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Abstract 
Ray tracing and parabolic equation methods have been used to study 

the properties of acoustic waves transmitted through turbulent veloc­
ity fields. A numerical simulation permits individual realizations of the 
turbulent field, which then allow, if desired, an ensemble averaging of 
the fields. Two flows have been considered, 20 isotropic turbulence, 
and a 20 mixing layer . The following complementary aspects are devel­
oped: the occurrence of caustics, the reinforced or weakened zones of 
the acoustic field, the eigenrays between a source and a receiver, and the 
associated travel times, variances, and scintillation index. 

1. Introduction 
The propagation of acoustic waves through inhomogeneous and/or ran­
dom media has attracted a great deal of interest and its applications are 
numerous. Noise annoyance contours in the vicinity of industrial plants 
or airports have to include the pressure level changes due to the turbu­
lence (wind or temperature) existing in the real atmospheric surround­
ings. In underwater acoustics, wave front distortions or phase changes 
have a direct effect on the detection ability of fixed or towed arrays used 
to locate noise sources. Remote sensing devices, such as sodars, used to 
detect high altitude turbulence as a complement to optical techniques, 
are based on the efficiency of the interaction between the acoustic waves 
and the flow. In all these cases there is a need for numerical models in 
order to estimate all the details of the interaction. 

The classical method of handling the propagation of waves in random 
media relies on a statistical approach. As a first step, making use of 
several assumptions, one obtains an equation with random coefficients 
(Helmholtz or parabolic equation). Then other equations are deduced 
for second and higher moments (intensity, correlations ... ). The latter can 
only be closed using a hypothesis which implies, in essence, a very short 
correlation along the mean direction of the wave propagation (delta­
correlated hypothesis). Initially this theory was developed for optical 
applications and the turbulent medium was characterized by a random 
refraction index. However, in acoustics, the presence of a flow introduces 
an additional effect of wave convection ( ovalization of wave fronts) which 
is neglected in the classical approach. 

We have developed a different approach in order to avoid purely sta­
tistical theory, not well-founded hypothesis, and inadaptation to fluctu­
ating velocity fields. We use a deterministic propagation of an acoustic 
wave through numerically simulated turbulent fields. In this way not 
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only one realization of the turbulent field can be created, but many and 
this allows for the obtaining of ensemble averages. Similar approaches 
were introduced very recently in optics (Martin and Flatte, 1988; Hes­
selink and Sturtevant, 1988). Our work presents several noteworthy 
differences : i) a consideration of velocity fluctuations instead of a re­
fraction index such as in temperature changes (at least for part of the 
study) ; ii) a specifically tailored random field ; iii) simultaneous use of 
two complementary methods for describing acoustic waves (geometrical 
theory and the parabolic equation method). 

In this article we will explain the non-averaged approach that we have 
developed and indicate its potentialities. We emphasize, in particular, 
the visualization of the acoustic field in order to illustrate the consid­
erable deformation that it undergoes due to the cumulative effect of 
very weak turbulent fluctuations along the propagation path. These vi­
sualizations are presented, on the one hand for isotropic homogeneous 
turbulence and, on the other hand, for two steps of the downstream de­
velopment of a 2 D mixing layer (Comte, Lesieur, Laroche and Normand, 
1989). We also provide some quantitative statistical data in the case of 
isotropic homogeneous turbulence, not only in order to offer a compari­
son with existing theories, but also to demonstrate that new results can 
be generated. 

Although the present work deals with two dimensional fields, its ex­
tension to three dimensional fields presents no essential difficulty if not 
a marked increase in calculating time. In fact 2 D and 3 D behaviors do 
not seem to be very different qualitatively (Blanc-Benon, Juve, Karweit 
and Comte-Bellot, 1990) and this justifies our approach. 

2. Modelling of acoustic wave propagation 
The following two complementary descriptions are used: i) the geomet­
rical acoustics approach which gives simple and clear visualizations of 
the focusing properties of a medium in random motion ; it is well suited 
to the computation of quantities linked to the transit time along the rays 
(wavefront distortion, phase fluctuations ... ) ; ii) The parabolic equation 
method which is well adapted to the determination of the energetics of 
the acoustic field (mean intensity, fluctuations, correlations ... ) 

2.1. Geometrical acoustics 
In this high frequency approximation, the acoustic variables, such as 

pressure p(x, t), are written in the form 

p(x,t) = A(x).eiS(x).e-iwt 

where w is the angular frequency. The amplitude A and the local wave 
vector K(x) = V(S) are assumed to vary slowly on the scale of a wave­
length A = 27rco/w (co being the speed of sound ). An asymptotic 
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expansion for w -+ oo of the exact linearized fluid mechanics equations 
gives the dispersion relation of acoustic waves propagating in an arbi­
trary velocity field V(x)(Candel, 1977): 

w=Kco+K.V K=IIKII 

This non linear first order equation (for S ) can be solved by the method 
of characteristics. The rays which are the lines tangent to the group 
velocity can be determined through the following Hamiltonian system : 

dx; cop; -=--+v· dt P I 

dp; OVj 

dt = -pj OX; 

2 - (1 v.p)2 p- --
Co 

where p = K I k0 ( k0 = w I c0 ) is a non dimensional wave vector. The 
rays have been parametrized by the transit time from the source to a 
given point. 

Plotting the rays permits a clear visualization of the trajectories fol­
lowed by the acoustic energy radiating from an initially isotropic source. 
The spatial distribution of rays is a qualitative indicator of the local 
intensity of the field, since the square of the amplitude is inversely pro­
portional to the cross-section of a ray tube. Quantitative information 
can be obtained by solving two additional differential equations (in 2 D) 
which govern the evolution along each ray of infinitesimal cross-section 
elements (Candel, 1977). It should be emphasized that the computation 
of acoustic intensity is, however, a difficult task at the crossing points of 
several rays. The amplitudes and travel times along each of these eigen­
rays have to be carefully determined in order to consider the multiple 
interferences existing at a given frequency. It is in fact more convenient 
to use a wave formulation such as the parabolic equation method which 
is described below. An important piece of information can be obtained 
from the evolution in space of an infinitesimal ray tube and that is the 
location of caustics (envelope of a family of rays) where the ray tube 
section vanishes. The geometrical approximation predicts infinite levels 
at the caustics (since diffraction is neglected) and, in practice, for high 
frequency waves this corresponds to a considerable reinforcement of the 
field. Prediction of the occurrence of caustics in random media is there­
fore an important research topic which has attracted a lot of theoretical 
work in recent years (White, 1984; Kulkarny and White, 1982). 
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2.2. The parabolic equation method 
Unlike the geometrical approach, the parabolic equation method can­

not be directly derived from the fluid mechanics equations in a linearized 
form. An "equivalent" inhomogeneous quiescent medium has to be de­
fined and characterized by an index of refraction n( x) ~ 1 - V! ( x) I Co 
where v1 is the component of the velocity field along the initial (un­
perturbed) propagation direction of the acoustic wave (Tatarski, 1971 ; 
Candel, 1979). This implicitly takes for granted that a "preferred " di­
rection exists and that energy is scattered for the most part in a narrow 
conical region around this direction. Indeed this is the case when the 
ratio of the acoustic wavelength to the characteristic scale of the veloc­
ity field L is much smaller than one (>.I L «: 1 ). When this condition is 
met, it is also possible to reduce the Helmholtz equation (which describes 
the propagation of waves in an inhomogeneous medium) to a parabolic 
form suitable for numerical treatment as well as for theoretical analysis 
( Tatarski,1971 ). Use of the envelope transformation p( x) = «P( x)eikox, 
and suppression of the small term 8 2 «P 1 ax2 gives : 

. a«P 82 «P 2 2 
2zko-8 + - 2 + (n -1)ko «P = 0 

X 8y 

This equation can be solved in an efficient way by using a spatial Fourier 
transform in the transverse direction. The field at abscissa x+h is related 
to its value at x by the following algorithm (introduced in underwater 
acoustics by Tappert, 1977) : 

Here, :F denotes the direct Fourier Transform and s is the conjugate 
variable of y. The choice of the step h depends both on the wavelength 
and on the inhomogeneities of the medium (scales, fluctuation levels). 
In practice h can often be made to be much greater than >.. rendering 
the algorithm very efficient (a detailed analysis of the errors inherent in 
this method can be found in DiNapoli and Deavenport,1979). 

Two more questions remain to be solved: how do we choose the initial 
distribution of the pressure in the plane x = 0 ? and how do we suppress 
the artificial reflexions at the limits of the computation domain in the y 
direction ? 

Our goal in the initialization of the field is to model a point source 
emitting in a limited angular sector ,typically ±20° around the x-axis. 
This choice corresponds to our intention to compare the parabolic equa­
tion results with those of ray tracing. This spherical type of source is 
also closer to the ones used in experimental work than the plane wave 
frequently encountered in other numerical simulations. As shown by 
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Tappert (1977) a good initial field consists of a Gaussian distribution 
centered on the position of the source, its width being determined by 
the acoustic wavelength and the desired aperture angle. 

The second question is solved by using a complex refraction index ; the 
small imaginary part induces a progressive artificial attenuation of the 
wave in the last 10% of the sampling points in the positive and negative 
y directions, so that the field is virtually reduced to zero at the two 
boundaries. 

3. Propagation through 2D homogeneous isotropic 
turbulence 

Most of the theoretical studies on wave propagation through random 
media have been developed for statistically isotropic and homogeneous 
fields. For these fields many results are available using various theoretical 
approaches such as geometrical acoustics, method of smooth perturba­
tions, strong fluctuations theory, .... This offers opportunities to test our 
numerical scheme as well as some of the hypotheses used in theoretical 
studies. 

3.1. Modell_ing of the random field 
During the transit time of the acoustic wave the velocity field is, as 

usual, considered to be frozen. The medium can then be modelled by a 
sequence of independent realizations of a random field. Following Kraich­
nan (1970), the velocity at a given point xis simulated by the sum of a 
limited number N of random incompressible Fourier modes : 

N 

V(x) = L ucib) cos (K'.x + w') 
1=1 

uci').K' = o 
The direction of the wave vector K' and the phase W1 are independant 
random variables with uniform distributions. In our simulations, we have 
considered the amplitude II U(K1) II to be a deterministic variable whose 
value is set according to the energy spectrum E( K) under consideration. 
In this paper we have used a field with a Gaussian correlation function 
f(r) = e-r2 /L2

, where L is related to the integral scale Lt by Lt = 
L.Ji /2 . This form is often encountered in theoretical investigations due 
to its analytical simplicity. It is also convenient for numerical simulations 
because it covers a limited range of energetic wave numbers. In 2D the 
energy spectrum is related to f( r) by the general formula : 

12 00 f) 
E(K) = '!!__ K f -0 (r2 f(r)) J0(Kr)dr 

2 Jo r 
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] 0 is the Bessel function of the first kind of zero order and v'2 is the mean 
square value of the velocity fluctuations. With the Gaussian correlation 
function f(r) indicated above one obtains : 

In our simulations this spectrum has been sampled with N = 50 modes 
linearly distributed between Kmin = 0,1/ L and Kmaz = 10/ L . In 
order that the mean properties of the simulated field be close to the 
desired ones (homogeneity, isotropy, correlation length), the minimum 
number of realizations of the field has to be around 500 (Blanc-Benon 
et al., 1990). For acoustic quantities, however, the global trends are 
obtained with only 100 realizations, because of a further mean along the 
propagation path. 

It is important to note that the description in terms of Fourier modes 
presents a definite advantage for ray tracing : the differential equations 
to be solved contain first order (geometry of rays) and second order 
(ray tube cross-sections) derivatives of the velocity field. In our sim­
ulation these derivatives are obtained analytically, avoiding the usual 
finite-difference approximations. Numerical errors are then reduced and 
computation time is saved. 

3.2. Acoustic field visualizations 
The first figures provided illustrate the large distortions that acoustic 

waves undergo when travelling through one realization of a turbulent 
velocity field even though the fluctuation rate is weak (turbulent Mach 
numberMt = v' fc0 less than 0.01). These visualizations also present an 
additional interest, which is to allow at least a qualitative confrontation 
between the two approaches used. The obtaining of figures with similar 
tendancies is a proof of the validity of our results, since each of the 
approaches is based on different approximations : high frequencies for 
geometrical acoustics ; definition of an equivalent refraction index for 
the parabolic method. 

In geometric acoustics the only characteristic length scale is the pa­
rameter L introduced in the correlation function f(r) . The various 
visualizations are therefore presented in non dimensional variables x f L 
andy/ L . The turbulent Mach number is equal to 6.10-3 • The maximum 
propagation distances are x / L = 30 and x / L = 60. For the parabolic 
approximation, three values of >.f L were retained : >.f L = 0.05; 0.01; 0.2. 
The source emission is within an angle of ±20° in respect to the x-axis. 
These values have been selected according to two criteria : on the one 
hand, it is necessary to respect the application conditions of the the­
ories (>.fL <:: 1, small angles, weak fluctuations) ; on the other hand, 
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0 

Fig.l. Propagation of acoustic rays in a single realization of a 2D isotropic 
velocity field (v~lco = 0.003, L = 0.1m). ote the distortion of rays and the 
occurrence of caustics 

the observed effects should correspond to realistic situations (in spite of 
the 2D character of the modelisation) such as those found during prop­
agation in the atmosphere or in laboratory experiments simulating it ( 
Blanc-Benon and Juve 1987). 

Figure 1 shows a typical example of ray tracing through a turbulent 
field realization. It can be noted that the initially linear trajectories 
launched at regularly spaced angular intervals (b-8 = 0.5°) are highly 
deformed. When two neighboring rays are observed, large increases or 
decreases of the cross-section of elementary tubes can be seen. Accord­
ingly, large local variations of the acoustic intensity are obtained and 
have to be connected to the occurrence of caustics as soon as a sufficient 
distance from the source is reached. In Figure 1, two strong concen­
trations of rays occurred around 8 = -9° and xI L = 20 and around 
(} = 5° and xI L = 15 ; a third weaker caustic occurs around 0 = 3° and 
xiL = 25. 

Figure 2 (see colour plates) corresponds to the same realization but 
depicts a distribution of acoustic levels using the parabolic equation 
method with >..IL = 0.1. In order to eliminate the geometrical spreading 
of the wave, we expressed the results in terms of a ratio of the acoustic 
intensity obtained with turbulence to the acoustic intensity in a homo­
geneous medium. This ratio was then expressed in color levels according 
to a logarithmic scale . The dark red, for example, corresponds to a 
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reinforcement of the initial level equal to or above 10 dB, which is highly 
significant. The similar behavior of this figure and Figure 1 is striking. 
In particular, the high increase zones of the level directly correspond to 
the caustics predicted by the geometrical theory. The decrease zones of 
the level are between caustics and associated with regions where few rays 
pass. It is also interesting to observe the elongated filament structure 
in the direction of local propagation. This structure corresponds to an 
aforementioned suggestion that, for >.j L ~ 1 , scattering mostly occurs 
within small angles. As a result, the field evolution is much more grad­
ual in the axial direction than in the transverse one, thus permitting a 
rather large step. For Figure 2 we chose D..x I L = 0.1 ( i.e. D..x = >. and 
D..y I L = 0.025) which are rather conservative values. 

Figure 3 (see colour plates) depicts the effect of a wave frequency mul­
tiplied by 2 (that is >-I L = 0.05) for the same turbulent field realization. 
All the characteristic traits of Figure 2 are found, but this time with a 
greater sharpness of details especially perceptible in the transverse di­
rection. This result corresponds to the decrease of the low frequency 
filtering effect : in the acoustic field (not too close to the source) no 
detail less than the wavelength can be detected. The wave frequency ef­
fect is therefore relatively modest. The effect of the characteristic length 
scale L of the turbulent field is much larger as seen in Figure 4 (see colour 
plates) where L is half the size of that in Figure 2 (with >.I L = 0.2 ) . The 
spatial evolution of the intensity is clearly more rapid than previously. 
This can bee seen for example in the region of weak intensity around the 
x-axis. These evolutions correspond rather well to the idea according 
to which the characteristic length scale of the axial variation of inten­
sity fluctuation would be k0 L2 or L2 I>., showing a greater sensitivity 
to a modification of L rather than to a modification of >. (Spivack and 
Uscinski, 1988). 

3.3. Some additional results 
The following results deal with average acoustic field properties obtained 

using both the ray and the parabolic equation methods. As a whole, 
these results are in agreement with theoretical prevision ; this validates 
our simulation technique. However, in certain cases, the theory and the 
simulation separate and it would seem that the differences noted are due 
to a deficiency of certain assumptions of theoretical developments. The 
latter constitutes a justification for using the deterministic approach. 

i) Travel time along the rays 

One of the most interesting parameters that the geometric theory can 
provide is the travel time between a source and a receiver in an effort to 
reconstruct wave fronts perturbed by turbulence. Fluctuations in this 
travel time were studied theoretically as early as the 1960's by Chernov 
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(1960) and Keller (1962). The essential result deals with the variance of 
the travel time fluctuation which is expressed by the following formula: 

- 2u2 
~t2 = _,..._ lc X 

co2 

where J.L = v~ I c0 , lc is the correlation length scale of the random field, 
x the distance between the source and the receiver. 

In Figure 5 we show the variances obtained for two values of the rms 
velocity fluctuation ( v~ I c0 = 0.003; 0.006). For the weaker value, the 
agreement between theory and simulation is very good: the evolution of 

~t2 with xis in particular very linear up to around xiL = 30; the simu­
lated variance increases afterwards slightly more quickly than predicted. 
For the second rms value, the difference between theory and simulation 
rapidly increases. The linear increase of ~t2 with x occurs only up to 

x / L = 15 ; afterwards ~t2 exhibits an almost quadratic growth, with 
a simulated value at xI L = 40 which is twice as big as that predicted 
by the Chernov theory. The reason for this behavior is not yet entirely 
clear, but it would seem to be directly linked to the existence of caustics. 
The higher the turbulent intensity, the shorter the distances at which the 
first custic occurs. The focalisation effect therefore becomes essential. 
As long as no caustic occurs, only one eigenray links the source to the 
receiver. H one caustic occurs, three eigen-rays coexist with different 
travel times and, qualitatively, this can lead to an increase in the vari­
ance of real travel times in relation to the theoretical predictions which 
implicitly assume the existence of a unique eigenray. To consolidate this 
point of view, Codona and al (1985) have recently demonstrated the im­
portance of the occurrence of caustics when evaluating the average travel 
time in a random scalar field. 

The probability of the appearance of the caustics in a random scalar 
field has recently been theoretically explored by Kulkarny and White 
(1982). In our numerical simulation applied to the evolution of the cross 
section of an elementary ray tube, we determined the point at which a 
given ray touches a caustic and then we estimated the probability den­
sity of occurrence of the first caustic (Blanc-Benon and Juve, 1990). In 
Figure 6 we report the results obtained for the two values of the r.m.s. 
velocity fluctuation. The curves present the shapes predicted by Kulka­
rny and White (1982). The probability of meeting a caustic is very small 
up to a certain distance. Afterwards the probability increases rapidly, 
reaching a maximum before slowly decreasing in a quasi exponential way. 
However, the probability density maximum which should theoretically 
occur at s = 3.5 according to Kulkarny and White (1982) occurs instead 
at 2 (sis defined ass = 12113 7r116 J.L 2/ 3 xiL ). This difference can no 
doubt be explained by the vectorial character of our random velocity 
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Fig.5. Variances of arrival time on a circle of radius X from an acoustic point 
source (2D isotropic field, v~ /Co = 0.003 and 0.006, L = 0.1 m ; 250 realiza­
tions). Continuous curves are Chernov predictions 
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Fig.6. Probability density function for the occurrence of the first caustic (2D 
isotropic field, v~/co = 0.003 and0.006, L = 0.1 m ; 250 realizations) 

field. For the same characteristic length scale L introduced in the cor-
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relation function f(r), the kinetic energy spectrum is richer in spatial 
high frequencies than in the scalar case studied by Kulkarny and White 
(1982). The existence of these more energetic small structures leads to 
a wave focalisation at a shorter distance, which is precisely what is seen 
in the simulations. In addition, we note that the maximum of the prob­
ability distribution is obtained at x j L = 32 when v~ j c0 = 0.003 and 
earlier at xjL = 20 when v~jc0 = 0.006 and that, at the same respective 
distances, the variances obtained by simulation begin to slightly differ 
from the theoretical predictions. 

ii) Intensity fluctuations 

To obtain quantitive information on the acoustic intensity at a 
given point is difficult in geometrical acoustics. On the contrary, the 
parabolic equation method is ideally suited for this. The most sig­
nificant parameter of intensity fluctuation is the standard deviation 

0' I = J ((I- < I > )2 ) j < I >2 (in optics 0'~ is known as the scintil­

lation index). In the domain of small fluctuations the Rytov approxima­
tion gives results for the log amplitude fluctuations x = ln (A/ Ao ); A0 

is the field amplitude in the absence of perturbation, and the standard 
deviation 0' x is approximately linked to ( 0' I) Rytov by ( 0' I) Rytov = 20' x­
In the case of a spherical wave in a Gaussian random medium, ( 0' I) Rytov 

is then found by Ishimaru {1978) to be: 

A saturation phenomenon is also known to occur in the scintillation 
index for values of O'I close to 1 . This behavior has been experimentally 
observed and predicted by ad hoc asymptotic theories ( Tatarski, 1971 ; 
Tatarski and Zavorotnyi ,1980) which even indicate a slight decrease of 
the standard deviation for ( 0' I) Rytov :» 1. No theory currently exists to 
predict behavior in the transitional region between the Rytov calculation 
and the asymptotic expression mentionned above. It is in this region, 
which is perhaps the most interesting, at least in acoustics, that our 
numerical simulation furnishes the most new elements. 

Our results on that topic are presented in Figure 7. 
Two frequency and two scale L values are used (corresponding to 

>.j L = 0.05; 0.1; 0.2 when v~fco = 0.006). In these situations the 
strength parameter r = kgp.2 x 2 lc defined by Spivack and Uscinski( 1988) 
ranges from around 2 to 120. In the weak fluctuation region ( O'I less than 
around 0.3 to 0.5) the agreement with the Rytov formula is excellent. 
The computations then show the transition towards a O'I plateau culmi­
nating slightly above 1 and depending on r. However, it is not possible 
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X/L 
Fig.7. Standard deviation of acoustic intensity fluctuation (2D isotropic field, 
v~/co = 0.003 and0.006, L =0.1 m; A./L = 0.05,0.1,0.2; 250 realizations) 

to detect any decrease tendancy whatever for u 1. It must nevertheless be 
noted that, at a great distance, the acoustic level is strongly reduced due 
to the beam divergence, and moreover, a greater number of realizations 
would be required to reduce the residual curve oscillations. Finally, let us 
also add that Spivack and Uscinski(1988), using a different approach and 
an equation governing the 4th order moment, also obtained a plateau for 
UJ, after a maximum whose position and height depend on the strength 
parameter. 

4. Propagation through a 2D mixing layer 
The mixing layer which has been the subject of numerous investigations, 
both experimental and numerical, is also of great interest to our study. 
Its principal characteristic is the formation of vortices which can coalesce 
(Corcos and Sherman, 1984; Lesieur et al., 1988). We have chosen to 
show the influence of such a flow on the propagation of acoustic waves 
emitted perpendicular to the mean flow direction. A possible application 
could be the use of the modulation of the transmitted acoustic beam as 
a means to detect the existence of well-defined turbulence structures. 
The most interesting stage of the merging of two structures has been 
retained. Two computations were carried out, immediately before and 
immediately after the coalescence. The velocity fields corresponding 
to these two time steps were graciously furnished by P. Comte from 
the Fluid Mechanics Laboratory in Grenoble (Comte et al., 1989). His 
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computations were made for a 2D mixing layer increasing in time. The 
initial field has a stream function W = U 80 log ( cosh(yf80 )), the vorticity 
thickness is given as 5i = 280 • The computation domain is square, with a 
side equal to four times the most amplified wave length predicted by the 
inviscid linear stability theory (Ast = 78i). The initial Reynolds number 
based on 8i and U, the half velocity difference, is 1000. Accordingly, our 
acoustic wavelength A was chosen in such a way that A "' .26i , the Mach 
number U fc0 being 0.03. 

Fig.8. Vorticity contours in a 2D mixing layer (courtesy of P. Comte, Institut 
Mecanique Grenoble) : (a) before coalescence (b) immediately after coales­
cence 
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In Figure 8 we provide the vorticity distribution given by P. Comte 
which allows a clear visualization of the position of the vortices. From an 
acoustic point of view the most important characteristic is the velocity 
component in the direction of propagation, that is to say, component 
v. Therefore in Figure 9 we give the v distribution in gray levels. The 
dark gray regions correspond to positive components and the light gray 
to negative ones. 

_, , 0 

- 10.0 HI'S 0 . 0 10.0 MIS 

-7.0 

-•• .o....L- ---.------r--- --.-----; 
1.0 I .0 21.0 2 .0 

-lD.O MIS 0.0 10.0 M./S 

Fig.9. !so-contours of the lateral velocity v for the flow pictured in Figure 8 
: (a) before coalescence (b) immediately after coalescence. Dark gray regions 
are positive v and light gray regions are negative v 

The acoustic fields we obtained using the parabolic equation method 
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are given in Figure 10. The similarity with the maps of Figure 9 is strik­
ing. Before coalescence takes place, we see four regions where weakening 
and strengthening of the acoustic field alternate. These regions corre­
spond to the four high velocity regions of Figure 9. After coalescence, we 
note a region of strong strengthening and a region of strong weakening 
associated with regions where the absolute magnitude of v is very large. 

Despite the absence of ray tracing, which is difficult here because 
of the interpolation needed to express the derivatives, it is possible to 
obtain a qualitative idea of the behavior of an acoustic wave. Indeed, 
focusing and divergence of rays are essentially linked to the presence of 
intense velocity. gradients between vortices as well as inside the vortices. 
Illustrations are provided in Figure 11. 

+ 

+ 
+ 

.a b 

Fig.ll. Sketch illustrating the effect of velocity gradients on th propagation 
of acoustic rays through a 2D mixing layer. (a) before coalescence (b) after 
coalescence. 

This allows us to correctly interpret the visualizations of the acoustic 
fields. The strongest velocity gradients occur in the case (b) producing 
focusing and diverging effects which are stronger than in case (a). 

5. Conclusion 
When applied to individual realizations, the ray theory and the parabolic 
equation methods can provide complementary and original results. For 
example, ray paths, caustics, reinforced or weakened zones of the trans­
mitted acoustic field can be clearly visualized. 

Averaging over an ensemble of such realizations permit us to obtain 
statistical results which have been compared with theoretical predictions 
in the case of 20 isotropic turbulence. For the fluctuations of acoustic 
intensity, similar results are obtained using both these approaches in 
the range of weak fluctuations described by the Rytov theory, and in 
the .range of large fluctuations where the saturation phenomenon takes 
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place. In addition, our simulations permits us to cover the intermediate 
region where no theory is currently available. For the fluctuations of 
propagation time, which can be interpreted as phase changes or wave 
front distortions, our numerical results show the limits of the classical 
approaches (e.g. Chernov) as soon as caustics occur. 

The representation of a (vectorial) velocity field by a (scalar) refrac­
tion index ( -u' fco versus -t' f2.To) also requires special scrutiny. The 
distribution of kinetic energy among the different scales of the inhomo­
geneous field has to be taken into account in the r.m.s. level u' as well 
as in the length scale L used to make a non dimensional representation 
of the results. 

Using the same technique it could be possible to create inhomogeneous 
and/or random media involving non negligible backscattering due to 
strong inhomogeneities and to compute the resulting acoustic fields by 
solving forward and backward parabolic equations. 
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