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a b s t r a c t 

Entropy noise is produced when temperature fluctuations (entropy spots) are accelerated 

by the mean flow, through a nozzle or a turbine stage for instance. When it propagates 

outside the engine it contributes to community noise and may generate thermoacoustic 

instabilities when reflected back towards the combustor, hence the need for its modelling. 

Among all the inviscid models proposed in the literature, only the one developed by ON- 

ERA takes into account the 2D nature of the mean flow and the radial deformation of 

the entropy waves through the nozzle, which plays a crucial role in noise generation (Em- 

manuelli et al., J. Sound Vib., vol. 472, 2020, pp. 115163). This model has been validated 

in the subsonic regime and is extended in the present work to 2D supercritical configu- 

rations, without and with a normal shock in the diffuser. Modelled transfer functions are 

validated by comparison with reference data obtained with computational aeroacoustics 

simulations and excellent agreement is found between the simulations and the model. The 

contribution of the shear dispersion of the entropy wave to noise generation is evidenced 

and the failure of the quasi-1D models, which do not account for the radial deformation of 

the entropy fluctuations, is illustrated. Noise scattering through the nozzle is also investi- 

gated. The 2D model is found to correctly recover the simulated transmitted and reflected 

acoustic waves through the nozzle. Quasi-1D solutions are also found to collapse with the 

reference simulations, which indicates that 2D mean flow effects are negligible for the 

propagation of the acoustic waves through the nozzle. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

The increase of air traffic combined with urban densification around airports and heliports led to the rise of the number

of people subject to discomfort. Amongst others, noise pollution has become an environmental issue with more and more

severe regulations [1] . The main contributors to aircraft noise are historically the jet and the fan. Jet noise has been strongly

reduced in particular by using ultra-high-bypass ratio turbofan engines [2] whereas liners and optimised fan blade geome-

tries helped decrease fan noise. Other noise sources that were previously masked now emerge. It is for instance the case of

combustion noise during approach in the medium frequency range [3,4] . The contribution of combustion to the total engine

noise is even more important for helicopter engines due to the absence of the jet and the fan. In addition to community

noise issues, the noise produced inside the combustor may couple with the flame and generate thermoacoustic instabilities

[5,6] , which might damage the combustor or even lead to the complete destruction of the engine. To handle these problems,
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Fig. 1. General sketch of a nozzle with all incoming and outgoing waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the use of low-order models for a quick and reliable estimation of combustion generated noise during engine conception

reveals to be crucial. 

The contribution of combustion noise was first evidenced in the 1970s when engine noise was found to be higher than

the sole contribution of the jet [7] . First referred to as excess noise [8] , this additional noise was then associated with the

combustion process and is now called core noise [9] or combustion noise [10] . Early theoretical analysis was provided by

Bragg [11] and Strahle [12] and this noise was shown to have two distinct origins: direct noise refers to pressure fluc-

tuations generated by the unsteady heat release of the flame [13,14] while indirect noise corresponds to additional noise

produced when inhomogeneities such as hot/cold spots (entropy noise), vorticity fluctuations (vorticity noise) or mixture

heterogeneities (compositional noise) are accelerated by the mean flow [15–18] . In gas turbines, mean flow acceleration is

primarily caused by the turbine stages located downstream of the combustor. The flow inside turbine stages is however

complex and makes the development of models and experiments difficult for the study of indirect noise generation. Simpli-

fied configurations are usually investigated by accelerating the flow thanks to a converging-diverging nozzle, which provides

a more fundamental framework for analytical and experimental studies [19–21] . A general sketch of a nozzle with the differ-

ent waves present in the flow is reproduced in Fig. 1 , where P ± correspond to the progressive and regressive acoustic waves,

σ to the entropy wave, ζ to the vorticity wave, ξ to the compositional wave and subscripts ( · ) u and ( · ) d to quantities

upstream and downstream of the nozzle, respectively. When a perturbation enters the nozzle, it leads to a loss of balance

to which the flow reacts by generating fluctuations, typically of acoustic nature. Entropy noise is for instance the result of

the loss of pressure balance as entropy waves are expanded in accelerated flow [22,23] . The objective of low-order models

is to determine these generated waves. They are usually evaluated as transfer functions, i.e. ratios between the outgoing

generated wave and the ingoing forcing one. 

Among all the models available in the literature for nozzle flows, the most widely used is certainly the one proposed

by Marble and Candel [19] . The authors assume a quasi-1D inviscid flow, where vorticity and compositional fluctuations are

absent and acoustic and entropy waves are planar. In the first part of their paper, they consider a compact nozzle, where

all wavelengths are large compared to the nozzle length so that it can be treated as a discontinuity. Conservation relations

for mass, stagnation temperature and entropy through the nozzle are used to express the generated waves as a function

of the incoming ones. This model was recently extended to nonlinear perturbations by Huet and Giauque [24,25] and to

azimuthal modes and vorticity waves in thin annular ducts by Mahmoudi et al. [26] . In the second part of their paper,

Marble and Candel also illustrate a non-compact approach for a supercritical nozzle with a linear velocity profile, where the

generated noise depends of the frequency f of the perturbation. The linearized Euler equations are non-dimensionalised and

an ordinary differential equation is obtained for the pressure fluctuation, which can be solved analytically. This method was

later adapted to choked nozzles and supersonic diffusers with a shock in the diffuser by Moase et al. [27] and to nozzles

with an arbitrary shape by Giauque et al. [28] and Huet et al. [29] . This approach proved efficient to design a nozzle with

optimal indirect noise generation through the use of a genetic algorithm, for instance [30] . In a different way, Mahmoudi

et al. [31] discretised the nozzle as a succession of ducts of constant radii and used the compact solutions to link acoustic,

entropy and vorticity waves (including azimuthal modes) between successive elements. 

Other approaches to deal with non-compact nozzles were proposed by Bohn [32] and Duran and Moreau [33] . Assuming

a harmonic regime and subsonic flow, Bohn reduced the quasi-1D linearized Euler equations to a system of coupled ordi-

nary differential equations to be integrated numerically along the nozzle axis to provide the transfer functions. In addition,

asymptotic analytical solutions of the transfer functions were provided for f → + ∞ considering a linear velocity profile.

Duran and Moreau, on the other hand, recast the quasi-1D linearized Euler equations to write a differential system over

the fluctuations of mass flow rate, stagnation temperature and entropy, solved using the Magnus expansion. This modelling

handles both subsonic and choked nozzle flows, with a possible shock in the diffuser. This approach was later extended by

Duran and Morgans to deal with circumferential and vorticity waves in annular ducts [34] . 

All the above-mentioned modellings assume the gas is calorically perfect, that is to say heat capacities are independent

of temperature. When the flow is strongly accelerated through the nozzle, temperature variation might become important

and heat capacity variations may not be negligible anymore. The influence of temperature-dependent heat capacities has

been investigated numerically by Huet [35] and was shown to have a negligible contribution in the generation of indirect

combustion noise. 
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A validation of these models has been achieved through comparisons with experimental data. Huet [36] verified for

instance the noise scattered through subsonic and choked nozzle flows (acoustic forcing) for frequencies up to 3 kHz using

the experimental results of Knobloch et al. from the Hot Acoustic Test rig [21] , designed and operated by DLR. This validation

particularly confirms that acoustic waves remain one-dimensional through the nozzle. The entropy-generated noise has also

been addressed for the compact nozzle in the choked flow framework by Leyko et al. using the Entropy Wave Generator

(EWG) [20] , also developed and operated by DLR. It is however expected that quasi-1D models fail to predict non-compact

entropy noise, because for such frequencies the entropy waves are deformed during their convection through the nozzle

and do not remain 1D. This deformation was first considered by Zheng et al. [37] , who predicted a modification of the noise

source terms distribution inside the nozzle and derived a 2D model to deal with the radial deformation of the entropy

fluctuations [38] . A first illustration of the relevance of the 2D model was achieved through comparisons with a Large Eddy

Simulation of a subsonic nozzle flow [39] , where the overestimation of the thermoacoustic transfer functions (generation of

acoustics from entropy) predicted by the quasi-1D model was drastically reduced with the 2D model. These comparisons

were complemented by the numerical work of Emmanuelli et al., who obtained an excellent quantitative agreement between

high-order computational aeroacoustics (CAA) simulations and the 2D model [38,40] . A similar radial deformation of the

entropy waves and subsequent failure of the quasi-1D models to predict the generated noise was observed numerically by

Becerril [41] for the subsonic EWG test case. 

The 2D model presented in [38] is limited to subsonic nozzle flows. In the present article, it is extended to choked flows,

without or with a shock in the diffuser. The analytical modelling is detailed in Section 2 . Basic assumptions are first recalled

and discussed, after what the model equations are derived in the general case and discretised for numerical resolution.

Boundary conditions are also addressed in this section. Discretised equations are recast in matrix form in Section 3 and a

numerical resolution procedure is proposed for the different flow regimes. The general form of the matrix system corre-

sponds to the subsonic flow configuration, detailed first, and additional terms related to the choked nozzle flow and the

presence of the shock in the diffuser are included afterwards. Section 4 presents numerical validations for a choked flow

with a shock in the diffuser while conclusions are drawn in Section 5 . 

2. Analytical modelling 

The nozzle is oriented along the x axis and the fluid flows towards the increasing x direction without swirl motion. The

flow is assumed to be inviscid, so that the Euler equations are considered. Mean flow and perturbations are axisymmetric

and the amplitudes of the fluctuations are sufficiently small for the flow equations to be linearised. Chu and Kovásznay

showed perturbations of acoustic, entropic and vorticity nature are present in such flows [42] . They are decoupled in a

uniform flow but couple in the presence of flow gradients. The nozzle radius is supposed to be small enough for the radial

acoustic modes to be cut-off for the considered frequencies, typically below a few kHz. To first order, entropy fluctuations

are convected by the mean flow without attenuation, except through a shock where their amplification/attenuation is taken

into account (see Section 3.3 ). Finally, vorticity is neglected. For inviscid flows, vorticity is produced by the baroclinic torque

caused by the radial deformation of the entropy waves [34] . Recent simulations showed that its contribution to generated

noise is indeed negligible when viscosity is not considered [40,41] . From these hypotheses, the only perturbations present

are entropic and acoustic, the latter being in addition assumed one-dimensional. 

The objective of the present 2D model is to compute the acoustic and thermoacoustic transfer functions of the nozzle,

i.e. the noise leaving the nozzle from both extremities as a function of the acoustic or entropic forcing, both in amplitude

and phase. Their evaluation requires the separation of the different waves present in the domain, namely the entropy and

acoustic waves, in the ducts upstream and downstream of the nozzle. The entropy wave is directly obtained from the en-

tropy fluctuation: 

σ = 

s ′ 
c p 

(1)

with s ′ the entropy fluctuation and c p the heat capacity at constant pressure, and acoustic waves are evaluated using the

Riemann invariants: 

P ± = 

1 

2 

(
p ′ 

γ p 0 
± ρ0 c 0 

γ p 0 
u 

′ 
x 

)
(2)

where P + and P − correspond to the progressive and regressive acoustic waves, p, u x , ρ and c to the pressure, axial velocity,

density and sound velocity, γ = c p /c v to the adiabatic coefficient ( c v being the heat capacity at constant volume), subscript

( · ) 0 to a mean flow quantity and superscript ( · ) ′ to a perturbation. The overlined quantities ( ·) indicate flow variables

averaged over the duct cross section A , as defined in Eq. (3) . This averaging is not mandatory in upstream and downstream

ducts where the flow is uniform, but this notation is kept for the sake of coherence with the rest of the paper. 

f = 

1 

∫ 
f dA (3)
A A 
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2.1. Flow equations in the nozzle 

The mass conservation and momentum equations write [38] 

∂ ρ

∂t 
+ 

∂ ρu x 

∂x 
= − 1 

A 

ρu x 
dA 

dx 
, (4) 

∂u x 

∂t 
+ u x 

∂u x 

∂x 
+ u r 

∂u x 

∂r 
= − 1 

ρ

∂ p 

∂x 
, (5) 

with t the time and u r the radial velocity. These equations are first linearised using the model’s assumptions ( p ′ = p ′ , u ′ x =
u ′ x , u ′ r = 0 ) and the entropy relation s ′ /c p = p ′ /γ p − ρ′ /ρ, then switched into the frequency domain. Under the harmonic

regime hypothesis, the fluctuations write 

u 

′ 
x (x, t) = Re 

[
ˆ u (x ) e iωt 

]
, (6) 

p ′ (x, t) = Re 
[

ˆ p (x ) e iωt 
]
, (7) 

s ′ 
c p 

(x, t) = Re 
[

ˆ σ (x ) e iωt 
]
, (8) 

where ˆ u , ˆ p and ˆ σ are the complex amplitudes of the axial velocity, pressure and non-dimensional entropy fluctuations, ω is

the angular frequency and Re [ · ] stands for the real part of a complex number. The mass conservation and section-averaged

momentum equations finally write ( 

A 

(
1 

c 2 
0 

)
iω + 

d 

dx 

[ 

A 

(
u 0 x 

c 2 
0 

)] ) 

ˆ p + 

[ 

A 

(
u 0 x 

c 2 
0 

)] 

d ̂  p 

dx 
+ 

dA ρ0 

dx 
ˆ u + A ρ0 

d ̂  u 

dx 
= 

d 

dx 

[
A ( ρ0 u 0 x ) ̂  σ

]
+ Aiω ρ0 ̂  σ , (9) 

[ (
u 0 x 

γ p 0 

∂u 0 x 

∂x 

)
+ 

(
u 0 r 

γ p 0 

∂u 0 x 

∂r 

)] 

ˆ p + 

(
1 

ρ0 

)
d ̂  p 

dx 
+ 

[ 

iω + 

(
∂u 0 x 

∂x 

)] 

ˆ u + u 0 x 
d ̂  u 

dx 
= 

[
u 0 x 

∂u 0 x 

∂x 
+ u 0 r 

∂u 0 x 

∂r 

]
ˆ σ . (10) 

2.2. Numerical discretisation 

Eqs. (9) - (10) involve the mean flow variables and the fluctuating terms ˆ u , ˆ p and ˆ σ . The mean flow variables are input

data provided by a simulation of the steady inviscid flow, for instance. The entropy fluctuation is assumed to be convected

by the mean flow without diffusion and, in the absence of a shock, it is simply computed using the average velocity field;

its numerical evaluation is detailed in Section 2.3 . The system is finally composed of 2 equations and 2 unknowns and can

be solved numerically. 

System resolution is achieved using a spatial discretisation along the flow direction ( x ). The unsteady flow variables ˆ u

and ˆ p are sought at the nodes k of the grid, k = 1 . . . n, and Eqs. (9) - (10) are evaluated at the centre of the (n − 1) elements.

The perturbed flow variables and their axial derivatives are evaluated at the centre of each element using relations (11) - (12) :

f k +1 / 2 = 

f k +1 + f k 
2 

, (11) 

d 

dx 
f k +1 / 2 = 

f k +1 − f k 
	x k +1 / 2 

, (12) 

where 	x k +1 / 2 is the size of the element k + 1 / 2 , bounded by the nodes k and k + 1 . Using this discretisation, continuity

and momentum equations write 

λ1 
k +1 / 2 ̂  p k + λ2 

k +1 / 2 ̂  u k + λ3 
k +1 / 2 ̂  p k +1 + λ4 

k +1 / 2 ̂  u k +1 = 

ˆ S C k +1 / 2 , (13) 

φ1 
k +1 / 2 ̂  p k + φ2 

k +1 / 2 ̂  u k + φ3 
k +1 / 2 ̂  p k +1 + φ4 

k +1 / 2 ̂  u k +1 = 

ˆ S M 

k +1 / 2 , (14) 

where ˆ u k and ˆ p k correspond to the velocity and pressure amplitudes at node k and λ j 

k +1 / 2 
, φ j 

k +1 / 2 
, ˆ S C 

k +1 / 2 
, ˆ S M 

k +1 / 2 
to the

area-averaged mean flow quantities and entropy-related source terms evaluated inside element k + 1 / 2 . These quantities

write 

λ1 
k +1 / 2 = 

( 

1 

2 

[ 

A 

(
1 

c 2 
0 

)
iω + 

d 

dx 

[ 

A 

(
u 0 x 

c 2 
0 

)] ] 

− A 

	x 

(
u 0 x 

c 2 
0 

)) 

k +1 / 2 

, (15) 
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λ2 
k +1 / 2 = 

(
1 

2 

dA ρ0 

dx 
− A ρ0 

	x 

)
k +1 / 2 

, (16)

λ3 
k +1 / 2 = 

( 

1 

2 

[ 

A 

(
1 

c 2 
0 

)
iω + 

d 

dx 

[ 

A 

(
u 0 x 

c 2 
0 

)] ] 

+ 

A 

	x 

(
u 0 x 

c 2 
0 

)) 

k +1 / 2 

, (17)

λ4 
k +1 / 2 = 

(
1 

2 

dA ρ0 

dx 
+ 

A ρ0 

	x 

)
k +1 / 2 

, (18)

φ1 
k +1 / 2 = 

( 

1 

2 

[ (
u 0 x 

γ p 0 

∂u 0 x 

∂x 

)
+ 

(
u 0 r 

γ p 0 

∂u 0 x 

∂r 

)] 

− 1 

	x 

(
1 

ρ0 

)) 

k +1 / 2 

, (19)

φ2 
k +1 / 2 = 

( 

1 

2 

[ 

iω + 

(
∂u 0 x 

∂x 

)] 

− 1 

	x 
u 0 x 

) 

k +1 / 2 

, (20)

φ3 
k +1 / 2 = 

( 

1 

2 

[ (
u 0 x 

γ p 0 

∂u 0 x 

∂x 

)
+ 

(
u 0 r 

γ p 0 

∂u 0 x 

∂r 

)] 

+ 

1 

	x 

(
1 

ρ0 

)) 

k +1 / 2 

, (21)

φ4 
k +1 / 2 = 

( 

1 

2 

[ 

iω + 

(
∂u 0 x 

∂x 

)] 

+ 

1 

	x 
u 0 x 

) 

k +1 / 2 

, (22)

ˆ S C k +1 / 2 = 

(
d 

dx 

[ 
A 

(
ρ0 u 0 x ̂  σ

)] 
+ Aiω 

(
ρ0 ̂  σ

))
k +1 / 2 

, (23)

ˆ S M 

k +1 / 2 = 

( [
u 0 x 

∂u 0 x 

∂x 
+ u 0 r 

∂u 0 x 

∂r 

]
ˆ σ

) 

k +1 / 2 

. (24)

2.3. Computation of the entropy fluctuation and related source terms 

For inviscid flow fields, outside of shocks entropy is a quantity convected by the mean flow without attenuation or

distortion. Its fluctuation can hence be evaluated theoretically as 

s ′ 
c p 

(l, t) = 

s ′ 
c p 

(
l = 0 , t −

∫ l 

0 

dζ

u 0 (ζ ) 

)
(25)

with u the velocity norm and where the integration from 0 to l is performed along a streamline of the flow. In the harmonic

regime, this equation reduces to 

ˆ σ (l) = ˆ σ (l = 0) exp 

(
−iω 

∫ l 

0 

dζ

u 0 (ζ ) 

)
(26)

with ˆ σ (l = 0) the complex amplitude of the entropy fluctuation. Practically, the computation of entropy fluctuations is per-

formed as follows. A given number of particles are seeded at the geometry inlet and convected through the nozzle flow

to generate streamlines and streamtubes, bounded by two successive streamlines. The flow is considered radially constant

inside each streamtube and the entropy fluctuation at node k in the j th streamtube is computed as 

ˆ σk, j = ˆ σ 0 
j e 

iϕ k, j , ϕ k, j = −ω 

∫ l 

0 

dζ

u 0 (ζ ) 
, (27)

with ˆ σ 0 
j 

the initial amplitude of the entropy fluctuation in the j th streamtube. Using Eq. (27) , the entropy-related source

terms ˆ S C 
k +1 / 2 

and 

ˆ S M 

k +1 / 2 
in Eqs. (23) - (24) rewrite 

ˆ S C k +1 / 2 = 

n j ∑ 

j=1 

μ j 

k +1 / 2 ̂
 σ 0 
j , (28)
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ˆ S M 

k +1 / 2 = 

n j ∑ 

j=1 

ν j 

k +1 / 2 ̂
 σ 0 
j , (29) 

with 

μ j 

k +1 / 2 
= 

(
A j ρ0 , j u 0 x, j 

)
k +1 

e iϕ k +1 , j −
(
A j ρ0 , j u 0 x, j 

)
k 
e iϕ k, j 

	x k +1 / 2 

+ iω 

(
A j ρ0 , j 

)
k +1 / 2 

e iϕ k +1 / 2 , j , (30) 

ν j 

k +1 / 2 
= 

(
A j 

A 

[
u 0 x, j 

∂u 0 x, j 

∂x 
+ u 0 r, j 

∂u 0 x, j 

∂r 

])
k +1 / 2 

e iϕ k +1 / 2 , j , (31) 

where nj is the number of streamtubes and A j the section of the j th streamtube. 

2.4. Boundary conditions 

The boundary conditions physically express the acoustic waves entering the domain from both extremities. These waves

can have two separate origins: they can be either reflections of the outgoing waves on the boundaries or acoustic excita-

tions imposed by the user, ˆ P + 
1 f 

and 

ˆ P −
n f 

(for subsonic outlets), where indices 1 and n correspond to the acoustic waves at

nozzle inlet and outlet. In the model, acoustic reflections on the boundaries are supposed to be nil and boundary conditions

represent the acoustic excitations imposed by the user. A general method to take into account the contribution of reflec-

tion coefficients on the generated noise is presented in Appendix A . Without reflections, the non-dimensional form of the

acoustic wave entering the domain from the upstream boundary writes, using Eq. (2) : 

P + 1 = P + 
1 f 

= 

1 

2 

(
ˆ p 

γ p 0 
+ 

ρ0 c 0 
γ p 0 

ˆ u 

)
1 

. (32) 

For a subsonic outlet, the acoustic wave entering the domain from the downstream boundary writes, in a similar way: 

P −n = P −
n f 

= 

1 

2 

(
ˆ p 

γ p 0 
− ρ0 c 0 

γ p 0 
ˆ u 

)
n 

. (33) 

3. Computation of the transfer functions 

The analytical developments presented above are recast into a matrix form for numerical resolution. This resolution is

performed with the in-house code CHEOPS-Nozzle (non- c ompact h armonic e ntropy n o ise prediction s ). The matrix systems

are detailed hereafter for the subsonic and supersonic configurations. 

3.1. Subsonic nozzle flow 

After discretisation of the nozzle into n − 1 axial elements bounded by n nodes, Eq. (13) - (14) and (32) - (33) correspond

to a linear system of 2 n + n j equations with 2 n + n j unknowns. To be solved numerically, it is recast in the matrix form of

Eq. (34) : 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
1 

2 γ p 0 

)
1 

(
ρ0 c 0 
2 γ p 0 

)
1 

0 .. .. .. .. .. .. .. 

A S 

.. .. .. .. 0 

(
1 

2 γ p 0 

)
n 

−
(

ρ0 c 0 
2 γ p 0 

)
n 

0 .. .. 

.. .. .. .. .. .. 0 

. 

. 

. 
. 
. 
. I 

.. .. .. .. .. .. 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P 

ˆ σ 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P f 

ˆ σ f 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(34) 
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with 

A = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

λ1 
3 / 2 λ2 

3 / 2 λ3 
3 / 2 λ4 

3 / 2 0 .. .. .. .. .. 

φ1 
3 / 2 φ2 

3 / 2 φ3 
3 / 2 φ4 

3 / 2 0 .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. 

.. .. 0 λ1 
k +1 / 2 

λ2 
k +1 / 2 

λ3 
k +1 / 2 

λ4 
k +1 / 2 

0 .. .. 

.. .. 0 φ1 
k +1 / 2 

φ2 
k +1 / 2 

φ3 
k +1 / 2 

φ4 
k +1 / 2 

0 .. .. 

.. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. 0 λ1 
n −1 / 2 λ2 

n −1 / 2 λ3 
n −1 / 2 λ4 

n −1 / 2 

.. .. .. .. .. 0 φ1 
n −1 / 2 φ2 

n −1 / 2 φ3 
n −1 / 2 φ4 

n −1 / 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (35)

S = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−μ1 
3 / 2 −μ2 

3 / 2 .. .. .. .. .. .. −μn j−1 
3 / 2 

−μn j 
3 / 2 

−ν1 
3 / 2 −ν2 

3 / 2 .. .. .. .. .. .. −νn j−1 
3 / 2 

−νn j 
3 / 2 

.. .. .. .. .. .. .. .. .. .. 

−μ1 
k +1 / 2 

−μ2 
k +1 / 2 

.. .. .. .. .. .. −μn j−1 

k +1 / 2 
−μn j 

k +1 / 2 

−ν1 
k +1 / 2 

−ν2 
k +1 / 2 

.. .. .. .. .. .. −νn j−1 

k +1 / 2 
−νn j 

k +1 / 2 

.. .. .. .. .. .. .. .. .. .. 

−μ1 
n −1 / 2 −μ2 

n −1 / 2 .. .. .. .. .. .. −μn j−1 
n −1 / 2 

−μn j 
n −1 / 2 

−ν1 
n −1 / 2 −ν2 

n −1 / 2 .. .. .. .. .. .. −νn j−1 
n −1 / 2 

−νn j 
n −1 / 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (36)

I the identity matrix and 

ˆ P = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ p 1 
ˆ u 1 

. . . 
ˆ p n 
ˆ u n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, ˆ P f = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P + 
1 f 

0 

. . . 
0 

ˆ P −
n f 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, ˆ σ 0 = 

⎛ 

⎝ 

ˆ σ 0 
1 
. . . 

ˆ σ 0 
n j 

⎞ 

⎠ , ˆ σ f = 

⎛ 

⎜ ⎝ 

ˆ σ f 
1 
. . . 

ˆ σ f 
n j 

⎞ 

⎟ ⎠ 

. (37)

In Eq. (34) , ˆ P and ˆ σ 0 are the vectors of unknowns. A describes the mean flow inside the geometry, S corresponds to the

acoustic source terms related to entropy fluctuations and 

ˆ P f and ˆ σ f represent the acoustic and entropy forcings imposed

at the boundaries of the domain. Resolution of Eq. (34) provides the pressure and velocity fluctuations at each node of the

nozzle, in particular at the geometry inlet and outlet. Acoustic and thermoacoustic transfer functions are then reconstructed

using Eqs. (1) and (2) . 

3.2. Choked nozzle flow 

When the mass flow rate is sufficiently large, the flow becomes choked and the velocity is supersonic in the diffuser. The

modelling of choked nozzle flows is very similar to subsonic flows. Eqs. (13) - (14) (matrices A and S) and Eq. (32) (upstream

acoustic boundary condition) are unchanged and the only difference comes from the outlet boundary condition. As the flow

is now supersonic at the outlet, the wave P −n leaves the domain and cannot be imposed anymore so that Eq. (33) does

not hold. However, a unique property of choked flows is that the Mach number is 1 at nozzle throat, where the section is

minimum [33,43] . The fluctuation of the section-averaged Mach number writes in linear regime 

(
M 

′ 
M 0 

)
= −

(
γ − 1 

2 γ p 0 

)
p ′ + 

(
1 

u 0 

)
u 

′ 
x −

1 

2 

(
s ′ 
c p 

)
. (38)

Applying the condition M 

′ /M 0 = 0 at nozzle throat, Eq. (33) is replaced by Eq. (39) for choked nozzle flows: 

−
(

γ − 1 

2 γ p 0 

)
ˆ p + 

(
1 

u 0 

)
t 

ˆ u − 1 

2 

ˆ σ t = 0 , (39)

t 
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Fig. 2. Modelling of the supercritical nozzle with a shock in the diffuser. 

 

 

 

 

 

 

 

 

 

 

 

where the index t indicates the node located at nozzle throat, where M 0 ,t = 1 . The system finally writes 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
1 

2 γ p 0 

)
1 

(
ρ0 c 0 
2 γ p 0 

)
1 

0 .. .. .. .. .. .. .. 

A S 

.. .. 0 −
(

γ − 1 

2 γ p 0 

)
t 

−
(

1 

u 0 

)
t 

0 .. c C t 

.. .. .. .. .. .. 0 

. . . 
. . . I 

.. .. .. .. .. .. 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P 

[6 pt] 

ˆ σ 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P f 

ˆ σ f 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(40) 

with 

C t = 

(
− A 1 

2 A 

e iϕ t, 1 · · · −A n j 

2 A 

e iϕ t,n j 

)
t 

(41) 

and 

ˆ P −
n f 

= 0 . In the same way as for the subsonic configuration, resolution of Eq. (40) provides the acoustic and thermoa-

coustic transfer functions of the nozzle flow. 

3.3. Choked nozzle flow with a shock 

When the back pressure imposed at nozzle outlet does not correspond to the discharge pressure of the choked nozzle,

the flow is not adapted and shocks appear in the flow. If the back pressure is sufficiently large compared to the discharge

pressure, a shock forms inside the diffuser after which the flow is subsonic. Upstream and downstream of the shock, the

modelling of choked and subsonic nozzle flows are valid, so that a flow with a shock can be modelled as a combination of a

choked nozzle flow and a subsonic nozzle flow separated by a normal shock. This configuration is depicted in Fig. 2 , where

the choked flow is referred to as domain 1 and the subsonic nozzle flow as domain 2 and where indices ( · ) up and ( · ) dn 

correspond to quantities taken just upstream and downstream of the shock. The only difference with the previous cases

is that the progressive acoustic wave ˆ P + 
dn 

and entropy wave ˆ σdn at the upstream extremity of domain 2 (just downstream

of the shock) are not imposed by the user but are additional unknowns that need to be determined during the resolution

process. These perturbations are determined by solving dynamic shock relations. In this paper, the dynamic shock relations

derived by Moase et al. [27] for quasi-1D flows are used. These relations link pressure, axial velocity and entropy fluctuations

through the shock and write 

1 

1 + 

γ −1 
2 

M 

2 
0 ,up 

[(
γ − 1 −

(
M 

2 
0 ,up −

γ − 1 

2 

)
M 

2 
0 ,dn 

E u 

E p 

)
ˆ p up 

γ p 0 ,up 

−
(

1 − γ − 1 

2 

M 

2 
0 ,up + 2 M 

2 
0 ,up M 

2 
0 ,dn 

E u 

E p 

)
ˆ u up 

u 0 ,up 

+ 

(
1 + M 

2 
0 ,up M 

2 
0 ,dn 

E u 

E p 

)
ˆ s up 

c p 

]
= − E u 

E p 

ˆ p dn 

γ p 0 ,dn 

+ 

ˆ u dn 

u 0 ,dn 

, (42) 

− 1 

1 + 

γ −1 
2 

M 

2 
0 ,up 

[(
2 − γ + 

γ − 1 

2 

M 

2 
0 ,up −

(
M 

2 
0 ,up −

γ − 1 

2 

)
M 

2 
0 ,dn 

E ρ

E p 

)
ˆ p up 

γ p 0 ,up 

+ 2 

(
1 − M 

2 
0 ,up M 

2 
0 ,dn 

E ρ

E p 

)
ˆ u up 

u 0 ,up 
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+ 

(
M 

2 
0 ,up M 

2 
0 ,dn 

E ρ

E p 
−

(
2 + 

γ − 1 

2 

M 

2 
0 ,up 

))
ˆ s up 

c p 

]
= −

(
1 − E ρ

E p 

)
ˆ p dn 

γ p 0 ,dn 

+ 

ˆ s dn 

c p 
, (43)

with 

E p = 

(
1 + γ 2 

)
M 

2 
0 ,up + γ − 1 

2 γ M 

2 
0 ,up 

− γ + 1 

(
1 − M 

2 
0 ,up 

)
+ 2 

u 0 ,dn 

u 0 ,up 

M 

2 
0 ,up i �dn , (44)

E u = −γ
(
1 − M 

2 
0 ,up 

)
− u 0 ,dn 

u 0 ,up 

1 + M 

2 
0 ,up 

M 

2 
0 ,dn 

i �dn , (45)

E ρ = γ
(
1 − M 

2 
0 ,up 

)
+ 

2 u 0 ,dn 

u 0 ,up M 

2 
0 ,dn 

i �dn , (46)

and where � = ω/ (∂ u 0 x /∂ x ) is the nondimensional angular frequency. 

Downstream of the shock, there are n j + 1 waves travelling in the downstream direction ( nj being the number of stream-

tubes). There are therefore n j + 1 additional unknowns which require n j + 1 additional equations to close the system.

Equation (42) is averaged over the section using Eq. (3) and Eq. (43) is solved for each streamtube, which provides n j + 1

equations. These equations write 

κ1 ˆ p up + κ2 ˆ u up + κ3 ˆ p dn + κ4 ˆ p dn + 

n j ∑ 

j 

κ5 , j σ 0 
j (D = 1) = 0 , (47)

η1 , j ˆ p up + η2 , j ˆ u up + η3 , j ˆ p dn + η5 , j σ 0 
j (D = 1) + η6 , j σ 0 

j (D = 2) = 0 , (48)

with 

κ1 = 

( 

1 

1 + 

γ −1 
2 

M 

2 
0 ,up 

1 

γ p 0 ,up 

[
γ − 1 −

(
M 

2 
0 ,up 

− γ − 1 

2 

)
M 

2 
0 ,dn 

E u 

E p 

]) 

, (49)

κ2 = −
( 

1 

1 + 

γ −1 
2 

M 

2 
0 ,up 

1 

u 0 ,up 

[
1 − γ − 1 

2 

M 

2 
0 ,up 

+ 2 M 

2 
0 ,up 

M 

2 
0 ,dn 

E u 

E p 

]) 

, (50)

κ3 = 

(
1 

γ p 0 ,dn 

E u 

E p 

)
, (51)

κ4 = −
(

1 

u 0 ,dn 

)
, (52)

κ5 , j = 

( 

A j 

A 

1 

1 + 

γ −1 
2 

M 

2 
0 ,up 

[
1 + M 

2 
0 ,up M 

2 
0 ,dn 

E u 

E p 

]) 

j 

e iϕ up, j , (53)

η1 , j = −
( 

1 

1 + 

γ −1 
2 

M 

2 
0 ,up 

1 

γ p 0 ,up 

[
2 − γ + 

γ − 1 

2 

M 

2 
0 ,up −

(
M 

2 
0 ,up −

γ − 1 

2 

)
M 

2 
0 ,dn 

E ρ

E p 

]) 

j 

, (54)

η2 , j = −
( 

2 

1 + 

γ −1 
2 

M 

2 
0 ,up 

1 

u 0 ,up 

[
1 − M 

2 
0 ,up M 

2 
0 ,dn 

E ρ

E p 

]) 

j 

, (55)

η3 , j = 

(
1 

γ p 0 ,dn 

[
1 − E ρ

E p 

])
j 

, (56)

η5 , j = −
( 

1 

1 + 

γ −1 
2 

M 

2 
0 ,up 

[
M 

2 
0 ,up M 

2 
0 ,dn 

E ρ

E p 
−

(
2 + 

γ − 1 

2 

M 

2 
0 ,up 

)]) 

j 

e iϕ up, j , (57)

η6 , j = −1 . (58)
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Fig. 3. Illustration of the nozzle used for the numerical validations. 

 

 

 

 

The system finally writes in the presence of a shock in the diffuser 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
1 

2 γ p 0 

)
1 

(
ρ0 c 0 
2 γ p 0 

)
1 

0 .. .. .. .. .. .. .. .. .. .. 

A (D = 1) S(D = 1) 0 

A (D = 2) 0 S(D = 2) 

.. .. 0 −
(

γ − 1 

2 γ p 0 

)
t 

−
(

1 

u 0 

)
t 

0 .. C t 0 .. .. 

.. .. .. .. 0 

(
1 

2 γ p 0 

)
n 

−
(

ρ0 c 0 
2 γ p 0 

)
n 

0 .. .. .. .. .. 

.. .. .. .. .. .. 0 0 .. .. 

. 

. 

. 

. 

. 

. I 
. 
. 
. 

. 

. 

. 

.. .. .. .. .. .. 0 0 .. .. 

K H 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P 

ˆ σ 0 (D = 1) 

ˆ σ 0 (D = 2) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P f 

ˆ σ f 

0 

. 

. 

. 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(59) 

with 

K = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

.. 0 κ1 κ2 κ3 κ4 0 .. 

.. 0 η1 , 1 η2 , 1 η3 , 1 0 .. .. 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

.. 0 η1 ,n j η2 ,n j η3 ,n j 0 .. .. 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(60) 

and 

H = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

κ5 , 1 .. .. κ5 ,n j 0 .. .. .. 

η5 , 1 0 .. 0 η6 , 1 0 .. .. 

0 

. . . 0 .. 0 

. . . 0 .. 

.. 0 

. . . 0 .. 0 

. . . 0 

.. .. 0 η5 ,n j 0 .. 0 η6 ,n j 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (61) 

Resolution of Eq. (3.3) provides the acoustic and thermoacoustic transfer functions of the nozzle. 

4. Numerical validation 

4.1. Test case 

The geometry considered for the validation is a converging-diverging nozzle designed in the frame of the European-

FP7 project RECORD to investigate indirect combustion noise and already used by Emmanuelli et al. for the validation of

CHEOPS-Nozzle in the subsonic regime [38] . This nozzle is illustrated in Fig. 3 . The nozzle in itself is 185 mm long, starting

at x = 100 mm. It is completed upstream and downstream with ducts of constant section that are used to perform acoustic
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Table 1 

Main physical parameters of the test case. 

Inlet Mach Throat Mach Outlet Mach Inlet pressure Outlet pressure 

0.0203 1.00 0.428 120000 Pa 101325 Pa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waves separation. The flow is strongly accelerated in the converging part of the nozzle, where the radius reduces from 29.5

mm at the inlet to 5.5 mm at the throat, located at x = 200 mm. The diverging section is 85 mm long and the outlet radius

is 6.943 mm. This ensures a low diverging angle in order to avoid flow separation. 

The operating point considered is summarised in Table 1 . It corresponds to a choked configuration with a shock in the

diffuser, located at x = 251 . 8 mm. The inlet temperature is set to 1300 K to be representative of flow conditions at the exit

of a combustion chamber and the gas considered is air with a heat capacity ratio γ of 1.315. 

4.2. Methodology 

The methodology follows the work of Emmanuelli et al. [38] . Planar entropy and acoustic waves are considered for the

forcings. The 2D model requires inviscid mean flow fields that are computed with the CFD (Computational Fluid Dynam-

ics) code CEDRE from ONERA [44] . Validations are performed through comparisons of the modelled transfer functions with

reference results obtained numerically with 3D CAA simulations. These simulations are run with the flow solver sAbrinA_v0

from ONERA [45,46] . The nonlinear Euler equations are solved in the time domain with a perturbation form of the conser-

vative variables made of the mean flow and a disturbance field. A standard sixth order finite difference scheme is used in

space to limit numerical dispersion and dissipation effects [47,48] , combined with a standard tenth order explicit filtering to

remove numerical oscillations near the cut-off frequency [4 8,4 9] , and a third order explicit compact Runge-Kutta scheme is

applied in time [50,51] . Efficient numerical boundary conditions derived by Tam et al. [52,53] from the asymptotic solutions

of the linearised Euler equations are applied to provide almost non reflective boundary conditions and to allow the injec-

tion of entropy and acoustic waves through the boundaries. The mesh is 3D structured and composed of 2.2 × 10 6 nodes.

The mesh is dimensioned to have at least 18 points per acoustic or entropic wavelength at 10 0 0 Hz, the highest supported

frequency considered. A time step of 4 × 10 −8 s is chosen so that the CFL lies below 0.50. To end, the same mean flow field

is used for the model and the CAA simulations. 

The computation of transfer functions from the CAA simulations requires the separation of the waves in the ducts up-

stream and downstream of the nozzle. The entropy wave σ is directly obtained from the entropy fluctuation using Eq. (1) .

Riemann invariants given in Eq. (2) are valid in the upstream duct but not in the downstream one, because in this duct a

fraction of the velocity fluctuations is associated with vorticity waves generated inside the nozzle [34] . Acoustic waves are

hence reconstructed using a mode matching method based on pressure fluctuations only [40,54] . Under the assumption that

the pressure fluctuations are purely acoustic and one dimensional (which has been verified numerically), one can write in

the harmonic regime: 

p ′ = p ′ + + p ′−, (62)

∂ p ′ 
∂x 

= −ik + x p 
′ + − ik −x p 

′−, (63)

with p ′ + and p ′− the pressure fluctuations associated with the progressive and regressive acoustic waves, respectively, and

k + x and k −x their wavenumbers defined as 

k ±x = 

ω 

u 0 x ± c 0 
. (64)

The left-hand-side terms of Eqs. (62) - (63) are provided by CAA and the wavenumbers are evaluated from the mean flow

field, so that the system of Eqs. (62) - (63) can be solved to provide the amplitudes of the acoustic waves, that are normalised

using Eq. (2) and finally write: 

P ± = 

p ′±
γ p 0 

. (65)

Although the almost non reflective boundary conditions of Tam et al. [52,53] are used in the simulations, small acoustic

reflexions can still occur on the domain boundaries and spurious pressure waves may propagate back to the nozzle and

contaminate the simulations. To avoid the corruption of the nozzle transfer functions, numerical results are post-processed

once the simulations with the three different forcings (entropic and upstream/downstream acoustic) are complete to recon-

struct the transfer functions with transparent-like boundaries. Details on this post-processing are given in Emmanuelli et al.

[38] . 

To end, a grid convergence study was successfully performed for the CAA and the model. Analytical transfer functions

computed with 6, 12, 25 and 50 streamtubes are reproduced in Fig. 4 to illustrate the grid convergence of the model. Excel-

lent convergence is obtained with 50 streamtubes and this value is used for all results presented hereafter. Of interest, the
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Fig. 4. Illustration of the convergence of the modelled thermoacoustic transfer function [ P −
1 

/σ1 ] . (a) amplitude, (b) phase. 6 streamtubes, 12 

streamtubes, 25 streamtubes, • — 50 streamtubes. 

Fig. 5. Mean Mach number evolution along the nozzle. 

Fig. 6. Simulated and modelled entropy fluctuation at 10 0 0 Hz through the nozzle. (a) 2D mean flow (2D model (50 streamtubes) and CAA), (b) quasi-1D 

mean flow (1 streamtube). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

largest number of streamtubes is required to reach the convergence at high frequencies because the relative radial stretching

of the entropy wave through the nozzle (in comparison to its wavelength) is the most important for such frequencies. 

For the sake of completeness, the solutions provided by the 2D model Cheops-Nozzle for a quasi-1D flow (no radial

dependence of the flow variables) are also evaluated and discussed in this section. These additional results are obtained by

running the model with a quasi-1D mean flow and only one streamtube. It has been verified that the transfer functions

obtained collapse with those predicted with the quasi-1D model Marcan of ONERA [28,29] , as expected (comparisons not

shown). 

4.3. Numerical results 

The evolution of the mean Mach number along the nozzle, computed with CEDRE and used as input data for the 2D

model and the 3D CAA, is illustrated in Fig. 5 . As a first validation, the entropy fluctuation both computed and modelled

at 10 0 0 Hz using the 2D mean flow is reproduced in Fig. 6 (a). The modelled entropy is identical to the computed one,

which validates the entropy convection performed in CHEOPS-Nozzle. The deformation of the entropy wave is clearly visible

in this figure and outlines the limit of the quasi-1D approach. The shear dispersion of the entropy wave is caused by the

2D nature of the mean velocity field, in particular at the nozzle entrance, along with the longer convection distance to pass

through the nozzle for an entropy spot located near the nozzle wall compared to a perturbation on the axis. This dispersion

is well illustrated near the nozzle throat, where the entropy wavefront on the axis catches up with the preceding wavefront

at the wall, resulting in an important radial variation of the entropy fluctuation. As a comparison, the entropy fluctuation

computed with the quasi-1D approach is reproduced in Fig. 6 (b). By definition, shear dispersion is not captured with this

approach and the entropy wave remains planar. The discrepancy between the quasi-1D and 2D solutions is visible along the

whole nozzle and illustrates the failure of the quasi-1D approach to accurately model the generation of entropy noise. 
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Fig. 7. Simulated and modelled thermoacoustic transfer function [ P −
1 

/σ1 ] . (a) amplitude, (b) phase. Compact solution [25] ; CHEOPS-Nozzle with 

quasi-1D flow field; — CHEOPS-Nozzle with 2D flow field; CAA simulations. 

Fig. 8. Simulated and modelled thermoacoustic transfer function [ P + n /σ1 ] . (a) amplitude, (b) phase. See Fig. 7 for legend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the computed and modelled thermoacoustic transfer functions are reproduced in Figs. 7 and 8 , for the upstream

and downstream generated acoustic waves respectively. These figures reproduce the compact solutions valid in the low-

frequency limit [25] , the non-compact solution modelled with the quasi-1D mean flow, the non-compact solution modelled

with the 2D mean flow and the transfer functions obtained with CAA. Analyses are similar for both figures. 

Very good agreement is observed between the reference CAA data and the 2D model Cheops-Nozzle when the 2D flow

field is considered, for both amplitude and phase, despite the slight overestimation of the generated noise with the model

for [ P −
1 

/σ1 ] and frequencies above 900 Hz. This overestimation may come from the contribution of vorticity that is neglected

in the model. However, the similarity of the analytical and numerical 2D results over most of the frequency range indicates

that the contribution of vorticity to noise generation remains very limited. The modelled transfer functions also collapse

with the compact solutions in the low-frequency limit, as expected. The analytical solution with the quasi-1D mean flow

field collapses with the other approaches for low frequencies, where the radial distortion of the entropy wave remains lim-

ited due to the very large entropy wavelengths. As the frequency increases, however, differences rapidly rise between the

quasi-1D solution and the 2D solutions because of the distortion of the entropy wave. The noise source term being the prod-

uct between the entropy fluctuation and the mean flow gradient (see Marble and Candel [19] and Eq. (10) ), the deformation

of the entropy wave leads to a radial decorrelation of the local source terms which reduces the generated noise, hence the

overestimation of the quasi-1D solution compared to the 2D transfer functions. A similar observation was made in the sub-

sonic regime [38] . Of interest, in the present case the nozzle is choked so that the pressure perturbations present in the

divergent zone cannot propagate back to the convergent region and the generated wave P −
1 

is produced exclusively by the

flow upstream of the nozzle throat. The strong differences between the quasi-1D and 2D modelled transfer functions, visible

in Fig. 7 (a), indicate that the alteration of the entropy noise sources caused by the shear dispersion in the convergent of the

nozzle is very important, as already inferred from Fig. 6 . Finally, it is worth noting that the major differences concern the

amplitude of the transfer functions while the phase variations between the quasi-1D and 2D approaches remain negligible.

The phase-shift term is the consequence of the convection time of the entropy wave and propagation time of the acoustic

waves through the nozzle. Despite the important deformation of the entropy wave and its phase-lag between nozzle axis

and walls for the 2D model, it has been verified that the phase of the section-averaged entropy fluctuation is very similar

between the 2D and quasi-1D configurations, hence the similar phase results. 
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Fig. 9. Simulated and modelled thermoacoustic transfer function [ P −
1 

/P + 
1 

] . (a) amplitude, (b) phase. See Fig. 7 for legend. 

Fig. 10. Simulated and modelled thermoacoustic transfer function [ P + n /P + 
1 

] . (a) amplitude, (b) phase. See Fig. 7 for legend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To complement these results, the acoustic transfer functions of the nozzle, corresponding to the noise scattered through

the nozzle when acoustic waves enter from either upstream or downstream, are reproduced in Figs. 9 –11 . The nozzle being

choked, no information can propagate from the exit to the inlet, therefore [ P −
1 

/P −n ] = 0 and this transfer function is not

reproduced in the article. 

Fig. 9 corresponds to the acoustic wave reflected by the nozzle in the case of a forcing from the inlet. Both quasi-1D and

2D models are in excellent agreement with the CAA results and the theoretical compact solution [19,25] . The agreement

between CAA and the 2D model confirms in particular that the acoustic waves remain essentially planar inside the nozzle,

as assumed in the model. This hypothesis has also been directly verified from the computed pressure fields, not reproduced

here. In addition, the identical modelled results obtained using quasi-1D and 2D mean flow indicate that the 2D mean

flow variations have no consequence on the scattering of the acoustic waves [38] . Moreover, the evolution of the transfer

function with frequency is very low: amplitude does not significantly vary and the phase shifts only by 3 π /4 between 0 and

10 0 0 Hz. This result is a consequence of the short axial dimension of the convergent section of the nozzle, l c = 100 mm,

in comparison to the acoustic wavelengths λP ( λP ~ 70 0 mm at 10 0 0 Hz in the upstream duct), so that the convergent is

essentially compact ( λP / l c � 1) for acoustic perturbations. Note that the nozzle cannot be considered as compact for entropy

forcing because the convection velocity is very low in the upstream duct. Hence, entropy wavelengths are shorter than or

similar to the length of the convergent section ( λσ ~ 14 mm at 10 0 0 Hz) and variations of the thermoacoustic transfer

function are strong, as observed in Fig. 7 . The non compactness of the nozzle for entropy forcing is also visible in Fig. 6 (a).

The transfer function associated with the acoustic wave transmitted through the nozzle from the upstream end to the

downstream end is reproduced in Fig. 10 . Once again, very good agreement is observed between the modelled solutions and

CAA results, despite slight differences between Cheops-Nozzle using quasi-1D and 2D mean flow fields. This discrepancy

corresponds to an underprediction of the transfer function with Cheops-Nozzle and the 2D mean flow, as the model does

not recover the compact solution in the low frequency limit. It is a consequence of the difficult evaluation of the mean axial

velocity gradient near the shock in the 2D aerodynamic simulation, and numerical investigations evidenced some slight

variations in the modelled transfer functions when different flow field interpolation procedures are used to generate the

input data for the model. This discrepancy however lies below 3% and can be considered as negligible in the scope of

indirect noise prediction inside an engine. To end with this figure, it can be observed that the transfer function for the

transmitted acoustic wave exhibits more variations than that of the reflected wave, with an increase of about 40% of its
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Fig. 11. Simulated and modelled thermoacoustic transfer function [ P + n /P −n ] . (a) amplitude, (b) phase. See Fig. 7 for legend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amplitude between 0 and 10 0 0 Hz. This can be attributed to two origins. First, for the present case the acoustic waves

cross the whole nozzle, which reduces the validity of the compactness criterion in particular for large frequencies. Second,

the acoustic waves travel through the shock and the response of the shock to this forcing depends on the frequency, see

Eqs. (44) - (46) , so that even if the nozzle can be considered as compact in the regions upstream and downstream of the

shock, the response of the shock itself to the incoming acoustic waves may modulate the transfer function with frequency. 

Finally, the transfer function of the acoustic wave reflected by the nozzle with a forcing from the outlet is illustrated in

Fig. 11 . As for the previous acoustic transfer functions, the agreement is very good between the compact solution, Cheops-

Nozzle modelled transfer functions and CAA results. Because the nozzle is choked, only the subsonic part of the flow in the

divergent region of the nozzle, x ≥ 251.8 mm, contritubes to the reflection of the acoustic waves. The acoustic wavelength

λP lies above 200 mm in this region at 10 0 0 Hz whereas the subsonic part of the divergent is l d,sub = 33 . 2 mm, so that

the compact criterion globally holds. The variation in the amplitude of the transfer function with frequency hence comes

from the response of the shock to the impinging retrograde acoustic wave, as discussed above. The higher the frequency the

lower the reflection of the acoustic wave, which seems to indicate that for this configuration the dissipation of the acoustic

energy by the shock rises as the frequency increases. This result is similar to the experimental and numerical observations

on the HAT nozzle [21,36] . 

From a numerical point of view, the evaluation of the thermoacoustic transfer functions with CAA (10 frequencies from

100 Hz to 10 0 0 Hz) requires approximatively 16,0 0 0 hours of computational time, whereas these transfer functions are

evaluated within only 15 seconds with the analytical model. Despite some possible optimisations in the CAA process (2D

simulations would drastically decrease the computational time, for instance), the model will always remain much faster and

appears very well suited for inclusion in an optimization process such as low-noise shape design, as done for instance by

Giauque et al. [30] with a quasi-1D model. The 2D model seems mature enough for such a thermoacoustic optimisation,

even if the inviscid flow considered remains relatively simple. Some improvements are still possible to aim towards more

realistic flow physics if the impact on noise generation is evidenced. The major limitation of the current model is the inviscid

assumption, as boundary layers might be significant in such wall-bounded configurations. Such boundary layers are expected

to enhance shearing of entropy fluctuations near the walls and possibly impact noise generation. 

5. Conclusions 

The 2D model developed at ONERA for the computation of indirect combustion noise through a subsonic nozzle [38] is

extended in the present article to choked nozzles flows, without and with a shock in the diffuser. This model differs from

the quasi-1D approaches available in the literature by taking into account the radial deformation of the entropy fluctuations

by the mean flow during their convection through the nozzle. The numerical resolution is performed by considering planar

acoustic perturbations inside the nozzle, a normal shock in the diffuser and by neglecting vorticity fluctuations. The flow

equations are derived in the first part of the article from the Euler equations before being linearised and recast for numerical

resolution. The model is then validated for a choked flow configuration with a shock in the diffuser through comparisons

with reference data obtained with CAA simulations. Excellent agreement is observed between the 2D model and CAA results

for all the forcings considered and the compact solution of Marble and Candel [19] is correctly recovered by the model as

well. With entropy forcing, 2D transfer functions collapse well with the quasi-1D solution classically used in the literature

[28,29,31–33] in the low frequency range but discrepancies increase as frequency rises because the radial distortion of the

entropy wave is not taken into account by the quasi-1D approach. Of interest, quasi-1D modelled transfer functions collapse

with CAA data in the case of acoustic forcings, which indicates that 2D mean flow effects are negligible for noise scattering

through the nozzle. 
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Appendix A. Noise generation in the presence of multiple forcings 

In this appendix, an analytical method is proposed to determine the noise generated through the nozzle in practical con-

figurations, such as cases with frequency-dependent forcings, simultaneous acoustic and entropy forcings or a non-isolated

nozzle, that is to say when the waves leaving the nozzle domain produce additional acoustic waves that propagate back to

the nozzle. It may correspond for instance to the use of experiment-based forcings, to the modelling of the presence of addi-

tional mechanical elements such as turbine stages upstream or downstream of the nozzle, or to numerical reflections on the

domain boundaries in numerical simulations. The configuration is illustrated in Fig. A.1 where acoustic and entropy waves

are represented at both extremities of the nozzle. In the harmonic regime, the transfer functions of the isolated nozzle (no

reflections on the boundaries) write 
[
P −

1 
/σ1 

]
, 
[
P −

1 
/P + 

1 

]
, ..., 

[
σn /P −n 

]
and the additional forcing fluctuations generated by the

waves leaving the domain are characterized by the reflections coefficients R aa 
in 

= 

[
P + 

1 
/P −

1 

]
, R as 

in 
= 

[
σ1 /P −

1 

]
, R aa 

out = 

[
P −n /P + n 

]
and

R sa 
out = 

[
P −n /σn 

]
. In the linear harmonic regime, the generated waves write in the general case: 

ˆ P −1 = 

[
P −

1 

σ1 

]
ˆ σ1 + 

[
P −

1 

P + 
1 

]
ˆ P + 1 + 

[
P −

1 

P −n 

]
ˆ P −n , (A.1) 

ˆ P + n = 

[
P + n 

σ1 

]
ˆ σ1 + 

[
P + n 

P + 
1 

]
ˆ P + 1 + 

[
P + n 

P −n 

]
ˆ P −n , (A.2) 

ˆ σn = 

[ 
σn 

σ1 

] 
ˆ σ1 + 

[
σn 

P + 
1 

]
ˆ P + 1 + 

[
σn 

P −n 

]
ˆ P −n , (A.3) 

with 

ˆ σ1 = ˆ σ1 f + R 

as 
in 

ˆ P −1 , (A.4) 

ˆ P + 1 = 

ˆ P + 
1 f 

+ R 

aa 
in 

ˆ P −1 , (A.5) 

ˆ P −n = 

ˆ P −
n f 

+ R 

aa 
out ̂

 P + n + R 

sa 
out ̂  σn . (A.6) 
Fig. A.1. Sketch of the modelled nozzle with incoming and outgoing waves and upstream and downstream reflections. 
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It comes after some algebra the matrix system 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −
(

R 

as 
in 

[
P −

1 

σ1 

]
+ R 

aa 
in 

[
P −

1 

P + 
1 

])
−R 

aa 
out 

[
P −

1 

P −n 

]
−R 

sa 
out 

[
P −

1 

P −n 

]

−
(

R 

as 
in 

[
P + n 

σ1 

]
+ R 

aa 
in 

[
P + n 

P + 
1 

])
1 − R 

aa 
out 

[
P + n 

P −n 

]
−R 

sa 
out 

[
P + n 

P −n 

]

−
(

R 

as 
in 

[ 
σn 

σ1 

] 
+ R 

aa 
in 

[
σn 

P + 
1 

])
−R 

aa 
out 

[
σn 

P −n 

]
1 − R 

sa 
out 

[
σn 

P −n 

]

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ P −
1 

ˆ P + n 

ˆ σn 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

[
P −

1 

σ1 

] [
P −

1 

P + 
1 

] [
P −

1 

P −n 

]
[

P + n 

σ1 

] [
P + n 

P + 
1 

] [
P + n 

P −n 

]
[ 
σn 

σ1 

] [
σn 

P + 
1 

] [
σn 

P −n 

]

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ˆ σ1 f 

ˆ P + 
1 f 

ˆ P −
n f 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(A.7)

that can be easily solved to provide the complex amplitudes of the three generated waves ˆ P −
1 

, ˆ P + n and ˆ σn . 
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