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Technical Note

Sound source decomposition for two-dimensional deformable vortices
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Abstract. — The acoustic source term for a free vortical flow (Mohring, 1978) is considered for a flowfield consisting
of a system of distinct vortex patches. The source description is separated into two contributions, one due to the
motion of the vortex patches themselves (the “bulk” contribution) and one due the deformations of the vortex cores
(the “core” contribution). Two examples using corotating vortex pairs are studied to show that when the core
fluctuations are small, they may radiate an appreciable fraction of the sound, if they occur at higher frequencies than

the bulk motions.

Pacs numbers: 43.28Ra.

Efforts in estimating the sound produced by an un-
steady low speed flow based on the vorticity dynamics
have largely focussed on flow models based on the motion
of point vortices (in 2D) and vortex filaments (in 3D) (see
Powell, 1964; Mohring, 1978, Kambe, 1986). While this
work has shown both the validity and the utility of the
vortex theory of sound generation, reliance on singular
or non-deformable vortex cores limits the study of sound
generation to some simple cases. Two notable exceptions
are the work of Shariff et al. (1988) and Collorec et al.
(1993) who explicitly considered the effect of core de-
formations on the radiated sound. Both of these studies
have shown that the sound computed from a flow for
which core deformations are present may lead to high
noise levels at frequencies higher than those associated
with the motion of an equivalent system of vortices with
non-deforming cores. These results suggest strongly that
even small vortex core deformations may contribute an
appreciable percentage of the overall sound power for
these flows. However, the question remains whether the
higher frequency motions present in the simulations are
the result of core deformations alone or whether the
bulk motion of each vortex also contains high frequency
components which also contribute to the high-frequency
sound. In order to facilitate addressing this question, we
show that it is possible to decompose the sound source
expression into two contributions: one due to the motion
of the centroids of distinct vortex regions and another
due to deformations of these regions. In this way the
contribution to the noise of each type of motion may be
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estimated directly from a deformable vortex flow compu-
tation instead of relying on a comparison to an equivalent
nondeformable vortex fow.

Consider the two-dimensional inviscid flow composed
of a collection of N distinct regions of vorticity in an
otherwise still fluid of infinite extent. The coordinates z;
and 7, lie in the plane of motion while z3 is normal to the
flow plane, in the direction of the vorticity vector. The
Mach number of the flow is very small and the length
scales of the flow are much smaller than the wavelengths
of the radiated sound, so that the flow may be considered
as a compact acoustic source. The expression for the
farfield sound radiated from this flow is given by (Mitchell
et al., 1992) for an observer located at x:

© o 2z, A QIxl\
)= [ AT Q@ (5] emimian

c

1
where Hél) = Jo+1Y5 is the second order Hankel function
representing outgoing waves, c is the speed of sound in
the ambient fluid, and QAij(Q) are the Fourier transforms
of the second moments of the vorticity per unit length in
the direction normal to the flow plane, given by:
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where D(*) is the region containing the k*" vortex. (In
this paper, unless otherwise noted, the superscript (k)
indicates that the quantity in question is associated with
the k*h vortex.) Here we have used the linearity of Q;; in w
to write the space integral as the sum of the integrals over
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each vortex. Note that equation (1) is for the contribution
of the quadrupole sound which is generally the leading-
order contribution in low Mach number free vortex flows.

In order to decompose equation (1) into contributions
of vortex core fluctuations and of the motion of each
region as a whole, we write the coordinate x(*) as the
sum of the coordinate of the vorticity centroid of each
vortex region, X ()

/ wFz,dA
x® _Jor
J

/ wFdA
D(k)

and the coordinate of the point relative to the centroid,
r{*) as shown in Figure 1:

(3)
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where z; is the ith component of x. Substituting this
expression into equation (2), we obtain:
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In Cartesian tensor notation, the two middle terms are
of the form:

Eim3Xjé3/TmUJdA (6)

Figure 1. Coordinate decomposition used for splitting the
source term. x is the external coordinate system, and r(®) ig
the coordinate system ‘centered on the centroid X*) of the

k" vortex.

where ¢;;3 is the permutation tensor. Using equations (3)
and (4), these terms can be shown to be identically zero,
leaving:

where

I'(*) ig the circulation of the k" vortex region, and is
defined by:

k) = / wFdA
D(k)

ijk ) is the contribution from bulk motion and Ci(;c) is
the contribution of the core deformations. The farfield
sound is proportional to the third time derivative of
these quantities. We call dBBij/dtS the “bulk noise”
and d®Cj;/dt® the “core noise”. For the case of point
vortices, or when deformations of the vortex cores are

neglected, dBC’i(]].C) /dt® is zero and d3Q;;/dt? reduces to

dd/dts(3 Bf]k )). Thus the expression for the radiated
sound may be decomposed into a contribution due to the
bulk motion of the vortices, and a contribution due to
the deformations of the vortex cores.

The splitting of the source term does not imply the
independence of the two types of motion. In fact the
splitting is a consequence of the linearity of the sound
source expression in vorticity. It is well-known that the
evolution of vorticity is not a linear problem, so the total
problem of solving for the sound is not linear in vortic-
ity. To move beyond this general statement we consider
two examples based on the elliptical-core vortex mod-
els of Melander et al. (1986) for two-dimensional flows
(which was then extended to axisymmetric vortex rings
by Shariff et al. (1988)). Although these authors consider
only vortex structures with cores of uniform vorticity
distribution, which is thus less general than the above re-
sults, they have nevertheless conveniently demonstrated
the coupling between the motions of the vortex centroid
and the core. The fact of coupling should also hold true
even for vortices whose core vorticity distribution is not
uniform. In the two-dimensional case considered by Me-
lander et al. (1986), the velocity of a given vortex centroid
may be expressed, to second order, as the sum of the ve-
locity given by an equivalent system of point vortices plus
a correction term expressing the effect of core distortions
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of the other vortices in the system on their induced ve-
locity field. To the same order, the rate of change of the
vorticity moments of each vortex are dependent on both
self rotation due to distortion from a circular shape and
straining due to the induced velocity field. For each vortex
the core shape and orientation are both then dependent
on the unsteady induced strain field. The core orientation
is dependent not only on changes in core shape due to
an externally induced strain, but also self-rotation due
to self-strain. In these ways the core dynamics and the
centroid motion are coupled.

The source decomposition allows the effect of this cou-
pling on the radiated sound to be studied by splitting the
expression for the source into the separate contributions
of the vortices’ bulk motions and their deformations rel-
ative to their vorticity centroids. We now use the source
decomposition to briefly show the contributions of each
type of motion to the source strength for two corotating
elliptical vortex pair solutions of the model of Melander
et al. (1986). The vortices in the pair are denoted vortex
1 and vortex 2. Each of these elliptical vortex patches is
characterized by its vorticity w'*) the lengths of its major
and minor axes, a(*) and b(¥), respectively, and the angle
¢ of the ellipse major axis to the z-axis. From these quan-
tities we may also define the area of each vortex ellipse
A®) = 7a®pk) and the equivalent radius 7o = (ab)'/?
of the vortex when it has a circular shape (a = b).
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Figure 2. Symmetric corotating pair of Melander et al.
(1986). dA/dt = 0, dR/dt = 0, A = A(n), u = R(r/A)'/?,
A =rmab= wrg. For non-merging solution u > 3.50054.

The first example we consider is the “steady-EV
state” for identical vortices, i.e. with equal vorticity and
area. For this particular solution the vortex cores have
a time-invariant ellipse aspect ratio A = a/b (major axis
length/minor axis length). The ellipses rotate about the
vortex centroid at the same rate as the centroids ro-
tate about each other. Thus the bulk motion consists of
circular orbits around a point halfway between the two
vortices, and the core motion consists of pure rotations
of the elliptical vortex cores. A schematic of this system
is shown in Figure 2. The core. vorticity moments are
thus expressed in terms of the aspect ratio of the ellipse
and the orientation angle ¢ of the major axis to the ex-

Figure 3. Initial condition for asymmetric pair (Melander et
al., 1986). A1) = 7, A® = 0.04r, D = 1.0, W@ = 2.5.
Cores initially circular and initial separation R = 2.0.

ternal coordinate system. The value of the aspect ratio
is a function of the ratio p, of the separation distance
between the centroids, R, and the equivalent radius, 7o,
of the two identical vortex cores:

™% R
=R _) =
# (A To
From this solution we can obtain, for p = 3.5054,

A = 1.2908, and d¢/dt = 0.08309. Knowing the motion,
we can compute the vorticity moments B;; and Cj;. For
the particular value u = 3.5054, we obtain By = 3.60 X
10?2 sin(2td¢/dt) and C; = 1.89 x 107*sin(2td¢/d¢).
Note that both the core and centroid motions fluctu-
ate at the same frequency, d¢/d¢t. It is also apparent that
the amplitude of the source strength for the bulk motion
is much greater than that of the core.

The second corotating vortex pair solution presented
by Melander et al. (1986) that we consider is for two
vortices of different size and strength. Vortex 1 has area
AN = 7 and vorticity w( = 1.0 while Vortex 2 has
area A® = 0.04r and vorticity w® = 2.5. The cen-
troid separation is R = 2.0. The initial aspect ratio is
A = 1.0 for both vortices. A schematic of this case is
shown in Figure 3. The model solution compared favor-
ably to a more accurate contour dynamics solution for
this system and initial condition (Melander et al., 1986).
The motion of this system is quasiperiodic as shown in
Figure 4. Figure 5a shows power spectra of the vortic-
ity moments B and C and Figure 5b the power spectra
source strengths d®B/dt® and d3C/d¢3. Notice that both
the peaks of the spectra for both motions occur for the
most part at the same frequencies. This matching is di-
rectly attributable to the coupling between the bulk and
core motions. Where large peaks occur for the core spec-
trum, they are generally of higher amplitude than the
corresponding peaks in the bulk motion spectrum. The
exceptions to this behavior are the peaks at f = 0.045,
0.15, 0.225, and 0.26. Because the source strength is
the third derivative of the vorticity moments, the high-
est frequency fluctuations of Q;; are the most efficient
in generating sound. In this particular case, the lowest
frequency parts of the spectrum are dominated by the
bulk motion contribution while the highest frequencies
are dominated by the core. The three largest peaks of
the core spectrum, at f = 0.08, 0.16, and 0.32 are larger
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Figure 4. Motion of asymmetric vortex pair of Melander et al.
(1986). (a) centroid motion. The evolution of the core aspect
ratio, A and cos(2¢) for (b) vortex 1 and (c) vortex 2.

in magnitude than the correspondmg peaks in the bulk
motion spectrum.

These two relatively simple examples demonstrate the
utility of the source splitting presented in this article for

2 log( Q(f) )

b)

Figure 5. Power spectra of (a) vorticity moments and (b)
source strength. Resolution of these estimates is approxi-
mately 0.015 Hz.

separating the contributions of the bulk vortex motion
and core deformations to the radiation of sound from vor-
tex systems. This decomposition has been presented here
for the quadrupole source term, generally considered the
leading term in the noise from flow where solid surfaces
are absent. The same decomposition is possible for the
dipole term and higher-order terms as well. In fact, for
a complete study of vortex noise, it may be necessary to
consider higher-order terms when the core deformations
contribute a large share of the noise at high frequencies.
This work represents a first step in this direction.
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