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On the Feasibility of a Matched-Field Inversion in a
Three-Dimensional Oceanic Environment Ignoring

Out-of-Plane Propagation
Alexios Korakas, Member, IEEE, and Frédéric Sturm

Abstract—Inverse problems in ocean acoustics are based on 2-D
modeling of sound propagation, hence ignoring the effects of hori-
zontal refraction, referred to as 3-D propagation effects. However,
the acoustic propagation in shallow-water environments, such as
the continental shelf, may be affected by 3-D effects requiring 3-D
modeling to be accounted for. The aim of this work is to investi-
gate the importance of the 3-D effects with respect to the perfor-
mance and reliability of typical 2-D-model-based inversion proce-
dures of ocean acoustics. The study is carried out on a well-estab-
lished synthetic test case which exhibits well-known 3-D effects. A
matched-field inversion procedure is implemented based on the ex-
haustive search over the parameter space. The feasibility and the
limits of inverting low-frequency noisy 3-D synthetic data for some
parameters describing the test case by matching replica from 2-D
computations are explored. Both synthetic data and replica are
generated using a parabolic-equation-based code. This approach
highlights the relevance of using 2-D propagation models when in-
versions are performed at relatively short ranges from the source.
On the other hand, important mismatch occurs when inverting at
farther ranges, demonstrating that the use of fully 3-D forward
models is required.

Index Terms—Inversion, mismatch, shallow water, underwater
acoustics, 3-D.

I. INTRODUCTION

T
HIS paper deals with the importance of the effects of

out-of-plane acoustic propagation with respect to the

reliability and performance of inversion procedures typically

applied in ocean acoustics (e.g., ocean acoustic tomog-

raphy or geoacoustic inversions). In particular, we focus on

shallow-water environments where the interaction of sound

with the ocean bottom dominates acoustic propagation. Real-

istic shallow-water environments, like those encountered on

the continental shelf, rarely present a horizontal bathymetry.

Out-of-plane propagation effects, also referred to as 3-D effects,

may thus occur from the successive reflections of the sound off

the nonhorizontal seabed, during which the acoustic waves are

gradually refracted in the horizontal direction [1]–[5].

Matched-field techniques for the inversion of recoverable

parameters of the oceanic environment are particularly adapted
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to shallow-water environments and their use has become wide-

spread over the last decades [6], [7]. Matched-field inversion

relies on correlations between acoustic propagation field data

measured on one or more hydrophone arrays, and replica of

the acoustic field generated by an ocean acoustic propagation

model, namely the forward model. The correlations are ex-

pressed through some cost function, and the inverse problem is

formulated as an optimization process over a set of parameters

involved in the forward model to obtain an estimation of their

values.

It is clear that the performance and reliability of the above in-

version procedure strongly depends on the forward model, and,

more specifically, on the relevance of the simplifying physical

assumptions underlying it. The modeling assumptions generally

result from a tradeoff between speed and accuracy requirements.

On the one hand, the forward model has to be fast enough for

the inversions to be performed in reasonable times and, on the

other hand, it has to take the important physical phenomena into

account to correctly predict and interpret the propagation effects

within some acceptable margin of error.

The most commonly used assumption until now is that of

axially symmetric environments leading to the so-called 2-D

models, i.e., models assuming that the sound energy is con-

served within the vertical plane containing the source and the

receiving array. Their main advantage is that they are fast and

efficient, especially at low frequencies, in the sense that they

lead to fast inversion procedures while providing sufficient ac-

curacy to meet the needs of the considered applications.

Recently, a growing number of publications related to ocean

acoustics put their focus on the continental shelf environment

(see, for instance, [8]–[10]) which presents a relatively weakly

sloping bathymetry. It is well known that acoustic propagation

over a sloping bottom geometry is subject to horizontal

refraction [1]–[5]. In this case, it has been demonstrated that

the 2-D approach to propagation, which ignores out-of-plane

propagation, fails to interpret the propagation effects and,

instead, fully 3-D modeling is required to correctly predict

the acoustic field [3], [11]–[16]. Nevertheless, no systematic

study has been reported, to the authors’ knowledge, dealing

with the potential impact of out-of-plane propagation effects

onto inversion results. The main reason lies in the significantly

increased central processing unit (CPU) time requirements of

fully 3-D models to such an extent that a 3-D-model-based

inversion quickly becomes prohibitive for more than two

parameters at a time.
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In a recent work [17], inversion results of acoustic data col-

lected in a continental shelf area near the Florida coast [18] sug-

gested that an important mismatch might occur when 2-D prop-

agation is assumed, i.e., when out-of-plane propagation effects

are ignored [19]. Clearly, the question that arises is whether the

3-D effects that might be present in the acoustic data measured

in a continental shelf area can affect the performance and reli-

ability of an inversion based on a 2-D forward model, and, in

case the answer is yes, to which extent.

In this work, the feasibility and the limits of an inversion in a

3-D synthetic oceanic environment assuming 2-D propagation

are investigated. The study is carried out on the 3-D extension

of the Acoustical Society of America (ASA) wedge benchmark

[20], as defined in [14], which is a well-established test case

with well-known 3-D effects. A simple matched-field inversion

procedure implemented in a Bayesian framework and based on

the exhaustive search of the parameter space is used. It is briefly

summarized in Section II. Although this approach is time con-

suming, it is robust and convergence check is straightforward.

In Section III, the 3-D effects in the 3-D ASA wedge are re-

called and the slope effect on inversion is examined by means

of a sensitivity analysis of the objective function. This prelimi-

nary analysis aims at dictating us an efficient approach to deal

with our problem but also aims at providing physical insight into

the inversion results. The inversion results are presented and in-

terpreted in Section IV. This is followed by a discussion con-

cluding this paper. Efforts have been made to maintain a simple

approach providing valuable insight without loss of generality.

II. MATCHED-FIELD INVERSION APPROACH

The problem of inverting acoustic field data due to a point

source to infer parameters characterizing the oceanic environ-

ment is nonlinear due to the nonlinear relationship between the

acoustic field and the parameters. The Bayesian approach to

inversion thus offers a favorable framework for a meaningful

interpretation of the solution including uncertainty analysis.

When applied to ocean acoustics, this approach leads to the

matched-field inversion technique [21], [22]. This section

briefly describes the Bayesian formulation of the inverse

problem and the specific approach used in this study. For

further details, the reader is referred to standard texts on the

matter, e.g., [23] and [24].

In the Bayesian formulation, the solution of the inverse

problem is fully characterized by the posterior probability

density (PPD) function of the parameters. Let the -length

complex vector denote the observed (or measured)

acoustic pressure field data on an -element receiving array

at some location in the water column, and the predicted

data obtained with an ocean acoustic propagation model as a

function of the -length vector denoting the set of param-

eters to be recovered. The starting point of the formulation is

the relation between the observed and the predicted data, which

can be written as follows:

(1)

where the complex vector denotes the error (or noise) term

including both experimental and theory errors [23].

The error term is generally not known and the assumption

of complex Gaussian distributed errors is commonly adopted.

Under this assumption, the PPD, defined as the probability den-

sity function of given , takes the following form:

(2)

where is the objective function of the inverse problem,

is a probability density function reflecting the a priori in-

formation on the parameters, and the integral in the denominator

is evaluated over the parameter space whose dimension is

. The objective function is given by

(3)

where the matrix is the error (or data) covari-

ance matrix with diagonal elements representing the variance

in the data and off-diagonal elements representing the error cor-

relations between receiver pairs. In practice, the predicted data

are provided by propagation codes that do not take the source

strength into account. The predicted data can thus be written as

, where is the complex source strength

at frequency , and denotes the replica vector of the

acoustic field at the array computed by a propagation code at

the same frequency.

The objective function can be expressed in various forms de-

pending on the content of the data to be exploited in the inver-

sion [25]. In this study, we consider a single-frequency source

signal with unknown source strength. Additionally, assuming

spatially uncorrelated errors along the array (i.e., from one re-

ceiver to another), the error covariance matrix writes

, where denotes the variance in the data and the iden-

tity matrix. The objective function is thus obtained according to

[21], [22], and [25] as

(4)

where is the Bartlett function, correlating the observed

data with the replica, given as

(5)

In this form, the Bartlett processor values are confined between

0 and 1, where 0 corresponds to a perfect match between the

observed data and the replica. Note here that, whereas and

in (4) depend on frequency, they are considered constant

in a single-frequency inversion.

The PPD is a multidimensional function for and

various statistical measures can be introduced for its in-

terpretation. We here resort to the posterior mean estimate
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of the parameter set, where the mean

estimate of the th parameter is defined as with

(6)

The standard deviations , , are

used for the assessment of the dispersion of the estimate, where

denotes the variance of the th parameter defined as

(7)

Since the relationship between the data and the parameters is

nonlinear, the PPD does not necessarily follow a Gaussian dis-

tribution. The mean estimate and its standard deviation for the

interpretation of the solution should thus be used with care. In

particular, it is useful to visualize the posterior marginal densi-

ties of each parameter, obtained by integrating times the

PPD as below

(8)

The mean estimate and standard deviation thus represent accept-

able measures for a parameter whenever its posterior marginal

density is unimodal and quasi-symmetric.

In practice, many authors resort to the maximum a posteriori

(MAP) estimate providing the best match between the observed

data and the replica (e.g., see [6]). The MAP estimate denoted

is defined as the parameter vector that maximizes the

PPD

(9)

or, equivalently, that minimizes the objective function

(10)

Since and are constant in (4), this is also equivalent to

minimizing the Bartlett function. Its value at the MAP estimate

will be considered here to assess the match between

the observed data and the replica. To this end, it is also useful to

visualize the comparison of the transmission loss (TL) curves

along the array corresponding to the observed data with those

corresponding to the replica obtained using the MAP estimate.

Note finally that obtaining the MAP estimate does not require

the computation of the -dimensional integral in the denomi-

nator of (2). However, it does not provide any indication on the

dispersion of the estimate.

The evaluation of the PPD and the measures (6)–(8) for its in-

terpretation requires the evaluation of -dimensional integrals

where can generally be large. To address this issue, many au-

thors consider the use of elaborate optimization algorithms [21],

[22], [24] to efficiently sample the parameter space. However,

for the purpose of this work, the PPD is sampled over the pa-

rameter space using exhaustive search, also referred to as grid

search [24]. Although time consuming, this approach is known

Fig. 1. Schematic representation of the 3-D ASA wedge benchmark case.

to be robust and convergence check is straightforward. In prac-

tice, the exhaustive search requires defining bounds for each pa-

rameter and discretizing the resulting intervals. Convergence is

obtained by sufficiently refining the discretization of the param-

eter space.

III. SYNTHETIC ENVIRONMENT: A PRELIMINARY ANALYSIS

The synthetic environment considered in this study is the 3-D

ASA wedge benchmark shown in Fig. 1. It consists of a water

layer lying over a fluid bottom half-space with a constant slope

of 5% 2.86 in the -direction (or, equivalently, for 0 ).

The water depth at the source is 200 m, the water sound speed

is 1500 m/s, and the water density is 1 g/cm . The bottom

sound speed is equal to 1700 m/s, the bottom density to

1.5 g/cm , and the attenuation of sound in the bottom to

0.5 dB/ . A point source is positioned at a depth of 40 m.

We focus here on the vertical plane oriented in the across-slope

-direction (or, equivalently, in the azimuthal direction corre-

sponding to 90 ) along which the water depth is constant

and equal to (see thick line rectangle in Fig. 1).

The acoustic field along a receiving array positioned in the

across-slope direction is known to be highly 3-D, i.e., it is af-

fected by out-of-plane propagation resulting in strong 3-D ef-

fects, such as multiple mode arrivals, mode shadow zones, and

intramode interference phenomena. The 3-D effects are inter-

preted as the accumulated effect of the multiple interactions

of sound with the sloping interface during which the sound is

gradually horizontally refracted towards the downslope direc-

tion [1]–[5]. From the viewpoint of propagation modeling, the

3-D aspect of the field is determined by one single parameter:

the slope. Therefore, to investigate the impact of the 3-D effects

onto inversion results, we need to examine, in a preliminary step,

the sensitivity of the objective function (4) with respect to the

slope value. The sensitivity analysis also permits to identify the

most important parameters with respect to the inverse problem.

Although the parameters are constant within the vertical

plane across slope, the field presents gradual and abrupt vari-

ations as a function of range along that specific azimuthal

direction. Several array ranges are thus examined. In what

follows, the 3-D effects predicted for the 3-D ASA wedge are

first described. The frequencies of 25 and 35 Hz are considered,

for which three and four propagating modes are excited at the

source, respectively. The sensitivity analysis is then performed

on both horizontal line arrays (HLAs) and vertical line arrays

(VLAs) considering several array ranges chosen accordingly.



KORAKAS AND STURM: ON THE FEASIBILITY OF A MATCHED-FIELD INVERSION IN A THREE-DIMENSIONAL OCEANIC ENVIRONMENT 719

Fig. 2. Transmission loss (dB re 1 m) in the vertical plane across slope due to
a 25-Hz point source located at a depth of 40 m.

Fig. 3. Transmission loss (dB re 1 m) in the vertical plane across slope due to
a 35-Hz point source located at a depth of 40 m.

TABLE I
TYPICAL 3-D EFFECTS FOR THE 3-D ASA WEDGE TEST CASE OBSERVED

IN THE ACROSS-SLOPE DIRECTION AS A FUNCTION

OF RANGE FROM THE SOURCE

A. Description of the 3-D Effects

Figs. 2 and 3 show the TL versus depth and across-slope range

as predicted by the fully 3-D parabolic equation (PE)-based

code 3DWAPE [15] for the 3-D ASA wedge and for the fre-

quencies of 25 and 35 Hz, respectively. By inspecting the in-

terference fringes in each figure, several zones can be identified

as a function of range, each zone being associated to different

modal contributions in the acoustic field. These are described

below for each frequency. Typical 3-D effects such as multiple

mode arrivals and mode shadow zones for each of the two fre-

quencies are summarized in Table I.

At the frequency of 25 Hz, three propagating modes are ex-

cited at the source. Three zones can be identified as a function

of range. The first zone, extending up to approximately 11 km,

is characterized by single arrivals of each mode initially present

at the source. Note that the interference fringes tend to shrink

with increasing range in the across-slope direction. At the range

of approximately 11 km, mode 3 reaches its cutoff range. The

second zone extends then up to 17.5 km corresponding to the

cutoff range of mode 2. This zone exhibits typical interference

Fig. 4. Comparison of TL versus across-slope range corresponding to 2-D
(dashed line) and 3-D (solid line) computations at the frequency of 25 Hz for
a receiver depth of 40 m.

Fig. 5. Comparison of TL versus across-slope range corresponding to 2-D
(dashed line) and 3-D (solid line) computations at the frequency of 35 Hz for
a receiver depth of 40 m.

patterns between modes 1 and 2. Note here that by initializing

the PE marching algorithm by each of the three modes individu-

ally (as in [14]–[16]), one can show that beyond the ranges of 16

and 14.5 km, second arrivals of, respectively, mode 1 and 2 con-

tribute to the field. The increase in the field intensity observed at

the range of approximately 17 km is due to a caustic effect be-

tween the two arrivals of mode 2. Finally, the third zone extends

beyond the range of 17.5 km. This zone is characterized by in-

tramode interference effects between the two distinct arrivals of

mode 1. (Mode 1 eventually enters its shadow zone at a range

larger than 25 km.)

At the frequency of 35 Hz, four propagating modes are ex-

cited at the source. Again, propagating each single mode in-

dividually allows us to identify four zones in the across-slope

direction. The first zone extends from the source up to approxi-

mately 11 km corresponding to the cutoff range of mode 4. As

before, this zone is characterized by single arrivals of each of

the four modes. In the second zone, extending from 11 km up to

15 km, typical interference fringes between modes 1, 2, and 3

are observed with a second arrival of mode 3 also contributing

beyond the range of 12 km. Mode 3 cutoff occurs at the range

of 15 km. The third zone, from the latter range up to 23 km

where mode 2 enters its shadow zone, includes contributions

from modes 1 and 2 with second arrivals of these two modes

occurring beyond 16 and 17 km, respectively. The caustic ef-

fect now occurs for both modes 3 and 2 just before their cutoff

at the respective ranges of 14 and 21.5 km. Finally, the fourth

zone extending beyond the range of 23 km exhibits interference

fringes between the two arrivals of mode 1. (Mode 1 is eventu-

ally cut off at a range far beyond 25 km.)

The above description will be useful when interpreting the

results in the remainder of this paper. Before proceeding,
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Fig. 6. Sensitivity of the Bartlett function to the variation of the slope, the water depth � at the source, the bottom sound speed � , and the bottom density �
along an HLA at a 25-Hz frequency. The left column displays the distance of the geometric center of the horizontal array from the source, as well as the modal
contributions to the field at that range, and/or the 3-D effects, e.g., M1 stands for the first arrival of mode 1 and M2’ stands for the second arrival of mode 2. For
each parameter, the middle value displayed on the abscissa denotes its true value.

let us compare the curves of TL versus across-slope range

obtained with a fully 3-D computation to those obtained with

a 2-D computation, i.e., ignoring horizontal refraction. The

comparisons are shown in Figs. 4 and 5 for the respective

frequencies of 25 and 35 Hz and for a receiver depth of

40 m. Despite the evident differences in the 2-D and 3-D

computations at long ranges, pointing out the need for 3-D

modeling to correctly predict the field, we focus here on the

similarities in the TL curves up to the distance of approximately

5 km. This preliminary observation suggests that an inversion

based on 2-D propagation modeling might be feasible, at

least at relatively short ranges.

B. Slope Effect on Inversion: A Sensitivity Analysis

The sensitivity analysis of the objective function is intended

to provide a preliminary indication on the most important pa-

rameters (which are involved in the forward model) with respect

to the inverse problem. The sensitivity of the objective function

is examined by graphical inspection of its response to the varia-

tion of one parameter at a time over discrete values within prede-

fined bounds reflecting the a priori information. For single-fre-

quency inversions, this is equivalent to examining the Bartlett

function’s response as given in (5). Both the observed data and

the replica are generated by means of fully 3-D computations

using the 3DWAPE code. In particular, the observed data, sim-

ulating the acoustic pressure field on an HLA or a VLA at some

locations in the water column, are computed using the nominal

(or true) parameter values for the 3-D ASA wedge test case, and

a new replica vector is generated for each discrete value of the

parameters.

Results obtained at a frequency of 25 Hz with an HLA are dis-

played in Fig. 6 for the dominant parameters, namely, from left

to right, the slope, the water depth , the bottom sound speed

, and the bottom density (others not shown here). The hor-

izontal array considered is 1 km long containing 21 equidistant

receivers and it is immerged at the source depth (40 m) to avoid

mode cancellation. The sensitivity of the Bartlett function is ex-

amined for several array ranges (from top to bottom in Fig. 6)

corresponding to different modal contributions and/or specific

3-D effects (summarized in the left column of Fig. 6). Note that

the array range corresponds to the range of its geometric center.

The parameters are varied within bounds indicated in the re-

spective abscissa in Fig. 6, with the middle values denoting the

true ones. The true value, the intervals, and their discretization

for each parameter are summarized in Table II. The discretiza-

tion is sufficiently fine to sense the fluctuations in the Bartlett

response.

In the first zone, up to the range of 8.5 km, where single ar-

rivals of all the modes initially excited at the source contribute

to the field, the objective function becomes more sensitive to the

variation of the parameter values with increasing range, for all

the parameters except . In others words, the information con-

tained in the data along the array becomes more important with

increasing range for the respective parameters, as expected due
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Fig. 7. Sensitivity of the Bartlett processor to the variation of the slope, the water depth � at the source, the bottom sound speed � , and the bottom density �

along a VLA at a 25-Hz frequency. The left column displays the distance of the vertical array from the source, as well as the modal contributions to the field at
that range, and/or the 3-D effects, e.g., M1 stands for the first arrival of mode 1 and M2’ stands for the second arrival of mode 2. For each parameter, the middle
value displayed on the abscissa denotes its true value.

TABLE II
TRUE VALUES, INTERVALS, AND DISCRETIZATION FOR THE PARAMETERS

USED IN THE SENSITIVITY STUDY

to the continuous interaction of sound with the water/bottom

interface. It is important to note here that the response of the

Bartlett function to the variation of the slope at the range of 2 km

is flat, i.e., the slope effect at that range appears to be negligible.

The trend observed up to the range of 8.5 km stops abruptly at 11

km for , , and due to the cutoff of mode 3 corresponding

to a loss of information in the data. Further, in the second zone,

up to 17.5 km where mode 2 reaches its cutoff range, we ob-

serve an increase in the sensitivity of the objective function with

range with respect to all parameters, with the slope being dom-

inant. Note in particular the steep peak around the true value of

the slope at 16 and 17.5 km, corresponding respectively to the

caustic and the cutoff of mode 2, as well as the important im-

provement for the other parameters at the latter range. This can

be attributed to the abrupt transition in the sound intensity be-

tween the second and third zones. Finally, at 23 km, mode 2 is

in its shadow zone yielding again a loss of information and the

Barlett response becomes less sensitive.

We examine now the results of Fig. 7 obtained using a VLA

for some of the ranges considered previously. The array used

here is a 180-m-long vertical array containing 19 equidistant re-

ceivers spanning the water column from 10- to 190-m depth.

The trend observed up to 15 km is comparable to that of Fig. 6.

However, at 17.5 km, the Bartlett function appears to be insen-

sitive to the slope for higher values than the true one. Similar

observations apply for the other parameters considered. More-

over, at 23 km (except for lower slope values than the true value),

the Bartlett’s response to the variation of the parameters is com-

pletely flat.

In both cases, and in addition to the 3-D versus 2-D

comparisons shown above (see, for instance, Figs. 4 and 5),

the almost flat Bartlett response to the variation of the slope at

relatively short ranges (e.g., up to 5 km) offers a preliminary

indication that an inversion for the recovery of the other

parameters based on 2-D propagation modeling might be

successful, provided the slope is not coupled to them. The

coupling can be examined by varying two parameters at a time

and by evaluating the Bartlett function for each combination

of them. Fig. 8 shows the result of this procedure for the

slope and the water depth considering, from left to right,

HLAs positioned at 1, 2, and 5 km from the source. Note

that, at each range, the computation of replica

of the 3-D acoustic pressure field was required, involving

CPU times (on a single processor) ranging from 3 h for the

range of 1 km to 15 h for the range of 5 km. Fig. 8 gives

evidence of a positive correlation between the slope and the

water depth which appears negligible at 1 km [Fig. 8(a)] and

becomes more important as range increases. In particular,

we note that the coupling between the slope and the water

depth at the range of 2 km [Fig. 8(b)] cannot be neglected.

Consequently, an inversion at that range based on a 2-D

model might lead to inconsistencies. Instead, an inversion

using a line array positioned at 1 km from the source is

more likely to succeed.

Let us now analyze the results at the frequency of 35

Hz. The trend observed in the previous case is maintained
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Fig. 8. Correlations between the slope and the water depth � at a 25-Hz frequency considering a horizontal array at the ranges of (a) 1
km, (b) 2 km, and (c) 5 km.

here in the first and second zones, up to 15 km, despite the

cutoff of mode 4 at 11 km. Note again the steep peak in

the Bartlett response around the true value of the slope due

to the caustic and cutoff of mode 3. At 16 km, where mode

3 is in its shadow zone, the Bartlett function becomes less

sensitive. Beyond that range, we observe an improvement,

probably due to the second arrival of mode 2, which is

continued up to the range of 23 km. It is to be noticed

again that near the caustic and cutoff of mode 2 the Bartlett

function becomes highly sensitive around the true values of

the slope, and to a lesser extent for the other parameters as

well. Beyond the cutoff of mode 2, the sensitivity of the

Barlett response decreases as can be observed at the range

of 24 km.

IV. MATCHED-FIELD INVERSION USING 2-D REPLICA

The previous section suggests that, for a given environ-

ment, the feasibility of inverting acoustic field data over a

sloping bottom ignoring out-of-plane propagation depends

on the source-array separation. In this section, we perform

a matched-field inversion based on a 2-D forward model for

the recovery of the important parameters of the 3-D ASA

wedge (Fig. 1) at the frequencies of 25 and 35 Hz, considering

several array ranges chosen according to the above analysis. It

is understood that this approach does not permit the inversion

for the slope value. Rather, the scenario simulated here is that

of an inversion for the recovery of the bottom parameters

and with uncertain knowledge of the water depth . The

other parameters are kept fixed at their nominal values (see

Section III).

Synthetic data are generated by means of fully 3-D com-

putations using the 3DWAPE code, and zero-mean complex

Gaussian-distributed white noise is added with a variance

yielding a signal-to-noise ratio of 20 dB. The data are com-

puted on a 180-m-long VLA containing 19 equidistant re-

ceivers spanning the water column from 10- to 190-m depth.

The replica are generated on the same array using the same

code by means, however, of 2-D computations, i.e., neglecting

out-of-plane propagation. Note that the numerical parameters

of the PE-based code used in both cases are identical for the

use of the objective function given in (4) to be valid (since

unknown modeling errors are avoided). The true values of ,

, and , the search intervals and their discretization used in

the inversion process are similar to those given in Table II. The

a priori probability density is considered here uniform over

the parameter space and the PPD is sampled using exhaustive

search.

Let us first analyze the results obtained with vertical arrays

positioned up to 10 km from the source. For both frequencies,

this area is characterized by single arrivals of each mode initially

present at the source (see Figs. 2 and 3 and Table I). The results

at the frequencies of 25 and 35 Hz are shown, respectively, in

Figs. 10 and 11. Each figure has three subfigures corresponding

to vertical arrays positioned at (a) 1 km where, according to the

previous analysis, the effect of the slope is not important, (b) 5

km, and (c) 8.5 km where the slope effect becomes more impor-

tant as range increases. In each subfigure, the left panel shows

the posterior marginal densities for each parameter. The vertical

dotted line corresponds to the true value of each parameter, the

circle represents the MAP estimate, and the cross with the hor-

izontal line represents the mean estimate and its standard de-

viation. The right panel shows comparisons of the TL curves

along the vertical array corresponding to the 3-D synthetic data

(dashed line), i.e., for the nominal values of the parameters, with

those corresponding to 2-D replica computed using the MAP es-

timate (solid line). The Bartlett values at the MAP estimate are

given in Table III.

At the range of 1 km and for both frequencies [Figs. 10(a) and

11(a)], the correct values of the parameters are retrieved with

a satisfactory accuracy in the estimates. An excellent match

between synthetic data and replica is obtained for the MAP

estimate (see Table III) and an almost perfect superposition

of the TL curves is observed. Note that the nonzero value

of the Bartlett function is mainly due to the white noise in

the data. This result thus suggests that the effect of the slope

at 1 km can be neglected and an inversion assuming 2-D

propagation is successful. At the range of 5 km [Figs. 10(b)

and 11(b)], the marginal densities indicate that the estimates

are obtained with a good accuracy, however, the retrieved

values turn out to be biased. In addition, the TL comparisons

are still excellent and the Bartlett values at the MAP estimate

is unchanged. In other words, the result at the range of 5

km is a typical mismatch case [26] where, in addition, we

have no indication that the estimates are erroneous. In the

context of real data applications, in which the true values
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Fig. 9. Sensitivity of the Bartlett processor to the variation of the slope, the water depth � at the source, the bottom sound speed � , and the
bottom density � along an HLA at a 35-Hz frequency. The left column displays the distance of the geometric center of the horizontal array
from the source, as well as the modal contributions to the field at that range, and/or the 3-D effects, e.g., M1 stands for the first arrival of
mode 1 and M2’ stands for the second arrival of mode 2. For each parameter, the middle value displayed on the abscissa denotes its true value.

of the parameters are not known before the inversion, the

risk of erroneous estimation is potentially important.

This behavior can be explained as follows. Recall that, al-

though single mode arrivals contribute to the field at the range of

5 km, these are 3-D arrivals and not direct 2-D arrivals. In other

words, these arrivals do not correspond to acoustic waves that

traveled within the vertical plane containing the source and the

receiving array but, rather, they followed hyperbolic paths (as

viewed from above), i.e., they correspond to waves that prop-

agated out from the source in the up-slope direction and were

gradually refracted downslope before reaching the receiver. As

a result, these 3-D arrivals traveled a longer distance and through

shallower waters than the direct 2-D arrivals. Therefore, the in-

version process tends to adapt the parameter values in the 2-D

forward model to account for the effects of horizontal refrac-

tion at the range of 5 km. Since single mode arrivals alone con-

tribute to the field at that range, the 2-D forward model succeeds

in compensating for the 3-D propagation effects. A similar be-

havior is observed for an array located at the range of 8.5 km

[Figs. 10(c) and 11(c)], although slightly exaggerated due to the

stronger 3-D effects at that range. Note here, however, that the

TL comparisons and the Bartlett values at the MAP estimate

may suggest that the retrieved parameters are potentially erro-

neous.

Let us now examine the respective results of Figs. 12 and

13 for arrays located at (a) 13.5 km, (b) 16 km, and (c) 19

km, where typical 3-D effects occur for both frequencies,

including mode shadow zones and second mode arrivals. These

can be easily identified in Figs. 2 and 3 (see also Table I).

The 2-D-model-based inversion process now tends to adapt

the parameter values so as to additionally compensate for the

reduced (and range-dependent) number of modes contributing

to the field at the respective ranges. For instance, this can be

clearly seen at the frequency of 25 Hz for the range of 19

km [Fig. 12(c)] by inspecting the TL curves corresponding

to the 3-D synthetic data and to the 2-D replica computed

using the MAP estimate. Recall that, at the frequency of 25

Hz, three modes are excited at the source. Recall also that the

receiving array at the range of 19 km is in the shadow zone of

modes 2 and 3, and two arrivals of mode 1 alone contribute

to the field. Accordingly, the TL curve corresponding to the

3-D synthetic data [dashed line in Fig. 12(c)] has no nodes.
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Fig. 10. Left panel of each subfigure: marginal posterior densities of � , � , and � for a 25-Hz frequency inversion assuming 2-D propagation along a vertical
array located at (a) 1 km, (b) 5 km, and (c) 8.5 km. The vertical dotted line represents the true value, the circle represents the MAP estimate, and the cross with the
horizontal line represents the mean and standard deviation. Right panel of each subfigure: comparison of the TL along the vertical array corresponding to the true
values (dashed line) and to the MAP estimate (solid line).

Fig. 11. Left panel of each subfigure: marginal posterior densities of � , � , and � for a 35-Hz frequency inversion assuming 2-D propagation along a vertical
array located at (a) 1 km, (b) 5 km, and (c) 8.5 km. The vertical dotted line represents the true value, the circle represents the MAP estimate, and the cross with the
horizontal line represents the mean and standard deviation. Right panel of each subfigure: comparison of the TL along the vertical array corresponding to the true
values (dashed line) and to the MAP estimate (solid line).

TABLE III
BARTLETT VALUES AT THE MAP ESTIMATE FOR INVERSION

RANGES AND FREQUENCIES

Note here that a 2-D model would predict single arrival

contributions of each of the three modes at that range. The

inversion process tunes the parameters to match the 2-D

replica to the 3-D synthetic data, yielding parameter values

(e.g., the MAP estimate) so that the 2-D computation, at

the frequency of 25 Hz, predicts the contribution of mode 1

alone at the receiving array as can be seen in the respective

TL curve [solid line in Fig. 12(c)] which has no nodes as

well.

Nonetheless, the 2-D computation is inherently unable to pre-

dict a second arrival of mode 1 at the receiving array. Conse-

quently, the TL curves compare less favorably and a degrada-

tion as range increases is observed in the match between the

data and the replica as reflected in the respective Bartlett values

in Table III. Furthermore, the retrieved values for some parame-

ters tend to be physically unacceptable. For instance, the bottom

density at the frequency of 25 Hz for the ranges of 16 and

19 km tends to equal that of the water column. Accordingly,

in this case of mismatch, we have strong indications that the

2-D-model-based inversion has failed. In both of these mis-

match cases (i.e., with or without indications) fully 3-D mod-

eling becomes necessary.

V. CONCLUSION AND DISCUSSION

In this work, we addressed the feasibility of inverting acoustic

field data collected in shallow-water environments, like the con-

tinental shelf, based on 2-D modeling, i.e., ignoring out-of-plane

propagation. The acoustic field in such environments may be

affected by horizontal refraction leading to 3-D propagation ef-

fects and requiring fully 3-D modeling to be accounted for. In-

verse problems in ocean acoustics are based on 2-D forward
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Fig. 12. Left panel of each subfigure: marginal posterior densities of � , � , and � for a 25-Hz frequency inversion assuming 2-D propagation along a vertical
array located at (a) 13.5 km, (b) 16 km, and (c) 19 km. The vertical dotted line represents the true value, the circle represents the MAP estimate, and the cross with
the horizontal line represents the mean and standard deviation. Right panel of each subfigure: comparison of the TL along the vertical array corresponding to the
true values (dashed line) and to the MAP estimate (solid line).

Fig. 13. Left panel of each subfigure: marginal posterior densities of � , � , and � for a 35-Hz frequency inversion assuming 2-D propagation along a vertical
array located at (a) 13.5 km, (b) 16 km, and (c) 19 km. The vertical dotted line represents the true value, the circle represents the MAP estimate, and the cross with
the horizontal line represents the mean and standard deviation. Right panel of each subfigure: comparison of the TL along the vertical array corresponding to the
true values (dashed line) and to the MAP estimate (solid line).

models, as they represent a good compromise between speed

and accuracy. However, it was not clear whether the 3-D effects

can affect the performance and reliability of inversion proce-

dures based on 2-D models, and, in particular, whether the re-

trieved parameters may turn out to be erroneous.

The present study was carried out on a well-established syn-

thetic test case, namely, the 3-D ASA wedge benchmark repre-

senting a continental shelf environment, in which well-known

3-D effects occur. A typical matched-field inversion procedure

was implemented based on the exhaustive search over the pa-

rameter space. The most important parameters with respect to

the inversion were identified by means of a sensitivity analysis

of the objective function. This preliminary analysis suggested

that an inversion assuming 2-D propagation might succeed pro-

vided the array is located at relatively short ranges from the

source. An inversion based on 2-D modeling was performed

on synthetic data generated by a fully 3-D computation, sim-

ulating the acoustic pressure field on a VLA. The inversion re-

sults shown in this paper were obtained for two low frequencies

and for several source/receiver distances in the across-slope di-

rection. This approach demonstrated that the validity of the 2-D

assumption depends on the specific propagation conditions at

the array location. These in turn depend on the source/receiving

array separation for a given environmental configuration. This

can be summarized into three cases as follows.

1) Single arrivals of each mode initially excited at the

source, which are not yet significantly affected by

out-of-plane propagation, are received at the array. This

is likely to occur at relatively short ranges from the

source. In this case, the inversion process succeeds in

matching the 2-D replica with the 3-D data and the

correct parameter values are retrieved with satisfactory

accuracy.

2) Single arrivals of each mode are still received at the

array but now are significantly affected by out-of-plane

propagation. In this case, the inversion process succeeds

in matching the 2-D replica with the 3-D data and the

parameter estimates are obtained with a good accuracy

though they turn out to be biased with respect to the true

parameter values. This is a typical case of mismatch.

3) Typical 3-D effects occur at the array location, like

second mode arrivals and/or mode shadow zones. The
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inversion process barely matches the 2-D replica with

the 3-D data and the estimated parameter values are

erroneous and/or physically unacceptable.

Clearly, in case 1) the 2-D assumption is still valid whereas

in cases 2) and 3) fully 3-D modeling is required. On the other

hand, the importance of the effect of out-of-plane propagation,

given a precise source/receiver separation, depends on the envi-

ronmental configurations, mainly the slope and the water depth,

and on the frequency. Specific regions where each of the above

cases applies are thus problem dependent. Most importantly, in

real-data applications, in which the parameters are not known

before the inversion, the results should be interpreted with care

as the distinction between cases 1) and 2) is not straightforward

and the risk of mismatch is potentially important.

Let us conclude this paper with an attempt to interpret the

results of a previous work already mentioned in the introduction.

In [17], inversions of acoustic data collected in a continental

shelf area near the Florida coast [18] were performed based

on the 2-D assumption. The axis connecting the source and

the vertical receiving array was nearly parallel to the shoreline

and the water depth along that axis was considered nearly

constant. The bottom in this area presented a weak slope

towards the shoreline followed by an abrupt increase closer to

the shoreline. A first inversion of the data collected on the array

provided parameter estimates that were in poor agreement with

available in situ measurements in that area. This was attributed

to late arrivals in the data, corresponding to sound signals

redirected by the steeper slope portion close to the shoreline.

Numerical simulations using both a PE-based code and a ray

code showed that these late arrivals were 3-D arrivals [19].

A 2-D-model-based inversion excluding these late arrivals in

the data succeeded [27].

Let us now attempt to interpret this behavior in the light of our

results. Considering the experimental conditions (slope, water

depth, frequency, source-array separation, etc.; see [18]), we

argue that it is likely that most of the early arrivals, having trav-

eled through the weak slope area alone, have not been signifi-

cantly affected by horizontal refraction and can thus be viewed

as direct “2-D” arrivals. In other words, a 2-D-model-based in-

version using the early arrivals alone is most likely to fall in

case 1) (see above) for which the 2-D assumption is valid. On

the other hand, the late arrivals traveled through the steeper

slope area and were refracted downslope towards the receiving

array: the late arrivals are fully 3-D arrivals. Consequently, a

2-D-model-based inversion including these late arrivals fails to

retrieve the in situ measured parameter values. However, note

here that this is a preliminary interpretation attempt and further

investigation is needed.
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