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Abstract: This paper aims at improving the weighting function based-method (WFB) for modeling the transient behavior of a laminar flow
in cylindrical pipes in a one-dimensional approach. Two improvements for the numerical computation of the unsteady friction term are
presented. First, a rational approximation of the weighting function in the Laplace domain is preferred instead of an exponential series
fit in the time domain. It allows the WFB method to be improved in terms of validity for small time steps, accuracy, and computational
efficiency. Second, the use of auxiliary differential equations to compute convolution makes the high order time-integration of the frequency-
dependent friction term straightforward, without the assumption of a constant acceleration during the time step. The simulation results for a
well-known experimental test case show a good agreement of the derived methods with the experiment. Finally, the time stability of the
discretized problem is fully analyzed, and a stability condition for the WFB method is brought out. DOI: 10.1061/(ASCE)HY.1943-
7900.0001905. © 2021 American Society of Civil Engineers.

Introduction

When the equation of fluid motion is applied in a one-dimensional
(1D) approach, all components of viscous diffusion terms vanish,
and this leads to a lossless model. To overcome this major issue, the
effects of viscosity are classically taken into account as an external
effort derived from the wall shear stress. Viscosity effects are then
embedded in the friction term. In the case of a steady laminar pipe
flow (i.e., with a parabolic velocity profile), the use of the analytical
Hagen-Poiseuille law results in proportionality between the friction
and the mean flow velocity. This law is frequently extended to un-
steady flow by means of a quasi-steady approximation. However,
the rapid evolution of the velocity profile is inconsistent with a par-
abolic one, and the resulting decay of the pressure wave is under-
estimated. Thus, viscosity effects occurring in the radial dimension
have to be represented differently in the 1D friction term.

Holmboe and Rouleau (1967) pioneered the need for a frequency-
dependent friction term to explain the fast decay of the pressure

histories during water hammer phenomena. Since then, the three
approaches listed subsequently have been developed to account
for unsteady friction with efficient numerical computation:
• The weighting function-based (WFB) method, in which the

unsteady contribution of the friction is defined by a convolution
of the past acceleration and the so-called weighting function
(Zielke 1968);

• The quasi-two-dimensional (quasi 2D) method, in which the
transverse component of velocity is modeled by the method
of characteristics applied in concentric cylindrical annuli (Vardy
and Hwang 1991); and

• The instantaneous acceleration-based (IAB) method, in which
the unsteady wall shear stress is in relationship with the local
instantaneous acceleration (Brunone et al. 1995, 2004).
For the laminar pipe flow, the WFBmethod is popular because it

offers the best trade-off between accuracy and computational cost,
provided the weighting function [analytically found by Zielke
(1968)] is written as an exponential series. Indeed, such a formu-
lation allows numerical integration to be implemented in recursive
formulas that are well suited for time-marching methods like meth-
ods of characteristics or Runge-Kutta algorithms (Trikha 1975;
Suzuki et al. 1991).

The problem of the fitting exponential sum is difficult mainly
due to the nonuniqueness of the solution. Consequently, results are
very method-dependent. A series of papers (Trikha 1975; Kagawa
et al. 1983; Schohl 1993; Taylor et al. 1997; Vardy and Brown
2004; Vítkovský et al. 2004; Jiang et al. 2015; Urbanowicz 2018)
present various methods in order to find the coefficients of the ex-
ponential series in the time domain. These can be classified into three
categories: knots-based method, least squared relative error minimi-
zation method, and genetic algorithm-based method. Despite the
great improvements made, there are still some practical cases in
which the required time step is so small that the approximate func-
tion is no longer valid or may cause numerical instabilities.

The main purpose of this paper is to give an alternative method
for the approximation of the Zielke (1968) weighting function into
an exponential series based on a rational approximation in the Lap-
lace domain. The new method aims to a better trade-off between the
validity and the accuracy of the approximated weighting function.
The authors’ motivation is to extend the WFB method to flow

1Doctor, Zone d’Aménagement Concerté du Baconnet, EFS Sa,
192 Allée des Chênes, Montagny F-69700, France (corresponding author).
Email: rjulian@efs.fr

2Assistant Professor, Ecole Centrale de Lyon, Institut National des
Sciences Appliquées Lyon, Université Claude Bernard Lyon I, Centre Na-
tional de Recherche Scientifique, Laboratoire de Mécanique des Fluides et
d’Acoustique Unité Mixte de Recherche 5509, Universite de Lyon, 36 Ave.
Guy de Collongue, Écully F-69134, France. ORCID: https://orcid.org
/0000-0002-7497-9130

3Assistant Professor, Ecole Centrale de Lyon, Institut National des
Sciences Appliquées Lyon, Université Claude Bernard Lyon I, Centre Na-
tional de Recherche Scientifique, Laboratoire de Mécanique des Fluides et
d’Acoustique Unité Mixte de Recherche 5509, Universite de Lyon, 36 Ave.
Guy de Collongue, Écully F-69134, France.

4Senior Researcher, Ecole Centrale de Lyon, Institut National des
Sciences Appliquées Lyon, Université Claude Bernard Lyon I, Centre Na-
tional de Recherche Scientifique, Laboratoire de Mécanique des Fluides et
d’Acoustique Unité Mixte de Recherche 5509, Universite de Lyon, 36 Ave.
Guy de Collongue, Écully F-69134, France.

Note. This manuscript was submitted on July 21, 2020; approved on
March 18, 2021; published online on July 6, 2021. Discussion period
open until December 6, 2021; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Hydraulic En-
gineering, © ASCE, ISSN 0733-9429.

© ASCE 04021031-1 J. Hydraul. Eng.

 J. Hydraul. Eng., 2021, 147(9): 04021031 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

R
ob

in
 J

ul
ia

n 
on

 0
7/

12
/2

1.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)HY.1943-7900.0001905
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001905
mailto:rjulian@efs.fr
https://orcid.org/0000-0002-7497-9130
https://orcid.org/0000-0002-7497-9130
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29HY.1943-7900.0001905&domain=pdf&date_stamp=2021-07-06


simulation cases in which either the required time step is small, the
pipe diameter large, or the fluid viscosity low. Additionally, several
improvements on the numerical computation of viscous friction
terms are detailed. Particularly, the use of the auxiliary differential
equation (ADE) method combined with the finite-difference time-
domain (FDTD) method no longer requires the assumption of a
constant acceleration between two consecutive time steps.

The first part of the present paper brings up the problem of the
water hammer leading to the fast hydraulic transients in pipes. A
1D model consisting of basic equations together with the WFB
method is detailed. The new methods for the weighting function
approximation and the numerical computation are then presented.
The second part gives the results of the approximate weighting
functions and a simulation of a known experimental test case. Lim-
itations of the new methods and further works are finally discussed.

Method

Basic Equations

Slightly compressible unsteady pipe flows are governed by the
mass and momentum linearized equations, respectively given in
a 1D approach by Chaudhry (2014)

∂H
∂t þ a2

g
∂V
∂x ¼ 0 ð1Þ

∂H
∂x þ 1

g
∂V
∂t þ hs þ hu ¼ 0 ð2Þ

where H = piezometric head; V = mean sectional velocity; g =
gravitational acceleration; a = wave speed; t = time; x = distance;
hs = quasi-steady friction term; and hu = unsteady friction term.
The two dimensionless friction terms are derived from the wall
shear stress, τ 0

hs þ hu ¼
2τ0
ρgR

ð3Þ

where ρ = fluid density.
Consider a hydraulic system with a horizontal cylindrical pipe

of length L and radius R. The pipe is equipped with a valve and is
connected to two upstream and downstream tanks, as shown in
Fig. 1.

The two tanks are filled with constant heads H01 > H02, such
that the initial flow velocity, V0, is sufficiently small to keep the
flow laminar. At the initial time, t ¼ t0, the valve is closed instanta-
neously, and this triggers the water hammer phenomenon. Theoreti-
cal head and velocity histories for t > t0 can be obtained on the
fluid domain depicted in Fig. 1 by solving the two hyperbolic non-
linear partial differential equations [Eqs. (1) and (2)] with a numeri-
cal method (see the section “FDTD Method”).

WFB Method

When solving the equation of motion for parallel axisymmetric
flow (i.e., in 2D) of an incompressible fluid in the Laplace domain,
Zielke (1968) found the following equations between the mean sec-
tional velocity V and the unsteady wall shear stress τ0

τ̂0ðsÞ ¼ Φ̂ðsÞ
ˆ∂V
∂t ðsÞ ð4Þ

Φ̂ðsÞ ¼ ρR

J 1ðj
ffiffi
s
ν

p
RÞ − 2

ð5Þ

where τ̂ 0 = Laplace transform of τ0; ν = kinematic viscosity of the
fluid; s = complex frequency; J = complex number; and J iðsÞ ¼
sJi−1ðsÞ=JiðsÞ is the ith modified quotient of Bessel functions of
the first kind and of order (i–1)th and ith, respectively. The inverse
Laplace transformation of Eq. (5) performed by Zielke (1968) leads
to the following result for the steady friction term

hs ¼
8

θg
V ð6Þ

where θ ¼ R2=ν is the characteristic time of viscosity. Eq. (6) is
consistent with the Darcy-Weisbach formula combined with the
Hagen-Poiseuille law. Because the wall shear stress is expressed
as a product of two functions in the Laplace domain, then the un-
steady friction term is a convolution in the time domain

hu ¼
4

θg

Z
t

0

∂V
∂t Wðt − uÞdu ð7Þ

where W = weighting function piecewise defined by Zielke (1968)
as a function of the dimensionless time, τ ¼ t=θ as follows

WðτÞ ¼
(P

6
i¼1 αiτ ði−2Þ=2 for τ < 0.02P
5
i¼1 expð−βiτÞ for τ ≥ 0.02

ð8Þ

where αi and βi are the components of the vectors
½0.282095 − 1.251.0578550.93750.396696 − 0.351563�⊺ and
½26.374470.8493135.0198218.9216322.5544�⊺, respectively.

Direct numerical computation of Eq. (7) is very resource-
demanding in terms of memory because the past acceleration needs
to be stored for each node. This limits most of the current applica-
tions to such an extent that the 1D approach no longer takes benefit
from computational cost advantages compared to a 2D approach.
Fortunately, the recursive methods developed by Trikha (1975) and
Suzuki et al. (1991) decrease the required computer storage to a
lower level. The weighting function in Eq. (8) requires it to be ap-
proximated by an exponential series of N pairs of coefficients
ðmi; niÞ ∈ R2 as follows

WðτÞ ≈ WappðτÞ ¼
XN
i¼1

mi expð−niτÞ ð9Þ

Methods employed to fit Wapp to W can be classified in three
categories: knots-based (Trikha 1975; Kagawa et al. 1983; Vardy
and Brown 2004), least squared relative error minimization
(Schohl 1993; Vítkovský et al. 2004), and genetic algorithm-
based (Taylor et al. 1997; Jiang et al. 2015). The present paper
suggests a new alternative computational method (see the section
“ADE Method”).Fig. 1. Tank-pipe-valve-tank system.
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Rational Approximation of Zielke’s Function in the
Laplace Domain

Reversing Zielke’s procedure, one can find the following definition
of W in the Laplace domain from Eqs. (5) and (7)

ŴðsÞ ¼ R
2ρν

Φ̂ðsÞ − 2

s
ð10Þ

The second term on the right-hand side in Eq. (10) is subtracted
in order to focus only on the unsteady component of the friction.
Let s 0 ¼ θs, so Eq. (10) becomes

Ŵðs 0Þ ¼ θ

�
1

2J 1ð
ffiffiffiffiffiffi
js 0

p
Þ − 4

− 2

s 0

�
ð11Þ

where Φ̂ has been substituted by its definition given in Eq. (5). On
the other hand, the Laplace transform ofWapp is given as a function
of s 0 by the following equation

Ŵappðs 0Þ ¼ θ
XN
i¼1

mi

ni − s 0
ð12Þ

Finally, the problem of finding an approximate exponential
series in the time domain is equivalent to a system identification
in the Laplace domain whose frequency response is Ŵðs 0Þ=θ. This
can be performed by using the method developed by Gustavsen and
Semylen (1999, 2006), and Deschrijver et al. (2008) for electro-
magnetic system identification purposes. The resulting numerical
values found for mi and ni are given in Tables 1 and 2.

Numerical Computation

ADE Method
The problem associated with the numerical computation of a con-
volution is current in aeroacoustics when a frequency-dependent

boundary condition is to be solved in the time domain. The method
presented in this section is inspired by this background and takes
benefit from a method suitable for high order integration of
frequency-dependent terms in the time domain given by Troian
et al. (2017). Gathering Eqs. (12) and (7), the approximate unsteady
friction model can be written

hu ¼
4

θg

XN
i¼1

miIi ð13Þ

where the auxiliary variables Ii are given

Ii ¼
Z

t

0

∂V
∂t exp

�
− ni

θ
ðt − uÞ

�
du ð14Þ

The differentiation of Ii with respect to time is

∂Ii
∂t ¼ − ni

θ
exp

�
− ni

θ
t

�Z
t

0

∂V
∂t exp

�
ni
θ
u

�
duþ ∂V

∂t ð15Þ

which leads to the N auxiliary partial differential equations (ADE)
given subsequently

∂Ii
∂t ¼ − ni

θ
Ii þ

∂V
∂t ð16Þ

Gathering basic equations and the developed model for the un-
steady friction term, the system in Fig. 1 is fully modeled by the
system of N þ 2 equations with unknowns H, V, and Ii

∂H
∂t ¼ − a2

g
∂V
∂x

∂V
∂t ¼ −g ∂H∂x − 4

θ

�
2 V þ

XN
i¼1

miIi

�

∂Ii
∂t ¼ − ni

θ
Ii þ

∂V
∂t ð17Þ

Table 1. Coefficients mi of the new approximation Wapp

N 3 4 5 6 7 8 9 10

m1 1.8056 1.4576 1.2800 1.1786 1.1168 1.0778 1.0526 1.0360
m2 8.0225 4.6663 3.3301 2.6247 2.1933 1.9051 1.7013 1.5516
m3 7.2419 · 101 1.9403 · 101 1.0325 · 101 6.9132 5.1888 4.1674 3.4994 3.0320
m4 — 1.7153 · 102 4.1958 · 101 2.0888 · 101 1.3290 · 101 9.5820 7.4507 6.0929
m5 — — 3.6741 · 102 8.4122 · 101 3.9789 · 101 2.4305 · 101 1.6952 · 101 1.2826 · 101

m6 — — — 7.3256 · 102 1.5946 · 102 7.2434 · 101 4.2816 · 101 2.9063 · 101

m7 — — — — 1.3839 · 103 2.8947 · 102 1.2729 · 102 7.3253 · 101

m8 — — — — — 2.5070 · 103 5.0791 · 102 2.1755 · 102

m9 — — — — — — 4.3940 · 103 8.6768 · 102

m10 — — — — — — — 7.5039 · 103

Table 2. Coefficients ni of the new approximation Wapp

N 3 4 5 6 7 8 9 10

n1 3.4107 · 101 3.0516 · 101 2.8771 · 101 2.7826 · 101 2.7280 · 101 2.6953 · 101 2.6751 · 101 2.6624 · 101

n2 3.5159 · 102 2.0157 · 102 1.4677 · 102 1.1988 · 102 1.0448 · 102 9.4817 · 101 8.8387 · 101 8.3934 · 101

n3 9.8148 · 103 2.0897 · 103 9.8343 · 102 6.1791 · 102 4.4947 · 102 3.5657 · 102 2.9930 · 102 2.6127 · 102

n4 — 5.6086 · 104 9.9645 · 103 4.0905 · 103 2.3090 · 103 1.5399 · 103 1.1366 · 103 8.9759 · 102

n5 — — 2.6023 · 105 4.0632 · 104 1.5056 · 104 7.8230 · 103 4.8719 · 103 3.3949 · 103

n6 — — — 1.0420 · 106 1.4745 · 105 5.0422 · 104 2.4520 · 104 1.4446 · 104

n7 — — — — 3.7358 · 106 4.8906 · 105 1.5679 · 105 7.2242 · 104

n8 — — — — — 1.2295 · 107 1.5116 · 106 4.5973 · 105

n9 — — — — — — 3.7831 · 107 4.4191 · 106

n10 — — — — — — — 1.1040 · 108

© ASCE 04021031-3 J. Hydraul. Eng.
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where the last term ∂V=∂t on the right-hand side can be substi-
tuted by the right-hand side of the second equation in order to
recast the system of equations in the form ∂y=∂t ¼ FðyÞ, with
the unknown vector y ¼ ½HVIi�⊺. With this form, the time integra-
tion and the spatial differentiation can be performed separately
with any appropriate numerical schemes of the desired order.
Although the addition of auxiliary variables to the governing
equations has no physical meaning, it allows the unsteady friction
term to be computed with the same order as the velocity and the
pressure head. Contrarily to the recursive methods given by
Trikha (1975) or Urbanowicz (2018), it does not require the ac-
celeration to be assumed constant between two consecutive time
steps, which leads to a first-order approximation of the unsteady
friction term.

FDTD Method
Among the previously cited papers, most of the authors make use
of the method of characteristics in order to solve Eqs. (1) and (2).
This section details another method based on the finite-difference
approximation of the partial derivatives with respect to x. With
this aim, the fluid domain requires it to be regularly discretized
in a mesh with Nx elements of dimension Δx. The numerical
schemes used subsequently are optimized for the minimization
of dispersion and dissipation numerical errors. It is worth noting
that the numerical schemes have been designed in order to prop-
erly simulate the propagation of acoustic waves whose wave-
length, λ, respects the condition λ > 4.6Δx, given by Bogey and
Bailly (2004).

The partial derivative of Vwith respect to x at the node located at
xi ¼ iΔx can be approximated by the following 4th order centered
scheme of the 2nþ 1 ¼ 11 point stencil

∀i ∈ ½n;Nx − n�; ∂u∂x
����
i
≈ 1

Δx

Xn
k¼−n

ckuiþk ð18Þ

where the coefficients ck ¼ −c−k (c0 ¼ 0) match the FDo11p
scheme given by Bogey and Bailly (2004). Analogous uncentered
schemes for nodes close to the boundaries (i.e., ∀i ∈ ½0; n� ∪
½Nx − n;Nx�) are used according to Berland et al. (2007). One
drawback of the finite-difference approximation is the possible
presence of numerical instabilities due to grid-to-grid oscillations.
The adaptive spatial filtering procedure described by Bogey et al.
(2009) is then employed in order to remove it.

Once the right-hand side terms of Eq. (17) are approximated by
finite differences, time integration is performed by the RK46-L
numerical scheme given by Berland et al. (2006). This particular
Runge-Kutta algorithm is also optimized in terms of the dispersion
error, dissipation error, and storage requirement (Berland et al.
2006). The time-marching procedure described previously will give
approximate solutions for H and V for each t ¼ jΔt and j ∈
½0;Nt�, where Δt is the time step, and Nt is the number of steps.
The time step has to respect the following Courant-Friedrichs-
Lewy condition for stability purposes

CFL ¼ a
Δt
Δx

≤ CFLmax ð19Þ

where CFL, set to 0.9, is the Courant-Friedrichs-Lewy number; and
CFLmax is a threshold that depends on both the finite-difference
schemes and the time-integration scheme and is usually of the order
of unity. Fig. 2 summarizes the numerical procedure for the appli-
cation of the ADE/FDTD method.

Results

Approximate Weighting Functions

Let us compareW,Wapp, and its N ¼ 10 components with the Bode
plot shown in Fig. 3. The magnitude (20log10jWðs 0Þj) and phase
are respectively given in decibels and radians, both as a function
of the dimensionless frequency s 0=ð2jπÞ.

The exact weighting function exhibits a constant value of
−21.6 dB from low frequencies to the cutoff frequency near
25 (dimensionless) and drops subsequently with a slope of

Fig. 2. Flowchart of the numerical algorithm.

n = 1

n = 10

n = 1

n = 10

(a)

(b)

Fig. 3. Bode plot of the exact and the approximative weighting func-
tions of N ¼ 10 terms, with the term’s contribution: (a) magnitude; and
(b) phase.

© ASCE 04021031-4 J. Hydraul. Eng.

 J. Hydraul. Eng., 2021, 147(9): 04021031 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

R
ob

in
 J

ul
ia

n 
on

 0
7/

12
/2

1.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



−10 dB/decade. The approximative weighting function is made
from a sum of first-order systems whose cutoff frequencies equal
the ni coefficients. Because the frequency response of first-order
systems decreases with a slope of −20 dB/decade starting from
the cutoff frequency, Wapp cannot fit W properly for frequencies
exceeding nN . The same observation can be made by looking at
the phase mismatch at high frequencies between the components
of Wapp, whose phases tend to −π=2, and W, whose phase turns
down to −π=4. These phase and magnitude behaviors allow one
to find the following equivalence of Wapp for high s 0

Wapp ∼
s 0→∞

mN

nN − s 0
ð20Þ

Graphically speaking, the −10 dB/decade slope of W is built
from the successive corners of each first-order system frequency re-
sponse. Consequently, for a given number of terms, there is a trade-
off between the accuracy and the validity of the approximation.

Fig. 4 shows a comparison between the weighting function
given by Zielke (1968) and the existing approximate 10-term ex-
ponential series as a function of the dimensionless time. The func-
tion given by Kagawa et al. (1983) has been removed for clarity
purposes because its curve is very similar to the one given by Vít-
kovský et al. (2004).

In the time domain, the weighting function decreases monoton-
ically, with a particularly steep slope for high τ (typically τ >
0.04). Bearing in mind the analytical formulation of the unsteady
friction term in Eq. (7), it means the more the past acceleration is
recent, the stronger it contributes to the viscous dissipation. Starting
from a minimum value of dimensionless time τmin, the three
approximate functions agree well the Zielke’s function. For physical
consistency of the model, the choice ofNmust be in accordance with
τmin ≤ Δt=θ and can be augmented for further accuracy. Consider-
ing only this criterion, the function given by Jiang et al. (2015) is the
best fit, followed by the new approximate, the function given by Vít-
kovský et al. (2004) and the one given by Urbanowicz (2018).

In order to find the best trade-off between the accuracy and the
validity of the approximation, the validity is assessed with τmin,
defined as the shortest time when the differenceW −Wapp changes
sign. Alternatively, Vítkovský et al. (2004) and Vardy and Brown
(2004) indicate the validity of their own approximations, so the
value of τmin is taken according to them. The accuracy is assessed
using the weighting function approximation error, EW , which is nu-
merically computed as in Vítkovský et al. (2006)

EW ¼
XP
j¼M

�
Wðτ jÞ −Wappðτ jÞ

Wðτ jÞ
�
2

ð21Þ

where the integersM and P are such as P −M þ 1 ¼ 1,000. Addi-
tionally, the τ j are distributed between τM ¼ τmin and τP ¼ 1 with
a logarithmic scale. Fig. 5 emphasizes the antagonism between the
accuracy and the validity of the approximation methods.

In fact, the method employed by Jiang et al. (2015) achieves a
great extend of validity but poor accuracy and conversely for the
method of Urbanowicz (2018). Finally, the new method suggested
in the present paper gives the best trade-off for N ∈ ½5; 9�. Outside
this interval, the authors recommend the use of the approximation
of Vardy and Brown (2004). If very small τmin is required, only the
approximation of Jiang et al. (2015) can fit because their ðmi; niÞ
coefficients are defined by a geometric series with an unlimited
number of terms N.

Simulation Test Case

Let us apply the FDTD with the ADE methods to the problem of
the water hammer occurring in the tank-pipe-valve-tank hydraulic
system presented in Fig. 1. The initial state is a laminar steady-state
flow with Vðt ¼ 0Þ ¼ V0 and Hðt ¼ 0Þ ¼ H01 − 8V0=ðgθÞx. All
auxiliary variables are initially null because ∂V=∂t ¼ 0 [Eq. (14)].
The boundary conditions are constant-level [i.e., Hðx ¼ 0Þ ¼ H01]
and dead end [i.e., Vðx ¼ LÞ ¼ 0] (Chaudhry 2014). The simula-
tion parameters gathered in Table 3 are taken from the experimental
study presented by Holmboe and Rouleau (1967).

Additionally, the duration of the simulation is chosen to allow
the wavefront to travel back and forth in the pipe seven times, thus
for a rigid pipe 14 L=a ¼ 0.38 s. In accordance with Holmboe and
Rouleau (1967), the head and the velocity of the flow are recorded

Fig. 4. Comparison between the new Wapp, the existing Wapp of N ¼
10 terms, and the exact W in the time domain.

(b)

(a)

Fig. 5. Comparison of the weighting function approximation results de-
pending on the number of terms N: (a) validity domain; and (b) accuracy.
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with two pressure sensors, one located at x1 ¼ 17.8 m and the other
at the valve location (x2 ¼ L). The dimensionless head histories at
these two locations are shown in Fig. 6.

Simulation results are very close to the experimental results of
Holmboe and Rouleau (1967). It is also consistent with the Allievi
and Joukovsky equations that predict the wave speed a and the
maximum pressure surge of aV0=g, respectively. Nevertheless,
one can notice the slight augmentation (approximately 5%) of the
maximum pressure surge in the unsteady model and the measure-
ments that are not predicted by the Joukovsky equation. The contri-
bution of the unsteady friction is clearly visible with the filtering of
the high-frequency content in the quasi-steady friction model, which
produces unlikely steep rising and falling edges in the head histories.
As shown in Table 4, the root mean squared deviations (RMSD) be-
tween the simulation and the experiment (i.e., including the meas-
urement uncertainties) is near 0.008 for large N. From a more
practical point of view, Fig. 7 allows one to appreciate the benefit
of the proposed method in terms of computational efficiency.

Discussion

The ADE method, as well as the recursive methods presented by
Trikha (1975) and Suzuki et al. (1991), allow the numerical com-
putation of the unsteady friction term with only ðN þ 2Þ variables
to be stored at each step. Given the nowadays computational
means, one approach could be to adopt a very accurate weighting
function with N > 10 systematically. This would imply the ni co-
efficients to be larger than n10. Unfortunately, this approach is lim-
ited by the stability of the numerical schemes, as presented in
Table 4 for N > 6. A stability condition comparable to the CFL
condition [Eq. (19)] is associated with the parameters ni. As a rule
of thumb, the parameters niΔt=θ must not be too large. More
specifically, the time step must satisfy the stability condition
niΔt=θ ≤ ϵ, in particular nNΔt=θ ≤ ϵ, where ϵ is a threshold that
depends on the time-integration scheme. For instance, this thresh-
old is equal to 2.78 for the standard fourth-order Runge-Kutta al-
gorithm and to 4.07 for RK46-L. This condition originates from
the ADE formulation. Thus, ignoring the coupling term ∂V=∂t
for simplification, the ADE equations in Eq. (16) have the form
dy=dt ¼ λy, with λ ¼ −ni=θ. For the numerical solution to be
bounded, λΔt has to be located in the stability region of the

Table 3. Simulation parameters

Parameters Value

Kinematic viscosity: ν 39.67 · 10−6 m2=s
Density: ρ 998.2 kg=m3

Initial velocity: V0 0.12 m=s
Pipe length: L 36.088 m
Pipe radius: R 1.27 cm
Wave speed: a 1,324.36 m=s
Time step: Δt 5.84 μs

(a)

(b)

Fig. 6. FDTD/ADE simulation results of the water hammer with quasi-
steady and WFB approaches. Head histories at (a) x ¼ x1; and
(b) x ¼ L.

Table 4. Root mean squared deviation between the simulated and the
measured head histories at x ¼ x1 with an indication of the simulation
time for the different models

N

RMSD

Simulation
time (s)

Jiang
et al. (2015)

Vardy and
Brown (2004)

Present
paper Quasi-steady

0 — — — 0.0197 300
2 0.0112 — 0.0111 — 310
3 0.0088 0.0133 0.0097 — 345
4 0.0083 0.0116 0.0088 — 372
5 0.0082 0.0091 0.0089 — 392
6 ∞ 0.0088 0.0086 — 411
7 ∞ 0.0088 ∞ — 435
8 ∞ ∞ ∞ — —

Note: ∞ means the simulation is unstable.

Fig. 7. Indicative computation times of the original (MOC + Zielke),
the optimized (MOC + Trikha), and the new (FDTD + ADE) numerical
methods as a function of the observation time for the Holmboe and
Rouleau (1967) test case. These are the same parameters as in Table 3,
except Δt ¼ 61.5 μs.
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time-integration scheme (e.g., LeVeque 2007). Consequently, if
niΔt=θ is too large, the simulations are expected to be unstable.
A detailed stability analysis of the whole system of partial differ-
ential equations in Eq. (17) is performed in the Appendix. As nN
increases approximately exponentially with N, this stability condi-
tion restricts the possible values of N. Thus, with the simulation
parameters indicated in Table 3, the simulation becomes unstable
for N > 6. The use of higher values of N is possible but at a price of
a very small time step and, therefore, of an increased computa-
tional cost.

Further Works

When presenting the Bode plot of Wapp (Fig. 3), the reader may
have noticed that the exact weighting function is very similar to
the frequency response function of a fractional system of order
1=2. Thus, searching for a very accurate approximation into an
exponential sum with only a few terms is vain—precisely because
it attempts to fit with first-order systems. One alternative to the
numerical methods presented previously could be the use of
numerical schemes adapted to fractional systems, such as the dif-
fusive representation method (Monteghetti et al. 2016) or finite-
difference method based on the Grünwald-Letnikov approximation
of fractional derivatives (Scherer et al. 2011). Another alternative
could be the convolution quadrature method (Lubich 1988). It is
based on the insertion of the Laplace transform of the weighting
function in the convolution and would therefore prevent the
approximation of the weighting function by an exponential sum.

Conclusions

Two improvements to the WFB method have been presented. First,
a new method for the approximation of the unsteady friction
weighting function into an exponential series has been derived.
It is based on a rational approximation similar to a system identi-
fication procedure in the Laplace domain. Among the existing
approximate functions, the resulting exponential series offers the
best trade-off between validity and accuracy for a number of terms
N ∈ ½5; 9�. Accordingly, the new approximate functions in this
range extend the validity, accuracy, and efficiency of the WFB
method. Second, the ADE method has been introduced to compute
the unsteady friction term. It consists of replacing the evaluation of
the convolution with the time integration of a set of additional dif-
ferential equations. Therefore, the ADE method no longer requires
the assumption of a constant acceleration between two consecutive
time steps. It is therefore appropriate for high-order numerical
schemes. An experimental test case has been simulated thanks
to the derived numerical methods. Simulation results were found
to be very similar to the measurements. Finally, the numerical sta-
bility has been studied in detail for a Runge-Kutta time-integration
scheme. A condition that restricts the maximum value of the ex-
ponential series coefficients has been derived from this analysis.
Given a reasonably small time step, a limit on the number of terms
arises for the simulation to be stable. Because the new approxima-
tion method of the weighting function can be very accurate if a high
number of terms is set, the numerical stability can then be consid-
ered as a new limit on the application of the WFB method.

Appendix. Stability Analysis

The rule of thumb that niΔt=θ should be smaller than a given
threshold is described by performing a stability analysis of Eq. (17).

With this aim, a pipe of infinite length is considered, and a spatial
Fourier transform, using the convention ejkx, is applied to Eq. (17)

d ~H
dt

¼ − a2

g
jk� ~V

d ~V
dt

¼ −gjk� ~H − 4

θ

�
2 ~V þ

XN
i¼1

mi
~Ii

�

d~Ii
dt

¼ − ni
θ
~Ii − d ~V

dt
ð22Þ

where ~y = spatial Fourier transform of y; and the parameter k�,
called the effective wavenumber, is obtained from the Fourier trans-
form of Eq. (18) as follows

k� ¼ 2

Δx

Xn
i¼1

ci sinðikΔxÞ ð23Þ

Its deviation from the exact wavenumber k represents the
numerical error introduced by discretizing the first derivative
∂=∂x by a finite-difference scheme. Eq. (22) can then be recast in
the form d ~y=dt ¼ A ~y, with the unknown vector ~y ¼ ½ ~H ~V ~Ii�⊺, and
the matrix A is given as follows

A ¼

0
BBBBBBBBBBBBB@

0 − a2

g
jk� 0 · · · 0

−jgk� − 8

θ
− 4m1

θ
· · · − 4mN

θ

jgk�
8

θ
4m1 − n1

θ
· · ·

4mN

θ

..

. ..
. ..

. . .
. ..

.

jgk�
8

θ
4m1

θ
· · ·

4mN − nN
θ

1
CCCCCCCCCCCCCA

ð24Þ

The stability region of a time-integration scheme is defined as
the set of points in the complex λΔt−plane in which the numerical
solution of the ordinary differential equation d ~y=dt ¼ λ ~y is
bounded. For a system of equations such as the discrete system
given by Eq. (17), a necessary condition for the numerical solution
to be stable is that all the eigenvalues λ of the matrix A are located
in the stability region (LeVeque 2007).

These eigenvalues can be determined analytically for N ¼ 1 and
k ¼ 0, for which the matrix A simplifies to

A ¼

0
BBB@

0 0 0

0 − 8

θ
− 4 m

θ

0
8

θ
4 m − n

θ

1
CCCA ð25Þ

where the first eigenvalue is λ ¼ 0. The two other ones, obtained
from the characteristic polynomial of A, are given

λ� ¼ 4 m − n − 8� ffiffiffiffi
Δ

p

2θ
ð26Þ

with the following discriminant

Δ ¼ n2
�
1 − 16þ 8 m

n
þ 16 m2 − 64 mþ 64

n2

�
ð27Þ

From Tables 1 and 2, it is seen that the coefficients ni are large
and also larger than the corresponding mi. Thus, simplifying
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Eq. (26) for n ≫ m and n ≫ 1, it can be shown that λþ ≈−8=θ,
while λ− ≈ −n=θ. Therefore, for the simulation to be stable,
−n=θ should be in the stability region of the time-integration
scheme.

For the case considered previously in the section “Simulation
Test Case,” the eigenvalues λ ofA are determined numerically with
the MATLAB version 2020a function eig.m version R2006a. Using
the parameters indicated in Table 3, the eigenvalues scaled by Δt
and computed for 0 ≤ kΔx ≤ π and for N ¼ 6 and 7 are plotted in
the λΔt- plane in Fig. 8.

The stability region of the Runge-Kutta scheme RK46-L is also
indicated and corresponds to the unshaded region. Thus, if an eigen-
value is located outside this region, the discrete system of equations
is expected to be unstable. For N ¼ 6, all the eigenvalues are en-
closed within the stability region. Eigenvalues are mostly located
along the imaginary axis, which corresponds to wave solutions.
However, some eigenvalues are located along the real axis close
to λΔt ¼ −1.5, which is approximately equal to −n6Δt=θ. For
N ¼ 7, the locations of the eigenvalues can be identified in the same
manner. In particular, some eigenvalues are located close to λΔt ¼
−n7Δt=θ and −n6Δt=θ. In this case, as n7Δt=θ ¼ 5.39 is larger
than the maximal admissible value for this Runge-Kutta algorithm
equal to 4.07, a group of eigenvalues is located outside the stability
region. It is therefore expected that the simulation for N ¼ 6 is sta-
ble, while it is unstable for N ¼ 7, which is actually observed.

To sum up, it has been shown that some eigenvalues of the ma-
trixA are close to−ni=θ. For these eigenvalues to be in the stability
region, and, hence, for the solution to be stable, the condition
niΔt=θ ≤ ϵ, introduced previously in the “Discussion,” must be
satisfied.
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Notation

The following symbols are used in this paper:
a = wave speed (m=s);

CFL = Courant-Freidrichs-Lewis number;
ck = coefficients of finite-difference scheme;
EW = approximation error;
g = gravitational acceleration (m=s2);
H = piezometric head (m);
h = friction term;
Ii = additional variables for ADE method;

i, j, n = integers;
Ji = Bessel function of first kind and order i;
J i = ith modified quotient of Bessel functions;
j = complex number;
k = integer or wavenumber (m−1);
k� = effective wavenumber (m−1);

mi;ni = coefficients of Wapp;
N = number of terms of Wapp;
Nt = number of time steps;
Nx = number of cells;
R = pipe inner radius (m);
s = complex angular frequency (s−1);
s0 = dimensionless complex angular frequency;
t = time (s);
V = flow velocity (m=s);
W = weighting function;

Wapp = approximative weighting function;
x = distance (m);

αi;βi = coefficients of Zielke’s weighting function;
ϵ = numerical stability threshold;

Δt = time step (s);
Δx = mesh size (m);
θ = characteristic time of viscosity (s);
λ = wavelength (m) or eigenvalue (s−1);
ν = kinematic viscosity (m2=s);
ρ = density (kg=m3);
τ = dimensionless time; and
τ0 = wall shear stress (Pa).
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