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An exact solution is developed for bubble-induced acoustic microstreaming in the case
of a gas bubble undergoing asymmetric oscillations. The modelling is based on the
decomposition of the solenoidal, first- and second-order, vorticity fields into poloidal and
toroidal components. The result is valid for small-amplitude bubble oscillations without
restriction on the size of the viscous boundary layer (2ν/ω)1/2 in comparison to the bubble
radius. The non-spherical distortions of the bubble interface are decomposed over the
set of orthonormal spherical harmonics Y m

n (θ, φ) of degree n and order m. The present
theory describes the steady flow produced by the non-spherical oscillations (n,±m) that
occur at a frequency different from that of the spherical oscillation, as in the case of a
parametrically excited surface oscillation. The three-dimensional aspect of the streaming
pattern is revealed as well as the particular flow signatures associated with different
asymmetric oscillations.
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1. Introduction
The high-frequency interfacial motion of ultrasound-driven gas bubbles can generate
a steady flow in the surrounding fluid, called acoustic microstreaming. Interest in the
bubble-induced streaming and the resulting stresses exerted on surrounding bodies is
motivated by a variety of technological, chemical and biomedical applications. Oscillating
bubbles close to or in contact with a wall can actuate the transport of particles within the
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viscous boundary layer at solid surfaces, with applications in the removal of contamination
particles and surface cleaning (Kim et al. 2009; Reuter et al. 2017), the amplification of
chemical treatments (Mason 1999), the handwashing and cleaning of sensitive surfaces
(Birkin, Offin & Leighton 2016), and the micromixing of fluids (Wang, Rallabandi &
Hilgenfeldt 2013). Cavitation microstreaming is also a propelling source for small water-
floating objects and bubble-driven microrobots (Dijkink et al. 2006; Ahmed et al. 2015).
These artificial, acoustically driven microswimmers act as propulsion devices that can
carry a payload, with a great potential for microfluidic applications and targeted drug
delivery. The commonly used geometry for these microrobots includes a gas bubble
trapped in the robot body cavity, whose oscillations create an axisymmetric flow that
orients and propels the microrobot (Zhou, Dai & Jiao 2022). The orientation of the
propeller can be controlled by inducing one or several holes on armoured bubbles (Bertin
et al. 2015) by combining acoustic powering and magnetic steering (Aghakhani et al.
2020), or by designing gear-like bubble-based propellers in order to actuate rotational
motion along closed trajectories (Mohanty et al. 2021). Biomedical applications based on
bubble-induced flows include cell detachment (Ohl & Wolfrum 2003), the sorting and
manipulation of biological materials (Volk et al. 2020), the lysis of vesicles (Marmottant,
Biben & Hilgenfeldt 2008), and ultrasound-mediated targeted drug delivery (Lajoinie et al.
2016; Pereno et al. 2018). The ultrasound-mediated delivery of a drug is based on the action
of oscillating microbubbles nearby biological barriers that increase their permeability and
allow drug and genes to penetrate into individual cells without serious consequence for
the cell viability (Fan et al. 2014). The temporary permeabilisation of biological barriers
is caused by shear stresses exerted on cell tissues by the bubble-induced flows (Wu &
Nyborg 2008), which are responsible for a ‘massage’ effect on cells and the creation of
transient pores on the cell membrane. Even if no consensus exists on the exact mechanism
responsible for cell poration and the required bubble activity (collapsing/inertial regime or
stably oscillating regime), determining the bubble-induced flows and resulting shear stress
is mandatory.

The first theoretical investigation of acoustic microstreaming was performed by Nyborg
(1958). By investigating the near-boundary streaming induced by a compressible body
(a gas bubble) resting on a surface, he showed how resonant bubbles produced a
pronounced microstreaming in the surface vicinity. Davidson & Riley (1971) have
considered the case of a spherical bubble oscillating laterally in an unbounded fluid. Their
investigation covers a wide range of situations with respect to the orders of magnitude of
two dimensionless parameters. The first, ε = U/R0ω, is the ratio of the vibration amplitude
of the velocity U occuring at the angular frequency ω to the bubble radius R0. The second
parameter quantifies the ratio of the thickness of the Stokes layer to the bubble radius,
γ = (2ν/ω)1/2/R0 = δv/R0, where ν is the kinematic viscosity, and δv is the thickness of
the oscillatory shear layer. A great theoretical achievement of their work is the introduction
of a matching approximation between the solution within the inner boundary layer and
the one in the outer boundary, performed in the case of large bubbles (γ � 1) driven at
relatively low frequencies and with small amplitudes of lateral oscillations (ε� 1). This
approximation has been used in later decades by several authors, adding the contribution of
small radial oscillation (Longuet-Higgins 1998), of small-amplitude axisymmetric shape
oscillations in the case of the nth distortion mode with n � 1 (Maksimov 2007), and of
any arbitrary combination of axisymmetric shape oscillations (Spelman & Lauga 2017).
All the above-mentioned theoretical works are based on the matching of the inner/outer
solution that assumes a small viscous penetration depth in comparison to the bubble radius.
This assumption limits the findings to the case of large bubbles in low-viscosity fluids.
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Recently, Doinikov et al. (2019a) have overcome these limitations by calculating exactly
the second-order mean flow induced by all possible interactions between axisymmetric
shape oscillations (including the spherical and translational ones).

Yet the similarity between all these theoretical derivations is to consider initially (at
rest) spherical bubbles far from any boundary. While this scenario has been recovered
experimentally by using levitating, acoustically trapped bubbles (Cleve et al. 2019), the
majority of experimental work on acoustic microstreaming is performed on substrate-
attached microbubbles. The positional stability of the bubble is therefore ensured, hence
facilitating the capture of the interface dynamics as well as the surrounding fluid
motion. Marmottant et al. (2006) resolved the acoustic streaming surrounding a wall-
attached bubble experiencing spherical oscillations and a translational one occurring
perpendicularly to the wall. Tho, Manasseh & Ooi (2007) performed an extensive
study of streaming patterns surrounding a substrate-attached bubble from the top view.
In addition to the cases of varying translational and/or oscillating motion of the
bubble interface, the authors have also extended the analysis to the case of shape
oscillations, without mentioning the triggered shape instability. Marin et al. (2015)
revealed the three-dimensional nature of the acoustic streaming flow surrounding a
wall-attached cylindrical bubble by using an astigmatism particle tracking velocimetry
(APTV) technique. Using the same APTV technique, Bolanos-Jimenez et al. (2017)
captured the three-dimensional axisymmetric, ‘fountain-like’ flow pattern surrounding
a hemispherical bubble. Interestingly, the strength of the flow was used as a way
of finding the bubble’s lowest resonant frequency. When summarizing the literature,
it becomes obvious that experimental and theoretical works on bubbles experiencing
asymmetric (i.e. non-axisymmetric) oscillations are scarce, while the ease of triggering
asymmetric deformations is facilitated by the contact line dynamics and the breaking of the
spherical symmetry. Usually, the complexity of the asymmetric oscillations is disregarded
experimentally, where undetermined shape modes are sometimes reported (Saint-Michel
& Garbin 2020). The landscape of emergence of specific spherical harmonics for high-
amplitude-driven microbubbles was proposed by Fauconnier, Bera & Inserra (2020).
The ease of triggering specific asymmetric modes near the minimum of the instability
threshold, as well as the partitioning of the triggered modes within the instability
region of existence for shape oscillations, was demonstrated. The only theoretical work
discussing the emergence and triggering of asymmetric oscillations was performed by
Maksimov (2020) in the case of a spherical bubble located in front of a wall. The splitting
(partitioning) of the shape modes was recovered theoretically. Concerning the induced
flows, a systematic study of the acoustic microstreaming surrounding a wall-attached
bubble has been performed by Fauconnier et al. (2022). High-amplitude acoustic driving
allowed the triggering of non-spherical shape oscillations, including asymmetric ones.
The flow signatures were correlated to the bubble interface dynamics decomposed over
the set of orthonormal spherical harmonics Y m

n (θ, φ) of degree n and order m. The self-
interaction of a given asymmetric shape oscillation results in various flower-like patterns
whose numbers of lobes are associated with the degree n and order m of the triggered
harmonics. Only top view observations were performed, and the three-dimensional nature
of these asymmetric patterns has still to be determined.

The present paper provides the mathematical modelling of the second-order mean
flow surrounding a bubble experiencing asymmetric oscillations at a frequency different
from that of the spherical oscillations, so that the microstreaming comes from the
interaction of the shape oscillation with itself (self-interaction). This case is relevant
to parametrically excited shape oscillations. Section 2 describes the derivation of the
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Figure 1. Coordinate system used in calculations.

second-order mean flow, with a particular focus on the decomposition of the solenoidal,
first- and second-order, vorticity fields into poloidal and toroidal components. The
derivation is valid for small-amplitude bubble oscillations with no restriction on the size
of the viscous boundary layer δv = (2ν/ω)1/2 in comparison to the bubble radius. This
means that our theory is valid for any value of the liquid viscosity ν, which in turn means
that our theory is valid for any value of the ratio δv/R0, where R0 is the equilibrium bubble
radius. We emphasise this fact because in many previous studies on acoustic streaming, the
ratio δv/R0 is assumed to be small, which means that the liquid viscosity is assumed to be
very low and/or R0 to be big. Section 3 presents various numerical examples obtained by
the proposed model, highlighting the three-dimensional nature of the streaming patterns,
the reversal of the flow atop the bubble by means of the generation of an anti-fountain
behaviour, and the possibility of creating flows with a strong azimuthal component when
a travelling surface wave propagates at the interface of the bubble.

2. Theory
We consider a gas bubble surrounded by an infinite viscous incompressible liquid. We
assume that the bubble, which is spherical at rest, undergoes asymmetric oscillations
in response to an external acoustic excitation. Figure 1 shows a spherical coordinate
system, originated at the equilibrium centre of the bubble, that is used in our calculations.
Our derivation follows the conventional procedure for calculating acoustic streaming. We
assume that the amplitudes of the bubble oscillation modes are small compared to the
equilibrium bubble radius. This assumption allows us to linearise the equations of liquid
motion (Navier–Stokes equations) and to find their solutions, assuming the amplitudes of
the bubble oscillation modes to be given quantities. These solutions give us a first-order
velocity field generated by the bubble in the liquid. Then the equations of liquid motion
are written with accuracy up to terms of second order of smallness with respect to the
first-order solutions and averaged over time. As a result, we obtain equations that describe
the velocity field of acoustic streaming produced by the bubble.
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2.1. First-order solutions
The surface of a bubble undergoing the oscillation modes (n,m) and (n,−m) can be
represented by

rs(θ, φ, t)= R0 + e−iωt s(n,m) Y m
n (θ, φ)+ e−iωt s(n,−m) Y −m

n (θ, φ), (2.1)

where R0 is the bubble radius at rest, ω is the angular frequency of the bubble oscillations,
s(n,m)and s(n,−m) are the complex amplitudes of the modes (n,m) and (n,−m),
respectively, and Y m

n (θ, φ) are spherical harmonics of degree n and order −n ≤ m ≤ n,
which are defined by (D1) in Appendix D. Here, the azimuthal dependency as a complex
exponential has been preferred to the cosine form (known as the real spherical harmonics)
for the following reason. The cosine representation of the azimuthal part of the angular
function implies an established, standing wave at the interface of the bubble. In order to
allow for the most general case of two oppositely moving travelling waves at the interface
of the bubble, the two components (n,±m) are considered. When the amplitudes of the
two components are equal, s(n,m) = s(n,−m), a stationary azimuthal wave is established.
When they differ, a quasi-stationary wave exists that is composed of a partially stationary
and a partially travelling component. In the general case, any three-dimensional bubble
deformation can be decomposed over the set of orthonormal spherical harmonics, which
means that several modes can coexist. The interaction of several modes oscillating at the
same frequency (mixed-mode streaming) has been described as a dominant contribution
to acoustic microstreaming in many situations; see, for example, Longuet-Higgins (1998)
and Rallabandi, Wang & Hilgenfeldt (2014). However, the consideration of two interacting
modes (n1,m1) and (n2 �= n1,m2 �= m1) will lead to serious mathematical complexity
in calculating the resulting flow. According to the work of Fauconnier et al. (2022), the
possibility of triggering a single, well-identified, asymmetric mode was demonstrated.
The associated flow, resulting from the interaction of the triggered asymmetric mode with
itself, was captured. It is therefore worth considering a single asymmetric mode interacting
with itself for the description of the induced acoustic microstreaming, as in (2.1).

The values of s(n,±m) and ω are considered as known quantities. They are assumed
to be measured experimentally and serve as input data in our study. We also assume
that |s(n,±m)|/R0 � 1, which allows us to linearise the equations of liquid motion. The
linearised equations of a viscous incompressible liquid are given by (Landau & Lifshitz
1987)

∇ · v1 = 0, (2.2)
∂v1

∂t
= − 1

ρ
∇ p1 + ν �v1, (2.3)

where v1 and p1 are the first-order liquid velocity and pressure, respectively, ρ is the
constant liquid density, ν = η/ρ is the kinematic liquid viscosity, and η is the dynamic
liquid viscosity.

The first-order velocity field generated by modes (n,m) and (n,−m) can be written as

v1 = v
(n,m)
1 + v

(n,−m)
1 , (2.4)

where v(n,m)1 and v
(n,−m)
1 are the first-order liquid velocities generated by the modes

(n,m) and (n,−m), respectively. Both v(n,m)1 and v(n,−m)
1 obey (2.2) and (2.3).

The commonly used procedure to solve (2.2) and (2.3) consists in decomposing the
first-order liquid velocity v1 into the scalar ϕ and the vector ψ velocity potentials using
the Helmholtz decomposition v1 = ∇ϕ + ∇ ×ψ . In spherical coordinates associated
with the basis set of vectors (er , eθ , eφ), the general forms of these potentials are
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ϕ = ϕ(r, θ, φ, t) and ψ =ψr (r, θ, φ, t) er +ψθ(r, θ, φ, t) eθ +ψφ(r, θ, φ, t) eφ . The
Helmholtz decomposition is suitable for solving axisymmetric cases because the azimuthal
invariance reduces the decomposition of the velocity field to only two unknowns,
ϕ(r, θ, φ, t) and ψφ(r, θ, φ, t) (Doinikov et al. 2019a). In the present problem, the
general form of the scalar and vector potentials should be kept, leading to four unknown
functions. Using the divergence-free property of the velocity field in (2.2), an alternative
decomposition can be proposed to reduce the number of unknown functions, such
as the poloidal–toroidal decomposition sometimes called the Mie representation of a
vector field. Indeed, Mie (1908) was the first to introduce this decomposition in the
investigation of Maxwell’s equations in a spherical geometry, after Lamb (1881), who
introduced the toroidal part only in hydrodynamics. The application of the poloidal–
toroidal decomposition of a solenoidal field concerns mainly terrestrial magnetism
(Elsasser 1946; Bullard & Gellman 1954; Backus 1986). Chandrasekhar (1961) adapted
this representation to treat a convective-flow stability problem in a spherical cavity.
The validity of the poloidal–toroidal decomposition for any solenoidal fields has been
demonstrated by Chadwick & Trowbridge (1967) in a bounded annular region, by Backus
(1958) in a closed ball, and by Padmavati & Amaranath (2002) for unbounded regions.
In the context of bubble physics, Prosperetti (1977) proposed this decomposition for the
vorticity field induced by bubble non-spherical oscillations in order to determine the
equations of motion of the bubble interface accounting for non-spherical perturbations
in viscous fluids. Therefore, we follow the approach of Prosperetti (1977), and calculate
the curl of both sides of (2.3), which results in

∂ω
(n,m)
1
∂t

= ν �ω
(n,m)
1 , (2.5)

where ω(n,m)1 = ∇ × v
(n,m)
1 is called the vorticity of the velocity field v(n,m)1 . We then apply

the poloidal–toroidal decomposition of the vorticity (Backus 1986)

ω
(n,m)
1 = P (n,m)1 + T (n,m)1 , (2.6)

where, in view of the equation of the bubble surface (2.1), the poloidal P (n,m)1 and toroidal
T (n,m)1 fields are written by

P (n,m)1 = e−iωt ∇ × ∇ × [er Pnm(r) Y m
n (θ, φ)

]
, (2.7)

T (n,m)1 = e−iωt ∇ × [er Tnm(r) Y m
n (θ, φ)

]
, (2.8)

with er = r/r being the unit radial vector.
Substitution of (2.6) into (2.5) yields

∂ P (n,m)1
∂t

+ ∂T (n,m)1
∂t

= ν �P (n,m)1 + ν �T (n,m)1 . (2.9)

In view of the orthogonality of the poloidal and toroidal fields, (2.9) can be split into
two equations:

∂ P (n,m)1
∂t

= ν �P (n,m)1 , (2.10)

∂T (n,m)1
∂t

= ν �T (n,m)1 . (2.11)
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Substituting (2.7) and (2.8) into (2.10) and (2.11), and using the identity

�
[
er F(r) Y m

n (θ, φ)
]= er Y m

n (θ, φ)

[
d2 F(r)

dr2 − n (n + 1)
r2 F(r)

]

+ 2 ∇
[

F(r)

r
Y m

n (θ, φ)

]
, (2.12)

where F(r) is an arbitrary function, one obtains

− iω∇ × ∇ × [er Pnm(r) Y m
n (θ, φ)

]= ν ∇ × ∇
×
{

er Y m
n (θ, φ)

[
d2 Pnm(r)

dr2 − n (n + 1)
r2 Pnm(r)

]}
, (2.13)

−iω∇ × [er Tnm(r) Y m
n (θ, φ)

]= ν ∇ ×
{

er Y m
n (θ, φ)

[
d2Tnm(r)

dr2 − n (n + 1)
r2 Tnm(r)

]}
.

(2.14)

It follows from (2.13) and (2.14) that Pnm(r) and Tnm(r) obey the equations[
d2

dr2 − n (n + 1)
r2 + k2

v

]
Pnm(r)= 0, (2.15)[

d2

dr2 − n (n + 1)
r2 + k2

v

]
Tnm(r)= 0, (2.16)

where kv = (1 + i)/δv is the viscous wavenumber, and δv = √
2ν/ω is the viscous

penetration depth.
It is easy to check that both (2.15) and (2.16) are transformed to the Riccati–Bessel

equation (Abramowitz & Stegun 1972) by multiplying by r2. Solutions to the above
equation are given by kvr zn(kvr), where zn is the spherical Bessel function of the first
or second kind, or the spherical Hankel function of the first or second kind. Since we are
looking for solutions in the form of an outgoing wave, we get

Pnm(r)= anmkvr h(1)n (kvr), (2.17)

Tnm(r)= bnmkvr h(1)n (kvr), (2.18)
where anm and bnm are constants, called the linear scattering coefficients, that are
determined by boundary conditions at the bubble surface, and h(1)n is the spherical Hankel
function of the first kind.

Substituting (2.7) and (2.8) into (2.6), and using (2.17) and (2.18), one obtains

ω
(n,m)
1 = e−iωt

{
∇ × ∇ ×

[
er anmkvr h(1)n (kvr) Y m

n (θ, φ)
]

+∇ ×
[
er bnmkvr h(1)n (kvr) Y m

n (θ, φ)
]}
. (2.19)

It follows from (2.19) that v(n,m)1 can be written as

v
(n,m)
1 = e−iωt

{
∇ ×

[
er anmkvr h(1)n (kvr) Y m

n (θ, φ)
]

+er bnmkvr h(1)n (kvr) Y m
n (θ, φ)− ∇ϕ

}
, (2.20)

where a scalar function ϕ is introduced in order to satisfy (2.2).
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Substitution of (2.20) into (2.2) yields

�ϕ = ∇ ·
[
er bnmkvr h(1)n (kvr) Y m

n (θ, φ)
]
. (2.21)

Equation (2.21) is the inhomogeneous Laplace equation, which is also called Poisson’s
equation. Since we are looking for a solution for r > R0, the solution to (2.21) can be
represented by

ϕ (r, θ, φ)= cnmr−(n+1) Y m
n (θ, φ)+ ϕnm(r) Y m

n (θ, φ), (2.22)

where the first term on the right-hand side is the solution to the Laplace equation (�ϕ = 0),
cnm being a constant coefficient, and the second term is a particular solution to Poisson’s
equation (2.21), ϕnm(r) being a function to be found.

To find ϕnm(r), we substitute (2.22) into (2.21), and calculate the right-hand side of
(2.21). As a result, we obtain the equation[

d2

dx2 + 2
x

d
dx

− n (n + 1)
x2

]
ϕnm(x)= bnm

kv

[
3 h(1)n (x)+ x h(1)′n (x)

]

= bnm

kv

[
(n + 3) h(1)n (x)− x h(1)n+1(x)

]
, (2.23)

where x = kvr , and the prime denotes the derivative with respect to an argument in
brackets.

To solve (2.23), we use the identities (Abramowitz & Stegun 1972)
n

x
h(1)n (x)− h(1)′n (x)= h(1)n+1(x), (2.24)

n + 1
x

h(1)n (x)+ h(1)′n (x)= h(1)n−1(x). (2.25)

With the help of (2.24) and (2.25), we obtain[
d2

dx2 + 2
x

d
dx

− n (n + 1)
x2

][
α h(1)n (x)+ βx h(1)n+1(x)

]
= (2β − α) h(1)n (x)− βx h(1)n+1(x).

(2.26)
Comparison of (2.23) with (2.26) reveals that the solution to (2.23) is obtained by setting

α = −(n + 1)bnm/kv and β = bnm/kv:

ϕnm (x)= bnm

kv

[
x h(1)n+1(x)− (n + 1) h(1)n (x)

]
. (2.27)

It follows that the general solution to (2.21) is given by

ϕ (r, θ, φ)=
{

cnmr−(n+1) + bnm

kv

[
kvr h(1)n+1 (kvr)− (n + 1) h(1)n (kvr)

]}
Y m

n (θ, φ) .

(2.28)
The coefficients anm, bnm, cnm are calculated in Appendix A. In the process of this

calculation, the following boundary conditions at the bubble surface have been used: the
condition that the normal component of the first-order liquid velocity is equal to the normal
component of the bubble surface velocity, and the condition that the tangential stress
generated by the liquid motion vanishes at the bubble surface because the gas viscosity
is much lower than the liquid viscosity. By using the results obtained in Appendix A,
v
(n,m)
1 is represented by
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v
(n,m)
1 = v

(n,m)
1r er + v

(n,m)
1θ eθ + v

(n,m)
1φ eφ, (2.29)

v
(n,m)
1r = e−iωt s(n,m) Vn (r) Y m

n (θ, φ) , (2.30)

v
(n,m)
1θ = e−iωt s(n,m) Wn (r)

∂Y m
n (θ, φ)

∂θ
, n ≥ 1, (2.31)

v
(n,m)
1φ = e−iωt s(n,m)

Wn (r)

sin θ
∂Y m

n (θ, φ)

∂φ
, n,m ≥ 1, (2.32)

where the functions Vn(r) and Wn(r) are calculated by

Vn (r)= (n + 1) αn

rn+2 + n (n + 1) βnh(1)n (kvr)

kvr
, (2.33)

Wn (r)= − αn

rn+2 + βn

kvr

[
(n + 1) h(1)n (kvr)− kvrh(1)n+1 (kvr)

]
, (2.34)

and the coefficients αn and βn are given by

αn =
iωRn+2

0

[(
2 − n − n2) h(1)n (x)− x2h(1)′′n (x)

]
(n + 1)

[
x2h(1)′′n (x)− (n2 + 3n + 2

)
h(1)n (x)

] , n ≥ 0, (2.35)

βn = 2i (n + 2) xω

(n + 1)
[
x2h(1)′′n (x)− (n2 + 3n + 2

)
h(1)n (x)

] , n ≥ 1, (2.36)

where x = kvR0. Note that (2.33)–(2.36) follow from (A8), (A9), (A22) and (A23) by
setting cnm = s(n,m)αn and bnm = s(n,m)βn .

The first-order velocity generated by the mode (n,−m) is obtained by replacing m with
−m in (2.29)–(2.32):

v
(n,−m)
1 = v

(n,−m)
1r er + v

(n,−m)
1θ eθ + v

(n,−m)
1φ eφ, (2.37)

v
(n,−m)
1r = e−iωt s(n,−m)Vn (r) Y −m

n (θ, φ) , (2.38)

v
(n,−m)
1θ = e−iωt s(n,−m)Wn (r)

∂Y −m
n (θ, φ)

∂θ
, n ≥ 1, (2.39)

v
(n,−m)
1φ = e−iωt s(n,−m)Wn (r)

sin θ
∂Y −m

n (θ, φ)

∂φ
, n,m ≥ 1. (2.40)

With the help of (D1) and (D3) from Appendix D, (2.38)–(2.40) are represented by

v
(n,−m)
1r = e−iωt s(n,−m)Vn (r) (−1)m Y m∗

n (θ, φ) , (2.41)

v
(n,−m)
1θ = e−iωt s(n,−m)Wn (r) (−1)m

∂Y m∗
n (θ, φ)

∂θ
, n ≥ 1, (2.42)

v
(n,−m)
1φ = e−iωt s(n,−m)Wn (r)

sin θ
(−1)m

∂Y m∗
n (θ, φ)

∂φ
, n,m ≥ 1, (2.43)

where the asterisk denotes the complex conjugate.

2.2. Solutions of the equations of acoustic streaming
The equations of acoustic streaming are given by (Doinikov et al. 2019a)
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∇ · vE = 0, (2.44)

�∇ × vE = 1
ν
∇ × 〈v1 · ∇v1〉 , (2.45)

where vE is the Eulerian streaming velocity, i.e. the time-averaged second-order liquid
velocity, and 〈 〉 means the time average.

Substitution of (2.4) into (2.45) yields

�∇ × vE = 1
ν
∇

×
〈
v
(n,m)
1 · ∇v(n,m)1 + v

(n,−m)
1 · ∇v(n,−m)

1 + v
(n,m)
1 · ∇v(n,−m)

1 + v
(n,−m)
1 · ∇v(n,m)1

〉
.

(2.46)

This equation can be divided into three equations:

�∇ × v
(n,m)
E = 1

ν
∇ ×

〈
v
(n,m)
1 · ∇v(n,m)1

〉
, (2.47)

�∇ × v
(n,−m)
E = 1

ν
∇ ×

〈
v
(n,−m)
1 · ∇v(n,−m)

1

〉
, (2.48)

�∇ × v
(×)
E = 1

ν
∇ ×

〈
v
(n,m)
1 · ∇v(n,−m)

1 + v
(n,−m)
1 · ∇v(n,m)1

〉
, (2.49)

where (2.47) describes the acoustic streaming generated by the mode (n,m) alone,
(2.48) describes the acoustic streaming generated by the mode (n,−m) alone, and (2.49)
describes the acoustic streaming due to the interaction of the above modes (streaming due
to cross-terms).

Let us first consider (2.47). Since ∇ × v
(n,m)
E is a divergence-free vector field, it can be

represented by a poloidal–toroidal decomposition (Backus 1986)

∇ × v
(n,m)
E = ∇ × ∇ ×

[
er

∞∑
k=1

k∑
l=−k

P(n,m)kl (r) Y l
k (θ, φ)

]

+ ∇ ×
[

er

∞∑
k=1

k∑
l=−k

T (n,m)kl (r) Y l
k (θ, φ)

]

=
∞∑

k=1

k∑
l=−k

{
er

k (k + 1) P(n,m)kl (r)

r2 Y l
k (θ, φ)

+ P(n,m)′kl (r)

r

[
eθ
∂Y l

k (θ, φ)

∂θ
+ eφ

sin θ
∂Y l

k (θ, φ)

∂φ

]

+ T (n,m)kl (r)

r

[
eθ

sin θ
∂Y l

k (θ, φ)

∂φ
− eφ

∂Y l
k (θ, φ)

∂θ

]}
. (2.50)

Recall that the prime in the superscript denotes the derivative with respect to an
argument in brackets. Substitution of (2.50) into (2.47) and the calculation of�∇ × v

(n,m)
E

yield

1010 A48-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.284


Journal of Fluid Mechanics

�∇ × v
(n,m)
E =

∞∑
k=1

k∑
l=−k

{
er

k (k + 1)
r2

[
P(n,m)′′kl (r)− k (k + 1) P(n,m)kl (r)

r2

]
Y l

k (θ, φ)

+ 1
r

[
P(n,m)′′′kl (r)− k (k + 1) P(n,m)/kl (r)

r2 + 2k (k + 1) P(n,m)kl (r)

r3

]

×
[

eθ
∂Y l

k (θ, φ)

∂θ
+ eφ

sin θ
∂Y l

k (θ, φ)

∂φ

]

+ 1
r

[
T (n,m)′′kl (r)− k (k + 1) T (n,m)kl (r)

r2

] [
eθ

sin θ
∂Y l

k (θ, φ)

∂φ
− eφ

∂Y l
k (θ, φ)

∂θ

]}

= 1
ν
∇ ×

〈
v
(n,m)
1 · ∇v(n,m)1

〉
. (2.51)

Equating the r -components of both sides of (2.51), one obtains

∞∑
k=1

k∑
l=−k

k (k + 1)
r2

[
P(n,m)′′kl (r)− k (k + 1) P(n,m)kl (r)

r2

]
Y l

k (θ, φ)

= 1
ν

er ·
[
∇ ×

〈
v
(n,m)
1 · ∇v(n,m)1

〉]
. (2.52)

Calculating the curl of both sides of (2.51) and taking the r -component, one finds

∞∑
k=1

k∑
l=−k

k (k + 1)
r2

[
T (n,m)′′kl (r)− k (k + 1) T (n,m)kl (r)

r2

]
Y l

k (θ, φ)

= 1
ν

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,m)1

〉]
. (2.53)

Equations (2.52) and (2.53) make it possible to calculate P(n,m)kl (r) and T (n,m)kl (r), and
hence v(n,m)E . In view of the cumbersome nature of these calculations, they are performed
in Appendix B. As a result, we obtain the components of the Eulerian streaming velocity
in the following form:

v
(n,m)
Er (r, θ)= 1

2
√
π

∞∑
k=1

√
2k + 1

[
T (n,m)k0 (r)+Φ

(n,m)/
k0 (r)

]
Pk (cos θ) , (2.54)

v
(n,m)
Eθ (r, θ)= 1

2
√
π r

∞∑
k=1

√
2k + 1Φ(n,m)k0 (r) P1

k (cos θ) , (2.55)

v
(n,m)
Eφ (r, θ)= − 1

2
√
π r

∞∑
k=1

√
2k + 1 P(n,m)k0 (r) P1

k (cos θ) , (2.56)

where Pk is the Legendre polynomial of degree k, P1
k is the associated Legendre polynomi-

al of first order and degree k, and the functions P(n,m)k0 (r), T (n,m)k0 (r), Φ(n,m)k0 (r), Φ(n,m)′k0 (r)
are calculated by (B18), (B24), (B33) and (B45).

In the process of the calculation of v(n,m)E in Appendix B, we also calculate the Stokes
drift velocity v(n,m)S (Longuet-Higgins 1998), whose components are given by
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v
(n,m)
Sr (r, θ)= |s(n,m)|2

4
√
π ω

∞∑
k=1

√
2k + 1 Anmnm

k0

× Re
{

i V ∗
n (r)

[
2n (n + 1)− k (k + 1)

2r
Wn (r)− V ′

n (r)

]}
Pk (cos θ) ,

(2.57)

v
(n,m)
Sθ (r, θ)= |s(n,m)|2

8
√
π ω

Re
{

i V ∗
n (r)

[
Wn (r)

r
− W ′

n (r)

]} ∞∑
k=1

√
2k + 1 Anmnm

k0 P1
k (cos θ) ,

(2.58)

v
(n,m)
Sφ (r, θ)=

∞∑
k=1

E (n,m)k (r) P1
k (cos θ) ,

(2.59)

where Re means ‘the real part of’, the coefficients Anmnm
k0 are calculated by (D20), and

the function E (n,m)k is defined by (B63). Note that (2.57) and (2.58) follow from (B54) and
(B56) using fnm(r)= s(n,m)Vn(r) and gnm(r)= s(n,m)Wn(r).

Knowing v
(n,m)
E and v

(n,m)
S , we can calculate the Lagrangian streaming velocity

produced by the mode (n,m), which is defined by v(n,m)L = v
(n,m)
E + v

(n,m)
S .

Due to symmetry, solutions to (2.48) are expressed in terms of the solutions to (2.47) as
follows:

v
(n,−m)
Lr (r, θ)= |s(n,−m)|2

|s(n,m)|2 v
(n,m)
Lr (r, π − θ) , (2.60)

v
(n,−m)
Lθ (r, θ)= −|s(n,−m)|2

|s(n,m)|2 v
(n,m)
Lθ (r, π − θ) , (2.61)

v
(n,−m)
Lφ (r, θ)= −|s(n,−m)|2

|s(n,m)|2 v
(n,m)
Lφ (r, π − θ) . (2.62)

To solve (2.49), by analogy with the solution of (2.47), ∇ × v
(×)
E is represented by a

poloidal–toroidal decomposition,

∇ × v
(×)
E = Re

{
∇ × ∇ ×

[
er

∞∑
k=1

k∑
l=−k

P(×)kl (r) Y l
k (θ, φ)

]

+ ∇ ×
[

er

∞∑
k=1

k∑
l=−k

T (×)kl (r) Y l
k (θ, φ)

]}

= Re
∞∑

k=1

k∑
l=−k

{
er

k (k + 1) P(×)kl (r)

r2 Y l
k (θ, φ)

+ P(×)′kl (r)

r

[
eθ
∂Y l

k (θ, φ)

∂θ
+ eφ

sin θ
∂Y l

k (θ, φ)

∂φ

]

+T (×)kl (r)

r

[
eθ

sin θ
∂Y l

k (θ, φ)

∂φ
− eφ

∂Y l
k (θ, φ)

∂θ

]}
, (2.63)
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where the functions P(×)kl (r) and T (×)kl (r), by analogy with (2.52) and (2.53), obey the
equations

Re
∞∑

k=1

k∑
l=−k

k (k + 1)
r2

[
P(×)′′kl (r)− k (k + 1) P(×)kl (r)

r2

]
Y l

k (θ, φ)

= 1
ν

er ·
[
∇ ×

〈
v
(n,m)
1 · ∇v(n,−m)

1 + v
(n,−m)
1 · ∇v(n,m)1

〉]
, (2.64)

Re
∞∑

k=1

k∑
l=−k

k (k + 1)
r2

[
T (×)′′kl (r)− k (k + 1) T (×)kl (r)

r2

]
Y l

k (θ, φ)

= 1
ν

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,−m)

1 + v
(n,−m)
1 · ∇v(n,m)1

〉]
. (2.65)

Equations (2.64) and (2.65) are solved in Appendix C. As a result, we obtain the
components of v(×)E in the form

v
(×)
Er (r, θ, φ)= Re

∞∑
k=1

k∑
l=−k

[
T (×)kl (r)+Φ

(×)′
kl (r)

]
Y l

k (θ, φ) , (2.66)

v
(×)
Eθ (r, θ, φ)= Re

∞∑
k=1

k∑
l=−k

Φ
(×)
kl (r)

2r

×
[√

k (k + 1)− l (l + 1)Y l+1
k (θ, φ) e−iφ −√k (k + 1)− l (l − 1)Y l−1

k (θ, φ) eiφ
]
,

(2.67)

v
(×)
Eφ (r, θ, φ)= −Re

∞∑
k=1

k∑
l=−k

ilΦ(×)kl (r) eiφ

r

√
(2k + 1) (k − l)!

(k + l)!

×
[(k−l+2)/2]∑

s=1

√
(2k − 4s + 3) (k + l − 2s)!

(k − l − 2s + 2)! Y l−1
k−2s+1 (θ, φ) , (2.68)

where the functions T (×)kl (r), Φ(×)kl (r) and Φ(×)/kl (r) are calculated by (C13), (C22) and
(C33).

The components of the Stokes drift velocity produced by the interaction of the modes
(n,m) and (n,−m) are given by

v
(×)
Sr (r, θ, φ)= Re

∞∑
k=1

S(×)k (r)
k∑

l=−k

Dnmnm
kl Y l

k (θ, φ) , (2.69)

v
(×)
Sθ (r, θ, φ)=

1
2

Re

{
Unm (r)×

∞∑
k=1

k∑
l=−k

Dnmnm
kl

[√
k (k + 1)− l (l + 1)Y l+1

k (θ, φ)e−iφ

−√k (k + 1)− l (l − 1) Y l−1
k (θ, φ) eiφ

]}
, (2.70)
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v
(×)
Sφ (r, θ, φ)= −Re

{
iUnm (r) eiφ

∞∑
k=1

k∑
l=−k

l

√
(2k + 1) (k − l)!

(k + l)! Dnmnm
kl

×
[(k−l+2)/2]∑

s=1

√
(2k − 4s + 3) (k + l − 2s)!

(k − l − 2s + 2)! Y l−1
k−2s+1 (θ, φ)

⎫⎬
⎭ , (2.71)

where the coefficients Dnmnm
kl are calculated by (D27), and the functions S(×)k (r) and

Unm(r) are defined by (C43) and (C44).
Knowing v

(×)
E and v

(×)
S , we can calculate the corresponding Lagrangian streaming

velocity: v(×)L = v
(×)
E + v

(×)
S .

Finally, summing the three components of the acoustic streaming, we get the total
flow:

v
(total)
L (r, θ, φ)= v

(n,m)
L (r, θ)+ v

(n,−m)
L (r, θ)+ v

(×)
L (r, θ, φ) . (2.72)

In the process of the calculations described in this section, we have applied the boundary
conditions for the acoustic streaming at the bubble surface that assume that the normal
velocity and the tangential stress produced by the Lagrangian streaming vanish at the
equilibrium bubble surface.

It is worth noting that we do not provide expressions for the first- and second-order
pressures because they are not used in the calculation of acoustic streaming. The above
pressures are needed, for example, for the calculation of the acoustic radiation force on
the bubble. However, this problem is beyond the scope of our paper. It requires individual
consideration somewhere else because, in particular, the calculation of the second-order
pressure is not a trivial mathematical problem.

3. Results and discussion

3.1. Three classes of spherical harmonics
Let us first consider how the asymmetric shape deformations are described
mathematically. In the general case, the shape of a deformed three-dimensional body
can always be decomposed over the set of orthonormal spherical harmonics Y m

n (θ, φ)

of degree n and order m. These two indexes are related to the spatial evolution of the
spherical harmonics along the spherical angular coordinates, the colatitude θ ∈ [0, π] and
the longitude φ ∈ [0, 2π]. For a given degree n, three classes of spherical harmonics
are usually considered: the zonal harmonics when m = 0< n, the tesseral harmonics
when 0<m < n, and the sectoral harmonics when m = n. The three classes of spherical
harmonics are represented in figure 2 for degree n = 5.

In figure 2(a), the bubble undergoes the zonal harmonic Y 0
5 . The bubble interface is

axisymmetric, the bubble contour looks spherical from the top view, and the shape from
the side view is a Legendre polynomial (m = 0). Figure 2(b) illustrates the case of the
tesseral harmonic Y 3

5 . The bubble interface is complex to describe at first, as angular
deviations from the sphere appear along both the elevation and azimuthal directions.
A closer look reveals that the bubble interface possesses n − m = 2 nodal lines along the
elevation (see figure 2(b), side view), and m = 3 meridian nodal lines (see figure 2(b), top
view). Along the azimuthal direction, and equivalently along the elevation, two successive
extrema are out of phase from both side of the nodal lines. Figure 2(c) displays a bubble
experiencing the sectoral harmonic Y 5

5 . The top view contour of a sectoral harmonic of
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Figure 2. Numerical shape deformations of a bubble experiencing (a) the zonal harmonic Y 0
5 , (b) the tesseral

harmonic Y 3
5 , and (c) the sectoral harmonic Y 5

5 . Every isometric view of the spherical harmonics is displayed
in top (upper) and side (lower) views.

degree n corresponds to an n-lobe deformation and is easily recognisable. The side view of
a sectoral harmonic is close to the spherical shape. In fact, the side view contour resembles
a bell-shape function, with a higher amplitude at the equator θ = π/2, and a decreasing
oscillation amplitude when reaching the poles. It is worth mentioning that the so-called top
and side views are ruled experimentally by the existence of a preferential direction for the
triggering of a given shape oscillation at the bubble interface. For instance, in the case of a
substrate-attached deformable body, the normal to the substrate is always the preferential
direction for the triggering of asymmetric oscillations, as observed in Fauconnier et al.
(2022) for wall-attached bubbles, and in Chang et al. (2015) for sessile drops.

In the present derivation of the bubble-induced microstreaming, only self-interacting
asymmetric oscillations are considered. We recall here that the main mechanism for
generating shape oscillations at the bubble interface is the Faraday instability occurring
at the subharmonic of the driving frequency. Therefore, interactions of shape oscillations
with the radial (spherical) oscillations of the bubble cannot lead to fluid mean flows, as the
radial mode oscillates at the driving frequency. In addition, near the instability threshold
of a given shape oscillation, we also assume that a single instability is triggered without
considering the energy transfer to secondary shape oscillations, as theoretically discussed
by Shaw (2006) and experimentally observed by Guédra et al. (2016). An analysis of the
intermodal interactions and their impact on the microstreaming pattern is performed in
Regnault et al. (2021). The analysis of self-interacting axisymmetric modes is well-known
theoretically (Inserra et al. 2020a) and has been observed from a side view in a plane
containing the bubble symmetry z axis using acoustically trapped bubbles, being far from
any boundary (Cleve et al. 2019). The case of self-interacting asymmetric oscillations
was considered by Fauconnier et al. (2022). The authors investigated experimentally the
top view microstreaming flow induced by a wall-attached bubble experiencing various
asymmetric oscillations. The predominant shape oscillations were selected using a spectral
analysis of the displacement of the bubble interface, and the modal content of the bubble
could safely be associated with the observed fluid pattern. For some experimental cases,
the secondary excited shape oscillations were so weak that the microstreaming pattern
could be confidently related to the self-interaction of the main triggered surface oscillation.
Such patterns resulting from self-interacting asymmetric oscillations are reproduced
in figure 3 (adapted from Fauconnier et al. 2022). Figure 3(a) shows the top view
microstreaming pattern induced by the self-interacting zonal harmonic Y 0

4 . The pattern is
exclusively radial, since the oscillating bubble interface exhibits no azimuthal dependence
(figure 2a, top view). Figure 3(b) represents the top view microstreaming pattern induced
by the self-interacting tesseral harmonic Y 2

4 . The pattern is characterised by 4m = 8 lobes,
arranged by pairs around the z axis orthogonal to the image, each pair being located
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200 µm 200 µm 200 µm

(a) (b) (c)

Figure 3. Microstreaming patterns associated with the three classes of spherical harmonics, i.e. (a) zonal,
(b) tesseral and (c) sectoral, experienced by a wall-attached bubble and observed with microscope in a top view
configuration. Images are reproduced from Fauconnier et al. (2022).

between two displacement nodes of the bubble interface (the location of the four meridian
lines is clearly visible through the light shades inside the bubble). Figure 3(c) shows
the top view microstreaming pattern induced by the self-interacting sectoral harmonic
Y 3

3 . The microstreaming pattern displays 4m = 12 lobes that are also arranged in pairs.
Because sectoral modes are devoid of nodal parallels and exhibit an azimuthal shape that
corresponds to the cos(mφ) function along the equator, 2m = 6 extrema of displacements
are observed on the bubble interface. Therefore, two vortices are expected between two
successive nodal meridians, leading to the observed 12-lobe pattern.

For all these experimental microstreaming patterns, the top view configuration avoids
the analysis of the full three-dimensional signature of fluid flows induced by asymmetric
oscillations, as the seeded particles tracking the fluid motion can escape from the focal
plane of observation. The dependence in elevation for the above-mentioned pattern is
therefore not ensured and can only be guessed using physical arguments. The three-
dimensional nature of the fluid flow was investigated by Marin et al. (2015) and Bolanos-
Jimenez et al. (2017) using an APTV technique. However, the analysis was performed on
a wall-attached bubble exhibiting an axisymmetric flow around the perpendicular to the
wall. In the following, we illustrate the three-dimensional nature of the flow surrounding
asymmetric bubbles using the present modelling.

3.2. Signature for axisymmetric, zonal (m = 0) harmonics
Axisymmetric shape oscillations are the widely investigated cases because of the ease of
triggering them in various experimental configurations. The lack of the dependence of
the zonal harmonics in the azimuthal direction significantly facilitates their mathematical
analysis, as already discussed in the Introduction. Therefore, we first analyse the case of
a zonal (axisymmetric) harmonic, namely the case n = 3, m = 0. The bubble equilibrium
radius is set to 73.8 µm, as in the experimental case (figure 3c) displaying a shape
oscillation of degree n = 3. This value is close to the resonant radius of the nth shape
oscillation, as derived by Lamb (1916):

Rn
res = 3

√
(n − 1) (n + 1) (n + 2) σ

ρω2
d/4

, (2.73)

where σ is the surface tension, ρ is the liquid density, and ωd = 2π fd is the angular
frequency of acoustic driving. The value of ωd differs from the frequency of the shape
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Figure 4. Presentation of the microstreaming pattern observed for a bubble (equilibrium radius 73.8 µm)
exhibiting zonal oscillations on the mode (n = 3,m = 0): (a) numerical contours of the bubble interface in
the top, side and three-dimensional views; (b) top, (c) side and (d) isometric views of the resulting flow.

oscillation when the surface deformation is induced by a parametric instability. It should
hence be noted that in all the following numerical simulations of microstreaming induced
by a shape oscillation, the angular frequency ω used in the theoretical derivation is
assumed equal to half the driving frequency: here, ω=ωd/2.

For the axisymmetric shape oscillations of degree n = 3, the resonant radius is Rn
res =

65.9 µm for an air bubble in water with ρ = 1000 kg m−3, σ = 0.0727 N m−1 at fd = 30.5
kHz. The value of the frequency corresponds to the experimental driving frequency
in Fauconnier et al. (2022). We recall that the resonant radius (2.73) is theoretically
independent of order m of the spherical harmonics. The amplitudes of the two modes
s(n,±m) are set equal to 15 µm (|s(n,±m)/R0| ∼ 0.2), so that the case of a stationary
surface oscillation is investigated. It is worth mentioning that we have chosen the value
of the oscillation amplitude that corresponds approximately to measured amplitudes of
asymmetric oscillations in Fauconnier et al. (2022). This value leads to a not very small
value of the dimensionless parameter |s(n,±m)/R0|, which, however, in practice is small
enough to ensure the convergence of the first-order solutions (see § 2.1). What is more,
from the point of view of the qualitative behaviour of acoustic streaming, the value of
the oscillation amplitude is of no importance in our simulations because mathematically
the streaming velocity is directly proportional to the oscillation amplitude squared. Hence
a change in the oscillation amplitude does not change, qualitatively, the obtained results.
Numerical simulations are performed for an asymmetric deformation oscillating at half
the driving frequency, i.e. for f = 15.25 kHz, as the shape oscillations are supposed to be
triggered by the Faraday parametric instability. The dimensionless thickness of the viscous
boundary layer is therefore γ = δv/R0 ∼ 0.06 � 1.

The bubble interface and the resulting microstreaming are presented in figure 4.
This display will be used in all investigated numerical cases of standing-wave patterns.
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Figure 4(a) shows the deformation of the bubble interface on the axisymmetric mode Y 0
3 ,

with a display similar to that in figure 2 (top, side and three-dimensional views). Keeping
the same orientation of the Cartesian frame, figures 4(b)–4(d) present the microstreaming
pattern derived from the Lagrangian velocity field. The streamlines have been obtained
using the library pyvista from Python programming. The top and side views of the
microstreaming are obtained by calculating the streamlines in a narrow area (in depth)
along the whole equator (for the top view, figure 4b) or along a whole meridian (side view,
figure 4c). The procedure is as follows. The considered equator/meridian is segmented
in 48 particle clouds, termed as source, homogeneously distributed along the perimeter.
A source particle cloud is located at the radial distance 1.01 R0 from the centre of
the bubble, for a given angular position (θ, φ). Each source contains 10 particles. The
streamlines are generated by using each particle as a starting location. For the sake of
readability, the three-dimensional streamlines are computed in figure 4(d) only inside
a constrained range of the longitude φ of the three-dimensional space surrounding the
bubble, and by calculating 400 streamlines in the investigated region. Note that because
of these different numerical calculations for the streamlines, the velocity range displayed
in the colour bars may differ from one view to another. The derived streamlines are in
full agreement with the theoretical predictions (Doinikov et al. 2019a) and experimental
observations (Cleve et al. 2019; Fauconnier et al. 2022) of the microstreaming induced
by an axisymmetric oscillation. The side view exhibits a cross-like shape with small
recirculation loops in the vicinity of the bubble interface. It is worth mentioning that while
theoretically all streamlines are closed vortical trajectories, some of the vortices are so
extended spatially that they appear as straight lines in figure 4(c). In fact, these streamlines
will close at a large distance from the centre of the bubble. Increasing the number of
calculated streamlines would fill the region between the two orthogonal branches of the
cross-like shape in figure 4(c), for instance. Due to the absence of azimuthal dependence,
the streamlines from the top view are purely radial. Note that the small recirculation loops
along the meridian are not observed because of the cutting of the microstreaming field
along the equator. This situation is similar to that encountered when looking at a streaming
field in the focal plane of a microscope (figure 2a). The rotational direction of the flow can
be perceived from a close look at the streamlines in the side and three-dimensional views:
it is known that the fluid particles are propelled away from the anti-nodes (where the
streamlines start) and attracted back to the nodes of displacement of the bubble interface
(where the streamlines finish). This fact will be very useful in the following to discern the
three-dimensional pattern of the flow, in the case of asymmetric modes.

3.3. Signature for various asymmetric modes with the same degree n

For the same bubble equilibrium radius and mode amplitudes, figures 5–7 show the
resulting microstreaming patterns for the class of tesseral (Y 1

3 , figure 5, and Y 2
3 , figure 6)

and sectoral (Y 3
3 , figure 7) harmonics of the same degree n = 3.

The tesseral mode Y 1
3 possesses m = 1 meridian nodal lines (figure 5a, top view) and

n − m = 2 nodal parallels (figure 5a, side view). From the top view configuration, the
bubble contour exhibits two nodes and two anti-nodes of displacement. The resulting top
view pattern is characterised by a cross shape (figure 5b), similar to the quadrupole pattern
generated by a solid-body translation oscillation without shape deformation (Longuet-
Higgins 1998; Doinikov et al. 2019b). The main difference with this axisymmetric
quadrupole pattern lies in the out-of-plane component of the velocity field, as streamlines
go away from the equatorial plane and from a closed loop that reaches the nearest
displacement node on the bubble interface. The closeness of this top view asymmetric
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Figure 5. Presentation of the microstreaming pattern observed for a bubble (equilibrium radius 73.8 µm)
exhibiting tesseral oscillations on the mode (n = 3,m = 1): (a) numerical contours of the bubble interface
in the top, side and three-dimensional views; (b) top, (c) side and (d) isometric views of the resulting flow.

n = 3, m = 2(a)

Side view(c) Isometric view(d )
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Figure 6. Presentation of the microstreaming pattern observed for a bubble (equilibrium radius 73.8 µm)
exhibiting tesseral oscillations on the mode (n = 3,m = 2): (a) numerical contours of the bubble interface
in the top, side and three-dimensional views; (b) top, (c) side and (d) isometric views of the resulting flow.
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Figure 7. Presentation of the microstreaming pattern observed for a bubble (equilibrium radius 73.8 µm)
exhibiting sectoral oscillations on the mode (n = 3,m = 3): (a) numerical contours of the bubble interface
in the top, side and three-dimensional views; (b) top, (c) side and (d) isometric views of the resulting flow.

pattern to the translation-induced quadrupole shape confirms the importance of capturing
both the acoustic (high-frequency) dynamics of the bubble interface and the fluid flow,
in order to avoid misinterpretation of the physical origin of the streaming pattern. In
particular, from the top view, the tesseral m = 1 harmonic, whatever the degree n, always
exhibits an up-and-down oscillation around the x axis that resembles the translational
oscillation of the bubble along the y axis. From the side view, the bubble interface displays
six extrema of displacement. It results in a recognisable 12-lobe flow pattern (figure 5c),
where the lobes are arranged in pairs and are oriented from the extremum of the bubble
interface towards the nearest displacement node. Combining these two views, and the fact
that the fluid particles move from the anti-node towards the nearest displacement node on
the bubble interface, the isometric view of the pattern can be guessed in figure 5(d).

The tesseral mode Y 2
3 possesses m = 2 meridian nodal lines (figure 6a, top view) and

n − m = 1 nodal parallels (figure 6a, side view). From the top view configuration, the
bubble contour exhibits four nodes and four anti-nodes of displacement. Note that because
the nodal parallel is located on the equator of the bubble interface, the so-called top
view nodes and anti-nodes are located out of the equatorial plane. The resulting top view
pattern (figure 6b) is characterised by a lobe-type pattern with 4m = 8 recirculation loops
arranged in pairs. The overall structure of the top view streaming is in good agreement with
the experimental top view pattern displayed in figure 3(b) for another tesseral oscillation
whose order also equals m = 2. The microstreaming pattern from the side view (figure 6c)
is harder to interpret as the bubble interface displays four extrema of displacement whose
location is dependent on the orientation of the bubble around the z axis. Here, eight lobes
are arranged in pairs and are superimposed on a cross-type pattern. A closer look at
the pairs of lobes located at the poles (θ = 0 and θ = π) reveals that the recirculation

1010 A48-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.284


Journal of Fluid Mechanics

loops are in fact split into two loops. This artefact is due to the slicing of the streamlines
along the plane containing meridians. In fact, the isometric view (figure 6d) indicates
how the streamlines start from the displacement anti-node located in the upper right
corner in figure 6(d), and reach the nearest displacement nodes that form a triangular
shape surrounding this anti-node. It results in a seemingly axisymmetric vortex around the
normal at the bubble interface passing through the displacement anti-node.

The results for an asymmetric bubble experiencing sectoral oscillations on the modeY 3
3

are shown in figure 7. Being devoid of nodal parallels, the maximal longitudinal
displacement occurs at the equatorial plane, where the bubble interface exhibits as many
azimuthal lobes as the modal degree n to which it belongs. The amplitude of the oscillation
displacement at a given acoustic phase decreases along the line going from the equator to
the poles of the bubble. For n = 3, it results in 2n = 6 extrema for the displacement of
the interface along the equator (figure 7a), an azimuthal shape that is easily recognisable
from the top view observation. From the side view, the bubble contour is almost spherical,
with an outgrowth located at the equator. Due to the (relative) simplicity of the bubble
deformation along the elevation and the azimuthal direction, the resulting microstreaming
pattern is easy to analyse from the top, side, and even isometric view. The top view is
characterised by a 4n = 12-lobe flower-like pattern, where the lobes are arranged in pairs
around all extrema of the bubble interface displacement. This pattern is in good qualitative
agreement with the experimental microstreaming pattern shown in figure 3(c), both for the
number of recirculation loops and for the spatial extension of the vortices. The side view
resembles a cross-like shape (figure 7c), typical of a quadrupole pattern. This pattern is
the analogue of the top view streaming resulting from the tesseral mode m = 1 (figure 5b)
when switching from the top to the side view observation. Indeed, sectoral oscillations
from the side view exhibit an out-of-phase motion along a meridian from one side of
the bubble to the opposite one around the z axis, so that the oscillation seems like that
of a solid-body translation oscillation. Because the sectoral harmonic Y 3

3 possesses only
meridian nodal lines, the vortices observed from the top view configuration spread with a
decreasing amplitude towards the poles of the bubble (figure 7d).

The numerical streaming patterns obtained for the self-interacting tesseral (figure 6)
or sectoral (figure 7) oscillations are found to be in good agreement with the patterns
(figure 3) obtained by Fauconnier et al. (2022). Unlike the experimental observations of
the latter, the present theory considers neither the presence of a wall in the bubble vicinity,
nor the tethering of the bubble on a surface. It was shown in Fauconnier et al. (2020)
that the contact angle between the bubble interface and the substrate lies in the range
40◦–60◦, with no dependence on the bubble equilibrium radius. It is also indicated that
the contact angle remains the same after the activation of the ultrasound driving sequence.
For this range of contact angle values, the bubble tethering does not influence strongly
the dynamics of the oscillation, and the majority of the existing asymmetric oscillations
for a given degree n are triggered. Concerning the resulting acoustic microstreaming, it
is known that the mathematical modelling of the flow surrounding a free bubble, being
far from any boundary, can be in fairly good agreement with the experimental flows in
the form of a large-scale streaming induced by a substrate-attached bubble (Marmottant
& Hilgenfledt 2003). Here, in the case of asymmetric oscillations, the vortices with the
highest velocity magnitude are confined in the close vicinity of the bubble interface
(figure 7b) and extend much less than the large-scale quadrupole-like streaming. It can
then be inferred that the influence of the bubble tethering on the resulting flow can
be less pronounced in comparison to the case of an axisymmetric flow. In addition, it
should be mentioned that our theory does not consider the effect of buoyancy, which may
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cause the deviation of experimental streamlines from theoretical Lagrangian streamlines.
This fact should be taken into account when comparing experimental results with our
theory.

3.4. Extension to other spherical harmonics of any degree n

The previously investigated case of the microstreaming induced by the three classes of
spherical harmonics for the same degree n = 3 can help us in predicting the pattern for
any asymmetric modes, whatever the degree n and order m. The simplest case concerns
bubbles exhibiting zonal oscillations Y 0

n , for which theoretical predictions exist (Inserra
et al. 2020a). Due to the absence of azimuthal dependence for the bubble displacement,
the top view pattern of a zonal-induced microstreaming is unique and consists in a purely
radial flow. Due to the axisymmetry of the zonal harmonics, slicing the three-dimensional
microstreaming pattern in a plane containing the z axis always provides the same pattern,
which consists of a large-scale cross pattern with small recirculation zones in the vicinity
of the bubble interface. This general signature is identical whatever the degree n of the
investigated zonal harmonics. Only the number of small vortices in the vicinity of the
bubble interface increases as the degree n increases.

In general, a bubble exhibiting an asymmetric oscillation on a tesseral harmonic of order
m, whatever the degree n, will exhibit the same top view patterns as shown in figure 5
when m = 1, or figure 6 when m = 2. Indeed, these patterns are uniquely linked to the
number of meridian nodal lines, which equals m. For tesseral harmonics with higher
order m, top view streaming will be characterised by a lobe-type pattern with 4m lobes
arranged in pairs. This top view signature of the pattern resulting from a self-interacting
tesseral mode is similar to the shape obtained from another self-interacting spherical
harmonics (obtained from a side or top view). This means that without knowing the
bubble equilibrium radius and hence the degree n ruled by (2.73), the identification of
the triggered mode at the bubble interface cannot be inferred when viewing the resulting
streaming pattern. The analysis from the side view only is even more complicated, as the
orientation of the focal plane around the z axis significantly affects the conformation of
the captured flow.

The prediction of the microstreaming pattern induced by the class of sectoral harmonics
is far easier to infer in comparison to the tesseral harmonics. All the sectoral harmonics
m = n possess the same spatial conformation for the bubble displacement, with a
maximal longitudinal displacement occurring at the equatorial plane. Along the equator,
as many azimuthal lobes as the modal degree n to which they belong exist. The bubble
displacement at the poles always tends to zero, so that the side view microstreaming pattern
always resembles a cross-like shape, whatever the degree n of the sectoral oscillations.
This is evidenced in figure 8, where the top and side view patterns resulting from
self-interacting sectoral oscillations from n = 2 to n = 5 are shown. Here, the bubble
equilibrium radii are chosen so that they correspond to the resonant radius of a given
degree n: R2

res = 46 µm (γ = δv/R0 ∼ 0.1), R3
res = 68 µm (γ = δv/R0 ∼ 0.06), R4

res =
90 µm (γ = δv/R0 ∼ 0.05) and R5

res = 110 µm (γ = δv/R0 ∼ 0.04). The amplitudes of
the two modes s(n,±n) are set equal to 15 µm, resulting in a stationary sectoral oscillation.
The top view microstreaming is characterised by a lobe-type pattern where the lobes are
arranged in pairs, and their number equals twice the number of extrema of the bubble
displacement along the equator. Therefore, a 4n-lobe shape is expected from the top view,
as shown in figure 8. This signature is in full agreement with experimental observations
of top view microstreaming patterns induced by sectoral oscillation for various degrees n
in Fauconnier et al. (2022).
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Figure 8. Presentation of the microstreaming pattern observed for various sectoral oscillations, with the
degree n ranging from 2 to 5. Every line corresponds to a given degree n. (a,d,g,j) The projected side view
microstreaming pattern. (b,e,h,k) The deformation of the bubble interface exhibiting the sectoral oscillation.
(c,f ,i,l) The top view microstreaming pattern.

3.5. Influence of the thickness of the viscous boundary layer on the streaming pattern
The acoustic microstreaming is driven by the streaming inside the oscillatory boundary
layer around the bubble, while nonlinear second-order effects of the hydrodynamic
equations are responsible for extending the streaming field much further than the viscous
boundary layer. This explains why Elder (1959) reported different types of streaming
patterns whose appearance depended mostly on the bubble surface velocity and the fluid
viscosity. For a given bubble equilibrium radius and driving frequency, the influence
of the thickness of the viscous boundary layer was investigated for varying values of
the liquid viscosity in Doinikov et al. (2019a) and Inserra et al. (2020b) in the case
of axisymmetric shape oscillations. For the translational oscillation of a solid body,
Li et al. (2023) reveal changes in the structure of the streaming pattern for varying
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Figure 9. Evolution of the microstreaming pattern for the sectoral oscillation n = m = 3 for varying values
of the dimensionless thickness of the viscous boundary layer. The liquid dynamic viscosities and resulting
dimensionless thickness of the viscous boundary layer are (a) η= 10−6 Pa s, γ = 0.06; (b) η= 4 × 10−6 Pa s,
γ = 0.12, and (c) η= 16 × 10−6 Pa s, γ = 0.24. Only the top and side views are displayed.

driving frequencies while keeping the body size and the liquid viscosity constant. Here,
we investigate the influence of the value of the dimensionless thickness of the viscous
boundary layer on the microstreaming pattern. We have previously considered the case
(figure 7) of a sectoral oscillation n = m = 3 at frequency f = 15.25 kHz for a bubble with
equilibrium radius 73.8 µm in water (dynamic viscosity η= 10−6 Pa s). It corresponds to
the dimensionless thickness of the viscous boundary layer γ = δv/R0 ∼ 0.06. In order to
modify the thickness of the viscous boundary layer δv , the liquid viscosity is varied while
keeping the bubble equilibrium radius and the oscillation frequency constant, so that the
triggered shape oscillation given by (2.73) remains unchanged. For the same parameters
as in figure 7, figure 9 presents the microstreaming patterns when the liquid viscosity is
varied from η= 10−6 Pa s (γ = 0.06, figure 9a) to η= 4 × 10−6 Pa s (γ = 0.12, figure 9b)
and η= 16 × 10−6 Pa s (γ = 0.24, figure 9c).

When the size of the viscous boundary layer is varied by four times, the overall
structure of the streaming pattern remains unchanged: the top view is characterised
by a 12-lobe flower-like pattern, and the side view looks like a cross (quadrupolar)
shape. When the ratio γ = δv/R0 is increased, the magnitude of the maximum streaming
velocity decreases, while the size of the small vortices visible in the top view increases
slightly. More pronounced modifications of the microstreaming pattern can be expected
for large values of the dimensionless parameter γ , but such values would correspond
to unrealistic experimental conditions (too large kinematic viscosity or a bubble size or
driving frequency no longer matching (2.73)).

3.6. Sign reversal of the flow at the bubble zenith
Substrate-attached microbubbles are commonly used as microactuators for the trapping
and manipulation of small particles or biological bodies in their vicinity. The
hydrodynamic flow field generated by the bubble oscillation can rotate single
microparticles within microchannels (Ahmed et al. 2016), precisely manipulate
millimetric fish eggs (Lee et al. 2012), or manipulate and rupture vesicles (Marmottant
et al. 2008). In most microfluidic applications, a substrate-attached microbubble
experiences a combination of spherical and translational oscillations, at the origin of a

1010 A48-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.284


Journal of Fluid Mechanics

n = 2

n = 3

n = 4

n = 5

Fountain

Anti-fountain

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

0

π/4

π/2

θmax

n = 2
n = 3
n = 4
n = 5

0 1 2 3 4 5

m

3

2

1

0

–1

–2

–3

(c)

0 1 2 3 4 5 Order m

n = 2

n = 3

n = 4

n = 5

V (mm s–1)

(a) (b)

Figure 10. Investigation of the orientation of the flow at the zenith of the bubble (θ = 0). (a) Three-dimensional
view of the bubble interface oscillating on asymmetric modes with n ∈ [2, 5]. (b) Evolution of the value of the
colatitude θmax at which the displacement of the bubble interface is maximum, as a function of the order m for
various degrees n. (c) Evolution of the amplitude of the radial velocity at the zenith (θ = 0) of the bubble, at
the distance r = 3R0 as a function of the order m for various degrees n. A positive value corresponds to the
fountain-like streaming, while a negative value is typical of the anti-fountain behaviour.

large-scale microstreaming pattern constituted of two symmetric vortices (in the plane
of observation, from a side view) atop the bubble. When particles are injected near the
oscillating bubble, they are expelled from the top bubble interface and move along a closed
loop back to the substrate. This motion is often called fountain-like streaming, as the fluid
particles are expelled from the bubble interface to the surrounding medium at the zenith
(θ = 0) of the bubble. A similar fountain behaviour is obtained when axisymmetric modes
are triggered at the bubble interface, because the zenith of the bubble interface is always
a displacement anti-node, whatever the degree n of the zonal harmonics (see the first
column of figure 10a). In the case of wall-bounded semi-cylindrical bubbles, Wang et al.
(2013) and Rallabandi et al. (2014) have observed an inversion of the flow direction atop
the bubble, identifying an anti-fountain behaviour of the vortices near the pole. This flow
inversion was shown to result from the interaction between the radial oscillation and an
axisymmetric shape oscillation (mixed-mode streaming). When asymmetric modes are
triggered, the location of the maximum displacement on the bubble interface evolves as
the order m increases, tending to a maximum at the equator of the bubble in the case of
a sectoral mode. Figure 10(a) illustrates the three-dimensional bubble shapes for various
degrees n ranging from 2 to 5. In addition, the value of the colatitude θmax at which
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the location of the maximum displacement on the bubble interface occurs, whatever the
value of the azimuthal angle φ, is shown in figure 10(b). When the order m is smaller
than (n + 1)/2, θmax ranges from 0 to π/4, and the maximum displacement at the
bubble interface is located in the upper part of the bubble, between the zenith and the
bisector θmax = π/4. For higher values of m, θmax gets closer to π/2, and the maximum
displacement tends to the equatorial plane.

For the investigated asymmetric modes, the direction of the resulting microstreaming
has been evaluated atop the bubble, at the radial distance r = 3R0 and for θ = 0.
Figure 10(c) shows the amplitude of the radial component of the Lagrangian velocity at
this location. A sign reversal of the velocity amplitude occurs when the order m reaches
(n + 1)/2, in agreement with the evolution of the colatitude θmax . In the case of zonal
oscillations, the fluid particles are expelled (positive radial component of the velocity)
from the zenith of the bubble, resulting in a fountain-like behaviour. In the case of
sectoral oscillations, the analysis of the deformation of the bubble interface reveals that
the maximum displacement occurs at the equator, while the zenith (θ = 0) of the bubble
becomes a displacement node. The fluid particles are therefore expelled from the equator
and are attracted from the zenith of the bubble to the bubble interface. This results in an
anti-fountain behaviour, which has not been observed experimentally so far in the case
of self-interacting mode streaming. It is worth noting that the observation of the flow
direction atop the bubble indirectly provides information on the triggered shape oscillation,
as the direction of the flow is correlated to the order m of the asymmetric oscillation. If
the bubble equilibrium radius is known, then the degree n of the shape oscillations is
obtained from the Lamb spectrum (2.73), and the range of possible triggered order m can
be deduced from the observation of a fountain or anti-fountain flow.

3.7. The case of travelling surface waves
Up to now, only the stationary shape oscillations were considered, meaning that the
amplitudes of the two modes s(n,±m) were equal. A slight change in the amplitude
of the surface perturbation propagating in one direction along the azimuthal angle φ
in comparison to the one propagating in the opposite direction will result in a quasi-
stationary surface wave. Such a bubble will experience a rotating asymmetric surface
wave, whose angular velocity will depend on the difference in the two amplitudes of modes
(n,±m). This has already been reported once in the literature by Mekki-Berrada, Thibault
& Marmottant (2016), who measured a constant angular velocity of approximately 0.5
revolutions per second for every modal degree n, in the case of bubbles flattened between
two elastic walls. The underlying cause for the triggering of a rotating shape oscillation so
far remains unknown.

The case of travelling surface waves is investigated in figure 11, for different ratios of
the amplitudes of the two propagating modes (n,±m). The case of the sectoral oscillation
n = m = 3 is investigated, for which the microstreaming pattern obtained in the case of a
stationary wave is presented in figure 7. Only the top and isometric views of the streaming
pattern are displayed in figure 11, and the amplitude of the (n,m) wave is kept equal
to 15 µm. When the amplitude of the (n,−m) wave is modified to 14.9 µm, i.e. when
s(n,−m)/s(n,m) = 0.99, streamlines are curved along the azimuthal direction (figure 11(a),
top view) and the maximum amplitude of the Lagrangian velocity reaches 8.3 cm s−1.
From figure 7, it is worth noting that the maximum amplitude of the Lagrangian velocity
reaches 7.65 cm s−1 in the case of a stationary wave, i.e. when s(n,−m)/s(n,m) = 1. The
increase in difference between the amplitudes of the two counter-propagating surface
waves results in a stronger azimuthal component of the velocity field. The amplitude of
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Figure 11. Evolution of the microstreaming pattern in the case of a quasi-stationary wave, for the sectoral
oscillation n = m = 3. Three ratios of the amplitudes of the two modes s(n,−m)/s(n,m) are investigated for
(a) s(n,−m)/s(n,m) = 0.99, (b) s(n,−m)/s(n,m) = 0.93 and (c) s(n,−m)/s(n,m) = 0.66. Only the top and isometric
views are displayed.

the streaming flow can increase by a factor of 2 (figure 11b) when s(n,−m)/s(n,m) = 0.93,
or a factor of 4 (figure 11c) when s(n,−m)/s(n,m) = 0.66, in comparison to the stationary
case.

The morphology of the swirling flow can be explained as follows. When the amplitudes
s(n,±m) of a given shape oscillation are set equal, a standing shape oscillation is formed
on the bubble interface. This means that displacement anti-nodes (starting points of
the streamlines) and nodes (end points of the streamlines) remain at the same location
with time. The resulting flow is constituted of vortical lines that are spatially stationary.
When the amplitudes s(n,±m) of the two components of a shape oscillation differ, a
quasi-propagating wave is triggered in a preferential direction on the bubble interface.
‘Quasi-propagating’ refers to the coexistence of a purely standing wave at the bubble
interface and a purely propagating wave. Hence the locations of the displacement nodes
and anti-nodes constantly move along the bubble interface with time. This prevents the
spatial stationarity of the flow, so a convective-like flow is generated around the bubble.
This flow follows the direction of propagation of the propagative surface wave, and is
characterised by a strong azimuthal component of the flow velocity and a large-scale
extension at the equator. However, why this flow is stronger in amplitude in comparison to
the one induced by the standing wave alone is difficult to explain. Nevertheless, these
results highlight the possibility to drastically enhance the streaming efficiency around
bubbles if the bubble rotation can be controlled.

4. Conclusion
We present for the first time a theoretical modelling of acoustic microstreaming induced
by a bubble experiencing asymmetric oscillations. The modelling is based on the
decomposition of the first- and second-order vorticity field into the poloidal and toroidal
fields, allowing the exact analytical derivation of the Lagrangian streaming induced by
the bubble. This derivation is valid whatever the bubble size and the liquid viscosity,
without any limitation on the thickness of the viscous boundary layer at the bubble
interface. By representing the shape of the bubble interface in terms of the set of
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the orthonormal spherical harmonics, the signatures of the microstreaming patterns are
investigated as a function of different classes of triggered spherical harmonics (zonal,
tesseral or sectoral oscillations). Keeping in mind that the streamlines start from the
displacement anti-node at the bubble interface, and close at the displacement nodes,
the three-dimensional asymmetric patterns are shown to be easily predicted once the
asymmetric shape deformation of the bubble is known. For a given class of spherical
harmonics of degree n, it is shown that the sign reversal in the flow orientation atop the
bubble is obtained when the order m evolves between 0 and n: zonal harmonics result
in the fountain-like streaming, while the anti-fountain flow occurs in the case of sectoral
oscillations. In between, the flow reverses for a typical value of the order m that helps in
the identification of the triggered asymmetric mode by means of the indirect observation
of the flow orientation. The case of travelling surface waves along the bubble interface
reveals the possibility of a drastic enhancement of the streaming strength. This observation
highlights the interest in the controlling of oscillations of rotating bubbles for practical use.
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Appendix A. Calculation of anm, bnm and cnm

To find anm , bnm and cnm , we apply boundary conditions at the bubble surface.
The first boundary condition requires that the normal component of v(n,m)1 at r = R0 be

equal to the respective normal component of the bubble surface velocity. This condition is
written as

v
(n,m)
1r

∣∣∣
r=R0

= dr (n,m)s

dt
= −iωs(n,m) e−iωt Y m

n (θ, φ) , (A1)

where v(n,m)1r is the normal component of v(n,m)1 , and r (n,m)s is given by the second term of
(2.1).

The second boundary condition assumes slippage on the bubble surface, which means
that the tangential stress generated by the liquid motion should be zero on the bubble
surface. This condition is written as

σrθ = η

(
1
r

∂v
(n,m)
1r

∂θ
+ ∂v

(n,m)
1θ
∂r

− v
(n,m)
1θ
r

)
= 0 at r = R0, (A2)

σrφ = η

(
∂v
(n,m)
1φ

∂r
+ 1

r sin θ
∂v
(n,m)
1r

∂φ
− v

(n,m)
1φ

r

)
= 0 at r = R0, (A3)

where σrθ and σrφ are the tangential components of the liquid stress in spherical
coordinates (Landau & Lifshitz 1987). It should be mentioned that in the case when there
are impurities and surfactants on the bubble surface, and in the case of a contrast agent
bubble having a shell, the boundary condition of slippage should be replaced by the no-
slip boundary condition, i.e. by the condition of adhesion of liquid particles to the bubble
surface. In the case of a bubble with a shell, the behaviour of the shell material should also
be taken into consideration. In view of its complexity, this case requires a separate study.
The general algorithm of calculations remains the same, but all constants related to the
boundary conditions at the bubble surface should be recalculated.
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Substitution of (2.28) into (2.20) yields

v
(n,m)
1 = v

(n,m)
1r er + v

(n,m)
1θ eθ + v

(n,m)
1φ eφ, (A4)

v
(n,m)
1r = e−iωt fnm (r) Y m

n (θ, φ) , (A5)

v
(n,m)
1θ = e−iωt

[
anmkvh(1)n (kvr)

sin θ
∂Y m

n (θ, φ)

∂φ
+ gnm (r)

∂Y m
n (θ, φ)

∂θ

]
, (A6)

v
(n,m)
1φ = e−iωt

[
−anmkvh(1)n (kvr)

∂Y m
n (θ, φ)

∂θ
+ gnm (r)

sin θ
∂Y m

n (θ, φ)

∂φ

]
, (A7)

where fnm(r) and gnm(r) are given by

fnm (r)= (n + 1) cnm

rn+2 + n (n + 1) bnmh(1)n (kvr)

kvr
, (A8)

gnm (r)= − cnm

rn+2 + bnm

kvr

[
(n + 1) h(1)n (kvr)− kvrh(1)n+1 (kvr)

]
. (A9)

Substituting (A5) and (A8) into (A1), one obtains

cnm + n Rn+2
0 h(1)n (x)

x
bnm = − iωRn+2

0 s(n,m)

n + 1
, (A10)

where x = kvR0.
Substitution of (A5)–(A7) into (A2) and (A3) yields

anmkv
[
xh(1)′n (x)− h(1)n (x)

] 1
sin θ

∂Y m
n (θ, φ)

∂φ

+ [ fnm (R0)− gnm (R0)+ R0g′
nm (R0)

] ∂Y m
n (θ, φ)

∂θ
= 0, (A11)

anmkv
[
h(1)n (x)− xh(1)′n (x)

] ∂Y m
n (θ, φ)

∂θ

+ [ fnm (R0)− gnm (R0)+ R0g′
nm (R0)

] 1
sin θ

∂Y m
n (θ, φ)

∂φ
= 0, (A12)

where

g′
nm(r)=

(n + 2) cnm

rn+3 + bnm

kvr2

{
(n + 1)

[
kvrh(1)/n (kvr)− h(1)n (kvr)

]
− (kvr)

2 h(1)′n+1 (kvr)
}
.

(A13)
Multiplying (A11) by (sin−1 θ) ∂Y m

n (θ, φ)/∂φ and subtracting (A12) multiplied by
∂Y m

n (θ, φ)/∂θ , one obtains

anm

[
xh(1)/n (x)− h(1)n (x)

] {[ 1
sin θ

∂Y m
n (θ, φ)

∂φ

]2

+
[
∂Y m

n (θ, φ)

∂θ

]2
}

= 0. (A14)

It follows from (A14) that
anm = 0. (A15)

Accordingly, (A6) and (A7) take the form

v
(n,m)
1θ = e−iωt gnm (r)

∂Y m
n (θ, φ)

∂θ
, (A16)

v
(n,m)
1φ = e−iωt gnm (r)

sin θ
∂Y m

n (θ, φ)

∂φ
. (A17)
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Multiplying (A11) by ∂Y m
n (θ, φ)/∂θ and adding to (A12) multiplied by

(sin−1 θ) ∂Y m
n (θ, φ)/∂φ, one obtains

[
fnm (R0)− gnm (R0)+ R0g′

nm (R0)
] {[∂Y m

n (θ, φ)

∂θ

]2

+
[

1
sin θ

∂Y m
n (θ, φ)

∂φ

]2
}

= 0.

(A18)
It follows from (A18) that

fnm (R0)− gnm (R0)+ R0g′
nm (R0)= 0. (A19)

Substituting (A8) and (A9) into (A19) and using the identity

h(1)n+1 (x)=
n

x
h(1)n (x)− h(1)′n (x) , (A20)

one obtains

2 (n + 2)

Rn+2
0

cnm + bnm

x

[
(n2 + n − 2) h(1)n (x)+ x2h(1)′′n (x)

]
= 0. (A21)

Combining (A10) and (A21), one finds

cnm = s(n,m)
iωRn+2

0

[(
2 − n − n2) h(1)n (x)− x2h(1)′′n (x)

]
(n + 1)

[
x2h(1)′′n (x)− (n2 + 3n + 2

)
h(1)n (x)

] , (A22)

bnm = s(n,m)
2i (n + 2) xω

(n + 1)
[
x2h(1)′′n (x)− (n2 + 3n + 2

)
h(1)n (x)

] , n ≥ 1. (A23)

Appendix B. Solving the equations of acoustic streaming for the mode (n,m)

To solve (2.52) and (2.53), we first need to calculate their right-hand sides.
The calculation of v(n,m)1 · ∇v(n,m)1 yields

v
(n,m)
1 · ∇v(n,m)1 =

(
v
(n,m)
1r

∂

∂r
+ v

(n,m)
1θ
r

∂

∂θ
+ v

(n,m)
1φ

r sin θ
∂

∂φ

)(
v
(n,m)
1r er + v

(n,m)
1θ eθ + v

(n,m)
1φ eφ

)

= er

⎛
⎜⎝v(n,m)1r

∂v
(n,m)
1r

∂r
+ v

(n,m)
1θ
r

∂v
(n,m)
1r

∂θ
+ v

(n,m)
1φ

r sin θ
∂v
(n,m)
1r

∂φ
−
(
v
(n,m)
1θ

)2 +
(
v
(n,m)
1φ

)2

r

⎞
⎟⎠

+ eθ

(
v
(n,m)
1r

∂v
(n,m)
1θ
∂r

+ v
(n,m)
1θ
r

∂v
(n,m)
1θ
∂θ

+ v
(n,m)
1φ

r sin θ
∂v
(n,m)
1θ
∂φ

+ v
(n,m)
1r v

(n,m)
1θ

r
− cos θ

r sin θ

(
v
(n,m)
1φ

)2
)

+ eφ

(
v
(n,m)
1r

∂v
(n,m)
1φ

∂r
+v

(n,m)
1θ
r

∂v
(n,m)
1φ

∂θ
+ v

(n,m)
1φ

r sin θ

∂v
(n,m)
1φ

∂φ
+v

(n,m)
1r v

(n,m)
1φ

r
+ cos θ

r sin θ
v
(n,m)
1θ v

(n,m)
1φ

)
.

(B1)
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Substituting (A5), (A16) and (A17) into (B1), and averaging it over time, one obtains〈
v
(n,m)
1 · ∇v(n,m)1

〉
= 1

2
Re
{

er

[
f ′
nm f ∗

nmY m
n Y m∗

n + ( fnm − gnm) g∗
nm

r

(
∂Y m

n

∂θ

∂Y m∗
n

∂θ
+ 1

sin2 θ

∂Y m
n

∂φ

∂Y m∗
n

∂φ

)]

+ eθ

[
f ∗
nm

(
g′

nm + gnm

r

)
Y m∗

n
∂Y m

n

∂θ
+ |gnm |2

r

(
∂Y m∗

n

∂θ

∂2Y m
n

∂θ2 + 1

sin2 θ

∂Y m∗
n

∂φ

∂2Y m
n

∂θ∂φ

− cos θ

sin3 θ

∂Y m∗
n

∂φ

∂Y m
n

∂φ

)]
+ eφ

sin θ

[
f ∗
nm

(
g′

nm + gnm

r

)
Y m∗

n
∂Y m

n

∂φ

+|gnm |2
r

(
∂Y m∗

n

∂θ

∂2Y m
n

∂θ∂φ
+ 1

sin2 θ

∂Y m∗
n

∂φ

∂2Y m
n

∂φ2

)]}
. (B2)

For simplicity, we drop the arguments of the functions in (B2).
The calculation of ∇ × 〈v(n,m)1 · ∇v(n,m)1 〉, after some rearrangements, results in

∇ ×
〈
v
(n,m)
1 · ∇v(n,m)1

〉
= 1

2
Re

{
er

f ∗
nm

(
gnm + rg′

nm

)
r2 sin θ

(
∂Y m

n

∂φ

∂Y m∗
n

∂θ
− ∂Y m∗

n

∂φ

∂Y m
n

∂θ

)

−
(

f ∗
nm gnm + r f ∗

nm g′
nm

)′
r

(
eθ

sin θ
Y m∗

n
∂Y m

n

∂φ
− eφY m∗

n
∂Y m

n

∂θ

)

+ fnm f ′∗
nm + f ∗

nm f ′
nm

2r

[
eθ

sin θ
∂

∂φ

(
Y m

n Y m∗
n

)− eφ
∂

∂θ

(
Y m

n Y m∗
n

)]

+ 1
2r

[
fnm g∗

nm + f ∗
nm gnm − 2gnm g∗

nm

r
− (gnm g∗

nm

)′]

×
[

eθ
sin θ

∂

∂φ

(
∂Y m

n

∂θ

∂Y m∗
n

∂θ
+ 1

sin2 θ

∂Y m
n

∂φ

∂Y m∗
n

∂φ

)

−eφ
∂

∂θ

(
∂Y m

n

∂θ

∂Y m∗
n

∂θ
+ 1

sin2 θ

∂Y m
n

∂φ

∂Y m∗
n

∂φ

)]}
. (B3)

Comparison of (2.52) and (B3) leads to
∞∑

k=1

k∑
l=−k

k (k + 1)

[
P(n,m)′′kl (r)− k (k + 1) P(n,m)kl (r)

r2

]
Y l

k (θ, φ)

= 1
2ν

Re

{
f ∗
nm

(
gnm + rg′

nm

)
sin θ

(
∂Y m

n

∂φ

∂Y m∗
n

∂θ
− ∂Y m∗

n

∂φ

∂Y m
n

∂θ

)}
. (B4)

With the help of (D8) and (D21), the right-hand side of (B4) is transformed so that (B4)
takes the form

∞∑
k=1

k∑
l=−k

k (k + 1)

[
P(n,m)′′kl (r)− k (k + 1) P(n,m)kl (r)

r2

]
Y l

k (θ, φ)

= 1
2ν

Re
∞∑

k=1

k∑
l=−k

im f ∗
nm

(
gnm + rg′

nm

)× [nC(n+1)m

(
B(n+1)mnm

kl + Bnm(n+1)m
kl

)

− (n + 1)Cnm

(
B(n−1)mnm

kl + Bnm(n−1)m
kl

)]
Y l

k (θ, φ) , (B5)
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C. Inserra, C. Mauger, P. Blanc-Benon and A.A. Doinikov

where Cnm and Bn1m1n2m2
kl are constants that are calculated by (D11) and (D22),

respectively. In fact, (B5) involves only terms with l = 0, as m1 = m2 Bn1m1n2m2
kl = 0 for

l �= 0. This fact is in agreement with the right-hand side of (B4), which is independent
of φ.

Keeping only non-zero terms, one obtains from (B5),

P(n,m)′′k0 (r)− k (k + 1)
r2 P(n,m)k0 (r)= F (n,m)k (r) , (B6)

F (n,m)k (r)= m

2k (k + 1) ν
Re
{
i f ∗

nm (r)
[
gnm (r)+ rg′

nm (r)
]}

×
[
nC(n+1)m

(
B(n+1)mnm

k0 + Bnm(n+1)m
k0

)
− (n + 1)Cnm

(
B(n−1)mnm

k0 + Bnm(n−1)m
k0

)]
.

(B7)

The calculation of the r -component of ∇ × ∇ × 〈v(n,m)1 · ∇v(n,m)1 〉 gives

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,m)1

〉]
= Re

{
fnm f ′∗

nm + f ∗
nm f ′

nm

4r2 L2 [Y m
n Y m∗

n

]

+ fnm g∗
nm + f ∗

nm gnm − 2gnm g∗
nm − r

(
gnm g∗

nm

)′
4r3 L2

[
∂Y m

n

∂θ

∂Y m∗
n

∂θ
+ m2Y m

n Y m∗
n

sin2 θ

]

+
(

f ∗
nm gnm + r f ∗

nm g′
nm

)′
2r2

[
∂Y m

n

∂θ

∂Y m∗
n

∂θ
+ m2Y m

n Y m∗
n

sin2 θ
− n (n + 1) Y m

n Y m∗
n

]}
, (B8)

where L2 stands for the square of the orbital angular momentum operator (Varshalovich,
Moskalev & Khersonskii 1988),

L2 = − 1
sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2 . (B9)

By using (D5), it can be shown that the following identity holds:

− 1
2

L2 [Y m
n Y m∗

n

]= ∂Y m
n

∂θ

∂Y m∗
n

∂θ
+ m2Y m

n Y m∗
n

sin2 θ
− n (n + 1) Y m

n Y m∗
n . (B10)

Substitution of (B10) into (B8) yields

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,m)1

〉]
= 1

8r3 Re
{

L4 [Y m
n Y m∗

n

] [
2gnm g∗

nm − fnm g∗
nm − f ∗

nm gnm + r
(
gnm g∗

nm

)′]
+ 2L2 [Y m

n Y m∗
n

] {
r
[

fnm f ′∗
nm + f ∗

nm f ′
nm − ( f ∗

nm gnm + r f ∗
nm g′

nm

)′]
+n (n + 1)

[
fnm g∗

nm + f ∗
nm gnm − 2gnm g∗

nm − r
(
gnm g∗

nm

)′]}}
. (B11)
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By using (D17) and the identity L2Y l
k = k(k + 1)Y l

k , one obtains

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,m)1

〉]
= 1

8r3 Re
∞∑

k=1

k∑
l=−k

k (k + 1) Anmnm
kl Y l

k (θ, φ)

×
{

2r
[

fnm f ′∗
nm + f ∗

nm f ′
nm − ( f ∗

nm gnm + r f ∗
nm g′

nm

)′]
+ [k (k + 1)− 2n (n + 1)]

[
2gnm g∗

nm − fnm g∗
nm − f ∗

nm gnm + r
(
gnm g∗

nm

)′]}
,

(B12)

where the constant coefficients Anmnm
kl are calculated by (D20). In fact, (B12) involves

only terms with l = 0 as Anmnm
kl = 0 for l �= 0.

Comparing (2.53) with (B12), and keeping only non-zero terms, one obtains

T (n,m)′′k0 (r)− k (k + 1)
r2 T (n,m)k0 (r)= G(n,m)

k (r) , (B13)

G(n,m)
k (r)= Anmnm

k0
4νr

Re
{
r f ∗

nm (r)
[
2 f ′

nm (r)− 2g′
nm (r)− rg′′

nm (r)
]

− r f ′∗
nm (r)

[
gnm (r)+ rg′

nm (r)
]

+ [k (k + 1)− 2n (n + 1)] g∗
nm (r)

[
gnm (r)+ rg′

nm (r)− fnm (r)
]}
.

(B14)

The derivatives that appear in (B14) are calculated by

f ′
nm (r)= −(n + 1) (n + 2) cnm

rn+3 + n (n + 1) bnm

kvr2

[
(n − 1) h(1)n (kvr)− kvrh(1)n+1 (kvr)

]
,

(B15)

g′
nm (r)=

(n + 2) cnm

rn+3 + bnm

kvr2

{[
n2 − 1 − (kvr)

2
]

h(1)n (kvr)+ kvrh(1)n+1 (kvr)
}
, (B16)

g′′
nm (r)= −(n + 2) (n + 3) cnm

rn+4 + bnm

kvr3

{
2
(

1 − n2
)

h(1)n (kvr)

+kvr
[
n2 − 1 − (kvr)

2
]

h(1)′n (kvr)− kvrh(1)n+1 (kvr)+ (kvr)
2 h(1)′n+1 (kvr)

}
.

(B17)

Equations (B6) and (B13) are solved by the method of variation of parameters (Boyce
& DiPrima 2001). According to this method, a solution to (B6) is given by

P(n,m)k0 (r)= rk+1C (n,m)
1k (r)+ r−kC (n,m)

2k (r) , (B18)

where C (n,m)
1k (r) and C (n,m)

2k (r) obey the equations

rk+1C (n,m)′
1k (r)+ r−kC (n,m)′

2k (r)= 0, (B19)

(k + 1) rkC (n,m)′
1k (r)− kr−k−1C (n,m)′

2k (r)= F (n,m)k (r) . (B20)

Solving (B19) and (B20) gives

C (n,m)
1k (r)= C

(n,m)
1k + 1

2k + 1

∫ r

R0

s−k F (n,m)k (s) ds, (B21)

C (n,m)
2k (r)= C

(n,m)
2k − 1

2k + 1

∫ r

R0

sk+1 F (n,m)k (s) ds, (B22)
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where C
(n,m)
1k and C

(n,m)
2k are constants. From the condition that the acoustic streaming

vanishes at infinity, one finds

C
(n,m)
1k = − 1

2k + 1

∫ ∞

R0

s−k F (n,m)k (s) ds, (B23)

while C
(n,m)
2k is calculated by boundary conditions at the bubble surface; see below.

Equation (B13) is similar to (B6), so its solution can be written by analogy,

T (n,m)k0 (r)= rk+1C (n,m)
3k (r)+ r−kC (n,m)

4k (r) , (B24)

C (n,m)
3k (r)= C

(n,m)
3k + 1

2k + 1

∫ r

R0

s−k G(n,m)
k (s) ds, (B25)

C (n,m)
4k (r)= C

(n,m)
4k − 1

2k + 1

∫ r

R0

sk+1G(n,m)
k (s) ds, (B26)

C
(n,m)
3k = − 1

2k + 1

∫ ∞

R0

s−k G(n,m)
k (s) ds, (B27)

where C
(n,m)
4k is a constant to be calculated by boundary conditions at the bubble surface;

see below.
Continuing the calculation of v(n,m)E , one obtains from (2.50),

v
(n,m)
E = ∇ ×

[
er

∞∑
k=1

k∑
l=−k

P(n,m)kl (r) Y l
k (θ, φ)

]

+ er

∞∑
k=1

k∑
l=−k

T (n,m)kl (r) Y l
k (θ, φ)+ ∇Φ(n,m) (r, θ, φ) . (B28)

It follows from (2.44) that

�Φ(n,m)(r, θ, φ)= −
∞∑

k=1

k∑
l=−k

∇ · [T (n,m)kl (r)Y l
k(θ, φ)er ]

= −
∞∑

k=1

k∑
l=−k

[T (n,m)/kl (r)+ 2r−1T (n,m)kl (r)]Y l
k(θ, φ). (B29)

In fact, (B29) involves only terms with l = 0 as T (n,m)kl (r)= 0 for l �= 0.
We assume that

Φ(n,m) (r, θ, φ)=
∞∑

k=1

k∑
l=−k

Φ
(n,m)
kl (r) Y l

k (θ, φ) . (B30)

Substituting (B30) into (B29), using (B24) and keeping only non-zero terms, one has

Φ
(n,m)′′
k0 (r)+ 2

r
Φ
(n,m)′
k0 (r)− k (k + 1)

r2 Φ
(n,m)
k0 (r)= H (n,m)

k (r) , (B31)

where

H (n,m)
k (r)= −T (n,m)′k0 (r)− 2r−1T (n,m)k0 (r)

= − (k + 3) rkC (n,m)
3k (r)+ (k − 2) r−k−1C (n,m)

4k (r) . (B32)
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Equation (B31) is solved by the method of variation of parameters, which results in

Φ
(n,m)
k0 (r)= rkC (n,m)

5k (r)+ r−k−1C (n,m)
6k (r) , (B33)

where C (n,m)
5k (r) and C (n,m)

6k (r) obey the equations

rkC (n,m)′
5k (r)+ r−k−1C (n,m)′

6k (r)= 0, (B34)

krk−1C (n,m)′
5k (r)− (k + 1) r−k−2C (n,m)′

6k (r)= H (n,m)
k (r) . (B35)

Solving (B34) and (B35) gives

C (n,m)
5k (r)= C

(n,m)
5k + 1

2k + 1

∫ r

R0

s1−k H (n,m)
k (s) ds, (B36)

C (n,m)
6k (r)= C

(n,m)
6k − 1

2k + 1

∫ r

R0

sk+2 H (n,m)
k (s) ds. (B37)

The constant C
(n,m)
6k is calculated by boundary conditions at the bubble surface; see

below.
From the condition that the acoustic streaming vanishes at infinity, one finds

C
(n,m)
5k = − 1

2k + 1

∫ ∞

R0

s1−k H (n,m)
k (s) ds. (B38)

Substituting (B32) into (B38) and using (B26), one obtains

C
(n,m)
5k = − (k − 2)C

(n,m)
4k(

4k2 − 1
)

R2k−1
0

+ I (n,m)k , (B39)

I (n,m)k = k + 3
2k + 1

∫ ∞

R0

rC (n,m)
3k (r) dr + k − 2

(2k + 1)2

∫ ∞

R0

[∫ r

R0

sk+1G(n,m)
k (s) ds

]
dr

r2k
.

(B40)

Substitution of (B30) into (B28) yields

v
(n,m)
E =

∞∑
k=1

k∑
l=−k

{
er

[
T (n,m)kl (r)+Φ

(n,m)′
kl (r)

]
Y l

k (θ, φ)

+ Φ
(n,m)
kl (r)

r

[
eθ
∂Y l

k (θ, φ)

∂θ
+ eφ

sin θ
∂Y l

k (θ, φ)

∂φ

]

+ P(n,m)kl (r)

r

[
eθ

sin θ
∂Y l

k (θ, φ)

∂φ
− eφ

∂Y l
k (θ, φ)

∂θ

]}
. (B41)

Keeping only non-zero terms (those with l = 0) and using (D1) and (D9), one obtains

v
(n,m)
Er = 1

2
√
π

∞∑
k=1

√
2k + 1

[
T (n,m)k0 (r)+Φ

(n,m)/
k0 (r)

]
Pk (cos θ) , (B42)

v
(n,m)
Eθ = 1

2
√
π r

∞∑
k=1

√
2k + 1Φ(n,m)k0 (r) P1

k (cos θ) , (B43)

v
(n,m)
Eφ = − 1

2
√
π r

∞∑
k=1

√
2k + 1 P(n,m)k0 (r) P1

k (cos θ) . (B44)
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Equation (B42) involves Φ(n,m)/k0 (r), which is calculated by (B33) and (B34) to be

Φ
(n,m)/
k0 (r)= krk−1C (n,m)

5k (r)− (k + 1) r−k−2C (n,m)
6k (r) . (B45)

In order to go on with the calculation, we need to apply boundary conditions for acoustic
streaming at the bubble surface. To do this, we need to know the Stokes drift velocity
(Longuet-Higgins 1998), which is calculated by (Doinikov et al. 2019a)

v
(n,m)
S = 1

2ω
Re
{

iv(n,m)1 · ∇v(n,m)∗1

}
. (B46)

Equation (B46) gives

v
(n,m)
Sr = − 1

2ω
Im

{
v
(n,m)
1r

∂v
(n,m)∗
1r

∂r
+ v

(n,m)
1θ
r

∂v
(n,m)∗
1r

∂θ
+ v

(n,m)
1φ

r sin θ
∂v
(n,m)∗
1r

∂φ

}
, (B47)

v
(n,m)
Sθ = − 1

2ω
Im

{
v
(n,m)
1r

∂v
(n,m)∗
1θ
∂r

+ v
(n,m)
1θ
r

∂v
(n,m)∗
1θ
∂θ

+ v
(n,m)
1φ

r sin θ
∂v
(n,m)∗
1θ
∂φ

+ v
(n,m)∗
1r v

(n,m)
1θ

r

}
,

(B48)

v
(n,m)
Sφ = − 1

2ω
Im

{
v
(n,m)
1r

∂v
(n,m)∗
1φ

∂r
+ v

(n,m)
1θ
r

∂v
(n,m)∗
1φ

∂θ
+ v

(n,m)
1φ

r sin θ

∂v
(n,m)∗
1φ

∂φ
+ v

(n,m)
1φ v

(n,m)∗
1r

r

+cos θ v(n,m)1φ v
(n,m)∗
1θ

r sin θ

}
. (B49)

Substituting (A5), (A16) and (A17) into (B47)–(B49) and using (D6), one obtains

v
(n,m)
Sr = − 1

2ω
Re
{

i f ∗
nm f ′

nmY m
n Y m∗

n + i fnm g∗
nm

r

(
∂Y m

n

∂θ

∂Y m∗
n

∂θ
+ m2Y m

n Y m∗
n

sin2 θ

)}
, (B50)

v
(n,m)
Sθ = − 1

4ω
Re

{
i

[
f ∗
nm g′

nm −
(

f ∗
nm − n (n + 1) g∗

nm

)
gnm

r

]
∂
(
Y m

n Y m∗
n

)
∂θ

}
, (B51)

v
(n,m)
Sφ = m

2ω
Re
{

f ∗
nm

(
g′

nm − gnm

r

) Y m
n Y m∗

n

sin θ

+gnm g∗
nm

r sin θ

(
∂Y m

n

∂θ

∂Y m∗
n

∂θ
+ m2Y m

n Y m∗
n

sin2 θ
− 2 cos θ

sin θ
Y m

n
∂Y m∗

n

∂θ

)}
. (B52)

With the help of (B10) and (D17), (B50) is represented by

v
(n,m)
Sr = − 1

2ω
Re
{

i

[
f ∗
nm f ′

nm + n (n + 1) fnm g∗
nm

r

]
Y m

n Y m∗
n − i fnm g∗

nm

2r
L2 [Y m

n Y m∗
n

]}

= 1
2ω

Re
∞∑

k=1

k∑
l=−k

i Anmnm
kl

[
k (k + 1)− 2n (n + 1)

2r
fnm g∗

nm − f ∗
nm f ′

nm

]
Y l

k (θ, φ) .

(B53)
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Keeping only non-zero terms and using (D1), one obtains

v
(n,m)
Sr = 1

4
√
π ω

∞∑
k=1

√
2k + 1 Anmnm

k0

× Re
{

i f ∗
nm (r)

[
2n (n + 1)− k (k + 1)

2r
gnm (r)− f ′

nm (r)

]}
Pk (cos θ) .

(B54)

Substitution of (D17) into (B51) yields

v
(n,m)
Sθ = 1

4ω
Re

∞∑
k=1

k∑
l=−k

i Anmnm
kl

{
gnm

[
f ∗
nm − n (n + 1) g∗

nm

]
r

− f ∗
nm g′

nm

}
∂Y l

k (θ, φ)

∂θ
.

(B55)
Keeping only non-zero terms and using (D1) and (D9), one obtains

v
(n,m)
Sθ = 1

8
√
πω

Re
{

i f ∗
nm (r)

[
gnm (r)

r
− g′

nm (r)

]} ∞∑
k=1

√
2k + 1 Anmnm

k0 P1
k (cos θ) .

(B56)
With the help of (B10), (B52) is represented by

v
(n,m)
Sφ = m

2ω
Re
{[

f ∗
nm

(
g′

nm − gnm

r

)
+ n (n + 1) |gnm |2

r

]
Y m

n Y m∗
n

sin θ

+|gnm |2
r

∂

∂θ

(
Y m∗

n

sin θ
∂Y m

n

∂θ

)}
. (B57)

Note that v(n,m)Sφ = 0 for m = 0. For n = m = 1, with the help of (D1), (B57) is
represented by

v
(1,1)
Sφ = E (1,1) (r) P1

1 (cos θ) , (B58)

E (1,1) (r)= 3
16πωr

Re
{

f ∗
11 (r)

[
g11 (r)− rg′

11 (r)
]− |g11 (r) |2

}
. (B59)

For n > 1, by using (D23), (D24), (D1), (D3) and (D15), keeping only non-zero terms,
(B57) is represented by

v
(n,m)
Sφ =

∞∑
k=1

E (n>1,m)
k (r) P1

k (cos θ) , (B60)

where

E (n>1,m)
k (r)= m

√
2k + 1

4
√
πωr

⎧⎪⎪⎨
⎪⎪⎩
[
nC(n+1)m B(n+1)mnm

k0 − (n + 1)Cnm B(n+1)mnm
k0

]
|gnm(r)|2

−
√
(2n + 1)(n − m)!

(n + m)! Re
{

f ∗
nm(r)

[
gnm(r)− rg′

nm(r)
]− n(n + 1)|gnm(r)|2

}

× 1√
k(k + 1)

[
(n−m+2)

2

]
∑
s=1

√
(2n − 4s + 3)(n + m − 2s)!

(n − m − 2s + 2)! A(n−2s+1)(m−1)nm
k(−1)

⎫⎪⎪⎬
⎪⎪⎭ . (B61)
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Equations (B58) and (B60) can be combined as follows:

v
(n,m)
Sφ =

∞∑
k=1

E (n,m)k (r) P1
k (cos θ) , (B62)

where

E (n,m)k (r)=
{

E (1,1) (r) δ1k, n = 1,
E (n>1,m)

k (r) , n > 1.
(B63)

We can now apply the boundary conditions for the acoustic streaming at the bubble
surface. They are given by

v
(n,m)
Lr = 0 at r = R0, (B64)

σ
(n,m)
Lrθ = η

(
1
r

∂v
(n,m)
Lr

∂θ
+ ∂v

(n,m)
Lθ

∂r
− v

(n,m)
Lθ

r

)
= 0 at r = R0, (B65)

σ
(n,m)
Lrφ = η

(
∂v
(n,m)
Lφ

∂r
+ 1

r sin θ
∂v
(n,m)
Lr

∂φ
− v

(n,m)
Lφ

r

)
= 0 at r = R0, (B66)

where v(n,m)L = v
(n,m)
E + v

(n,m)
S is the Lagrangian streaming velocity, and σ (n,m)Lrθ and σ (n,m)Lrφ

are the tangential components of the stress produced by v(n,m)L . We use (B64)–(B66) in

order to calculate the constants C
(n,m)
2k , C

(n,m)
4k and C

(n,m)
6k .

Substituting (B42) and (B54) into (B64), one obtains

T (n,m)k0 (R0)+Φ
(n,m)′
k0 (R0)= Q(n,m)

k , (B67)

where

Q(n,m)
k = Anmnm

k0
2ω

Re
{

i f ∗
nm (R0)

[
f ′
nm (R0)+ k (k + 1)− 2n (n + 1)

2R0
gnm (R0)

]}
.

(B68)

To calculate σ (n,m)Lrθ , we use (B42), (B43), (B54) and (B56):

σ
(n,m)
Lrθ = η

2
√
π

∞∑
k=1

√
2k + 1 P1

k (cos θ)

{
T (n,m)k0 (r)

r
+ 2Φ(n,m)′k0 (r)

r
− 2Φ(n,m)k0 (r)

r2

+ Anmnm
k0
4ωr

Re
{
i f ′∗

nm (r)
[
gnm (r)− rg′

nm (r)
]

+i f ∗
nm (r)

[
2n (n + 1)− k (k + 1)− 2

r
gnm (r)+ 2g′

nm (r)− rg′′
nm (r)− 2 f ′

nm (r)

]}}
.

(B69)

Substitution of (B69) into (B65) yields

T (n,m)k0 (R0)+ 2Φ(n,m)′k0 (R0)− 2
R0
Φ
(n,m)
k0 (R0)= S(n,m)k , (B70)
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where

S(n,m)k = Anmnm
k0
4ω

Re
{

i f /∗nm (R0)
[
R0g′

nm (R0)− gnm (R0)
]+ i f ∗

nm (R0)

×
[

2 + k (k + 1)− 2n (n + 1)
R0

gnm (R0)− 2g′
nm (R0)+ R0g//nm (R0)+ 2 f ′

nm (R0)

]}
.

(B71)

Combining (B67) and (B70), and using (B24), (B33), (B39) and (B45), one finds

C
(n,m)
4k = (2k − 1) Rk

0
(k + 1) (2k + 1)

[
2 (k + 2) Q(n,m)

k − (k + 1) S(n,m)k − (k + 3) Rk+1
0 C

(n,m)
3k

−2 (2k + 1) Rk−1
0 I (n,m)k

]
, (B72)

C
(n,m)
6k = R2

0
k + 1

[
(k + 1) (3k − 1)

4k2 − 1
C
(n,m)
4k + R2k+1

0 C
(n,m)
3k + k R2k−1

0 I (n,m)k − Rk
0 Q(n,m)

k

]
.

(B73)
To calculate σ (n,m)Lrφ , we use (B44) and (B62):

σ
(n,m)
Lrφ = η

r2

∞∑
k=1

P1
k (cos θ)

{√
2k + 1
2
√
π

[
2P(n,m)k0 (r)− r P(n,m)′k0 (r)

]

−r E (n,m)k (r)+ r2 E (n,m)′k (r)
}
, (B74)

where P(n,m)′k0 (r) and E (n,m)′k (r) are calculated by

P(n,m)′k0 (r)= (k + 1) rkC (n,m)
1k (r)− kr−k−1C (n,m)

2k (r) , (B75)

E (n,m)′k (r)=
{

E (1,1)′ (r) δ1k, n = 1,
E (n>1,m)′

k (r) , n > 1,
(B76)

E (1,1)′ (r)= 3
16πωr2 Re

{
f ∗
11 (r)

[
rg′

11 (r)− r2g′′
11 (r)− g11 (r)

]
+r f ′∗

11 (r)
[
g11 (r)− rg′

11 (r)
]+ g∗

11 (r)
[
g11 (r)− 2rg′

11 (r)
]}
, (B77)

E (n>1,m)
k /(r)= − E (n>1,m)

k (r)

r

+ m
√

2k + 1
4
√
πωr

⎧⎪⎪⎨
⎪⎪⎩2 Re{g′

nm(r)g
∗
nm(r)}

[
nC(n+1)m B(n+1)mnm

k0 − (n + 1)Cnm B(n+1)mnm
k0

]

−
√
(2n + 1)(n − m)!

(n + m)! Re
{

f ′∗
nm(r)

[
gnm(r)− rg′

nm(r)
]− r f ∗

nm(r)g
′′
nm(r)

−2n(n + 1)g/nm(r)g
∗
nm(r)

}

× 1√
k(k + 1)

[
(n−m+2)

2

]
∑
s=1

√
(2n − 4s + 3)(n + m − 2s)!

(n − m − 2s + 2)! A(n−2s+1)(m−1)nm
k(−1)

⎫⎪⎪⎬
⎪⎪⎭ . (B78)
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Substituting (B74) into (B66), and using (B18) and (B75), one finds

C
(n,m)
2k = Rk+1

0
k + 2

{
(k − 1) Rk

0C
(n,m)
1k + 2

√
π√

2k + 1

[
E (n,m)k (R0)− R0 E (n,m)/k (R0)

]}
.

(B79)
Appendix C. Solving the equations of acoustic streaming for the cross terms
To solve (2.64) and (2.65), we first need to calculate their right-hand sides.

The calculation of v(n,m)1 · ∇v(n,−m)
1 yields

v
(n,m)
1 · ∇v(n,−m)

1

=
(
v
(n,m)
1r

∂

∂r
+ v

(n,m)
1θ
r

∂

∂θ
+ v

(n,m)
1φ

r sin θ
∂

∂φ

) (
v
(n,−m)
1r er + v

(n,−m)
1θ eθ + v

(n,−m)
1φ eφ

)

= er

(
v
(n,m)
1r

∂v
(n,−m)
1r

∂r
+ v

(n,m)
1θ
r

∂v
(n,−m)
1r

∂θ
+ v

(n,m)
1φ

r sin θ
∂v
(n,−m)
1r

∂φ

−v
(n,m)
1θ v

(n,−m)
1θ + v

(n,m)
1φ v

(n,−m)
1φ

r

)

+ eθ

(
v
(n,m)
1r

∂v
(n,−m)
1θ
∂r

+ v
(n,m)
1θ
r

∂v
(n,−m)
1θ
∂θ

+ v
(n,m)
1φ

r sin θ
∂v
(n,−m)
1θ
∂φ

+ v
(n,m)
1θ v

(n,−m)
1r

r

−cos θ v(n,m)1φ v
(n,−m)
1φ

r sin θ

)

+ eφ

(
v
(n,m)
1r

∂v
(n,−m)
1φ

∂r
+ v

(n,m)
1θ
r

∂v
(n,−m)
1φ

∂θ
+ v

(n,m)
1φ

r sin θ

∂v
(n,−m)
1φ

∂φ
+ v

(n,m)
1φ v

(n,−m)
1r

r

+cos θ v(n,m)1φ v
(n,−m)
1θ

r sin θ

)
. (C1)

Substituting (2.30)–(2.32) and (2.41)–(2.43) into (C1), and averaging over time, one
obtains〈
v
(n,m)
1 · ∇v(n,−m)

1

〉

= (−1)m

2
Re

{
erε

{
VnV ′∗

n

(
Y m

n

)2 + Wn
(
V ∗

n − W ∗
n

)
r

[(
∂Y m

n

∂θ

)2

+ 1

sin2 θ

(
∂Y m

n

∂φ

)2
]}

+ eθ ε
{(

VnW ′∗
n + WnV ∗

n

r

)
Y m

n
∂Y m

n

∂θ

+|Wn|2
r

[
∂Y m

n

∂θ

∂2Y m
n

∂θ2 + 1

sin2 θ

∂Y m
n

∂φ

∂2Y m
n

∂θ ∂φ
− cos θ

sin3 θ

(
∂Y m

n

∂φ

)2
]}

+ eφε
sin θ

{(
VnW ′∗

n + WnV ∗
n

r

)
Y m

n
∂Y m

n

∂φ
+ |Wn|2

r

(
∂Y m

n

∂θ

∂2Y m
n

∂θ ∂φ
+ 1

sin2 θ

∂Y m
n

∂φ

∂2Y m
n

∂φ2

)}}
,

(C2)

where ε= s(n,m)s(n,−m)∗. For simplicity, we drop the arguments of the functions in (C2).
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The calculation of the curl of (C2) results in

∇ ×
〈
v
(n,m)
1 · ∇v(n,−m)

1

〉
= (−1)m

2
Re
{

eθ ε
r sin θ

{[
2VnV ′∗

n − (r VnW ′∗
n + WnV ∗

n

)′]
Y m

n
∂Y m

n

∂φ

+
[

2Wn
(
V ∗

n − W ∗
n

)
r

− (WnW ∗
n

)′](∂Y m
n

∂θ

∂2Y m
n

∂θ ∂φ
+ 1

sin2 θ

∂Y m
n

∂φ

∂2Y m
n

∂φ2

)}

+ eφε
r

{[(
r VnW /∗

n + WnV ∗
n

)′ − 2VnV ′∗
n

]
Y m

n
∂Y m

n

∂θ
+
[(

WnW ∗
n

)′ − 2Wn
(
V ∗

n − W ∗
n

)
r

]

×
[
∂Y m

n

∂θ

∂2Y m
n

∂θ2 + 1

sin2 θ

∂Y m
n

∂φ

∂2Y m
n

∂θ ∂φ
− cos θ

sin3 θ

(
∂Y m

n

∂φ

)2
]}}

. (C3)

Since (C3) does not contain a radial component, (2.64) leads to

P(×)′′kl (r)− k (k + 1) P(×)kl (r)

r2 = 0. (C4)

A solution to (C4) is given by

P(×)kl (r)= C
(×)
1k rk+1 + C

(×)
2k r−k, (C5)

where C
(×)
1k and C

(×)
2k are constants. From the condition that the acoustic streaming

vanishes at infinity, it follows that

C
(×)
1k = 0, (C6)

while C
(×)
2k is calculated by boundary conditions at the bubble surface; see below.

The calculation of the r -component of ∇ × ∇ × 〈v(n,m)1 · ∇v(n,−m)
1 〉 results in

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,−m)

1

〉]
= (−1)m

4r2 Re
{
ε
[
2VnV ′∗

n − (r VnW ′∗
n + WnV ∗

n

)′]
L2
[(

Y m
n

)2]

+ε
[

2Wn
(
V ∗

n − W ∗
n

)
r

− (WnW ∗
n

)′]
L2

[(
∂Y m

n

∂θ

)2

+ 1

sin2 θ

(
∂Y m

n

∂φ

)2
]}

, (C7)

where the operator L2 is given by (B9).
The r -component of ∇ × ∇ × 〈v(n,−m)

1 · ∇v(n,m)1 〉 is calculated from (C7) by swapping
m with −m. Doing so and using (D3), one obtains

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,−m)

1 + v
(n,−m)
1 · ∇v(n,m)1

〉]
= (−1)m

4r2

× Re
{
ε

[
2VnV /∗

n + 2V ∗
n V ′

n−
(

r VnW /∗
n + WnV ∗

n

)′− (r V ∗
n W ′

n + W ∗
n Vn

)′]
L2
[(

Y m
n

)2]

+2ε
[

VnW ∗
n + V ∗

n Wn − 2WnW ∗
n

r
− (WnW ∗

n

)′]
L2

[(
∂Y m

n

∂θ

)2

− m2 (Y m
n

)2
sin2 θ

]}
. (C8)
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By using (D5), it can be shown that the following identity holds:

(
∂Y m

n

∂θ

)2

− m2 (Y m
n

)2
sin2 θ

= n (n + 1)
(
Y m

n

)2 − 1
2

L2
[(

Y m
n

)2]
. (C9)

Substitution of (C9) into (C8) yields

er ·
[
∇ × ∇ ×

〈
v
(n,m)
1 · ∇v(n,−m)

1 + v
(n,−m)
1 · ∇v(n,m)1

〉]
= (−1)m

4r2

× Re
{
εL2

[(
Y m

n

)2] {2VnV /∗
n + 2V ∗

n V ′
n −

(
r VnW /∗

n + V ∗
n Wn + r V ∗

n W ′
n + VnW ∗

n

)′

+2n (n + 1)
[

VnW ∗
n + V ∗

n Wn − 2WnW ∗
n

r
− (WnW ∗

n

)′]}

+εL4
[(

Y m
n

)2] [(
WnW ∗

n

)′ − VnW ∗
n + V ∗

n Wn − 2WnW ∗
n

r

]}
. (C10)

Substituting (C10) into (2.65), expressing (Y m
n )

2 by (D25), and using the identity
L2Y l

k = k(k + 1)Y l
k , one obtains

T (×)//kl (r)− k (k + 1)
r2 T (×)kl (r)= Dnmnm

kl G(×)
k (r) , (C11)

where the constant coefficients Dnmnm
kl are calculated by (D27), and G(×)

k (r) is given by

G(×)
k (r)

= (−1)m ε
2ν

Re
{

V ∗
n (r)

[
2V ′

n (r)− 2W ′
n (r)− r W //

n (r)
]
− V /∗

n (r)
[
Wn (r)+ r W ′

n (r)
]

+2n (n + 1)− k (k + 1)
r

W ∗
n (r)

[
Vn (r)− Wn (r)− r W ′

n (r)
]}
. (C12)

A solution to (C11) is given by

T (×)kl (r)= Dnmnm
kl

[
rk+1C (×)

3k (r)+ r−kC (×)
4k (r)

]
, (C13)

C (×)
3k (r)= C

(×)
3k + 1

2k + 1

∫ r

R0

s−k G(×)
k (s) ds, (C14)

C (×)
4k (r)= C

(×)
4k − 1

2k + 1

∫ r

R0

sk+1G(×)
k (s) ds. (C15)

The constant C
(×)
3k is calculated from the condition that the acoustic streaming vanishes

at infinity,

C
(×)
3k = − 1

2k + 1

∫ ∞

R0

s−k G(×)
k (s) ds, (C16)

and the constant C
(×)
4k is calculated by boundary conditions at the bubble surface; see

below.
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From (2.63), it follows that

v
(×)
E = Re

{
∇ ×

[
er

∞∑
k=1

k∑
l=−k

P(×)kl (r) Y l
k (θ, φ)

]

+er

∞∑
k=1

k∑
l=−k

T (×)kl (r) Y l
k (θ, φ)+ ∇Φ(×) (r, θ, φ)

}
. (C17)

Substitution of (C17) into (2.44) yields

�Φ(×) (r, θ, φ)= −
∞∑

k=1

k∑
l=−k

∇ ·
[
T (×)kl (r) Y l

k (θ, φ) er

]

= −
∞∑

k=1

k∑
l=−k

[
T (×)/kl (r)+ 2r−1T (×)kl (r)

]
Y l

k (θ, φ) . (C18)

Φ(×) (r, θ, φ)=
∞∑

k=1

k∑
l=−k

Φ
(×)
kl (r) Y l

k (θ, φ) . (C19)

Substituting (C19) into (C18), and using (C13), one obtains

Φ
(×)//
kl (r)+ 2

r
Φ
(×)/
kl (r)− k (k + 1)

r2 Φ
(×)
kl (r)= Dnmnm

kl H (×)
k (r) , (C20)

H (×)
k (r)= − (k + 3) rkC (×)

3k (r)+ (k − 2) r−k−1C (×)
4k (r) . (C21)

Equation (C20) is solved by the method of variation of parameters, which results in

Φ
(×)
kl (r)= Dnmnm

kl

[
rkC (×)

5k (r)+ r−k−1C (×)
6k (r)

]
, (C22)

where C (×)
5k (r) and C (×)

6k (r) obey the equations

rkC (×)/
5k (r)+ r−k−1C (×)/

6k (r)= 0, (C23)

krk−1C (×)/
5k (r)− (k + 1) r−k−2C (×)/

6k (r)= H (×)
k (r) . (C24)

Solutions to (C23) and (C24) are given by

C (×)
5k (r)= C

(×)
5k + 1

2k + 1

∫ r

R0

s1−k H (×)
k (s) ds, (C25)

C (×)
6k (r)= C

(×)
6k − 1

2k + 1

∫ r

R0

sk+2 H (×)
k (s) ds, (C26)

where C
(×)
5k and C

(×)
6k are constants. The constant C

(×)
6k is calculated by boundary

conditions at the bubble surface; see below. The constant C
(×)
5k is calculated from the

condition that the acoustic streaming vanishes at infinity, which gives

C
(×)
5k = − 1

2k + 1

∫ ∞

R0

s1−k H (×)
k (s) ds. (C27)
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Substituting (C21) into (C27), and using (C15), one obtains

C
(×)
5k = − (k − 2)C

(×)
4k(

4k2 − 1
)

R2k−1
0

+ I (×)k ,

(C28)

I (×)k = k + 3
2k + 1

∫ ∞

R0

rC (×)
3k (r) dr + k − 2

(2k + 1)2

∫ ∞

R0

r−2k
[∫ r

R0

sk+1G(×)
k (s) ds

]
dr.

(C29)

Substitution of (C19) into (C17) yields

v
(×)
Er = Re

∞∑
k=1

k∑
l=−k

[
T (×)kl (r)+Φ

(×)/
kl (r)

]
Y l

k (θ, φ) , (C30)

v
(×)
Eθ = Re

∞∑
k=1

k∑
l=−k

[
Φ
(×)
kl (r)

r

∂Y l
k (θ, φ)

∂θ
+ P(×)kl (r)

r sin θ
∂Y l

k (θ, φ)

∂φ

]
, (C31)

v
(×)
Eφ = Re

∞∑
k=1

k∑
l=−k

[
Φ
(×)
kl (r)

r sin θ
∂Y l

k (θ, φ)

∂φ
− P(×)kl (r)

r

∂Y l
k (θ, φ)

∂θ

]
. (C32)

The function Φ(×)/kl (r), which appears in (C30), is calculated by (C22) and (C23) to be

Φ
(×)/
kl (r)= Dnmnm

kl

[
krk−1C (×)

5k (r)− (k + 1) r−k−2C (×)
6k (r)

]
. (C33)

In order to go on with the calculation, we need to apply the boundary conditions for
the acoustic streaming at the bubble surface. To do this, we need to know the Stokes drift
velocity, which is calculated by

v
(×)
S = 1

2ω
Re
{

iv(n,m)1 · ∇v(n,−m)∗
1 + iv(n,−m)

1 · ∇v(n,m)∗1

}
. (C34)

The expression Re{iv(n,m)1 · ∇v(n,−m)∗
1 } is calculated by

Re
{

iv(n,m)1 · ∇v(n,−m)∗
1

}

= Re

{
er i

(
v
(n,m)
1r

∂v
(n,−m)∗
1r

∂r
+ v

(n,m)
1θ
r

∂v
(n,−m)∗
1r

∂θ
+ v

(n,m)
1φ

r sin θ
∂v
(n,−m)∗
1r

∂φ
− v

(n,m)
1θ v

(n,−m)∗
1θ
r

−v
(n,m)
1φ v

(n,−m)∗
1φ

r

)

+ eθ i

(
v
(n,m)
1r

∂v
(n,−m)∗
1θ
∂r

+ v
(n,m)
1θ
r

∂v
(n,−m)∗
1θ
∂θ

+ v
(n,m)
1φ

r sin θ
∂v
(n,−m)∗
1θ
∂φ

+ v
(n,m)
1θ v

(n,−m)∗
1r

r

−cos θ v(n,m)1φ v
(n,−m)∗
1φ

r sin θ

)
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+ eφi

(
v
(n,m)
1r

∂v
(n,−m)∗
1φ

∂r
+ v

(n,m)
1θ
r

∂v
(n,−m)∗
1φ

∂θ
+ v

(n,m)
1φ

r sin θ

∂v
(n,−m)∗
1φ

∂φ
+ v

(n,m)
1φ v

(n,−m)∗
1r

r

+cos θ v(n,m)1φ v
(n,−m)∗
1θ

r sin θ

)}
. (C35)

Substituting (2.30)–(2.32) and (2.41)–(2.43) into (C35), and using (C9), one obtains

Re
{

iv(n,m)1 · ∇v(n,−m)∗
1

}
= (−1)m

× Re

{
er iε

{[
VnV /∗

n + n (n + 1)Wn
(
V ∗

n − W ∗
n

)
r

](
Y m

n

)2 − Wn
(
V ∗

n − W ∗
n

)
2r

L2
[(

Y m
n

)2]}

+ eθ
iε

2
∂

∂θ

{[
VnW /∗

n + Wn
(
V ∗

n + n (n + 1)W ∗
n

)
r

] (
Y m

n

)2 − WnW ∗
n

2r
L2
[(

Y m
n

)2]}

+eφ
iε

2 sin θ
∂

∂φ

{[
VnW /∗

n + Wn
(
V ∗

n + n (n + 1)W ∗
n

)
r

](
Y m

n

)2 − WnW ∗
n

2r
L2
[(

Y m
n

)2]}}
.

(C36)

The expression Re{iv(n,−m)
1 · ∇v(n,m)∗1 } is calculated from (C36) by swapping m with

−m. Doing so, and using (D3), one obtains

v
(×)
Sr = (−1)m

2ω
Re

{
iε

{[
VnV /∗

n − V ∗
n V ′

n − n (n + 1)
(
VnW ∗

n − V ∗
n Wn

)
r

] (
Y m

n

)2
+VnW ∗

n − V ∗
n Wn

2r
L2
[(

Y m
n

)2]}} (C37)

v
(×)
Sθ = (−1)m

4ω
Re

{
iε

[
VnW /∗

n − V ∗
n W ′

n − VnW ∗
n − V ∗

n Wn

r

]
∂
(
Y m

n

)2
∂θ

}
, (C38)

v
(×)
Sφ = (−1)m

4ω
Re

{
iε

[
VnW /∗

n − V ∗
n W ′

n − VnW ∗
n − V ∗

n Wn

r

]
1

sin θ
∂
(
Y m

n

)2
∂φ

}
. (C39)

With the help of (D25) and the identity L2Y l
k = k(k + 1)Y l

k , (C37)–(C39) are
transformed to

v
(×)
Sr = Re

∞∑
k=1

S(×)k (r)
k∑

l=−k

Dnmnm
kl Y l

k (θ, φ) , (C40)

v
(×)
Sθ = Re

{
Unm (r)

∞∑
k=1

k∑
l=−k

Dnmnm
kl

∂Y l
k (θ, φ)

∂θ

}
, (C41)
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v
(×)
Sφ = Re

{
iUnm (r)

∞∑
k=1

k∑
l=−k

l Dnmnm
kl

Y l
k (θ, φ)

sin θ

}
, (C42)

S(×)k (r)= (−1)m ε
ω

Im
{

V ∗
n (r)

[
V ′

n (r)−
n (n + 1)

r
Wn (r)

]
+ k (k + 1)

2r
V ∗

n (r)Wn (r)

}
,

(C43)

Unm (r)= (−1)m ε
2ω

Im
{

V ∗
n (r)

[
W ′

n (r)−
Wn (r)

r

]}
. (C44)

Equations (C41) and (C42) are convenient to use in the boundary conditions at the
bubble surface. However, for the numerical calculation of v(×)Sθ and v(×)Sφ , it is convenient
to transform (C41) and (C42).

With the help of (D9), (C41) is transformed to

v
(×)
Sθ = 1

2
Re

{
Unm (r)×

∞∑
k=1

k∑
l=−k

Dnmnm
kl

[√
k (k + 1)− l (l + 1) Y l+1

k (θ, φ) e−iφ

−√k (k + 1)− l (l − 1) Y l−1
k (θ, φ) eiφ

]}
. (C45)

With the help of (D16), (C42) is transformed to

v
(×)
Sφ = −Re

{
iUnm (r) eiφ

∞∑
k=1

k∑
l=−k

l

√
(2k + 1) (k − l)!

(k + l)! Dnmnm
kl

×
[(k−l+2)/2]∑

s=1

√
(2k − 4s + 3) (k + l − 2s)!

(k − l − 2s + 2)! Y l−1
k−2s+1 (θ, φ)

⎫⎬
⎭ . (C46)

We can now apply the boundary conditions for the acoustic streaming at the bubble
surface.

They are given by

v
(×)
Lr = 0 at r = R0, (C47)

σ
(×)
Lrθ = η

(
1
r

∂v
(×)
Lr

∂θ
+ ∂v

(×)
Lθ

∂r
− v

(×)
Lθ

r

)
= 0 at r = R0, (C48)

σ
(×)
Lrφ = η

(
∂v
(×)
Lφ

∂r
+ 1

r sin θ
∂v
(×)
Lr

∂φ
− v

(×)
Lφ

r

)
= 0 at r = R0, (C49)

where v(×)L = v
(×)
E + v

(×)
S is the Lagrangian streaming velocity, and σ (×)Lrθ and σ (×)Lrφ are the

tangential components of the stress produced by v(×)L . We use (C47)–(C49) in order to

calculate the constants C
(×)
2k , C

(×)
4k and C

(×)
6k .

Substituting (C30) and (C40) into (C47), and using (C13), (C28) and (C33), one obtains

(k + 1) (3k − 1)
4k2 − 1

C
(×)
4k − (k + 1) R−2

0 C
(×)
6k = −R2k+1

0 C
(×)
3k − k R2k−1

0 I (×)k − Rk
0 S(×)k (R0) .

(C50)
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The calculation of σ (×)Lrθ and σ (×)Lrφ results in

σ
(×)
Lrθ = η Re

∞∑
k=1

k∑
l=−k

{
Dnmnm

kl

[
rkC (×)

3k (r)+ r−k−1C (×)
4k (r)+ 2 (k − 1) rk−2C (×)

5k (r)

−2 (k + 2) r−k−3C (×)
6k (r)+ S(×)k (r)− Unm (r)+ rU ′

nm (r)

r

]
∂Y l

k (θ, φ)

∂θ

−il (k + 2)C
(×)
2k r−k−2 Y l

k (θ, φ)

sin θ

}
, (C51)

σ
(×)
Lrφ = η Re

∞∑
k=1

k∑
l=−k

{
Dnmnm

kl

[
rkC (×)

3k (r)+ r−k−1C (×)
4k (r)+ 2 (k − 1) rk−2C (×)

5k (r)

−2 (k + 2) r−k−3C (×)
6k (r)+ S(×)k (r)− Unm (r)+ rU ′

nm (r)

r

]
ilY l

k

sin θ

+ (k + 2)C
(×)
2k r−k−2 ∂Y l

k

∂θ

}
. (C52)

Equations (C51) and (C52) show that (C48) and (C49) are satisfied if C
(×)
2k = 0. In this

case, (C48) and (C49) give

2k2 + 6k − 5
4k2 − 1

C
(×)
4k − 2 (k + 2) R−2

0 C
(×)
6k = −R2k+1

0 C
(×)
3k − 2 (k − 1) R2k−1

0 I (×)k

− Rk
0

[
S(×)k (R0)− Unm (R0)+ R0U ′

nm (R0)
]
. (C53)

Combining (C50) and (C53), one obtains

C
(×)
4k = −(k + 3) (2k − 1)

(k + 1) (2k + 1)
R2k+1

0 C
(×)
3k − 2 (2k − 1)

k + 1
R2k−1

0 I (×)k

− 2k − 1
2k + 1

Rk
0

[
k + 3
k + 1

S(×)k (R0)+ Unm (R0)− R0U ′
nm (R0)

]
, (C54)

C
(×)
6k = 3k − 1

4k2 − 1
R2

0C
(×)
4k + Rk+2

0
k + 1

[
Rk+1

0 C
(×)
3k + k Rk−1

0 I (×)k + S(×)k (R0)
]
, (C55)

where

U ′
nm (r)=

(−1)m ε
2ω

Im
{

V /∗
n (r)

[
W ′

n (r)−
Wn (r)

r

]

+V ∗
n (r)

[
W //

n (r)− W ′
n (r)

r
+ Wn (r)

r2

]}
. (C56)
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Since C
(×)
1k = C

(×)
2k = 0 and hence P(×)kl (r)≡ 0, v(×)Eθ and v(×)Eφ , given by (C31) and

(C32), are represented by using (D9) and (D16) as follows:

v
(×)
Eθ = Re

∞∑
k=1

k∑
l=−k

Φ
(×)
kl (r)

r

∂Y l
k (θ, φ)

∂θ
= Re

∞∑
k=1

k∑
l=−k

Φ
(×)
kl (r)

2r

×
[√

k (k + 1)− l (l + 1)Y l+1
k (θ, φ) e−iφ −√k (k + 1)− l (l − 1)Y l−1

k (θ, φ) eiφ
]
,

(C57)

v
(×)
Eφ = Re

∞∑
k=1

k∑
l=−k

ilΦ(×)kl (r)

r

Y l
k (θ, φ)

sin θ

= −Re
∞∑

k=1

k∑
l=−k

ilΦ(×)kl (r) eiφ

r

√
(2k + 1) (k − l)!

(k + l)!

×
[(k−l+2)/2]∑

s=1

√
(2k − 4s + 3) (k + l − 2s)!

(k − l − 2s + 2)! Y l−1
k−2s+1 (θ, φ) . (C58)

Appendix D. Mathematical identities used in calculations
In our derivation, the function Y m

n (θ, φ) is defined by the following equations
(Varshalovich et al. 1988):

Y m
n (θ, φ)=

√
(2n + 1) (n − m)!

4π (n + m)! eimφ Pm
n (cos θ) , 0 ≤ m ≤ n, (D1)

Pm
n (μ)= (−1)m

(
1 −μ2

)m/2 dm Pn (μ)

dμm
, m ≥ 0, (D2)

Y −m
n (θ, φ)= (−1)m Y m

n (θ,−φ)= (−1)m Y m∗
n (θ, φ) , (D3)∫ 2π

0
dφ
∫ π

0
dθ sin θ Y m1

n1
(θ, φ) Y m2∗

n2
(θ, φ)= δn1n2δm1m2, (D4)

where Pn(μ) is the Legendre polynomial of degree n, Pm
n (μ) is the associated Legendre

polynomial of order m and degree n,μ= cos θ , δnm is the Kronecker delta, and the asterisk
denotes the complex conjugate.

In the process of calculations, the following identities are used (Varshalovich et al.
1988):

∂2Y m
n (θ, φ)

∂θ2 + cot θ
∂Y m

n (θ, φ)

∂θ
= m2Y m

n (θ, φ)

sin2 θ
− n (n + 1) Y m

n (θ, φ) , (D5)

dPn (μ)

dμ
=

[(n+1)/2]∑
k=1

(2n − 4k + 3) Pn−2k+1 (μ) , n ≥ 1, (D6)

∫ 2π

0
dφ
∫ π

0
dθ sin θ Y m1

n1
(θ, φ) Y m2

n2
(θ, φ) Y m3∗

n3
(θ, φ)

=
√
(2n1 + 1) (2n2 + 1)

4π (2n3 + 1)
Cn30

n10n20 Cn3m3
n1m1n2m2

, (D7)
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sin θ
∂Y m

n (θ, φ)

∂θ
= nC(n+1)mY m

n+1 (θ, φ)− (n + 1)CnmY m
n−1 (θ, φ) , n ≥ 1, (D8)

∂Y m
n (θ, φ)

∂θ
= 1

2

√
n (n + 1)− m (m + 1) Y m+1

n (θ, φ) e−iφ

− 1
2

√
n (n + 1)− m (m − 1) Y m−1

n (θ, φ) eiφ, (D9)

cos θ Y m
n (θ, φ)= C(n+1)mY m

n+1 (θ, φ)+ CnmY m
n−1 (θ, φ) , (D10)

where Cnm is defined by

Cnm =
√

n2 − m2

(2n − 1) (2n + 1)
. (D11)

Here, [ ] means the integer part of an expression in brackets, and Cn3m3
n1m1n2m2 =

〈n1m1n2m2 | n3m3〉 are the Clebsch–Gordan coefficients. The Clebsch–Gordan coeffi-
cients are zero unless the following conditions are satisfied: m3 = m1 + m2, n1 + n2 −
n3 ≥ 0, n1 − n2 + n3 ≥ 0,−n1 + n2 + n3 ≥ 0, |m1| ≤ n1, |m2| ≤ n2, |m3| ≤ n3.

In our derivation, we use the fact that an arbitrary function f (θ, φ) can be expanded in
spherical harmonics by

f (θ, φ)=
∞∑

n=0

n∑
m=−n

anmY m
n (θ, φ) , (D12)

where the expansion coefficients are calculated by

anm =
∫ 2π

0
dφ
∫ π

0
dθ sin θ Y m∗

n (θ, φ) f (θ, φ) . (D13)

From (D13), by using (D3), one obtains

an(−m) = (−1)m
[∫ 2π

0
dφ
∫ π

0
dθ sin θ Y m∗

n (θ, φ) f ∗ (θ, φ)
]∗
. (D14)

If f (θ, φ) is a real function, then it follows from (D14) that

an(−m) = (−1)m a∗
nm . (D15)

With the help of (D1), (D2) and (D6), one obtains

Y m
n (θ, φ)

sin θ
= 1√

1 −μ2

√
(2n + 1) (n − m)!

4π (n + m)! eimφ (−1)m
(

1 −μ2
)m

2 dm Pn (μ)

dμm

= −eiφ

√
(2n + 1) (n − m)!

4π (n + m)! ei(m−1)φ (−1)m−1
(

1 −μ2
)m−1

2 dm−1

dμm−1

(
dPn (μ)

dμ

)

1010 A48-49

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.284


C. Inserra, C. Mauger, P. Blanc-Benon and A.A. Doinikov

= −eiφ

√
(2n + 1) (n − m)!

4π (n + m)! ei(m−1)φ (−1)m−1
(

1 −μ2
)m−1

2

×
[(n+1)/2]∑

k=1

(2n − 4k + 3)
dm−1 Pn−2k+1 (μ)

dμm−1

= −eiφ

√
(2n + 1) (n − m)!

(n + m)!
[(n−m+2)/2]∑

k=1

√
(2n − 4k + 3) (n + m − 2k)!

(n − m − 2k + 2)!
× Y m−1

n−2k+1 (θ, φ) , n,m ≥ 1. (D16)

Let us expand Y m1
n1 (θ, φ)Y

m2∗
n2 (θ, φ) in spherical harmonics. According to (D12) and

(D13), we obtain

Y m1
n1
(θ, φ) Y m2∗

n2
(θ, φ)=

∞∑
n=0

n∑
m=−n

An1m1n2m2
nm Y m

n (θ, φ) , (D17)

where

An1m1n2m2
nm =

∫ 2π

0
dφ
∫ π

0
dθ sin θ Y m∗

n (θ, φ) Y m1
n1
(θ, φ) Y m2∗

n2
(θ, φ) . (D18)

It follows from (D7) that

∫ 2π

0
dφ
∫ π

0
dθ sin θ Y m∗

n (θ, φ) Y m1
n1
(θ, φ) Y m2∗

n2
(θ, φ)

=
√
(2n + 1) (2n2 + 1)

4π (2n1 + 1)
Cn10

n0n20Cn1m1
nmn2m2

. (D19)

This equation is non-zero only if m + m2 = m1 and |n1 − n2| ≤ n ≤ n1 + n2. Therefore,
An1m1n2m2

nm is calculated by

An1m1n2m2
nm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
(2n + 1) (2n2 + 1)

4π (2n1 + 1)
Cn10

n0n20Cn1m1
nmn2m2, m = m1 − m2 and |n1 − n2|

≤ n ≤ n1 + n2,

0, m �= m1 − m2

or n < |n1 − n2| or n > n1 + n2.
(D20)

Note that An1m1n2m2
nm is real. It also follows from the properties of the Clebsch–Gordan

coefficients that An1m1n2m2
nm = 0 unless |m1| ≤ n1, |m2| ≤ n2 and |m| ≤ n. This fact should

be kept in mind when implementing a numerical code.
The use of (D16) and (D17) gives the expansion

Y m1
n1 (θ, φ) Y m2∗

n2 (θ, φ)

sin2 θ
=

∞∑
n=0

n∑
m=−n

Bn1m1n2m2
nm Y m

n (θ, φ) , n1,2,m1,2 ≥ 1, (D21)
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where

Bn1m1n2m2
nm =

√
(2n1 + 1) (2n2 + 1) (n1 − m1)! (n2 − m2)!

(n1 + m1)! (n2 + m2)! ×
[(n1−m1+2)/2]∑

k1=1

[(n2−m2+2)/2]∑
k2=1

×
√
(2n1 − 4k1 + 3) (2n2 − 4k2 + 3) (n1 + m1 − 2k1)! (n2 + m2 − 2k2)!

(n1 − m1 − 2k1 + 2)! (n2 − m2 − 2k2 + 2)!
× A(n1−2k1+1)(m1−1)(n2−2k2+1)(m2−1)

nm . (D22)

Note that Bn1m1n2m2
nm is real. It should be emphasised that (D21) and (D22) are not valid

if m1 = 0 or m2 = 0. In our derivation, such terms vanish. However, in order to avoid
problems in numerical simulations, one should specify Bn1m1n2m2

nm = 0 if m1 = 0 or m2 =
0. It also follows from (D21) that Bn1m1n2m2

nm = 0 if |m1|> n1 or |m2|> n2 or |m|> n.
In order to transform the angle-dependent functions that appear in (B64), we apply the

following equations.
With the help of (D16) and (D17), we obtain the identity

Y m1
n1 (θ, φ) Y m2∗

n2 (θ, φ)

sin θ
= −

√
(2n1 + 1) (n1 − m1)!

(n1 + m1)!
∞∑

n=0

n∑
m=−n

Y m
n (θ, φ) eiφ

×
[(n1−m1+2)/2]∑

k=1

√
(2n1 − 4k + 3) (n1 + m1 − 2k)!

(n1 − m1 − 2k + 2)!
× A(n1−2k+1)(m1−1)n2m2

nm , n1,m1 ≥ 1. (D23)

The use of (D8) and (D21) gives

1
sin θ

∂Y m1
n1 (θ, φ)

∂θ
Y m2∗

n2
(θ, φ)

=
∞∑

n=0

n∑
m=−n

[
n1C(n1+1)m1 B(n1+1)m1n2m2

nm − (n1 + 1)Cn1m1 B(n1−1)m1n2m2
nm

]
Y m

n (θ, φ) .

(D24)

Let us expand Y m1
n1 (θ, φ)Y

m2
n2 (θ, φ) in spherical harmonics. According to (D12) and

(D13), we obtain

Y m1
n1
(θ, φ) Y m2

n2
(θ, φ)=

∞∑
k=0

k∑
l=−k

Dn1m1n2m2
kl Y l

k (θ, φ) , (D25)

Dn1m1n2m2
kl =

∫ 2π

0
dφ
∫ π

0
dθ sin θ Y l∗

k (θ, φ) Y m1
n1
(θ, φ) Y m2

n2
(θ, φ) . (D26)

Dn1m1n2m2
kl =

√
(2n1 + 1) (2n2 + 1)

4π (2k + 1)
Ck0

n10n20Ckl
n1m1n2m2

. (D27)

The coefficients Dn1m1n2m2
kl are non-zero only if the following conditions are satisfied:

l = m1 + m2, |n1 − n2| ≤ k ≤ n1 + n2, |m1| ≤ n1, |m2| ≤ n2, |l| ≤ k.
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