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In this work, we investigate the temporal characteristics of acoustic ray propagation through sim-
ulated, weakly turbulent temperature fields. In a first set of experiments, we generate ensembles
of random scalar fields from randomly oriented Fourier temperature modes. Then, by integrat-
ing the ray trace equations, we estimate the distribution of arrival times for rays propagating a
distance R through them. We demonstrate that these arrival time distributions are Gaussian for
both axial and 3-D propagation and are primarily determined by the lower wave numbers of the
1-D fluctuation spectrum.

In a second set of experiments, we generate random fields comprised of Fourier modes prescribed
on a lattice, as in “box model” turbulence. In these simulations, we find that acoustic travel times
are significantly affected both by the periodicity of the fields and by the direction of acoustic
propagation with respect to the orientation of the box. Both effects can ultimately be attributable
to an inadequate representation of the low wave number region of the 1-D spectrum. We suggest
that these artifacts of simulated periodic fields may preclude their use for acoustic propagation
studies.

1. Introduction

The phase, frequency and amplitude distortion of acoustic and optical waves propagating
through turbulence (random inhomogeneous media) have an important impact on a wide
range of signals: radio transmission, optical images, sonar. Consequently, one would like to
know the pdf (probability density function) of the scattering of the signal as a function of
the statistical characteristics of the inhomogeneities of the medium. But, since obtaining
a full analytic result would seem not to be possible, researchers have focused on the more
modest goal of trying to predict some of the lower moments of the pdf for media which
are only weakly inhomogeneous.™ In those cases where the media have only temperature

*
This work was carried out while the second author was a visiting scholar at Johns Hopkins University.

203



204 M. Karweit & P. Blanc-Benon

(scalar) inhomogeneities, phase screen approaches and the parabolic approximation have
provided important results on scattering.®®

In this paper, we focus on the problem by numerically following acoustic waves through
simulated “turbulence”. For weakly inhomogeneous media when the acoustic frequencies
are high and the geometric approximation is valid, trajectories of acoustic (optic) phase
points can be followed via the ray-trace equations. If these phase points are followed out
to, say, a distance R over an ensemble of statistically-similar simulated fields, one can
accumulate the distribution of travel times t(R) and infer its pdf. Then, depending on
further assumptions, these travel time variations can be related to phase and frequency
distortion of either acoustic or optical signals.

Karweit et al.” used the above method to estimate acoustic travel-time variance in inho-
mogeneous velocity fields. In that work, he also introduced a method of producing “cheap
turbulence” which could be used for carrying out numerical experiments in acoustic prop-
agation. (See also Blanc-Benon, et al.® for further discussion on the numerical scheme.)
Previous works, e.g., Refs. 1-6, have characterized the statistical behavior of acoustic dis-
persion in terms of the following ensemble properties of the propagating media: the mean
and mean-square values of the fluctuations and their spatial derivatives, the inner and
outer length scales of the fluctuation field, and the fluctuation spectrum. Recognizing that
these field properties could be obtained without underlying dynamics, Karweit constructed
random velocity fields whose spectra and one- and two-point correlations matched those
of experimental turbulence data. Insofar as these fields were composed of sums of non-
integrally-related random Fourier modes, the fields were essentially infinite in extent. And
although individual fields did not have the properties of a dynamically-determined process,
the ensemble of fields possessed those characteristics relevant to acoustic dispersion. The
role of dynamics is further obviated because acoustic propagation is much faster than any
scale of turbulent motion. Consequently, in most propagation simulations a “frozen field”
approximation may be used.

This idea was later used by Juvé et al.® and Karweit and Blanc-Benon!? for propagation
through temperature fields.

In this paper, we use the same approach to address two questions. The first is an acoustic
one: What is the pdf of arrival-time scattering for acoustic rays propagating through fields
of temperature inhomogeneities? Here we obtain an empirical result.

The second is a modeling question: What characteristics must exist in simulated in-
homogeneous fields, if they are to be used in numerical experiments involving acoustic-
propagation?

In principle, one would like to produce an ensemble of simulated turbulent fields whose
spatial and temporal characteristics are governed by the Navier—Stokes equations. Turbu-
lence researchers have essentially achieved this, having developed not only sophisticated ap-
proximate models, but also complete numerical solutions of evolving fields. These schemes,
however, being based on a regular lattice of Fourier modes, produce fields which have re-
stricted length scales and finite size, i.e., “box turbulence”. But they do contain proper
dynamics, and they can be spatially-extended through their inherent periodicity. The
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question is, could such fields be effectively used in simulations of long-distance acoustic
propagation, say, farther than one periodic length? In this paper, we address this question
and demonstrate that using such fields may lead to significant problems within even one
period.

2. The Simulation of Fields based on Fourier Modes

In our investigation of acoustic dispersion through scalar-inhomogeneous fields, we will use
two slightly different versions of Karweit et al.” for constructing the simulated fields—both
involving a sum of Fourier modes. The first, which we will henceforth refer to as the “random
model”, is based on fields which are constructed from non-integrally-related random Fourier
modes. The second, identified as the “box model”, is based on fields constructed from a
regularly-spaced lattice of Fourier modes. This latter scheme produces integrally-related
Fourier wave vectors and periodic fields. See, for example, Rogallo!! for the construction
of traditional box-model turbulence.
In each case random, isotropic, scalar (temperature) fields are prescribed as:

T(x) = iAm(km)exp(ikm - X),

i=1

where N is the number of modes comprising the field, A(k) is the complex amplitude
coefficient determined by the chosen temperature-fluctuation spectrum, and kU is the wave
number corresponding to the jth Fourier wave vector k.

In our random model experiments, each field is composed of 2000 Fourier modes whose
wave numbers are equally spaced between 1 m~! and 60 m~!. The directions of the cor-
responding wave vectors are selected randomly over the surface of the sphere in k-space to
ensure statistically-isotropic fluctuation fields. See Fig. 1(a) for a 2-D illustration.

In our box model experiments, each field is composed of 2744 Fourier modes correspond-
ing to wave vectors defined on a 14 x 14 x 14 3-D lattice, where the wave vector spacing dk;
on the lattice in each of the three directions i is dk; = 1/(3lp). Iy is a length scale of the
temperature spectrum and will be defined below. This lattice, then, prescribes wave vector
components as k; = ndk;, where n takes integer values independently in each direction from
—7 to 6. (Figure 1(b) illustrates the distribution of these wave vectors.) The resulting field
has a spatial period of 27/dk; = 6mly. (The unusually sized lattice 14 x 14 x 14 was chosen
so that the number of independent modes in both the random and box model were roughly
equivalent.)

For both models, the phases of the wave vectors are randomly chosen over 0 — 27 by
selecting the real and imaginary parts of their complex coefficients A(k), where the absolute
value of each coefficient |A(k)| is specified in accordance with a prescribed temperature
spectrum.

We note that, since we want to produce real fields, i.e., fields with no imaginary com-
ponents, for every Fourier mode A(k)exp (ik - x) with an imaginary component there must
exist a conjugate mode A*(k)exp (—ik - x). In the random model, of the 2000 modes, only
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(a) random orientation (b) uniform grid

Fig. 1. Distributions of wave vectors for a random model (a) and a box model (b) field. For simplicity, the figures
illustrate typical wave vector distributions in one quadrant of a 2-D field.

half (1000) are independent. In the box model, of the 2744 modes, more than half (1646)
are independent. This difference is due to the fact that a number of wave vectors defined
on the lattice—those at the Nyquist frequency—have no conjugate counterparts.

In all the present experiments we choose a Gaussian-derived fluctuation spectrum. Al-
though not representative of true turbulence, this spectrum is often used as a practical
simplification. The advantage is that one can explicitly calculate the relationship between
the fluctuation power spectrum and the two-point spatial correlation. We begin by pre-
scribing a Gaussian two-point temperature spatial correlation function:

_ (T + D)T'(x)
T'x)?)

where r is the spatial separation and [y is the single length scale that defines the character-
istic scale of inhomogeneities of the field. For such a function, the integral length scale of
the inhomogeneities is Ly = /mlg/2. For the present work we have taken lo = 0.1 m.

Then, by taking the Fourier transform of this correlation function, we obtain the 3-D
power spectrum:

C(r) = exp(~r?/13),

62k213
G(k) = 2
2w

(Ref. 12). 6? is mean square temperature fluctuation of the field. For a wave vector of
length k, the amplitude of the temperature fluctuation associated with that mode is

exp (—k%13/4)
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|A(k)| = \/G(k)Ak, where Ak is the distance in wave number to the next Fourier mode. For
the random model, Ak is constant since the wave vectors comprising the field are selected
with equal spacing in k. For the box model, however, the situation is more complicated.
Not only are the wave numbers associated with the latticed wave vectors nonuniformly dis-
tributed in %, there are also groups of wave vectors having the same value of k, and the
spectral amplitude must be partitioned amongst them.

Summing the contributions over N wave vectors yields one realization of a fluctuating,
isotropic temperature field whose integral length scale is L. In ensemble, these fields have
an expected value of (T"(x)) = 0, and a mean-square fluctuation of (T"(x)?) = 62. Our
experiments use v/62 = 3.53°C.

3. Propagation of Acoustic Waves

For each of our two models, we consider acoustic propagation in which the geometric ap-
proximation is valid, and for which the ray-trace equations describe the propagation of
phase points on an acoustic wavefront. (See Neubert and Lumley'3 and Candel'* for de-
tailed derivations of the conditions.) Each perturbation field is considered “frozen” and is
individually constructed from Fourier modes as described above.

For acoustic propagation, each temperature fluctuation field is a perturbation field e(x) =
T'(x)/To, which can then be interpreted as an acoustic celerity field c(x) = cpy/(1 + €(x)),
where cg is the unperturbed sound speed of 340 m/s at the reference temperature Ty =
293°C. It is the celerity field on which the following ray-trace equations'® are based:

dsi 1 Oc(x)
dt  c(x) 8z;

s is an auxiliary “slowness” vector defined as s = n/c, with n, the unit vector normal to
the acoustic wavefront. In all our simulations, we begin at x = 0 with an acoustic phase
point having an initially prescribed direction of propagation—the z; direction. Numerical
integration is carried out using a fourth order Runge-Kutta scheme with a time step At =
1/(cokmax), where kmax is the magnitude of the largest wave vector comprising the field.
This choice of At is detailed in Blanc-Benon et al.8

To build a pdf of acoustic arrival times, over a large ensemble of statistically-similar per-
turbation fields, we numerically integrate the ray-trace equations and follow the trajectory
of one phase point to a radial distance R from its initial position. The distribution of times
becomes our empirical estimate of the pdf.

4. Experiments Using the Random Model

Using the random model, we carry out two sets of propagation experiments: one governed
by the complete set of ray-trace equations, the other governed by a restricted set in which
the phase point is allowed to propagate only along its initial direction (axial propagation).
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Fig. 2. Distribution of arrival times of acoustic rays t(R) as a function of travel distance R for 3-D and axial
propagation. Distributions are normalized with respect to the reference time R/cp and the Chernov prediction of
arrival-time variance at a distance of 40L¢ (t' 2(40L ek

This latter set of experiments simulates an approximation due to Chernov! who used the
restriction to estimate the variance of acoustic arrival times in inhomogeneous media.

To follow the trajectory of an acoustic phase point determined by the Chernov assump-
tion, we remove all effects of nonaxial influence. This reduces the number of ray-trace
equations from six to two.

Distributions of arrival times of phase points traveling through temperature fields under
these two sets of governing equations are given in Fig. 2. The distributions are normalized
with respect to a mean arrival time of R/cy, i.e., an unperturbed acoustic ray; and with
respect to the arrival time variance at R = 40L; as estimated by Chernov.!

In principle, we can make valid inferences about arrival time distributions over the entire
distance of R = 40L;. However, if we want to make the assumption that time variation
may be equated to phase variation, then our results would be valid to only about half
that distance because of the potential occurrence of caustics. The connection between time
variation and acoustic phase becomes unclear after a caustic. Our estimate for the range
of validity comes from the theoretical analysis of White'® and the numerical experiments
of Blanc-Benon et al.l” These works show that first caustics occur at distances of order
(\/6_2)‘2/ 8L 7. In the present study, that distance is approximately R = 21Ly .

5. Lower Order Moments

Mean travel times are nominally R/cy. However, as evident in Fig. 2, there is a systematic
lengthening of travel time beyond R/cy as R increases in the 3-D case. These increases
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have been predicted by Katz* in a 1- and 2-D analysis relating travel distance with time,
i.e., R(t). The increase consists of two parts: (1) the increase of travel time associated with
a phase point spending more time in regions of low celerity than in high celerity, and (2)
for 2-D propagation, an increase associated with the meandering of the phase point and,
consequently, the longer path to reach a distance R.

If we invert the Katz result to obtain an average retardation time (A¢(R)), we find:

€2 2 R

(at(R) = § (3 + lo—zRLf> =

Although we would not expect our data to fit this expression precisely because we are
considering a 3-D problem, we would expect our mean retardation time to have similar
form, i.e., to have a retardation proportional to the square of the distance plus a very small
component linear in propagation distance. Figure 3 plots log({A¢(R))) vs log(R) of both
the inverted Katz result and our 3-D data to confirm the similarity of form. Retardation
times for our axial experiments are two orders of magnitude lower and are not plotted.

Figure 4, curves (a) and (b) show the variance (second moment) of travel times for 3-
D and axial propagation, respectively. (Curves (c¢) and (d) will be discussed later.) The
solid line represents the Chernov prediction of (t*(R)) = 62RLs/(2To%co?). The travel
time variance in the axial case clearly compares well with this linear function. However,

. Py
s,
4
//
ol Y/
//
//
~ | s
gL V4
2 v/
g A
¢ Y
ot y
& 7
? r ////
g = ///// Gaussian
T %/ ——_ 3-D simulations
T‘; //// — . axial simulations
[ —//5// o R=20L,
7 e R=40L,
7 . ! N ! PN B B l . |
-3 -2 -1 0 1 2 3

(t(R)~<t{R)>)/<t'3(R)>1/2

Fig. 5. Normal quantile plots of the distributions of arrival times t(R) at R = 20L and 40Lj for both axial and
3-D simulations. Data are plotted as normalized arrival times (t(R) — (¢(R)))/{t'(R))1/2 vs that time v such that
the cumulative distribution F(¢(R) — (t(R)))/{t'2(R)}!/? equals Fy(v), the cumulative distribution function of a
Gaussian. Here, Gaussian distributions appear as straight lines. Curves are offset vertically for clarity.
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the variance for unrestricted propagation progressively exceeds the Chernov result. An
interpretation and discussion of these findings appear in Karweit et al.” and Karweit and
Blanc-Benon.1?

The normalized third moments—the skewnesses—of the travel time pdfs are essentially
zero for both the axial and 3-D trajectories. The normalized fourth moments—the flatness
factors—of the travel time pdfs have values within 10% of those of a Gaussian distribution,
i.e., 3.0. To further suggest that these pdfs are indeed Gaussian, we plot in Fig. 5 the pdfs
of arrival times for both axial and 3-D propagation at two distances 20L; and 40L; as
normal quantile plots. In this representation, Gaussian pdfs appear as straight lines—as do
our four curves. Thus the distributions shown in Fig. 2 are essentially Gaussian, differing
only in their variances and mean propagation times.

As we will show in the next section, acoustic travel-time depends almost entirely on the
mean celerity of the field along the path of propagation; and that mean celerity is comprised
of ¢y plus a weighted sum of wave number projections in the direction of propagation. Insofar
as these projections are random variables, by the central limit theorem, the distribution of
mean celerities over an ensemble of fields should be Gaussian.

6. An Approximation to Axial Propagation

In this section, we want to confirm our statements in the previous paragraph, i.e., that, in
these weak perturbation fields, the difference in travel time between a phase point traveling
an axial trajectory a distance R and R/cq is accounted for almost entirely by the spatial
average of the perturbation along the trajectory. To do this, we carry out an ensemble of
trajectories along the x1 axis with modified perturbation fields. This modification consists
of subtracting from each field the average value of €(x;,0,0) between x; = 0 and z; = 40L;.
Consequently, a phase point traveling axially between 21 = 0 and x; = 40L will experience
a perturbation field whose spatial average is precisely zero.

Over 2000 realizations, we performed this experiment and calculated the travel-time
variance. The results are given in Fig. 4 curve (d). Note that the travel time variance
increases with R for small R, though not at the Chernov rate. At approximately halfway
the variance peaks, then decreases to (essentially) zero at 40Ls. At any distance other than
40L;, the average perturbation is nonzero since we subtracted out a single value based on
40L¢; and the further R is from 40L¢, the larger is the average perturbation.

From these results we must conclude that variations in arrival times depend almost
entirely on the distribution of nonzero-average perturbations from each of the ensemble of
fields in the direction of propagation. Thus we can express the travel time of a phase point
simply as the mean perturbation (up to that distance) times distance:

R d:L‘l 1 R T’(.’Dl 0 0)
R) = —— =~ Rfcg ~ — — Vdx.
HR) /0 c(z1,0,0) feo 2Co«/o To o

Let T'(z1,0,0) = T'(z1,0,0) + T(R), where T is the spatial average of the fluctuation field
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over the trajectory of propagation, and 7 is the remaining fluctuation. Then,

1
200T0

RT(R)
200 T() '

R 1 R _
#(R) = R/co — / P(21,0,0)dz) — —— / T(R)dz1 = R/co — 0 —
0 2¢0To Jo
The spatial average of the celerity field is easy to calculate, since our perturbation fields
are made up of a sum of Fourier modes. Each mode contributes separately to T(R) as

_ 1 R
T(R ki, k) = 3 /0 |A(K)| cos(krz1 + ¢)da1 ,

where | A(k)| is the amplitude of the Fourier mode having wave number k, k; is the projection
of wave vector k along 3, and ¢ is a random phase. We can reduce this to:

T(R, b, k) = AWk, R)cos (757 +)

where X LR
B(ky, R) = wg i (—3—) .

These two expressions, although integrated along z, are valid for any direction of prop-
agation by considering the projection of the wave vector k along the axis of propagation.
We will refer to the projection of k in the direction of propagation as k.

Thus, in this simplification, the variability of phase point travel time is simply a sum of
cosines terms with random phases, and with amplitudes which depend on k; and R.

We can deduce this result directly from the energy spectrum G(k). Insofar as we have
restricted our ray propagation to the x;-axis, phase points are affected only by variations
along that line which are spectrally represented as the 1-D scalar power spectrum in the k;
direction: 1 e Gk

1
GV (k) = A — ik
(Ref. 18). For our G(k), GM(ky) is trivially integrated to yield G()(k;) = (6%1y/2+/7) exp
(—k?1p2/4). Here, the power is mostly contained in the low wave numbers. In fact, there
is peak power at k; = 0, i.e. in the mean. (This phenomenon is not unique to a Gaussian-
derived spectrum, nor to scalar fields. See, for example, Batchelor,'® and, more recently,
the wind-tunnel turbulence experiments of O’Neil and Meneveau.??)

What this result implies is that the axial trajectories of acoustic phase points are deter-
mined by progressively lower wave number perturbation modes. And as our discrete wave
number example above indicates, only those modes which have nonzero averages over the
distance R have any contribution at all.

Refer again to the equation for T(R, k1, k). B(k1, R) = 2 sin(k1R/2)/(k1R) is familiar
to turbulence experimentalists. It expresses the so-called “length correction” for measuring
velocity fluctuations with a hot wire anemometer where the received signal is just the average
velocity along its length.?! A hot wire of finite sensing length will see no contribution from
a velocity perturbation whose positive and negative values along the length of the wire just
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cancel, and will have varying contributions from other velocities depending on their scale of
fluctuation and the length of the hot wire. This is a precise analogy to our axial propagation
problem where travel time depends only on the average perturbation along its trajectory.

B(k1, R) acts as a spectral filter on G (k;). For very small k1R, B(k;, R) = 1, and
the full spectrum of G(l)(kl) contributes to the travel time variation. However, as k1 R
increases, B(k1, R) begins to approach the value 1/(k;R). This, in effect, filters out the
perturbation contributions from larger k1. In our case, at a distance of 40Ls, R = 3.54 m.
Consequently, it is only k1s < 1 that contributes significantly to the result.

This analysis applies, of course, only to axial propagation. But, the effect remains in the
full 3-D propagation problem, to wit, Fig. 4 curve (c). These are the travel time variances
of an ensemble of phase points which have been allowed to meander via the full ray-trace
equations, but whose propagating media have had the mean value of the perturbation along
the z;-axis subtracted out for the distance 40L;. Whereas, for axial rays we obtained a
variance of zero at 40L¢; here, because the phase points are meandering somewhat off the
axis, the value is nonzero. The more important comparison, however, is with curve (b)
where unrestricted trajectories were calculated over undoctored fields. In this case, the
reduction in variance at 40L; is approximately 20%.

The very-low wave number dependence of acoustic propagation which has just been
demonstrated suggests that simulations using “box model” fields may incur problems. That
conjecture is investigated in the next section.

7. Experiments Using the Box Model

The trajectories of phase points were followed through box model simulated fields having
the same Gaussian-derived fluctuation spectrum as above. Over an ensemble of 1000 re-
alizations, phase points were followed a total distance of 40L ;—slightly less than two box
lengths—using the full 3-D ray-trace equations. The initial direction of propagation was
the z; direction.

Unlike the random model, here we have wave vectors in predetermined directions—
those specified by the 143 lattice. And with respect to the direction of propagation—
predominantly the x; direction—our complete collection of Fourier modes consists of 14 x 14
planes of wave vectors for which their k; projections are k; = n/(3lp), where n takes on
integer values from —7 to 6. Fully 14 x 14 of our modes contribute only in the mean to
the fluctuation field, i.e., n = 0. The remaining modes contribute in seven discrete steps of
wave number.

To understand the contributions of these modes to acoustic travel time in the z; direc-
tion, we ran three sets of experiments: one in which the fields consisted of only those wave
vectors in the lattice whose k; components were zero, one in which the fields consisted of
only those wave vectors whose k; components were nonzero, and one in which all 143 wave
vectors were present. The results for travel-time variance are presented in Fig. 6.

Here we see that, except for very short distances of propagation, the impact of fields
having fluctuations with only nonzero k; components is extremely small and 1s very sensitive
to the period of the box—in this case R/Ly = 21.3. The impact of fields having only k; = 0



214 M. Karweit €& P. Blanc-Benon

- —— Using all wavevectors /
——— Using k, = 0 wavevectors J
----- Using K| > 0 wavevectors///

0.8

0.6

0.4

Chernov solution

<U3(R)>/<t'3(40L,)>cy

0.2

0.0
o
<)
=
=}
-
133

20 25 30 35 40

{R/Ly)

Fig. 6. Arrival time variance for rays propagating in the x; direction through periodic fields. Three types of fields
are considered: those prescribed by a full lattice of wave vectors k;, those prescribed by a lattice in which only wave
vectors with k1 = 0 are present, and those prescribed by a lattice in which only wave vectors with |k1| > 0 are present.
Results are accumulated over 1000 realizations and normalized with respect to the Chernov solution (t'2(R)) ch at a
distance of 40L¢. The Chernov solution is plotted for comparison.

components is quite the reverse. In this latter case, each field presents a constant increase or
decrease in celerity to a phase point along the whole trajectory. Consequently, travel times
will differ from R/cy in proportion to distance of propagation. This will result in a travel
time variance for an ensemble of fields which is quadratically increasing with distance—as
demonstrated in Fig. 6. The final curve, which plots the variance from an ensemble of fields
having all 143 modes, is essentially the sum of the two other curves. This last result is no
surprise, since in the section above, we deduced that travel time variation is made up of
the effects of each of the modes in the field. Note that this final curve and its predictable
extension to increased distances do not compare, even qualitatively, to the Chernov result.

The experiments run for Fig. 6 are, of course, a very special case—they were run with
the initial propagation in precisely the x; direction. That particular direction gave rise to
a unique discretization of wave vector components in the direction of propagation. What
results are obtained if the initial propagation is at an angle with respect to the lattice of
wave vectors?

Figure 7 illustrates the effect on the projection of the latticed wave vectors when the
direction of propagation is not aligned with the edge of the lattice. In this example, the di-
rection of propagation is 2° from the x; direction along the diagonal. Here, each wave vector
in the lattice is represented as a point whose ordinate is its wave number and whose abscissa
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as a function of wave number k, for several propagation distances R is superposed to illustrate the diminishing effect
of higher wave numbers at larger R with respect to acoustic travel time.

Is its projection in the direction of propagation k,. The circles reflect the case previously
discussed where k, = k1. Note that there are only eight discrete projections on ky, and that
wave vectors of many magnitudes contribute to similar projections.

The crosses reflect the present case. Wave vectors having identical projections in the for-
mer case are now smeared in a systematic continuum. The three superposed curves represent
the low-pass spectral filter B(k,, R) for three propagation distances, R = 5L¢,20L¢,40L;.
Recall that B(kp, R) is the weighting function by which each projected Fourier mode is
multiplied for its contribution to the phase point travel time. Note that, at even a distance
of R = 5Ly, over half of the larger modes comprising the field have lost their influence. By
R = 40Ly, only the lowest modes are important. How does propagation direction, then,
impact on acoustic travel-time variance in simulated box-model fields?

Figure 8 contains the answer. Here, results are plotted for ensembles of experiments
which began with a variety of different initial directions of propagation—each using fields
generated from the box model. A curve generated from experiments using the random model
is included for comparison. The obvious effect of the periodicity of the box is reduced when
the initial angle is at least 8°. And the distance at which the periodicity is encountered
increases with the cosecant of the initial angle of propagation to a maximum of /3 at 45°.
But the variances are systematically low for distances within one box period and moderately
scattered for distances over one box period. For the cases of 0° and 2°, higher than expected
variances occurred because there was an excess of wave vectors whose projections in the
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Fig. 8. A comparison of arrival-time variances for propagation through “infinite” and periodic fields. Curves are plotted
for four different initial angles of propagation in the periodic fields. Results were obtained from 2000 realizations and
are normalized to the Chernov calculation at a distance of 40L;.

direction of propagation were zero or very small. Conversely, for the cases of 8° and 45°,
lower than expected variances occurred because there was a relative deficit of wave vectors
whose projections were very small. Unfortunately, using the box model, the results that
one obtains appear to be very geometrically dependent.

8. Conclusion

In this study, we have modeled random isotropic perturbation fields as sums of Fourier
modes in two ways: with randomly oriented wave vectors (random model) and with lattice-
determined wave vectors (box model). The random model was chosen originally for its abil-
ity to generate random fields of infinite extent with prescribed spectra—essentially “cheap
turbulence”. In the present paper, we have discovered that the most important feature of
this technique is its ability to contain very low wave numbers projected along any given
direction. As our axial propagation analysis showed, it is only the very lowest wave numbers
that significantly contribute to variations in travel time.

Our immediate result using the random model is the description of the pdf of acoustic
travel time as a function of distance traveled in weakly inhomogeneous scalar fields. That
result is based on following the trajectories of acoustic phase points through an ensemble
of simulated fields numerically integrating the ray-trace equations.



Temporal Characteristics of Acoustic Ray Propagation ... 217

The more crucial result using this model is our understanding of what features of simu-
lated inhomogeneous fields are most important for acoustic propagation.

A deficiency of the present random model, however, is the difficulty of introducing time
dependency to the field, were it necessary. But, unless one could accommodate very large
grids which could represent both the inner scale (high wave number) and a very long spatial
periodicity (very-low wave number), the turbulence community’s box models may not be
the answer either. As we have seen with our box model experiments, there exist geometric
artifacts associated with latticed fields which appear to strongly influence the simulation
of acoustic propagation. As indicated above, the lowest modes of the 1-D power spectrum
in the direction of propagation are the determinants of acoustic propagation. And in box
model fields, these are the very modes that are missing. (An interesting attempt to model
nonperiodic, but time-evolving, turbulence is Turfus and Hunt??).

Truman and Lee?? numerically simulate the axial propagation of an optical wave through
a turbulent shear layer in which the flow is prescribed by periodic boundary conditions.
They present only qualitative results for travel time differences, depending on the direction
of propagation. But one must wonder to what extent their results were affected by the
imposed constraints of the field.

Our observations are based on latticed scalar fields. What the effect of periodicity and
direction of propagation would be in vector fields requires further study. Since each Fourier
mode in a vector field has an additional degree of freedom, the problems presented here
might be reduced. Also, by using a larger number of lattice points (1283 elements are now
possible), an extended range of lower wave numbers could be accommodated. This would
surely help considerably—but then constructing the fields would no longer be “cheap”.

In summary, it would seem, that if box models were to be used for the study of acoustic
propagation, the difficulties we have encountered here would, at least, have to be explicitly
addressed.
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