
Simulation of the propagation of an acoustic wave through 
a turbulent velocity field: A study of phase variance a) 

M. Karweit •) 
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 

Ph. Blanc-Benon, D. Juv•, and G. Comte-Bellot 
Laboratoire de Mkcanique des Fluideset d'Acoustique, C.N.R.S. U• 263, Ecole Centrale de Lyon, 69131 
Ecully Cedex, France 

(Received 2 January 1989; revised 16 August 1990; accepted 5 September 1990) 

A numerical technique for simulating the behavior of an acoustic wave propagating through a 
turbulent medium is introduced. The technique involves two elements: the generation of 3-D, 
random, hypothetical, isotropic velocity fields in terms of a collection of discrete Fourier 
velocity modes; and the integration of the ray-trace equations to describe the trajectories of 
points tagging an acoustic wave front. The propagation times for these points to travel fixed 
distances through each of an ensemble of random velocity fields are recorded, and the variance 
of travel time (or acoustic phase) over the ensemble is calculated. In numerical ray-trace 
experiments through fields having average perturbation indices • 0.01, acoustic travel-time 
variances are obtained that have a higher-order dependence on travel distance R than the 
classical Chernov prediction--a linear increase with R. The Chernov result is obtained, 
however, when the rays are confined to axial trajectories. Additional numerical experiments 
integrating the stochastic Helmholtz equation and its parabolic approximation yield time- 
variance estimates consistent with the ray-trace results. Predictions from these simulations are 
then applied to the laboratory experiments of Blanc-Benon and found to be in qualitative 
agreement. Finally, a set of 2-D travel-time experiments are presented to identify differences 
between source-receiver eigenray propagation and preassigned initial direction ray 
propagation. 

PACS numbers: 43.20.Wd, 43.20.Fn, 43.28.Py, 43.20.Dk 

INTRODUCTION 

One of the more interesting features of sound is that its 
propagation characteristics are greatly influenced by the me- 
dium through which it travels. Through the processes of 
convection, refraction, and scattering, acoustic waves may 
be bent, attenuated, or amplified, or, in fact, rendered com- 
pletely incoherent. Since the coherence and integrity of 
acoustic waves play fundamental roles in harmonic sound 
transmission, noise control, and sonic detection schemes, an 
understanding of how an acoustic wave is affected by its 
medium of propagation is essential. 

In particular, the dispersion of sound in the atmosphere 
and the ocean is of interest. Both of these media are charac- 

terized by random inhomogeneities in velocity and tempera- 
ture over an entire spectrum of scales. But because these 
natural environments are not well controlled, investigating 
how sound may be influenced by them is better undertaken 
within the turbulent or thermal field producible by a grid or 
jet in the laboratory. 

An important measure of the influence of random inho- 
mogeneities is the variation of phase as acoustic waves prop- 
agate through the medium. Two approaches for studying 
this variance have thus far been taken: a purely mathemat- 

Portions ofthis work were presented at the 17th IUTAM meeting, Greno- 
ble, 21-27 August 1988 [ Karweit et al. (1988) ]. 
This study was carried out while the first author was a visiting scholar at 
the Laboratoire d' Acoustique, Ecole Centrale de Lyon. 

ical one in which wave-or ray-propagation equations are 
simplified and averaged to account for the random environ- 
ment; and a laboratory one in which sound-propagation 
fluctuations are actually measured and interpreted. 

The classical mathematical treatments are Tatarski 

( 1971 ) and Chernov (1960). More recently, this literature 
has been expanded by Ishimaru (1978), Tatarski and Zavor- 
otnyi (1980), and Flatt6 (1983). Efforts focusing on the 
stochastic Helmholtz equation and its parabolic approxima- 
tion are especially of interest. In these approaches, the inter- 
action between turbulence and acoustics is expressed in 
terms of a random index related to the temperature or veloc- 
ity fluctuations, e.g., Candel (1979). Solutions are then ob- 
tained by various techniques: path integrals--Dashen 
(1979) and Fishman and McCoy ( 1984); phase screen-Co- 
dona etal. (1985) and Uscinski ( 1985); two-scale asympto- 
tic expansions--Whitman and Beran (1985). 

Experimental approaches are found in Blanc-Benon 
(1981) (B-B) and Ho and Kovasznay (1974), with mea- 
surements of acoustic propagation in fluctuating velocity 
fields. Blanc-Benon et al. (1986) addresses the problem in 
fluctuating temperature fields. 

In this paper we offer a third approach-•explicit nu- 
merical simulation of the motion of an acoustic ray propa- 
gating through a hypothetical, inhomogeneous velocity 
field. The hypothetical field consists of a small number of 
randomly oriented, discrete, Fourier velocity wave vectors 
whose amplitudes have been chosen to produce a distribu- 
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tion of velocities comparable to those found in experimental 
flows, i.e., the grid-generated turbulent flow of Comte-Bellot 
and Corrsin (1971) (C-BC), and the jet-generated turbu- 
le. nt flow of B-B. Making the assumption of a "frozen" veloc- 
ity field and a weak acoustic wave front that does not interact 
with the field, we use the ray-trace equations to integrate 
numerically the trajectories of acoustic rays. By carrying out 
such integrations over an ensemble of statistically similar 
welocity fields, we accumulate statistics of the variation in 
arrival times for the rays traveling prescribed distances. 

In our approach two features are noteworthy. First, 
most of our numerical experiments do not model the usual 
source-receiver problem in which the properties of eigen- 
rays passing from source to receiver are investigated. Rath- 
er, we explore the propagation statistics of rays whose initial 
directions art; preassigned without regard to where they may 
travel. (Below, in a comparison experiment involving eigen- 
ray tracing we refer to these preassigned initial direction rays 
as PID rays.) Second, in our method there is no inherent 
acoustic wavelength. To interpret travel-time variance as 
phase variance, we must multiply by an assumed angular 
frequency. 

The present paper describes a number of numerical ex- 
periments, all of which focus on the travel-time variance of 
an acoustic wave propagating through a random inhomo- 
geneous medium (air). In these experiments, in part because 
of the way we characterize the turbulent fields, and in part 
because of our procedure for following individual rays, we 
have the flexibility of obtaining solutions to the ray-trace 
equations with or without simplifying assumptions. Of the 
set of experiments, three simulate theoretical approxima- 
tions by integrating ray-trace equations that have been modi- 
fied to conform to the simplifying assumptions made in the 
respective theories. The theories examined are as follows: the 
Chernov approximation--propagation in a straight line; the 
stochastic Helmholtz solution--replacing a vector distur- 
bance field with an "equivalent" scalar one; and the parabol- 
ic approximation--a forward scattering approach. 

Two additional experiments complete our work: a simu- 
lation that does emulate a source-receiver problem (in two 
dimensions), and a simulation that models the laboratory 
work of B-B. In this latter effort, we statistically reproduce 
B-B's jet-generated air flow and compare our ray-trace cal- 
ctfiations wi[h his results. 

I. GENERATING THE TURBULENT FIELD 

With an eventual goal of modeling the jet-generated tur- 
bulent field used in B-B's acoustic measurements, we first 
established that our Fourier-mode approach to simulating 
such fields was viable. We validated our technique by gener- 
ating fields comparable to the grid-generated turbulence 
used and fully described by C-BC. Jet-generated flows 20 
nozzle diameters downstream and grid-generated flows 40 
grid-mesh lengths downstream are quasi-isotropic and in 
spectral equillibrium. As such, their spectral forms are ex- 
pected to be :•imilar; and their statistical properties should 
differ only by a length scale Lo and a turbulence level 

= u•, u• being the component of velocity fluctuation 
in the x• direction. 

To generate fields for our simulations, we used an adap- 
tation of the spectral model for incompressible, isotropic tur- 
bulence due to yon Karman (see, for example, Hinze, 1959 ) 
in which the shape of the energy density E(k) is character- 
ized by a single length scale L o = 1/k o. Specifically, 
E(k)•k4/(k2+ 1/Lo2)•7/6; and a value L o =0032 m 
gave a reasonable fit to the C-BC data. However, this simple 
spectral form, in principle, has an undefined Taylor micro- 
scale because, for large k, velocity gradients increase.. indefi- 
nitely with k. Therefore, there is also no definable "inner 
scale" of the field. (In practice, an effective Taylor micro- 
scale would exist because our spectra are truncated at a pre- 
scribed maximum wave number.) Although the inner scale 
is relatively unimportant in acoustic phase variance (Ta- 
tarski 1971 ), we modified the simple yon Karman spectrum 
to include a spectral "tail" due to Pao ( 1965, 1968); [hus our 
final spectral form was E(k) • •[; 4/(k 2 
+ 1/L 02 ) • 7/6 exp ( - 2.25 (r/k) 4/3), where r/is the Kolmo- 
gorov microscale. (In the flow of C-BC, r/= 0.0.901 m. 
However, in our simulations we experimented with r/'s rang- 
ing from 0.000 to 0.005.) With this spectral form, we then 
generated simulated turbulent fields that were composed of 
N = 30 to N = 60 independent Fourier modes, each having 
a randomly oriented wave vector k and a complex amplitude 
vector a(k). 

The direction ofk was prescribed by means of the orien- 
tation angles 0 and q•. These were picked randomly with 
probability P(0) = sin 0/2 and P(½) = 1/2rr. This ensured 
statistical isotropy with respect to k. The direction of a(k) 
was also chosen randomly, but in a plane perpendicular to k 
(a requirement for an incompressible field). Here, a single 
angle •, chosen with uniform probability over - rr < 
prescribed that orientation. The amplitude of a(k) was de- 
fined to be •E(k)•/2 to produce the yon Karman distribu- 
tion of velocities; and the complex phase ofa(k) was chosen 
randomly. Figure 1 illustrates this spectral description of a 
Fourier velocity mode. 

FIO. 1. Wave-vector geometry of a single Fourier velocity mode. For a giv- 
en wave vector k witfi direction specified by 0 and q, a complex amplitude 
vector a ( k ) is produced as'follows: a ( k ) lies in the plane perpendicular to k 
with arbitrary orientation 0; the magnitude la(k)l •E(k)•:; the complex 
phase is arbitrary (not shown). 
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To produce a purely real velocity field, for each random- 
ly selected mode we included its conjugate counterpart with 
wave vector - k and conjugate amplitude vector a*. A com- 
plete velocity field was then defined as the summation of all 
these Fourier components, or 

N N 

u(x) = • ai exp(tk•.x)-I- • a•' exp(- ilia.x); (1) 
j=l j-i 

a was scaled to yield the desired rms velocity amplitude. 
Note also that this Fourier representation produces a field 
whose average velocity is zero, i.e., the field is a purely "fluc- 
tuating" field in space. 

The collection of wave vectors that defined a field were 

chosen at logarithmic intervals between a minimum wave 
number k = I m • and a maximum wave number, usually 
k = 1000 m •. Figure 2 shows the spectral description of 
our simulated field using 30 modes and is superposed on the 
data of C-BC for comparison. 

The principal decisions for constructing these velocity 
fields were four: How many Fourier modes need be used? 
Over what spectral range should the modes be defined? How 
should these modes be distributed within this range? Should 
the velocity-vector amplitudes be defined deterministically 
by the yon Karman relationship, or should they be defined 
randomly with means corresponding to the von Karman re- 
lationship? 

The decision on the number of modes was a practical 
one. Most of our numerical experiments were run with 30. In 
generating statistics for our simulation of acoustic propaga- 
tion, the number of realizations times the number of Fourier 
modes representing the velocity field determined the compu- 
tational time. Our disposition was to lean toward more real- 
izations in lieu of more velocity modes. Trial experiments 
showed that increasing the number of independent modes to 
60 did little to improve the stability of the statistics (except 

ß • Comte-Bellot & Corrsin ........ 

o 0 I00 200 •00 400 riO0 600 

k (m -l) 

FIG. 2. Comparison of the experimental velocity spectrum of Comte-Bellot 
and Corrsin and the theoretical spectrum of yon Karman. Vertical lines 
indicate spacing of Fourier modes in the simulated fields. 

the integral length scale) and doubled the time to obtain 
them. 

The spectral range over which the velocity fields were 
constituted was determined by the convective and refractive 
characteristics of acoustic ray propagation. The bandwidth 
of the spectrum had to include not only virtually all the ener- 
gy-containing wave numbers for the convective distur- 
bances, but also those wave numbers contributing to appre- 
ciable velocity gradients for the refractive contribution. 
With •/= 0.0001 m in the Pao extension to our spectrum, 
velocity gradients are still increasing with k up to our maxi- 
mum wave number. But the distance over which these gradi- 
ents act, 1/k times the velocity gradient, is the important 
effect. At k = 1000 m - • this parameter plays a diminishing 
refractive role. At the low end of the spectrum, we chose a 
minimum wave number km•., = 1 m •, corresponding to ap- 
proximately 1 decade of wave numbers below the von Kar- 
man length scale. 

Within this spectral range, the distribution of Fourier 
modes was to be selected. Three that were considered were 

uniform, random, and logarithmic. Randomly picked wave 
numbers for a given field of only 30 modes would not neces- 
sarily span the spectral bandwidth; and hence, that proce- 
dure was rejected. Of the two remaining, logarithmically 
spaced modes would best represent the spectral characteris- 
tics of a velocity field at low wave number. Since phase fluc- 
tuations of acoustic wave fronts are theoretically more in- 
fluenced by low wave numbers (Tatarski, 1971), the 
logarithmic distribution was used. 

The final velocity field-generation question involved 
whether the amplitudes of the velocity vectors correspond- 
ing to each of the wave vectors should be deterministic or 
random with the appropriate yon Karman value or average. 
Although some of the earlier numerical turbulence experi- 
ments used Gaussian-distributed amplitudes (e.g., Kraich- 
nan, 1964), current wisdom is to use amplitude deterministi- 
cally prescribed by the energy spectrum. Rogallo (1981) 
and Rogalio and Moin (1984) suggest that simulated time- 
dependent flows are very sensitive to the initial conditions of 
the large scales and, consequently, the amplitudes of those 
scales are best not left to chance. Though our fields will not 
be evolved in time, we use the Rogallo strategy of determinis- 
tically prescribing the spectral amplitudes. 

To ensure that our field-generation technique produced 
reasonable results, we produced an ensemble of 5000 fields 
corresponding to the C-BC data. (Since preliminary runs 
indicated that there was no measurable difference in the sta- 

tistics of fields generated with a "correct" Taylor microscale 
of •/= 0.0001 and •/= 0.0, for computational efficiency we 
produced our ensemble with r/= 0.0. ) From this ensemble, 
and at 100 random positions within each field, we calculated 
the first four single-point moments for the three components 
of velocity and the nine components of velocity derivative. 
For both the velocity and its derivatives we obtained nomi- 
nally zero ( less than 0.02) for all the odd moments. ( In grid- 
generated turbulent flow, the third moments of the velocity 
derivatives are nonzero, hence our fields were not perfect 
analogs. But since nonzero velocity-derivative skewness is 
usually attributed to the dynamics of the field, we assumed 
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this shortcoming to be relatively unimportant.) The second 
moments of velocity yielded (u•) = (u]) = (u]) = const. 
The second moments of the velocity derivatives yielded 
((3ui/c)xi)2) _-- 0.5 ((c•u,/Sx i)2); and a velocity-derivative 
calculation of the Taylor microscale matched that in C-BC. 
Finally, the'. fourth moments all approached the value for a 
Gaussian pdf--3.00 ( _+ 0.02). (In this paper, (...) denotes 
ensemble averaging. But for these moment statistics, the no- 
tation also includes field averagingß) Additionally we esti- 
mated the two-point statistics 

Rll (r,0,0) = (u• (0,0,0)ul (r,O,O))/(u•) 
and 

R22 (r,0,0) = (u 2 (0,0,0)u2 (r,0,0))/(u•), 

the so-called Karman-Howarth longitudinal and lateral 
correlation functions,f(r) and g(r). These are shown in Fig. 
3. Numerically integrating separatelyf (r) and g(r) with re- 
spect to r produced calculations of our fields' longitudinal 
and lateral integral length scales Lz=0.025 m and 
Lg = 0.014 m, respectively. This compares favorably with 
the C-BC values of Lz --- 0.024 m and Ls = 0.0127 m. Here, 
Ls is theon:tically expected to be one-half L•. for isotropic 
turbulence. 

With the assurance that we could asymptotically ap- 
proach the statistical character of the C-BC grid-generated 
flow, we redefined the yon Kurman length scale Lo in our 
field-generating scheme to be 0.09 m to model B-B's jet-gen- 
erated turbulent flow with Lz = 0.067 m. (Theoretically, 
Lo----1.339Lz for avon Kurman spectrum, i.e., with 
•/= 0.0.) We configured our algorithm to produce u• = 2 
m/s--a turbulence level bracketed by his series of experi- 
ments. And, again, we produced an ensemble of 5000 fields. 

f(r) 
•' i• g(r) 

ß 0.04 0.00 -- 0:12 0.16 0.20 

r 

FIG. 3. Simulated longitudinal and lateral correlation functionsf(r) and 
f(g}, where r is the distance of separation. Results accumulated over 5000 
realizations on velocity fields having a yon Karman spectrum best matching 
the Comte-Bellot and Corrsin data. 

With these fields we calculated L/--0.068 m--a value in 
close agreement with experiment. 

II. SIMULATING THE PROPAGATION OF AN ACOUSTIC 
WAVE 

Having described the technique to generate random ve- 
locity fields of known statistical properties, we now turn to 
the propagation of acoustic wave fronts through those fields. 

We employ the principles of geometrical acoustics 
which are valid for small amplitude variations over an acous- 
tic wavelength, a large radius of curvature of a wavefront in 
comparison with its wavelength, and a small wavelength in 
comparison with the characteristic length scale of the dis- 
turbing medium. (See, for example, Chernov, 1960). In our 
scheme, we assume an initial position and direction of propa- 
gation of an acoustic wave front, "tag" a point on that wave 
front, and follow its trajectory through the velocity lield, i.e., 
we carry out a process known as "ray tracing." 

Pierce (1981) [Eq. (8-1.10)] and Candei (1977) ex- 
press the ray-tracing equations in a particularly suitable 
form for our application. In these developments, a paramet- 
ric variable, a "wave-slowness" vector s, is introduced to 

describe the propagation characteristics of the tagged point 
on the wave front. Here, s points in the direction of propaga- 
tion and has a magnitude equal to the reciprocal of the wave 
front's speed. Six coupled, nonlinear differential equations 
are required: three describing the motion of the tagged point 
and three describing the evolution of the slowness vector 
identified with that point. In this scheme the differential 
equations are defined exclusively in terms of the propagation 
field and its spatial gradients. From Pierce, 

(2) 

where tl = i -- u-s and c(x) and u, (x) are the sourid-speed 
and velocity components of the field at the position of the 
tagged point on the wave front. (Although our simulations 
are intended to involve fields in which only velocity distur- 
bances are present, and so the terms involving refractive gra- 
dients could be omitted, some of our experiments emulate 
theoretical results in which the velocity disturbances are re- 
placed by "equivalent" scalar refractive fields.) 

In this formulation we can calculate the right-hand side 
of the differential equations exactly at every point along a 
trajectory. Since our turbulent velocity fields have been 
modeled in terms of a fixed number of discrete Fourier veloc- 

ity modes, we can obtain the spatial derivatives of the fields 
analytically at every point. Thus throughout an integration 
of a ray trajectory, there will be no accumulated err or asso- 
ciated with the usual finite-difference approximation to 
these derivatives. Insofar as we integrate over long distances, 
this feature is critical to its success. 

Our simulation procedure is slraightforward. We first 
generate a random velocity field, i.e., select the random com- 
ponents of our Fourier modes. Then pick a point (s) within 
the field at which we presume to be on an acoustic wave front 
[e.g., x(0) = (0,0,0) ], giving the wave front at that point a 
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propagation attribute by specifying a slowness vector [e.g., 
s(x(0)) = (l/[co + u, (x(0))],0,0)]. Then we numerically 
follow the trajectory of that point and the evolution of the 
slowness vector over time with a fourth-order Runge-Kutta 
integration scheme. 

Computations are carried out in double precision wit h 
an integration time step of At = 1/(cokmax )--the longest 
step for which results duplicate those obtained from integra- 
tions of half that step size. In our simulations we assume the 
transit time of an acoustic wave is short compared to any 
time scale in the velocity field and, hence, we follow a trajec- 
tory within a "frozen" field; i.e., there is no time evolution of 
the field during our integrations. 

Over ensembles of 250 to 1000 such individual integra- 
tions, each using a different random velocity field, we record 
time of propagation at various distances R from the 
"source"; then we accumulate statistics. In most cases, 
choosing the number of realizations to be 1000 effected sta- 
ble acoustic time-variance estimates and practical execution 
times for the computer runs. (The 1000-realization experi- 
ments require approximately 20 h of MicroVax II CPU 
time. ) 

Except for our experiments in "one-dimensional" prop- 
agation, there is no apriori way to predict the point at which 
a ray will have propagated a distance R. So our definition of a 
propagation distance R was the spherical shell of positions 

4Xl + + : 

III. NUMERICAL EXPERIMENTS 

A. The Chernov approximationmStraight-line ray 
propagation 

Chernov approximates the transit time for acoustic rays 
by assuming that deviations from a straight trajectory are 
negligible and produces the transit time to a distance R: 

t = -- n(x• ,x2,x 3 )dx•, (3) 
Co 

where n (Xl ,x2 ,x3 ) is the index of refraction of the medium 
along the ray. For an inhomogeneous medium consisting 
only of velocity fluctuations, n = I +/.t with la • - u •/Co. 
The transit-time variance can then be expressed when R >) L• 
by 

(t ,2) _ 2(/-t2) R N(x I ,x 2 ,x 3 )dxt (4) 2 ' 
Co 

where N(x I ,x 2 ,x.• ) is the normalized correlation function of 
/•. Since the departures of ray trajectories from x2 = x3 = 0 
are assumed to be small, Chernov reduces the integrand to 
N(x• ,0,0) [Chernov, 1960, Eq. (68) ]. For an isotropic field 
consisting only of velocity fluctuations 

o •' N(Xl ,0,0)dXl 
is just the integral length scale Ll.. Thus (4) can be rewritten 
as 

(t ,2) = (2(u•)R/c• )Li.. (5) 
[We remark that the same linear dependence of (t ,2) with R 
is obtained by using a smooth-perturbation analysis on the 

wave equation in the limits of both very large and very small 
values of the wave parameter D----4R/(%d 2) (Tatarski 
1971 ). R is the transit distance, d•L s is the mean size of the 
inhomogeneities of the field, and % is the acoustic wave 
number in the medium at rest. ] 

To establish that our technique for studying acoustic 
propagation was viable, we reduced our governing ray equa- 
tions to ignore all nonaxial components and, of course, den- 
sity-inhomogeneity terms, since our fields were constant 
density. Thus we could simulate the Chernov approach. In 
this case our equations reduced to the two equations 

dx I co2sl 
dt fl 

ds I 3U 1 (6) 
-- Si -- , 

dt Ox• 

with fl = 1 - u• s•. Over an ensemble of 1000 realizations 
we simulated unidirectional ray propagation and generated 
the variance of arrival times at different distances from the 

origin. In Fig. 4 we present the outcome. Propagation dis- 
tance is given in terms of the integral length scale Lœ. Time 
variance is normalized by the Chernov solution evaluated at 
the distance R = 40Lœ. Recall that the parameters of the 
field are L•. = 0.067 m and u• = 2 m/s. 

The Chernov solution, assumed to be valid for large dis- 
tances of propagation, predicts a linear growth of time- 
(phase) variance with distance of propagation. Clearly our 
simulations confirm that result. 

Near the origin, the integral in (4), which becomes L• at 
larger distances, integrates to a lesser value. Consequently, 
at short distances, travel-time variance falls below the 
asymptotic result. In all the experiments that follow, this 
"dip" is apparent. 

o 0 

-- 

' Axial calculation 

,/////• Chernov solution ..... 
O 16 24 3• 40 

Propagation distance 

FIG. 4. Arrival time variance of simulated acoustic rays constrained to axi- 
al propagation. Results accumulated over 1000 realizations and normalized 
with respect to the Chernov solution (t '-'),, at a distance of 40Lt. The 
Chernov solution is plotted for comparison. 
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B. Ray-trace simulations 

With the same field characteristics as above, we carried 
out a second set of trajectory calculations--this time using 
the full ray-trace equations [Eq. (2) ]. That is, in contrast to 
the simulation above, we retained the nonaxial velocity 
terms and reinstated the equations that provide for lateral 
excursions of the ray trajectories. 

Figure 5 shows the results, again scaled in distance of 
propagation by L/and normalized in time variance by the 
Chernov result at R = 40L I. It is obvious that with full ray 
tracing, time variance is not proportional t6 propagation dis- 
tance. In fact, if a power law were to be imposed on the 
result, the best fit over the interval R = 0 to R = 20Lœ is 
(t ,2) --R [ 6. This outcome is unexpected, but, as we shall 
see, not inconsistent with the numerical experiments that 
follow. 

C. Stochastic Helmholtz solutions 

A description for sound propagation through a turbu- 
lent field is approximated by the so-called stochastic Helm- 
holtz equalion: 

[V z + •n 2) ]P(x) = O, (7) 
where K o =: acoustic wave number in the medium at rest and 
P = wave pressure. For forward scattering the refraction in- 
dex n can be described in terms of the "perturbation" index as 
as n 2 = co•/'c 2 = 1 + E, where as = -- 2u[/c o -- r '/T. (The 
term r '/T is the contribution due to temperature inhomo- 
geneities and is neglected in the present study.) Several ap- 
proximations are required for this explicit form (Tatarski, 
1971; Candel, 1979; Neubert, 1970; Neubert and Lumley, 
1970). 

• ]- /// Helmholtz approx'n_____ 
[ /•;2• Ray-trace calc'n ....... 
I// Parabolic approx'n _ 

ol/•-' , I , I , I [ I • I 
o 0 8 16 24 32 40 

Propagation distance (R/L•) 

FIG._ 5. Arrival time varianten in simulations usin 8 three different ray-trace 
approximations. Results accumulated over 1000 realizations and normal- 
ized with respect to the Chernov solution (t ':)c-•, at a distance of40L r A 
0.95 confidence band is indicated for the ray-trace calculation. The Chernov 
solution is plotted for comparison. 

Note that the influence of the disturbances of the field is 

limited only to those in the axial direction, and velocity dis- 
turbances look like scalar rather than vector dist.arbances. 

We can simulate this approximation by treating our velocity 
fluctuations as fluctuations in the refractive index, and send 
hypothetical rays through an equivalent inhomogeneous 
scalar field, rather than through our actual velocity field. 

Under these conditions fl ----- I and our ray equations for 
"scalar" inhomogeneities become 

dx, co • 

dt ( 1 - 2u •/co ) (8) 
ds i I c•u • 

dt Co(1--2u•/Co) c•x• 

A first-order approximation of the relation n 2 = 1 - 2u,/co 
gives c = co ( 1 + u[ /co ). This provides an illustration of the 
difference between the exact ray and the "Helmholtz" ray. 
In the former case, the propagation velocity is given by a 
vectorial addition of CoS/IS I and u, where s/Is I is the unit 
normal to the wave front. In the latter, the propagating ve- 
locity is approached by (co + u• )s/Isl. Because of the small 
magnitude ofu in comparison with Co, the angular difference 
between the two methods is very small and the results of the 
two approaches should be in close agreement. 

With these equations, we again carried out an ensemble 
of ray-tracing experiments and produced the time-variance 
results included in Fig. 5. Time variance is still not linearly 
related to travel distance, and is in fact in full agreement with 
the results of the complete ray-tracing experiments. 

D. A parabolic approximation solution 

A widely used approximation to the Helmholtz equa- 
tion in acoustics (and optics) is the parabolic approxima- 
tion. By assuming that acoustic propagation is primarily 
along a principal direction, say, the x I axis, and the: acoustic 
pressure takes the form P = exp(bcox • ) W(x) in the Helm- 
holtz equation, the second derivative of q• with respect to x• 
is negligible compared to the first derivative, and the result 
takes a parabolic form. (See the discussions by Tappert, 
1977 and Candel, 1979). Then (7) reduces to 

2igo•+•+Ox•+•(n•--l)*=O. (9) 
If one gives to ß the form ß • e •"•'[s(•) - •, 1 (Sbeing related to 
the slowness vector s by VS = co s), the eikonal equation can 
be expressed in terms of the components Q• = V•S: 

2Qi +Q] +Q]-.:- 
Thus the eikonal relation is of the form H(Q, S,x) = 0. This 
represents a nonlinear, fi•t-order equation soluble by the 
method of characteristics. Following Whitham [ (1974), 
•s. (2.82-2.88)] we deduce the ray-tracing equations in 
terms of the auxilia• variable a. (Integration along a char- 
acteristic is not, in general, orthogonal to the acoustic wave 
front in this approximation. Thus to obtain propagation 
time, the auxiliary variable a and an additional •uation is 
required.) We obtain 
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dx I 

-- c0Q2 , 
da 

dx3 - coQ3, (11) 
de 

dQ,. c)n 

drr - Co n c•x-•-' 
dt 

da-Q' +Q} +Q] =n2+l-Q" 
The last equation concerning the propagation time t is 

obtained by making use of $ = co t. The initial conditions, 
corresponding to a horizontal ray are Q2 = Q3 = 0, and 
Q• =0.5(n• + 1). 

With these equations, an ensemble of rays was numeri- 
cally followed and the final curve on Fig. 5 was produced, a 
result again agreeing with the complete ray-trace curve. 

E. Experimental results (laboratory) 

The difficulty of obtaining laboratory measurements of 
phase or time-of-flight variance is indicated by the dearth of 
data. Other than Ho and Kovasznay (1974) who made such 
measurements across an airjet (but over an extremely short 
propagation distance), only the experiments of B-B are pub- 
lished. In his experiments, B-B generated an approximately 
plane acoustic wave with a pistonlike sound source and 
aimed it across jet-generated air flows having turbulence lev- 
els u I = 2.4 m/s and 1.1 m/s. At a distance of 1 m from the 
nozzle, he measured acoustic phase variance at four acoustic 
frequencies: 31.25, 41.66, 50.00, and 83.33 kHz. 

In a final group of numerical experiments, we carried 
out our ray-tracing technique to simulate these laboratory 
ones; i.e., we used fields having the same integral length scale 
and turbulence levels. The results, along with the Chernov 
approximation and B-B's data points are plotted in Fig. 6. 
Laboratory phase variances have been converted to time var- 
iances by the relation wt = qb, a relation justified by the qua- 

silinear dependence of x/• vs •o found in the experiments 
(relative error (5%). B-B's measurements at his lower 

turbulence level are very close to both the Chernov predic- 
tion and the numerical simulationß At his higher turbulence 
level, the measurements follow neither. However, they are in 
qualitative agreement with the nonlinear form predicted by 
the ray-trace simulationsß 

That B-B's experiments are applicable to our ray-trace 
simulations can be evaluated using a A-4p diagram devised 
by Flatt6 et al. (1979). In this scheme acoustic conditions 
can be categorized into "saturated," "partially saturated," 
and "unsaturated" zones based on ß = 2L/k o • R (/z•) •/2, the 
rms value expected for phase variance and A = R/(L •.k o ), 
a diffraction parameter. Figure 7 places B-B's five cases on 
such a A-alp diagram, with zone boundaries having been cal- 
culated for a Kolmogorov spectrum E(k)•k -•/3. Here, 
we show that most of the experimental data are within the 
geometric acoustics (unsaturated) regime. Only the case 

/ 

/ 

- ut,=2.4m/sec / // / 

/ 

//// • 

•./ Chernov solution _ . 
// Ray-t•ye calc'n 

8 16 24 32 40 

Propagation distance (R/L•) 

FIG. 6. Arrival time variances of numerical experiments compared with the 
laboratory experiments of Blanc-Benon. Results accumulated over 1000 re- 
alizations and normalized with respect to the Chernov solution (t '-') c•, at a 
distance of 40Lt. The Chernov solution is plotted for comparison. 

u' = 2.4 m/s,f= 41.66 kHz reaches the partially saturated 
region. 

We should remark that these zone boundaries are some- 

what qualitative. And with B-B's experiments occurring 
close to the region of partial saturation, his results may be 
slightly contaminated by effects not covered by weak fluctu- 
ation theory. Thus comparisons must be made with caution. 

IV. DISCUSSION 

Based on the assumption that acoustic waves passing 
through a turbulent medium depart little from straight-line 
propagation, current thought--i.e., the Chernov solution-- 
is that acoustic phase variance is proportional to propaga- 
tion distance. In the numerical experiments just described, 
that assumption is typically not met. Only in the case where 
we force a ray to follow an axial trajectory do we produce the 
linear result. In all of the other simulations--the ones in 

which we allow for three-dimensional motion--we produce 
phase variances that have not only linear components, but 
higher-order terms as well. 

There is a work that seems to predict this result. Katz 
(1963) analyzed ray propagation in a 2-D scalar inhomo- 
geneous medium by carrying out a small parameter expan- 
sion of the ray-trace equations and produced an expression 
for travel-distance variance as a function of time. His analy- 
sis produced both a linear and a third-order term. But the 
result is only indirectly applicable to our investigation be- 
cause we consider the converse problem--time variance as a 
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FIG. 7. Blam:-Benon experimental conditions in terms of a Flalt• phase 
variance•liffraction (A-,P) diagram. Zone boundaries are calculated for a 
Kolmogorov spectrum E(A}--A _v3 

function of distance--and there is no obvious way to invert 
his expression. 

The Chernov solution, having been derived for a 
source-receiver problem, is inherently different from our 
PID simulation. Does this difference in approach account 
for the apparent difference in predicted phase-variance be- 
havior? 

To explore this possibility, we conducted a final set of 
numerical experiments in which our simulation technique 
was used to calculate the phase variance of both source- 
receiver rays (eigenrays) and PID rays. In the eigenray ex- 
periments, for each realization of a velocity field the trajec- 
tories of a large number of rays were calculated, each ray 
starting with a different initial direction. Only those rays 
that passed through a preassigned end point (receiver) were 
used in calculating transit-time statistics. 

Since computing eigenrays in three-dimensional fields 
would have been too formidable a task, we restricted this set 
of experiments to two dimensions. The velocity fields were 
based o a a Gaussian correlation function 

f(r) • exp( --r 2/L 2) which yields a 2-D kinetic-energy 

spectrum E(k) = [ •-•k 3L 4/8 ] exp( -- k 2L •/4). This 
form, very suitable for numerical computations because of 
its limited wave-number range, has been previously used to 
analyze the focusing effect of waves by inhomogeneous sca- 
lar fields (e.g., Zwillinger and White, 1985). L = 0.. ! m was 

used to yield an integral length scale L/= L •f•/2. Fields 
were generated using 50 randomly oriented velocity wave 
vectors, uniformly spaced in wave number between k•,i,, = 1 
m- i and k .... = 100 m - I 

Over an ensemble of 250 of these simplified fields, the 
two ray-trace experiments were performed. First, the usual 
one: Rays were assigned initial directions along the x, axis 
and tracked until they reached a prescribed distance R. Sec- 
ond, the source-receiver simulation: Here, we' looked for an 

initial ray direction such that the ray would pass through the 
xl axis at a distance R. These eigenrays were selected by 
following a fan of 200 rays having initial directions over the 
range -t- 10 des in increments of 0.1 des, and then interpo- 
lating linearly between adjacent rays to find a new launching 
angle that would enable that ray to cross the receiver loca- 
tion at the given distance R. The transit time of this new ray 
was then recorded. !n this way most, if not all, eigenrays 
were accounted for. 

Note that although both experiments were carried out 
over an ensemble of 250 fields, the eigenray experiment pro- 
duced more than 250 contributions for large source-receiver 
separations. The additional contributions result from having 
more than one eigenray per field, hence the occurrence of 
caustics. Table I gives the number of eigenrays as a function 
of the normalized distance of propagation R/L/. 

Clearly, there is one eigenray per realization up to 
R/L/= 15, so that up to this distance caustics apparently do 
not occur. Beyond that, however, the number of additional 
rays increases rapidly with R/L r. 

Figure 8 indicates travel-time variances for the two ex- 
periments, again superposed on the Chernov prediction. A 
principal observation is that the two sets of variances are 
similar--both showing trends that appear to be initially lin- 
ear, and finally nonlinear. Further, in comparing these 
curves with Figs. 5 and 6, our 3-D results, one observes no 
qualitative difference. 

The approximately linear region for the eigenrays in 
Fig. 8, i.e., for R/L/< 20, is a region before significant caus- 
tics. But any linear fit falls somewhat below the Chernov 
estimate. Overall, it appears that simulations of the source- 
receiver problem are comparable to the experiments with 
PID rays. Whether there is any difference in functional form 
of travel-time variance before and after the onset of caustics 

in the eigenray experiment is open to question. 
We can synthesize our collective results in a particularly 

informative way--one that decomposes the travel-time vari- 
ance into linear and nonlinear contributions. For each of our 

TABLE 1. Number ofeigenrays as a function of the normalized distance of 
propagation R/L•. 

Number of Additional 

R/L• eigenrays rays 

2.25 250 0 

4.51 250 0 
6.77 250 0 

9.02 250 0 

11.28 250 C 

13.54 250 (, 

15.79 252 2 

18.05 254 ,•. 

20.31 256 6 

22.56 260 10 

24.82 276 26 

27.08 283 33 

29.33 296 41, 
31.59 314 6• 

33.85 337 8• 

36.10 355 105 

38.36 373 123 
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FIG. 8. A comparison of arrival-time variances for propagation through 
two-dimensional Gaussian fields (250 realizations). Eigenrays begin at 
x = (0,0) with directions such that each propagates past the point 
x = (R,0), i.e., the source-receiver problem. Preassigned-initial-direction 
(PID) rays begin at x = (0,0) with direction x• and propagate to Ix l = R. 
Results are normalized to the Chernov calculation at a distance of 40L/. 

experiments we fit our data to a two-term function of the 
following normalized form: 

2 2 4 --a• +a. . (12) b 
2(Ul )L/co E 

We force the variance to be zero at the origin; and by normal- •. 

izing 0 '2) as indicated--the Chernov prediction at ..• 
R/L•r = 1, we expect a Chernov variance dependency to .7 
yield a I = 1.0 and ap = 0.0. Table II reflects fitting the Z 
above equation to our complete set of experiments. • øø' 

Two features are evident. First, the coefficients of the • 

linear terms are noticeably less than the Chernov value. Only • •, 
when the simulation is limited to axial trajectories does • o,' 
a• • 1 (and a. = 0). Second, each nonaxial simulation has an • 
obvious nonlinear component. • 

To characterize this nonlinearity further, we computed 
for each simulation the distance at which the nonlinear com- 

ponent comprised 20% of the total variance. The results are 
clustered by dimension: They lie between 3 and 13 L;. for the 
3-D simulations, and between 15 and 23 L;. for the 2-D 
ones--the 23 L•. value being calculated for the eigenrays. As 
we noted above in commenting on Fig. 8, 23 L•. is the ap- 
proximate distance of the onset of significant caustics. 

TABLE II. Coefficients for polynomial approximation to phase variance 
[Eq. (12)l. 

Simulation Fig. no. a, a, p 

Ray-trace (3-D) 5 0.510 4.28e - 02 2.1 
Helmholtz (3-D) 5 0.479 4.64e - 02 2.1 
Parabolic (3-D) 5 0.467 5.71e - 02 2.0 
B-B 1.1 m/s (3-D) 6 0.748 4.82e- 03 2.5 
B-B 2.4 m/s (3-D) 6 0.765 2.20e - 03 3.0 
PID rays (2-D) 8 0.721 1.29e - 03 2.8 
Eigenrays (2-D) 8 0.677 2.48e - 05 3.8 
Axial rays (I-D) 4 0.983 - 8.74e - 09 3.6 

If caustics are a contributing factor, there is a possible 
explanation for the 20% distances being smaller in the 3-D 
simulations: The shape of the 2-D Gaussian spectrum is dif- 
ferent from that of the 3-D yon Karman spectrum. In the 3- 
D case, the yon Karman spectrum has a relatively longer 
"tail" toward high wave number. At least in scalar inhomo- 
geneous fields, the relevant parameter for the occurrence 
and spacing of caustics is the fourth derivative of the two- 
point spatial correlation function (Kulkarny and White, 
1982). And this parameter is significantly influenced by a 
long spectral tail. 

The 2-D simulations allowing us to compare travel-time 
variances between eigenrays and PID rays also give us the 
opportunity to compare mean travel times. We have ob- 
served that there is little qualitative difference between 
source-receiver and PID experiments with respect to travel- 
time variance. However, these conclusions do not apply to 
travel-time means. Observe Fig. 9, a plot of average travel 
times for our experiments in two dimensions. Remarkably, 
the PID rays are progressively retarded with respect to 
acoustic travel time in an undisturbed medium; whereas the 

Eigenraya 

PID rays 

o 

ß , I , I , I , I , I 
'• 0 O 16 24 32 40 

Propagation distance (R/Lf) 

FIG. 9. A comparison of mean arrival times for eigenray propagation and 
preassigned-initial-direction (PID) ray propagation through two-dimen- 
sional Gaussian fields (250 realizations). Results are presented as differ- 
ences from a transit time through a homogeneous medium R/c. and nor- 
malized in terms of that travel time for a distance 40L/. 
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eigenrays are initially advanced. Perhaps not coincidentally, 
the mean travel time of eigenrays begins to increase beyond 
R/L/• 20--the onset of significant caustics. Note that the 
PID ray averages exhibit no change in trend. 

The eigenray results are anticipated. In a source-receiv- 
er thought experiment, Codona et al. (1985), invoked Fer- 
mat's principle to show that the mean time for a pulse to 
travel a distance R in a turbulent field (modeled as a contin- 
uum of phase screens) must be shorter than R/c o, the time 
to travel through a homogeneous field. But this result is ob- 
tained in the range of no caustics. They show further that, 
beyond theft range, one should expect travel times to in-' 
crease-•ew•ntually above the homogeneous field travel time. 

The PID ray travel-time averages, however different, 
have also been predicted. Katz (1963), in his 2-D analysis, 
generates an expression that not only indicates ray retarda- 
tion, but also shows quantitative agreement with our 2-D 
results. [Here, we are able to invert his expression for R(t) 
to •(R). ] He identifies two retarding terms: one due to in- 
creased path length, the other due to the predisposition of 
rays to turn toward regions of slower sound speed. See also 
Keller (1962) for a 3-D analysis of ray tracing and Wenzel 
and Keller ( 1971 ) for an approach based on the wave equa- 
tion. 

To complete our discussion, we illustrate with Fig. 10 
the relative magnitudes of travel-time retardation and vari- 
ance for our 3-D ray-trace experiment and for our I-D axial 
experiment. Here, we plot the distribution of arrival times 
over 1000 realizations for several propagation distances. The 
small desce. nding tics mark the undisturbed arrival times 
t(R) = R/c o. In the axial case (where R = x• ), the distri- 
butions are symmetric with means equal to the undisturbed 
arrival times. In the 3-D case, the distributions are asymmet- 
ric with mean values progressively larger than the undis- 
turbed arrival times. It is noteworthy that in this latter case 
the travel-time variation is significantly larger than its mean 
retardation 

In summary, we offer a list of tentative conclusions: 
( 1 ) Travel-time variance must be expressed as a func- 

tion of propagation distance which includes both linear and 
higher-order terms. This result is found in the following 
situations: (a) preassigned initial direction ray propagation 
in two and three dimensions; (b) source-receiver propaga- 
tion (eigenray) in two dimensions. 

(2) The linear term in the relation between travel-time 

variance and distance equals the Chernov value only in I D. 
(3) The Helmholtz and parabolic approximations are 

equivalent 'to the full ray-trace equations with respeqt to 
travel-time variance. 

(4) Ray retardation is found in preassigned initial direc- 
tion ray propagation in two and three dimensions. 

(5) Ray advancement is found in 2-D eigenray propaga- 
tion prior to the occurrence of caustics. 

(6) Ray retardation is found in 2-D eigenray propaga- 
tion after the occurrence of caustics. 

V. CONCLUSION 

In this work we have introduced a unique approach to 
studying acoustic propagation through inhomogeneous me- 
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FIG. 10. Distribution of arrival times of acoustic rays for axial and full ray- 
trace propagation over 1000 realizations. Propagation distances :are given in 
units of L/. The descending tic marks denote arrival times for a constant 
acoustic speed of c,,. 

dia. By characterizing a field in terms of a collection of Four- 
ier modes, we have provided a means by which the acoustic 
ray-trace equations can be evaluated analytically at every 
point along a path. Thus we can perform accurate numerical 
simulations that are analogous to laboratory experiments. 
Unlike laboratory experiments, these simulations can map 
out the complete history of an acoustic wave. And, unlike 
laboratory experiments, these simulations can be performed 
with exact prescriptions of field properties and acoustic 
wave-front characteristics. 

The technique can be used in a variety of applications. 
Currently we are extending the approach to study the occur- 
rence of caustics in velocity-inhomogeneous fields having 
different spectral characteristics, and to study acoustic dis- 
persion in density-inhomogeneous fields. Further, by select- 
ing a small circle of"tagged" points to delineate the perim- 
eter of a hypothetical ray tube and following these points' 
propagation, one could infer acoustic intensity variability as 
well. 

Finally, we have seen that other approaches providing 
acoustic pressure repartitions, such as the parabolic approxi- 
mation, can also be adapted to simulations involving ran- 
dom fields. Our method could be particularly useful for pre- 
dicting acoustic intensity fluctuations in unsaturated or 
saturated conditions. 
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