ z2

g

q
are the stretching factors in n and g direc-

tions. This leads to

Dtstab <
1

0:8
ffiffiffiffi
D
p Dc

ceff

� �
min

: (13)

The estimate of the frequency up to which accuracy results

are expected is f ¼ 1
2
ðDc=ceffÞ�1

max. It is important to note that

the accuracy constraints originating from the Runge-Kutta

method requires Dtacc <
1
2
ðDc=ceffÞmax for accurate results

up to this frequency. A value of Dt¼min (Dtacc, Dtstab) has

been used in this manuscript.

III. CONFIGURATIONS

To investigate the applicability of the curvilinear

Fourier PSTD method, various configurations have been

defined. The first configuration is a free field case. Figure

2(A) shows the source and receivers locations in free field.

Receivers are located in an arc around the source at a dis-

tance of 20D. The second configuration is a sound source

over an outdoor impedance surface or a rigid surface with an

impedance strip, see Fig. 2(B). The impedance strip is either

flat, or is shaped as a trapezoid or Gaussian shape according

to the following functions:

zTrap ¼

xþ 6D
4D

H for � 6D � x � �2D

H for � 2D � x � 2D

�xþ 6D
4D

H for 2D � x � 6D;

8>>>>><
>>>>>:

zGauss ¼ H
e� 1=2ð Þ 6x=wð Þ2 � e� 1=2ð Þ 3ð Þ2

1� e� 1=2ð Þ 3ð Þ2
;

for� w=2 � x � w=2 (14)

with H the height of the trapezoid or Gaussian shape, and w
the width of the Gaussian shape.

The impedance strip has been assigned a real valued

impedance of Z ¼ ðqbd=qÞ ¼ �ðRn þ 1Þ=ðRn � 1Þ; with Rn

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� an

p
the reflection factor for sound waves normal inci-

dent to the surface and an the absorption coefficient for

FIG. 2. Studied configurations. Dashed

lines represent reflection free bounda-

ries, which are surrounded by a 50

cell-wide PML layer. Non-rigid ground

surfaces are 50 cells wide (including

PML). (A) Free field, (B) ground sur-

face: (B1) flat ground, (B2) flat ground

with strip, (B3) Gaussian shaped strip,

(B4) trapezoidal shaped strip, (C) ground

surface with hill and effective sound

speed profile according to a nocturnal

boundary layer.

J. Acoust. Soc. Am. 138 (1), July 2015 Maarten Hornikx and Didier Dragna 429



normal sound incidence. Three values have been used,

an¼ 0, an¼ 0.2, and an¼ 0.8. The source is located at coor-

dinates x¼�10D, z¼ 6D, and receivers are located around

the source as in the free field configuration (A). Finally, con-

figuration (C) is designed to demonstrate the applicability of

the method, i.e., combining a non-staircase boundary with an

inhomogeneous medium. The configuration includes a hill

whose center is located at a horizontal distance of 100 m

from the source position. The shape of the hill is described

by zGauss in Eq. (14), with w¼ 50 m and H¼ 5 m. Sound

propagation in a nocturnal boundary layer (NBL) is consid-

ered in Fig. 2(C), with temperature gradient (according to

Ref. 14)

T ¼ T0 þ DTð1� e�az0 Þ þ Cz0; (15)

with T0¼ 14.4 �C, DT¼ 11.1 �C, a¼ 0.021 m�1 and

C¼ 0.00975 �C/m. The quantity z0 is here defined as the

height above the ground surface. The effect of the hill on the

meteorological conditions is not considered here. The wind

profile is computed according to

u0;x z0ð Þ ¼ uh2

log z0=h1ð Þ
log h2=h1ð Þ ; (16)

with uh2¼ 3.3 m/s, h2¼ 3.4 m, h1¼ 0.1 m and u0,x(z
0)¼ 0 m

for z0< h1. The NBL is ill behaved and difficult to quantify.

Typically, it is associated with low wind speeds near the

surface as the air layer above has a thermal profile that is

stratified.19 The temperature and wind velocity effects are

incorporated by using the effective sound speed approach

[see Eq. (1)]. In all configurations, acoustic waves are

excited by either prescribing a time-dependent pressure

function at a certain location in the domain, or by imposing

non-zero initial pressure conditions. For the investigation

in configurations (A) and (C), a time-dependent pressure

function is used at a specified grid point. In that case, the

right side of the first two equations in Eq. (10) gets the

source term �s(t)d(rjrs)¼�s(t)d(qjqs)/(SnSg), with q(n, g)

the coordinate vector in curvilinear coordinates and rs and

qs the position of the source in the physical and curvilinear

domain, respectively. The time-dependent function s(t) is

given by

sðtÞ ¼ A sin ð2pfctÞe�aðt�tcÞ2 ; (17)

with tc¼ 27.2D/c0 the center time of the source, A¼ 1/D,

fc¼ c0/(16D) and a ¼ 3c2
0=ð64D2Þ. The parameter c0 is the

reference sound speed set to 340 m/s. As the discrete position

of the source does not necessarily coincide with a grid point

for the other configurations, non-zero initial pressure condi-

tions have been imposed for the configurations B,

pðr; t ¼ 0Þ ¼ e�bjr�rsj2 ;

pnðr; t ¼ 0Þ ¼ cos2ðhÞpðr; t0Þ;
pgðr; t ¼ 0Þ ¼ sin2ðhÞpðr; t0Þ;
unðr; t ¼ 0Þ ¼ ugðr; t0Þ ¼ 0; (18)

with h the angle from a grid point to the source in the physi-

cal domain, see Fig. 2(A), and b ¼ 3e�6c2
0=D

2.

IV. RESULTS

Results in this section are presented as a function of the

number of grid points per wavelength Nk¼ c0/(fD). For this

purpose, a discrete Fourier transform has been applied to

the computed time dependent pressure signals at the

receivers positions. Level differences have statistically been

averaged over receiver positions and are computed as DLp

¼ ð1=NÞ
PN

n¼1 DLp;n with N the number of receiver posi-

tions, DLp,n¼ jLp,n � Lp,refj, with Lp,n the computed result

and Lp,ref the reference result, which is different for the vari-

ous configurations.

A. Free field

To study the effect of stretching and compression of the

grid, the scale of the vertical dimension of the physical do-

main is varied, while the number of discrete grid points is

kept equal, i.e., Sn(x, z)¼ 1 and Sg(x, z)¼C, and C ranges

from 1/8 to 8. Figure 3 shows the results of DLp,n, with Lp,ref

the computed level for C¼ 1. In Fig. 3(a) DLp,n is displayed

for C¼ 4. The error can be seen to appear for Nk� 8.

The error is largest in the z-direction, corresponding to a re-

ceiver angle h¼ 90�. In Fig. 3(b), DLp is plotted for the vari-

ous values of C. The white circles in the plot correspond to

the expected smallest resolved wavenumber, expressed

FIG. 3. (Color online) Results for configuration (A) with Sg(x, z)¼C. (a)

DLp,n (dB) as a function of the receiver position and the grid resolution for

C¼ 4. (b) DLp (dB) as a function of the grid stretching and the grid resolu-

tion. Circles correspond to the theoretical minimum resolved wave number.
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by 2Dmax/D, with Dmax¼max(Sn,max, Sg,max)D¼CD. The

results indeed show values of DLp larger than 0 dB for Nk

numbers smaller than indicated by the circles. For values of

C< 1, the accuracy remains close to Nk¼ 2. However, the

stability and accuracy criterion for Dt should be respected as

taking into account the various grid spacing.

B. Reflecting surface

1. Impedance plane

The accuracy of the locally reacting approach in the

PSTD method is first demonstrated for a flat surface with a

constant impedance, and a flat rigid surface with an imped-

ance strip with width w¼ 12 D, see configurations (B1) and

(B2) in Fig. 2. Three impedance values have been taken, as

printed in Fig. 2, and represent a rigid ground surface or a

ground surface with an absorption coefficient for normal

incident sound waves of 0.2 and 0.8, respectively. For this

configuration, no curvilinear approach needs to be taken,

implying that the accuracy of the impedance approach is

shown separate from the curvilinear approximation.

Calculations are initiated with the conditions from Eq. (18).

For the three impedance values, results are shown in Fig. 4

for DLp,n¼ jLp,n � Lp,refj, with Lp,ref the reference result

computed with an analytical solution according to Ref. 20

for configuration (B1) and with the boundary element

method utilizing the openBEM toolbox21 for configuration

(B2). In the boundary element method, at least 10 elements

per wavelength have been used for all calculations. The

results are shown as a function of the receiver angle h and

the Nk number. The rigid ground case performs best and

PSTD gives largest deviations for the softest ground (strip).

The error increases with frequency and for angles close to

grazing incidence. The results show that the finite strip width

does not introduce additional errors compared to the surface

with the constant impedance value. The results show that

PSTD is most useful to represent locally reacting boundary

surface with a high surface impedance. It can be noticed that

the Fourier PSTD method has a high accuracy for extendedly

reacting boundaries for real-valued surface impedances,16

but this approach does not fit into the current framework of

the curvilinear Fourier PSTD method as already pointed out.

2. Trapezoidal and Gaussian shaped impedance strip

For investigating the accuracy of the curvilinear

Fourier PSTD method, configurations (B3) and (B4) from

Fig. 2 are now considered. As for the flat ground surface,

three values of the normalized surface impedance of the

trapezoidal and Gaussian shaped strip with width w¼ 12 D
have been used. The same source and receiver positions

have been adopted as in configurations (B1) and (B2).

Calculations have been carried out for various heights of

the trapezoid and Gaussian shape, i.e., H in Eq. (14) ranges

FIG. 4. (Color online) Results for con-

figuration (left), (B1) and (right) (B2).

DLp, n (dB) as a function of the receiver

position and Nk for [(a), (b)] Zn¼1,

[(c), (d)] Zn¼ 17.9, [(e), (f)] Zn¼ 2.6.
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from 0 to 10D, and for two discretizations D and D0 ¼D/2.

For the discretization of D, DLp is plotted in Fig. 5 as a

function of the Nk number and H. As for configuration

(B2), the boundary element method has been used to pro-

duce the reference results. For all three impedance values, a

clear decrease of the accuracy is visible for an increasing

height of the trapezoid. The error from the curvilinear

PSTD method can be attributed to three causes. The first is

the lower accuracy for the lower value of the surface im-

pedance, as shown for configuration (B2). The second is

the local stretching in the physical domain. Figure 5 indeed

shows that the cells are locally larger near the Gaussian

shape and trapezoid. To estimate the error from this stretch-

ing, the largest grid spacing is computed from the grids,

and the corresponding smallest resolved wavelength is

derived. These values will not fully explain DLp of Fig. 6,

in contrast to the free field configuration (A). The third

error is namely due to the approximation of modeling the

boundary shape, and may be related to the maximum angu-

lar change of the surface shape that a grid cell needs to han-

dle. To account for the latter two effects, the minimum Nk

number in all numerical calculations expressed by Nk,num,

for highest two impedance values, is fitted to the next

model, the apparent resolved number of points per wave-

length expressed by Nk, app,

FIG. 6. (Color online) Results for con-

figuration left, (B3) and right, (B4).

DLp results for grid spacing D as a

function of the Gaussian shape or tra-

pezoid height H and Nk for [(a), (b)]

Zn¼1, [(c), (d)] Zn¼ 17.9, [(e), (f)]

Zn¼ 2.6.

FIG. 5. Mesh close-up around a (a) Gaussian shape and (b) trapezoid, with

(thick) modelled geometry (thin) ug-mesh.
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Nk;app ¼
2Dmax

D
þ j Dhmaxð Þb; (19)

with Dhmax the maximum angular change of the boundary in

the configuration and j¼ 1.1 e�2 and b¼ 1.64 coefficients

found from fitting to the computed Nk, num, which is deter-

mined to be the Nk value above which DLp > 0.5 dB. The

values of Nk, app are also shown by the circles in Fig. 6, indi-

cating that a rather good prediction can be made from this

model for the studied configurations. In Fig. 7, the numerical

computed Nk, num values for all computed configurations are

plotted against Nk, app. The performance of the curvilinear

PSTD for the configurations (B3) and (B4) from Fig. 2 is

also compared with results from the staircase PSTD method,

as shown in Fig. 8. This means that Eqs. (2) are directly

solved by the PSTD method with Cartesian mesh. In the

staircase PSTD method, boundary interfaces are located at

acoustic velocity components, where the nearest velocity

components to the shape of the trapezoid or Gaussian shape

are taken as boundary interface. The staircase PSTD method

performs worse than the curvilinear PSTD method, espe-

cially for the highest two impedance values and lower

heights of the trapezoid and Gaussian shape. To emphasize

the accuracy of the curvilinear Fourier PSTD method for

Nk>Nk, app, Fig. 9 shows the excess attenuation EA¼ Lp

� Lp,free from the boundary element method as well as the

curvilinear Fourier PSTD method for the configurations

(B2), (B3), and (B4) as a function of the receiver position for

Nk¼ 8. The plot also shows the impact of the changed

FIG. 8. (Color online) As Fig. 6 but

computed with the staircase PSTD

method.

FIG. 7. Numerical point per wavelength requirement Nk, num versus modeled

Nk, app number according to Eq. (19). Results from all calculations of config-

urations (B3) and (B4) for Zn¼1 and Zn¼ 17.9. (Black circles) Trapezoid

results, grid spacing D, (white circles) Trapezoid results, grid spacing

D0 ¼D/2, (black squares) Gaussian shape results, grid spacing D, (white

squares) Gaussian shape results, grid spacing D0 ¼D/2.
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configuration, as the location of the interferences in the spec-

trum depends strongly on the ground profile. This is also

visible from Fig. 10, where the computed impulse responses

with the curvilinear Fourier PSTD method at receiver posi-

tion h¼ 90� are shown. The first arrival around t¼ 200Dt is

the direct wave and is the same for the three configuration as

it does not depend on the boundary conditions. The second

arrival around t¼ 300Dt, corresponding to the wave

reflected/diffracted by the ground, is however seen to be

modified by the ground profile. Furthermore, a third arrival

can be distinguished around t¼ 500Dt for the configuration

(B4).

C. Inhomogeneous atmosphere

To demonstrate the applicability of the curvilinear

Fourier PSTD method, sound propagation over a hill in an

NBL is computed. In the configuration of Fig. 2(C), the

direction of the wind velocity is from the source to the re-

ceiver positions. Since the temperature increases with height,

temperature and wind velocity cause the sound waves to be

bent downwards from source to receiver. Figure 11(a) shows

the level difference DLp, n¼ Lp, n, NBL � Lp, n, with Lp, n, NBL

the level at the receiver positions in the presence of the noc-

turnal boundary layer and Lp,n the levels for an atmosphere

with a constant speed of sound of 340 m/s. The results are

shown in 1/3 octave bands up to the band for which this

computation is valid according to Eq. (19), which is the

1250 Hz 1/3 octave band with D¼ 0.1 m, and Nk, app¼ 2.6.

Clearly, the large influence of the NBL is visible, with

increased levels for the lower and higher frequencies, and

lower levels around the 315 Hz 1/3 octave band. Figure

11(b) shows the computed impulse response at the receiver

position at the ground, illustrating the earlier time of arrival

in the presence of the NBL, as well as the longer response

due to multiple reflections of the sound waves with the

ground surface.

V. CONCLUSIONS

To compute atmospheric sound propagation in the pres-

ence of non-staircase type boundaries with the Fourier PSTD

method, an efficient time-domain wave-based prediction

method, a curvilinear approach has been taken for 2D config-

urations with real valued impedance boundary conditions. In

free field, results show that a higher demand on discretiza-

tion is needed as the grid gets more stretched. For configura-

tions involving boundaries, an orthogonal curvilinear map is

applied, yielding the advantage of applicability of computing

pressure derivatives and velocity components normal to the

boundaries as in the staircase PSTD method. Results have

been compared with calculations using the boundary element

method. The curvilinear Fourier PSTD method requires a

higher number of discrete spatial grid points to resolve a sin-

gle wavelength, i.e., higher than the two points per wave-

length criterion of the Cartesian equidistant PSTD method

and this number is shown to be related to the largest grid
FIG. 10. Computed impulse responses with PSTD at receiver position with

h¼ 90 degree, for the three configurations (B) with Zn¼ 17.9.

FIG. 11. (Color online) Results for configuration (C). (a) Excess level DLp,n

due to the nocturnal boundary layer (NBL) as a function of 1/3 octave band

and receiver height, (b) computed impulse responses at receiver position

(500 and 0 m). Results are calculated for sound propagation in an homoge-

neous atmosphere and in a NBL (thick and thin line, respectively).

FIG. 9. (Color online) Excess attenuation for the three configurations (B)

with Zn¼ 17.9 as a function of the receiver position for f ¼ c=8D: Heights

of the Gaussian shape and the trapezoid is 3D.
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spacing and the deformation of the boundary shape

expressed in a maximum angular value. This approach is

valid for boundaries with a high surface impedance, for

which the used locally reacting approach is more applicable

than for surfaces with low impedance values. The Fourier

PSTD method has a lower accuracy for low-valued surface

impedances. The applicability of the curvilinear Fourier

PSTD method to compute outdoor sound propagation in the

presence of a hill in a nocturnal boundary layer is finally

demonstrated. The higher number of discrete points per

wavelength, as well as the decreased discrete time step

related to the smallest grid cell in the physical domain

reduce the efficiency of the Fourier PSTD method for severe

grid deformations. Therefore, from the investigated configu-

rations, it may be concluded that the current curvilinear

PSTD approach holds for problems with low grid deforma-

tions and boundaries with high surface impedances. The cur-

vilinear PSTD method has shown to clearly outperform the

staircase PSTD method for these cases. An extension to 3D

configuration in which the third dimension may be modeled

by a Cartesian mesh is straightforward. Further work also

includes the application of the curvilinear method to the

Fourier Continuation PSTD method where the geometry is

divided into subdomains. Such a methodology does not

require an orthogonal mapping as boundaries can be mod-

eled by imposing boundary conditions. This increases the ef-

ficiency as the grid stretching values of S will remain

modest. Also the combination of the curvilinear method with

more advanced boundary conditions, i.e., boundary condi-

tions with arbitrary impedance values, will be addressed.
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