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Twosemi-implicit six-stageRunge–Kutta algorithmsare developed for the simulationofwall-bounded flows.Using

these schemes, time integration is implicit in thewall-normal direction, and explicit in the other directions, to relax the

time step constraint due to the fine mesh near the wall. The explicit subscheme is a six-stage fourth-order low-storage

Runge–Kutta scheme. Based on analysis in Fourier space and results obtained for propagation test cases, the semi-

implicit schemes are shown to be of order 3 and, for waves discretized by a number of points per period between 4 and

16, to be as accurate as, ormore accurate than, the standard explicit fourth-orderRunge–Kutta algorithm in terms of

dissipation and dispersion. The large-eddy simulation of a compressible turbulent channel flow at a frictionReynolds

number of 360 and aMach number of 0.1 is then carried out with one of the proposed algorithms. The computational

time is reduced by a factor 1.33 with respect to a large-eddy simulation using the explicit subscheme in all directions.

Wall-pressure and velocity spectra from the large-eddy simulation are presented to give insights into the flow

turbulent structures. In particular, wave number–frequency spectra are calculated. Acoustic components appear to

be identified in these spectra.

I. Introduction

I N THE field of computational aeroacoustics (CAA), the
development of direct noise computations (DNCs) has drawn

attention to the need of highly accurate numerical schemes for spatial
and temporal discretizations. The DNC approach indeed consists in
computing both the aerodynamic and acoustic fields, by solving the
compressible Euler or Navier–Stokes equations. Given that the
acoustic fluctuations are by several orders of magnitude lower than
the mean flow, and that they propagate over long distances, the
numerical methods must be accurate and generate low dissipation
and low dispersion, in order to avoid the corruption of the acoustic
field. These constraints become more stringent for wall-bounded
flows, which are of significant interest in CAA. The attention has in
particular been drawn to wall-pressure fluctuations because they are
responsible for the noise indirectly radiated inside the cabin of
vehicles such as cars or aircraft, aswell as the noise emitted directly in
the flow over a solid boundary [1].
In the development of methods for CAA problems, the usual

approach is to consider the spatial and time discretization separately.
Spatial discretization methods for aeroacoustics have been proposed,
among others, by Tam andWebb [2], Lele [3], and Bogey and Bailly
[4].When a discretization scheme is applied to the spatial derivatives
of the Euler or Navier–Stokes equations, they reduce to the so-called
semidiscretized form, which corresponds to an ordinary differential
equation (ODE) of the form du∕dt � F�u�, where u is the flow
variablevector. Since the early papers ofRunge [5] andBashforth and
Adams [6], two main families of methods have emerged to solve
ODEs: the linear multistep methods and the Runge–Kutta (RK)
methods. Both are used in CAA, but it can be noted that several
explicit RKmethods have been developed during the last decade, for

instance by Bogey and Bailly [4], Hu et al. [7], Stanescu and Habashi
[8], Calvo et al. [9], and Berland et al. [10]. The properties of these
methods have been optimized in the Fourier space in order to
minimize dissipation and dispersion errors up to frequencies close
to the cutoff frequency imposed by the time step. They can be applied
to many flow configurations. In wall-bounded simulations, however,
the mesh is usually strongly refined close to the wall, which might
lead to a severe reduction of the time step to avoid stability problems.
To mention three examples, the ratios between spanwise and wall-
normal mesh spacings are equal to 15 in the large-eddy simulation
(LES) of a boundary layer at Reθ � 300–2000 performed by
Gloerfelt and Berland [11], 18 in the LES of a channel flow at
Reτ � 640 by Viazzo et al. [12], and 10 in several LESs of channel
flows atReτ � 350–960 by Kremer et al. [13]. The use of an implicit
scheme, which is stable for much larger time steps, is therefore a
possibility, but it implies the inversion of massive linear systems,
hence a high computational cost. To reduce this cost, an iterative
method is generally employed, but the choice of themethod is crucial
because it strongly affects the computational efficiency [14].
Furthermore, besides computational considerations, implicit time
integration at large Courant–Friedrichs–Lewy (CFL) numbers can
result in undesirable damping of acoustic waves [15].
An alternative is to combine an implicit scheme with an explicit

scheme. The time integration of terms involving derivatives in the
wall-normal direction, inwhich a finemesh is implemented, is treated
implicitly, whereas the time integration of the other terms is treated
explicitly. Thus, the constraint on the time step is relaxed, and the
additional computational cost due to the linear system inversion
remains acceptable. Such methods are referred to as “semi-implicit.”
Because of their explicit part, the allowable CFL numbers of semi-
implicit methods are much smaller than those allowed by fully
implicit schemes. Thus, semi-implicit methods generally provide
significantly less numerical errors compared to fully implicit
schemes [16,17]. This strategy has already been used by several
authors in direct numerical simulations (DNSs) of wall-bounded
incompressible flows [18,19]. For example, for a turbulent boundary
layer, Wu and Moin [18] used a second-order Crank–Nicholson
scheme to compute convection and diffusion terms involving
derivatives in thewall-normal direction,whereas the other termswere
integrated in time with a third-order explicit Runge–Kutta scheme.
Higher-order semi-implicit schemes have also been proposed by
Simens et al. [19] and Spalart et al. [20] for incompressible problems.
Because these schemes might not be relevant in the context of
compressible problems, semi-implicit schemes must be developed
specially for aeroacoustics. A large number of papers can be found on
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so-called partitioned methods [14,21–24], which consist in applying
a combination of Runge–Kutta schemes to partitioned equations. As
noted in the review by Kennedy and Carpenter [24] reporting the
development of semi-implicit schemes up to order 5, several ways of
partitioning exist. In a first approach, partitioning is performed by
gridpoint. In Kanevsky et al. [14], for instance, in order to deal with
stiffness induced by grid refinement, refined portions of the mesh are
solvedwith an implicit scheme, and coarse portions are solvedwith an
explicit scheme. In a second approach, the equations are partitioned by
term. Thismethodology is often used for the integration of convection-
diffusion-reaction (CDR) equations [21–24]. In this case, for each
point of the mesh, reactive or diffusive terms are integrated in an
implicit way, and the other terms are integrated in an explicit way.
Partitioning by term seems well suited for wall-bounded flow
simulations as well, by treating implicitly the convection terms in the
wall-normal direction, as was done in the compressible LES of Suh
et al. [17]. However, these authors implemented one of the schemes
developed to solve the CDR equations [23].
In the present paper, the strategy used by Kennedy and Carpenter

[24] is followed in order to develop semi-implicit Runge–Kutta
methods adapted to the simulation of compressible wall-bounded
flows. Thesemethods perform the time integration of terms involving
wall-normal derivatives in an implicit way, whereas the other terms
are integrated in an explicit way. In practice, the explicit six-stage
fourth-order RK scheme of Berland et al. [10] is combined with new
implicit RK schemes. The resulting algorithms are six-stage third-
order semi-implicit Runge–Kutta schemes, referred to as SIRK63 in
what follows. The dispersion and dissipation properties of the
schemes are studied in the Fourier space, and a comparison is made
with the properties of the semi-implicit scheme of Zhong [23] and of
the standard explicit RK scheme of order 4. Propagation of an
acoustic pulse in a two-dimensional (2-D) domain is then considered
in order to quantify the degree of accuracy of these schemes. Finally,
one of the SIRK63 schemes is used in the LES of a turbulent
compressible channel flow at aMach numberM � 0.1 and a friction
Reynolds number Reτ � 360 based on the half-width of the channel
and the friction velocity. To illustrate the quality of the LES
performed with the proposed SIRK63 algorithm on this canonical
wall-bounded flow case, two important topics of wall turbulence are
addressed. The first one is the scaling of near-wall turbulent
structures, which have been studied by many authors, such as
Tomkins and Adrian [25] for boundary layers and Jiménez et al. [26]
for channel flows. The second one is closer to CAA applications
because it deals with the noise induced bywall-pressure fluctuations.
This problem has extensively been explored through theoretical
studies using acoustic analogy [27–29] and incompressible direct
numerical simulations [30,31], but only a few studies based on DNC
can be found [11,17,32]. Experiments have also recently been
performed by Arguillat et al. [33] among others.
The paper is organized as follows. First, the development of the

semi-implicit schemes is presented in Sec. II. 2-D test cases are also
shown to compare their accuracy with that of existing schemes. A
three-dimensional (3-D) turbulent channel flow is simulated using
one of the proposed semi-implicit schemes in Sec. III. Turbulent
structures and wall-pressure fluctuations obtained are then analyzed.
Finally, concluding remarks are given in Sec. IV.

II. Development of Semi-Implicit Schemes

A. Formulation

The 2-D Euler equations are considered in the present study. They
can be written as

∂u
∂t
� −

∂Ex
∂x

−
∂Ey
∂y

(1)

where u is the vector containing the flow variables and Ex and Ey
are the Eulerian fluxes in the x and y directions, respectively.
The equation is discretized in space, and spatial derivatives
are approximated by finite differences, yielding the following
semidiscretized equation:

∂u
∂t
� f�u� � g�u� (2)

with

�f�u��m;n � −
1

Δx

XM
l�−N

αl�Ex�m�l;n (3)

and

�g�u��m;n � −
1

Δy

XM
l�−N

αl�Ey�m;n�l

where �m; n� are the indices of the grid nodes, �αl�l�−N;M are the
coefficients of the finite-difference scheme, and Δx and Δy are
the uniformmesh spacings in the x and y directions, respectively. The
case of a mesh strongly refined in one direction, as usually
encountered in wall-bounded flows, is considered by assuming that
Δy << Δx, so that the time integration of the termg�u� raises stability
concerns.
Following the strategy of Kennedy and Carpenter [24], the time

integration of Eq. (2) is carried out using an s-stage semi-implicit RK
scheme, which is expressed as

�ui �un�Δt
P

i−1
j�1a

�E�
ij f�uj��Δt

P
i
j�1a

�I�
ij g�uj� for 1≤ i≤ s

un�1 �un�Δt
P

s
i�1b

�E�
i f�ui��Δt

P
s
i�1b

�I�
i g�ui�

(4)

where un � u�t�, un�1 � u�t� Δt�, Δt is the time step, ui
represents the flow variable vector at the stage i, �a�I�ij ; b

�I�
i � are the

coefficients of the implicit part of the scheme, performing the time
integration of g�u�, and �a�E�ij ; b

�E�
i � are the coefficients of the explicit

part, for the time integration of f�u�. To design an s-stage SIRK
method, the s�s� 2� coefficients of the implicit and explicit parts
must be chosen.

B. Development of the Schemes

In the present study, for the explicit part of the algorithms, the
coefficients �aij; bi� of the explicit fourth-order six-stage Runge–
Kutta scheme of Berland et al. [10] are chosen, in order to take
advantage of its good properties. The number of stages of the semi-
implicit method is thus fixed to s � 6. The aim in the following is to
determine the set of s�s� 3�∕2 � 27 coefficients �a�I�ij ; b

�I�
i � of the

implicit part. Stability and accuracy constraints will be defined first.
Then, the way of choosing of the coefficients will be described.

1. Order of the Implicit Part

A fourth-order accuracy is imposed to the implicit part of the
scheme by applying to the coefficients �a�I�ij ; b

�I�
i � the classical order

conditions [34], which are

�O1�
Xs
i�1
b�I�i � 1 �O2�

Xs
i�1
b�I�i c

�I�
i �

1

2

�O3�a 1
2

Xs
i�1
b�I�i c

�I�2
i �

1

3!
�O3�b

Xs
i;j�1

b�I�i a
�I�
ij c
�I�
j �

1

3!

�O4�a 1
6

Xs
i�1
b�I�i c

�I�3
i �

1

4!
�O4�b

Xs
i;j�1

b�I�i c
�I�
i a
�I�
ij c
�I�
j �

3

4!

�O4�c 1
2

Xs
i;j�1

b�I�i a
�I�
ij c
�I�2
j �

1

4!
�O4�d

Xs
i;j;k�1

b�I�i a
�I�
ij a
�I�
jkc
�I�
k �

1

4!
(5)

with c�I�i �
P

i
j�1 a

�I�
ij .
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2. Coupling Conditions for Order 3

At this step, conditions (5) are now assumed to be satisfied.
Ensuring that the implicit and explicit parts are both of order 4 is,
however, not sufficient to obtain a fourth-order accuracy for the entire
SIRK scheme. The time discretization error indeed exhibits coupling
terms of lower order, which can be eliminated by imposing additional
conditions. A complete description of these coupling conditions is
provided byKennedy andCarpenter [24]. For instance, order 3 can be
obtained by imposing that the following coupling conditions

b�I�i � b
�E�
i � bi for 1 ≤ i ≤ s (6)

1

2

Xs
i�1

bic
�E�
i c
�I�
i �

1

3!
(7a)

Xs
i;j�1

bia
�E�
ij c
�I�
j �

1

3!
(7b)

Xs
i;j�1

bia
�I�
ij c
�E�
j �

1

3!
(7c)

with c�E�i �
P

i−1
j�1 a

�E�
ij , be verified. Similarly, order 4 is obtained if the

coupling conditions

b�I�i � b
�E�
i � bi for 1 ≤ i ≤ s (8)

c�I�i � c
�E�
i � ci for 1 ≤ i ≤ s (9)

Xs
i;j;k�1

bia
�I�
ij a
�E�
jk ck �

1

4!
(10a)

Xs
i;j;k�1

bia
�E�
ij a
�I�
jkck �

1

4!
(10b)

are imposed.

3. Stability

In the present work, the stability is examined by following the
approach of Hu et al. [7] The 2-D wave equation is introduced:

∂u
∂t
� c

�
∂u
∂x
� ∂u

∂y

�
(11)

where c is the speed of sound. The spatial derivatives are evaluated
using a central finite-difference scheme. A 2-D Fourier transform is
then applied to Eq. (11). The effective wave numbers k�x and k

�
y are

defined as

k�ξΔξ � 2
XN
l�1

αl sin �lkξΔξ� with ξ � x; y (12)

and where �αl�l�−N;N are the coefficients of the central finite-
difference scheme, Δx and Δy are the mesh spacings, and kx and ky
are the exact wave numbers in the x and y directions. The
semidiscrete equation associated with Eq. (11) can be written as

∂ ~u
∂t
� �ick�x � ick�y� ~u (13)

where ~u is the spatial Fourier transform of u, and i �
������
−1
p

. When
this equation is advanced in time using a SIRK scheme, with the term

ick�x ~u treated by the explicit part of the scheme, and the term ick�y ~u
treated by the implicit part, it can be shown that the amplification
factor of the algorithm at each time step is given by the following
linear stability function [22]:

R�zx; zy� �
~un�1
~un
�

Det�I − zxA�E� − zyA�I� � �zx � zy�1 ⊗ bT �
Det�I − zyA�I��

(14)

where ~un � ~u�t�, ~un�1 � ~u�t� Δt�, zx � ick�xΔt, zy � ick�yΔt,
A�E� � a�E�ij , A�I� � a

�I�
ij , b � bi, 1 � f1; 1; : : : ; 1g, and I is the

identity matrix. Relations (6) must be satisfied to derive this
expression. The semi-implicit algorithm is stable for all combinations
of zx and zy yielding jRj ≤ 1. Note that the amplification factors of the
explicit part and of the implicit part of the algorithm are given by
R�zx; 0� and R�0; zy�, respectively. One important requirement is to
ensure that the implicit part is unconditionally stable; hence,

jR�0; zy�j ≤ 1 for zy ∈ iR (15)

The unconditional stability is difficult to obtain with an arbitrary set
of the coefficients �a�I�ij ; b

�I�
i �. To overcome this problem, a singly

diagonally structure is chosen for the a�I�ii coefficients:

a�I�ii � γ for 1 ≤ i ≤ s (16)

where γ is a free parameter. Singly diagonally implicit RK methods
[35] (SDIRK) have shown interesting features regarding stability.
Kennedy and Carpenter [24] have found an interval of γ roughly
equal to 0.248 ≤ γ ≤ 0.676, in which condition (15) is satisfied for
six-stage semi-implicit RK schemes for instance. In the present case,
Eq. (9) leads to a�I�11 � 0, reducing the condition (16) to 2 ≤ i ≤ s.

4. Choice of the Coefficients �a�I�ij ; b
�I�
i �

Once the constraints ensuring accuracy and stability are defined,
the 27 coefficients of the implicit part can be determined. The
following approach is used. First, a value of γ ensuring condition (15)
is chosen. Second, some of the coupling conditions are selected to
obtain a desired order for the semi-implicit scheme. These conditions
forms a nonlinear system of equations inwhich coefficients �a�I�ij ; b

�I�
i �

are the unknowns. This system is numerically solved by applying an
iterative solver. Finally, the linear stability function (14) is evaluated
so that the constructed SIRK scheme is stable for a range of �zx; zy� as
wide as possible.
In practice, it appears that obtaining a semi-implicit scheme that

exhibits both high accuracy and high stability is rather tricky.
Therefore, it has been decided to determine two different sets of
coefficients, focusing on either the stability or the accuracy. Thus,
two semi-implicit Runge–Kutta algorithm are proposed. The one
with higher stability is referred to as SIRK63-S, and the one with
higher accuracy is referred to as SIRK63-A. The constraints used for
the calculation of the coefficients �a�I�ij ; b

�I�
i � are recalled in Table 1 for

the two proposed schemes.
The coupling conditions (6) and (7) apply to the SIRK63-S scheme

that is, therefore, of order 3. For the SIRK63-A scheme, the coupling
conditions (8–10a) are imposed. Remember that conditions (8–10b)
are required to ensure order 4. A set of coefficients satisfying these
conditions could not be found, and consequently, the time accuracy of
the SIRK63-A scheme is of order 3 only. Nevertheless, satisfying
conditions (8–10a) as is the case for the SIRK63-A scheme leads to
the cancellation of some terms of order 3 in the time discretization

Table 1 Constraints imposed to the coefficients of the
implicit part of the SIRK63 schemes

Constraint type SIRK63-S SIRK63-A

SDIRK structure a�I�ii � γ � 0.41 a�I�ii � γ � 0.245
Order 4 of the implicit part Eq. (5) Eq. (5)
Coupling conditions Eqs. (6) and (7) Eqs. (8–10a)

518 KREMER, BOGEY, AND BAILLY

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
M

ar
ch

 3
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

22
36

 



error, hence improving the accuracy of the SIRK63-A algorithmwith
respect to the SIRK63-S algorithm, which will be shown in the next
section.

C. Dissipation and Dispersion Properties of the Schemes

Dissipation and dispersion of the implicit and explicit parts of the
two SIRK63 algorithms are now evaluated in this section. It has been
shown in the preceding section that the amplification factor of
the implicit part of a SIRK algorithm is given by R�0; ick�yΔt�. The
damping factor is derived from this expression through somevariable
transforms. By defining the angular frequency ω � ck�y, the
amplification factor is G�ωΔt� � R�0; iωΔt�, and the damping
factor of the implicit part is given by 1 − jGj. Also, by introducing the
effective angular frequency as ω� � arg�G�, the dispersion error of
the scheme can be measured by the quantity jω�Δt − ωΔtj∕π.
Figure 1a presents the damping factor as a function of

nondimensional angular frequency ωΔt, for the implicit part of the
proposed SIRK63-A and SIRK63-S algorithms, as well as for the
implicit part of the ASIRK-3C scheme of Zhong [23]. The damping
factor of the standard explicit fourth-order Runge–Kutta scheme
(RK4) is also displayed for comparison. The SIRK63-A algorithm
has a dissipation much lower than that of the other schemes. The
damping factor of SIRK63-S is two orders of magnitude higher than
that of SIRK63-A for thewhole range of frequencies, but it is found to
be similar to that of RK4. Finally, the scheme of Zhong is the most
dissipative method.
Similar results are observed for the dispersion error jω�Δt −

ωΔtj∕π shown in Fig. 1b. The error of the SIRK63-A scheme is
almost one order ofmagnitude lower than that of SIRK63-S. Both are
less dispersive than the RK4 and ASIRK-3C schemes, the latter
showing the highest error levels again.
The damping factor and the dispersion error of the explicit part are

obtained in the same precedingmanner, by defining the amplification
factor and the effectivewave number of the explicit part asG�ωΔt� �
R�iωΔt; 0� and ω� � arg�G�, respectively. The damping factor and
dispersion error are thus given by 1 − jGj and jω�Δt − ωΔtj∕π,
respectively. The damping factor of the different schemes is plotted as

a function of the nondimensional angular frequency ωΔt in Fig. 2a.
Note that the two SIRK63 schemes are represented by the same curve
because they have the same explicit part provided by the RK46-Ber
scheme [10]. Its damping factor is two orders of magnitude lower
than that of RK4 and three orders of magnitude lower than that of the
ASIRK-3C scheme of Zhong. The dispersion curves, given in
Fig. 2b, exhibit the same tendencies. The RK46-Ber scheme is the
least dispersive, with phase error one order and two orders of
magnitude lower than those of RK4 and ASIRK-3C, respectively.
Finally, the present study shows that, for nondimensional angular

frequencies in the range π∕8 ≤ ωΔt ≤ π∕2, the accuracy of the semi-
implicit schemes proposed in this paper is higher than that of the
semi-implicit scheme of Zhong [23] and at least as good as that of the
standard RK4 scheme. For ωΔt < π∕8, that is, for waves discretized
by more than 16 points per period, the SIRK63-S scheme is less
accurate than theRK4 scheme because of its lower order. However, in
this case, the error levels obtained for both schemes are inferior to
10−5. The apparent low accuracy of the ASIRK-3C scheme is due to
the fact that this method was initially developed for the simulation of
transient hypersonic flows with thermochemical nonequilibrium, in
which viscous stress, heat flux or reaction source terms are treated
by the implicit subscheme. The scheme of Zhong is thus a priori
not adapted to the time integration of convective terms without
dissipation and without dispersion. However, to the authors’
knowledge, the only case of aeroacoustics problem solved in a semi-
implicit way used the ASIRK-3C scheme [17]. For this reason, the
SIRK63 algorithms developed here are compared to the scheme
of Zhong.

D. Test Cases

1. Definition

The properties of the semi-implicit schemes are first investigated
by considering the propagation of an acoustic pulse in a medium at
rest. In this test case, the 2-D Euler equations are solved on different
anisotropic Cartesian meshes. The mesh spacings in the x and y
directions are Δx and Δy, respectively. In what follows, Δx is fixed,
whereas Δy ≤ Δx is different for each mesh. The number of grid

π/8 π/4 π/2 π10

a) b)

−6

10
−4

10
−2

10
0

ω∆t

1−
|G

|

π/8 π/4 π/2 π10
−6

10
−4

10
−2

10
0

ω∆t

|ω
* ∆

t−
ω

∆t
| /

 π

Fig. 1 a) Damping factor and b) dispersion error per time step of the implicit part of the schemes, as a function of nondimensional frequencyωΔt. –. –.:
ASIRK-3C of Zhong [23], : : : : : : .: standard RK4, proposed schemes: ––––––: SIRK63-A and – – –: SIRK63-S.

π/8 π/4 π/2 π10
−6

10
−4

10
−2

10
0

ω∆t

1−
|G

|

π/8 π/4 π/2 π10
−6

10
−4

10
−2

10
0

ω∆t

| ω
*∆

t−
ω

∆t
| /

 π

a) b)
Fig. 2 a) Damping factor, and b) dispersion error per time step of the explicit part of the schemes, as a function of nondimensional frequencyωΔt. –. –.:
ASIRK-3C of Zhong [23], : : : : : : .: standard RK4, ––––––: proposed SIRK63-A and SIRK63-S (RK46-Ber of Berland et al. [10]).
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points in eachmesh is 140 × 140 × Δx∕Δy. The initial conditions are
defined by

p � p0 � Δp exp�− ln�2��x2 � y2�∕b2�
ρ � ρ0 � �p − p0�∕c2

ux � uy � 0 (17)

where b � 3Δx, p0 � 105 Pa, Δp � 10 Pa, c �
���������������
γp0∕ρ0

p
, ρ0 �

p0∕�T0�γ − 1�cv�, T0 � 293 K, and cv � 717.5 J · K−1 · kg−1. To
obtain spatial discretization errors negligible with respect to time
integration errors, a 21-point centered finite-difference scheme of
order 20 is used.
The stability limit of the time integration algorithms is evaluated on

a set of simulations with periodic boundary conditions, such that the
centered finite-difference scheme is used in the entiremesh.A second
set of simulations are then carried out to study the accuracy of the

algorithms, using nonreflective boundary conditions [36] combined
with lowdissipative and lowdispersive noncentered finite differences
[37] at the boundaries of the domain.
Simulations are performed with the time integration schemes

SIRK63-S, SIRK63-A, ASIRK-3C, and RK4 for aspect ratios
Δx∕Δy � 2, 4, 8, 16, and 32. The terms containing y derivatives in
the Euler equations are integrated by the implicit part of the
algorithm, whereas the other terms are integrated with the explicit
part when semi-implicit schemes are used. The CFL number is
defined as CFL � cΔt∕Δx.

2. Stability

The aim here is to numerically find the maximum CFL number
ensuring stability. These values of CFLmax are plotted in Fig. 3 as a
function of the aspect ratio, for the different schemes. The axes are in
logarithmic scale. The proposed SIRK63 schemes appear to be the
most stable. The SIRK63-S scheme exhibits the highest value of
CFLmax � 1.2 at all aspect ratios. Concerning SIRK63-A, the
maximumCFLnumber is found to decreasewithΔy, before reaching
a plateau at CFLmax � 0.25, a value slightly higher than that of the
scheme of Zhong [23], for which CFLmax � 0.2 at all aspect ratios.
For the explicit RK4 scheme, the maximum CFL number decreases
as Δy decreases, as expected.

3. Accuracy

Simulations are now carried out up to t � 32Δx∕c, for CFL
numbers varying from 0.1 to 1. Their results are compared with
reference simulations. Because the grids change with the aspect
ratio, one reference simulation is run for each grid with a very small
CFL number. The CFL number is, for instance, equal to 10−1 for
Δx∕Δy � 1 and to 10−4 for Δx∕Δy � 32. As an illustration, the
reference solution computed on the grid with Δx∕Δy � 1 is shown
in Fig. 4.
The accuracy of the schemes is estimated by the error rate E,

defined as follows:

E �

����������������������������������RR
S �p − pref�2 ds

q
������������������������������������RR
S �pref − p0�2 ds

q (18)

where pref is the reference solution. Error rates obtained using
different schemes for values of Δx∕Δy equal to 1 and 32 are plotted
in Figs. 5a and 5b, respectively. The axes are in logarithmic scale.
The results being very similar, the analysis is limited to the case
Δx∕Δy � 1, displayed in Fig. 5a. The SIRK63-A scheme has the
best accuracy, with an error rate one order of magnitude lower
than that of SIRK63-S and of RK4. The ASIRK-3C scheme has
the weakest accuracy, its error rate being more than one order of
magnitude higher than that of SIRK63-S. These results are in good
agreement with the theoretical study in Sec. II.C. Finally, a reference
slope of order 3 is provided as a gray line to evaluate the order of the
error rates. Those of the semi-implicit schemes are of order 3 for low

1 2 4 8 16 32
0.05

0.1
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∆x ⁄ ∆y

C
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L m
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Fig. 3 Maximum CFL number of the time integration schemes, as a
function of the aspect ratio Δx∕Δy. –. –.: ASIRK-3C of Zhong [23],
: : : : : : .: standard RK4, proposed schemes: ––––: SIRK63-A and – – –:
SIRK63-S.

Fig. 4 Fluctuating pressure field, at t � 32Δx∕c, of the reference
simulation for the acoustic pulse case, run with the RK4 time integration
scheme, forΔx∕Δy � 1 andCFL � 0.01. The color scale ranges between
�1 Pa.
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Fig. 5 Error rateE of the time integration schemes, at t � 32Δx∕c, for the acoustic pulse case: a) Δx∕Δy � 1 and b) Δx∕Δy � 32. .–.–.: ASIRK-3C of
Zhong, : : : : : : .: standard RK4, proposed schemes: –––––– SIRK63-A and – – –: SIRK63-S.

520 KREMER, BOGEY, AND BAILLY

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
M

ar
ch

 3
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

22
36

 



CFL numbers. The SIRK63 algorithms present a steeper slope
for CFL > 0.4.
To highlight the coupling effects between the explicit and implicit

parts of the SIRK algorithms, snapshots of the error �p − pref�∕E, are
shown in Fig. 6, for simulations performed with CFL � 0.1 and
Δx∕Δy � 1. As expected, the error is isotropic for the RK4
scheme in Fig. 6a because the same algorithm is used in the x and y
directions. Inversely, the semi-implicit schemes exhibits anisotropy.
The error of the ASIRK-3C scheme plotted in Fig. 6b is dominant
in the directions parallel to the axes of the mesh, whereas the
proposed SIRK63-A and SIRK63-S schemes in Figs. 6c and 6d
provide the largest errors in the diagonal directions.
It must be noted that different results can be obtained at other

values of the CFL number and of Δx∕Δy. Figure 7a shows, for
instance, the error of the SIRK63-S scheme for Δx∕Δy � 1 and
CFL � 1. Compared to the error atCFL � 0.1 in Fig. 6c, the pattern
clearly changes. The influence of the aspect ratio is also highlighted
by the comparison of Figs. 7a and 7b, corresponding to Δx∕Δy � 1
and 32, for CFL � 1. It can be seen that the aspect ratio has a very
small effect on the anisotropy of the error.

E. Summary

Some properties of the schemes developed in this paper are
summarized in Table 2,which reports themaximumCFLnumber and
the error rate E at CFL � 0.2 for aspect ratios of 1 and 32. The
proposed SIRK63-S algorithm appears to be the most stable, with a
maximum CFL number of 1.2 independent of the aspect ratio. The
SIRK63-A is less stable, with a maximum CFL number decreasing
from 1 to 0.25 when the aspect ratio increases. However, it remains
more stable than the scheme ASIRK-3C of Zhong [23], which has a
maximum CFL number of 0.2. Concerning accuracy, the SIRK63-A
scheme is more accurate than SIRK63-S: the former has error rates
more than one order of magnitude lower than the latter. The accuracy
of SIRK63-S is similar to that of RK4 and is better than that of the
scheme of Zhong.
The SIRK63 schemes consume six stages per time step, which

is two times more than a standard three-stage RK scheme and 1.5
times more than a standard four-stage RK scheme. However, to
compare the computational efficiency of these schemes, it appears
necessary to consider the ratio between the maximum CFL number
and the number of stages s. This quantity is given in Table 3. For the

Fig. 6 Snapshots of �p − pref�∕E to illustrate the anisotropy of the error, where pref is the reference solution and p is the pressure computed at
CFL � 0.1 and Δx∕Δy � 1 using a) standard RK4, b) ASIRK-3C of Zhong [23], and proposed schemes c) SIRK63-S and d) SIRK63-A.

Fig. 7 Snapshots of �p − pref�∕E to illustrate the anisotropy of the error, where pref is the reference solution and p is the pressure computed using
SIRK63-S at CFL � 1 on meshes with aspect ratio of a) Δx∕Δy � 1 and b) Δx∕Δy � 32.
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SIRK63-S scheme, the ratio CFLmax∕s is equal to 0.2 for all aspect
ratios, whereas for the RK4 scheme it decreases from 0.275 to 0.011
when the aspect ratio increases from 1 to 32. The SIRK63-S scheme
is thus slightly less efficient than the RK4 scheme for low aspect
ratios, but it is much more efficient for high aspect ratios.

III. Simulation of a Plane Channel Flow

A. Parameters

A channel flow at a friction Reynolds number Reτ � huτ∕ν �
h� � 360 and a centerline Mach number M0 � U0∕c � 0.1 is
computed by LES, where h is the half-width of the channel, uτ ������������
τw∕ρ

p
is the friction velocity based on the wall shear stress τw and

the density ρ, ν is the kinematic molecular viscosity, U0 is the
centerline velocity, and c is the speed of sound. The dimensions of the
channel are Lx × Ly × Lz � 12h × 2h × 6h.
At time t � 0, laminar Blasius profiles with thickness δ0 � 0.4h

are imposed for the streamwise velocity. Spanwise and wall-normal
velocities are set to zero. Static pressure and temperature are uniform
in the entire domain, withp0 � 105 Pa and T0 � 293 K. The flow is
driven by a mean pressure gradient, which is given by a body force in
the streamwise direction ρ × f � τw ∕h. The transition toward a
turbulent flow is triggered by adding velocity fluctuations in the
Blasius velocity profiles, following a method initially developed by
Bogey et al. for pipe flows [38].

B. Numerical Methods

The LES is performed by solving the compressible Navier–Stokes
equations, using low-dissipation and low-dispersion 11-point finite
differences for spatial derivatives [4,37]. Periodic boundary

conditions are implemented in the x (streamwise) and z (spanwise)
directions. In the y (wall-normal) direction, a no-slip boundary
condition is imposed at thewall. The dissipative effects of the subgrid
motions are taken into account by the use of an explicit 11-point filter
of order 6 [39], removing the smallest discretized scales, while
leaving the well-resolved scales nearly unaffected. More details
about this approach can be found in [40,41]. The simulation is carried
out on a Cartesian grid, with constant mesh spacings in the
streamwise and spanwise directions, equal to Δx� � 16.6 and
Δz� � 8.3 in wall units. In the wall-normal direction, the mesh
spacing is stretched using an expansion rate r � 1.0442, yielding
values of Δy� from 0.95 at the walls up to 15.8 at the center of the
channel. The number of grid points is nx × ny × nz � 257 × 133 ×
257 � 8.8 million points.
The time integration is performed by the semi-implicit scheme

SIRK63-S developed in Sec. II. The implicit part of the scheme is
used for the convective terms involving y derivatives, whereas the
explicit part of the scheme applies to the other terms. The time step
Δt ≈ 2.05 × 10−7 s is chosen such asCFLz � cΔt∕Δz � 1 to ensure
stability of the explicit part of the SIRK63-S algorithm. Then, the
maximum CFL number, at which the implicit part of the scheme is
used, isCFLy � cΔt∕Δy � 8.7 at the wall. To reduce the CPU time,
the semi-implicit scheme is applied to regions of the grid where
Δy < Δz, that is, for grid points close to the wall. Outside these
regions, the value of CFLy is smaller than 1 so that no implicit time
integration is needed. All the convective terms, including those
containing y derivatives, are here integrated with the explicit RK46-
Ber scheme.
The simulation is carried out on a shared-memory computer SGI

ALTIX UV 1000. The CPU time of the algorithm is compared with
that of the same case computed using an explicit RK scheme. For that
simulation, the RK46-Ber scheme is used, with a CFL number
CFLy � 1 at the walls, yielding a time step Δt ≈ 2.37 × 10−8 s.
When the computation runs on a single CPU core, the fully explicit
simulation is about 1.6 times faster than the semi-implicit one, which
is severely penalized by the inversion of the linear systems. However,
the semi-implicit algorithm becomes more efficient when the code is
parallelized with the OpenMP library on several cores. This can be
seen in Fig. 8a, which presents the speedup of the parallelized
algorithms as a function of the number of cores. The speedup of the
semi-implicit algorithm is close to the ideal case up to 12 cores,
whereas the speedup of the fully explicit algorithm is smaller. CPU
times using the semi-implicit and fully explicit algorithms are shown
in Fig. 8b for a simulation over a physical time of 10−6 s, using
logarithmic scale for the axes. For a number of cores smaller than 6,
the semi-implicit algorithm is slower than the explicit algorithm,
which is due to the high cost in CPU time induced by the inversion of
the linear systems. When the number of cores increases, the
difference between the CPU time of the two algorithms becomes
smaller. For more than 6 cores, the semi-implicit algorithm is then
faster than the explicit one. Using 12 cores, the computational time of
the SIRK algorithm is about 1.33 times smaller than that of the fully
explicit algorithm. These results have been obtained for a
parallelization in the z direction, in which the number of points
nz � 257 results in a number of points per core in the z direction

Table 2 Maximum CFL numbers and error rate
obtained for the different schemes, as a function of the

aspect ratio AR � Δx∕Δy

CFLmax E (CFL � 0.2)

Scheme AR � 1 AR � 32 AR � 1 AR � 32

SIRK63-S 1.2 1.2 4.9 × 10−5 5.0 × 10−5

SIRK63-A 1.0 0.25 4.1 × 10−6 4.2 × 10−6

ASIRK-3C 0.2 0.2 8.2 × 10−4 8.2 × 10−4

RK4 1.1 0.045 4.4 × 10−5 — —

Table 3 Number of stages s and ratio
between the maximum CFL number and the
number of stages obtained for the different

schemes, as a function of the aspect ratio
AR � Δx∕Δy

CFLmax∕s
Scheme s AR � 1 AR � 32

SIRK63-S 6 0.2 0.2
SIRK63-A 6 0.17 0.042
ASIRK-3C 3 0.067 0.067
RK4 4 0.28 0.011
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Fig. 8 a) Speedup and b) CPU time for a simulation over a physical time of 10−6 s s. – – –: RK46-Ber, –––––––: SIRK63-S.
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smaller than 32 for more than 8 CPUs. Thus, the communication
between processors is significant, leading to a negligible speedup as
observed for the explicit algorithm, and as would be observed for the
semi-implicit algorithm for a higher number of cores.

C. Flowfield

Snapshots of the vorticity field in x-y and z-y planes are shown on
Figs. 9a and 9b, respectively. Turbulence is seen to be fully developed
through the height of the channel. The near-wall regions exhibit
structures of small size and intense vorticity, whereas the structures at
the midheight of the channel are less intense and greater in size.
Figures 10a and 10b present the profiles of mean streamwise

velocity and of streamwise fluctuation intensity, respectively, as a
function of the distance to the wall. Wall scaling is used for the mean

velocity U� � U∕uτ, fluctuation intensity u 0� �
����������
u 0u 0

p
∕uτ, and

wall distance y� � yuτ∕ν. The wall distance is represented in
logarithmic scale. Data from the channel flow simulation at Reτ �
395 ofMoser et al. [42] are also reported. Avery good agreementwith
the DNS date is found for both mean and fluctuating velocities. The
peak rms velocity is in particular well predicted at y� � 13.2.

D. Definition of Spectra

For spectral analysis, data from the LES are stored over a time
period of 70h∕U0. Including the time of the transition to a fully
turbulent state, the total duration of the simulation is equal to
140h∕U0. Every fifth time step, samples of pressure at the walls
and of velocity components in wall-parallel planes are collected. The
location of these planes are y� � 18 and 105 in wall units and
y∕h � 0.05 and 0.3 in outer units. The first plane is close to the
location of the maximum rms velocity. The database thus contains
time–space samples, noted q�xi; zj; tn�; 1 ≤ i ≤ nx; 1 ≤ j ≤ nz;

1 ≤ n ≤ N, where N � 6000 is the number of time samples. The
quantity q represents either thewall pressure or a velocity component
in one of the planes in which data are collected. For each of these
variables, a 3-D spectrum q̂�kx; kz;ω� is obtained, as a function of
streamwise and spanwise wave numbers kx and kz and of angular
frequency ω. To render the spectrum smoother, the database is
subdivided into five overlapping time segments of length NS �
2000 × �TS � 24h∕U0�. Spectra are then computed on each
segment and averaged to provide the final 3-D spectrum. Power
spectral densities are finally obtained asΦqq � q̂q̂�∕�LxLzTS�. The
frequency range is 0.014 ≤ ω� � ων∕u2τ ≤ 14.4, and the wave
number ranges are 0.0015 ≤ k�x � kxν∕uτ ≤ 0.18 and 0.0031 ≤ k�z
� kzν∕uτ ≤ 0.38.

E. Turbulent Structures

The power spectral densities of the three components of velocity in
the plane located at y� � 18 are shown in Fig. 11a as a function of the
spanwise wave number in wall units k�z . The axes are in logarithmic
scale. The spectra levels present great disparity between the
components, indicating the strong anisotropy of the velocity
fluctuations in the near-wall region. The streamwise component
dominates for all wave numbers, its level being one order of
magnitude higher than that of the spanwise component. The wall-
normal component is the less energetic, its level being two order of
magnitude lower than that of the spanwise component, except in the
high wave-number region in which both have the same levels. The
sharp collapse of the spectra observed for k�z > 0.15 is due to the
spectral truncation of the filtered LES. A quantitative estimation of
the scales damped by the relaxation filter will be presented later.
The spectrum of the streamwise velocity has a maximum around

k�z ≈ 0.02, whereas the spectrum of the wall-normal velocity
component has a peak at k�z � 0.05. These results are typical marks

Fig. 9 Snapshot of the vorticity norm in the a) x-y plane and b) z-y plane. The color scale ranges up to 3 × 104 s−1.
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Fig. 10 a)Mean streamwise velocityU� � U∕uτ and b) streamwise fluctuation intensityu 0� �
����������
u 0u 0

p
∕uτ as functions of thewall distance y� � yuτ∕ν. –

– –: DNS of Moser et al. [42] at Reτ � 395, ––––––: present LES.
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of the near-wall streaks, which consist of alternating regions of high
and low streamwise velocity elongated in the streamwise direction
[43]. The maximum spanwise wave number k�z ≈ 0.02 provides an
average spacing of the most energetic streaks of λ�z ≈ 300. These
structures are accompanied by quasi-streamwise vortices, which
induce the peak visible in the spectrum of the wall-normal velocity
at k�z � 0.05.
It can be noticed here that the spanwise spacing of the near-wall

streaks is higher than the value of 100 wall units usually observed in
the literature [44]. This figure, which was verified by many other
studies [43], is, however, obtained from flowvisualizations, which do
not necessarily provide the size of the most energetic structures. A
similar shift has been indeed noted by Tomkins and Adrian [25] in
boundary layers at Reτ � 426, in which the most energetic scales
were found to range over 200 ≤ λ�z ≤ 400 at y� � 21.
The spectra obtained further from the wall, at y� � 105, or

y � 0.3h in outer units, are shown in Fig. 11b, as a function of the
spanwisewave number. Outer scaling is applied to the axes, using the
half-width of the channel h, and the centerline velocity U0. The
velocity field is observed to be more isotropic than in Fig. 11a.
However, anisotropy persists at low wave numbers because the wall-
normal component of the velocity is significantly less energetic than
the other components for kzh < 7. Regarding the streamwise
component, the spectrum appears to be dominated by lower wave
numbers compared to the near-wall spectrum. Indeed, the peak is
located at kzh � 5.4, corresponding to a wavelength λz � 1.2h, or
λ�z ≈ 420 in wall units. This value is higher than that provided by
Tomkins and Adrian from boundary-layer experiments, who
measured the most energetic scales around λz ≈ 0.8δ, at y � 0.2δ,
with δ the boundary-layer thickness [25]. However, the authors
pointed out that the largest scales in boundary layers and in channel
flows should exhibit differences because of the influence of the
geometry of the facility. Comparison can also be made with the LES
results of Bogey et al. for a tripped nozzle pipe flow [38]. Just
downstream of the exit, the azimuthal modes of the streamwise
velocity are noticed to be the most energetic at kθδ ≈ 7 [45].

F. Wall-Pressure Spectra

The wall-pressure frequency spectrum Φpp�ω�, shown in Fig. 12,
is obtained by integration of the 3-D spectrum over kx and kz. The
axes are in logarithmic scales, and the coordinates are given in wall
units. The spectrum has been premultiplied by the angular frequency
ω to highlight the separation between high- and low-frequency
regions. For low frequencies, the premultiplied spectrum increases
with ω, following a power law with an exponent equal to 6/5, as
illustrated by the dashed line. The spectrum reaches a peak at a
nondimensional angular frequency ω� � 0.3 and then rapidly
decreases for higher frequencies. A slope of order ω−4 indicated in
the figure by a dash-dot line can be noticed in a small range of
frequencies ω� ≈ 0.8–1, which is consistent with the decay in ω−5

observed for Φpp in a number of boundary-layer experiments [46].
The decay becomes sharper for ω� ≥ 1, which can be attributed to
the dissipative effect of the relaxation filter of the LES, for which the
cutoff wave number is kx ≈ 2π∕�4Δx� in the streamwise direction.

Assuming a Taylor hypothesis of frozen turbulence convected at a
speed roughly equal to uc � 0.7U0, the nondimensional cutoff
angular frequency is equal toων∕u2τ ≈ 1.3, which correspondswell to
the frequency at which a strong decrease is observed in the figure.
Integration of spectrum over ω finally provides the rms pressure, for
which the nondimensional value is equal toprms∕τw � 2.3. All these
results are in good agreement with the study conducted by Hu et al.
[47] on DNS data. Two unexpected peaks with narrow bandwidth
appear at frequenciesω� � 0.58 and 1.17. These peaks are related to
acoustic components. Their origin will be discussed in view of a 2-D
spectrum.
A 2-D spectrum of the pressure fluctuations obtained by

integration of the 3-D spectrum over kz is plotted in Fig. 13a, as a
function of the streamwisewave number kx and angular frequencyω,
scaled by the centerline velocity U0 and the channel half-width h.
Similarly, integration of the 3-D spectrum over kx provides the 2-D
spectrum given in Fig. 13b, as a function of the spanwise wave
number kz and ω. Awell-known feature in wave number–frequency
power spectra of wall-pressure fluctuations is the convective ridge,
corresponding to the footprint of the turbulent structures convected
by themean flow. This ridge consists of a strong peak,which has been
observed by early measurements such as those of Willmarth and
Wooldridge [48]. The construction of most wall-pressure models is
based on this result [1], which has also been reproduced by
incompressible numerical simulations [12,49,50]. In Fig. 13a, the
convection ridge is clearly visible around wave numbers kx � ω∕uc,
which are indicated by a dash-dot line. The slope of the convection
ridge provides the convection speed uc � 0.7U0, used in the
preceding paragraph for the frozen turbulence hypothesis. The ridge
is not visible on the kz-ω spectrum presented in Fig. 13b, as expected,
because there is no convection effect in the spanwise direction.
Hence, the kz-ω spectrum is symmetric with respect to kz � 0.
The low–wave number region of the 2-D spectra is also of interest,

as noted by Bull [1], because it contributes to the structural excitation
and radiated noise. The latter is generated by components contained
in the supersonic region of the wave number–frequency spectrum,
delimited by k2x � k2z ≤ �ω∕c − kxMc�2 with Mc � uc∕c. Because
the present 2-D spectra are obtained by integration over kz or kx, the
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limits of the supersonic region reduce to kx � ω∕�c� uc� for the
kx-ω spectrum and to kz � �ω∕c for the kz-ω spectrum. These sonic
lines are denoted by the dashed lines in Figs. 13a and 13b.
The peaks found inside the supersonic region represent the

footprint of the acoustic waves computed directly by the compress-
ible LES. The two peaks previously observed on the one-dimensional
frequency spectrum in Fig. 12 are found in the kx-ω spectrum in
Fig. 13a at kx � 0 and ωh∕U0 � 10.7 and 21.4. A third harmonic
can be noticed at ωh∕U0 � 33. These components do not propagate
in the streamwise direction because they have an infinite phase speed
ω∕kx. In the kz-ω spectrum in Fig. 13b, two peaks are noted at the
frequency of the second harmonicωh∕U0 � 21.4, on the sonic lines.
Two peaks are also found at the third harmonic ωh∕U0 � 33. This
implies that these components are due to acoustic waves traveling in
the spanwise direction. The presence of peaks at the frequency of the
first harmonic ωh∕U0 � 10.7 is less visible. A greater number of
other peaks are found in the supersonic region of the kx-ω spectrum in
Fig. 13a, for kx ≠ 0 and ωh∕U0 > 10. For lower frequencies,
acoustic contributions cannot be distinguished, and the spectrum is
dominated by the convective ridge.

IV. Conclusions

In this paper, two semi-implicit schemes of order 3, referred to as
SIRK63-A and SIRK63-S, are designed for the computation of wall-
bounded compressible turbulent flows. Their explicit subscheme is
based on the explicit algorithm of Berland et al. [10] Their respective
implicit subschemes are unconditionally stable and allow to perform
the time integration of the flux-governing equations in the direction in
which the mesh is refined without decreasing the time step
significantly. The damping factor and dispersion error of the
SIRK63-A and SIRK63-S algorithms are shown to be smaller or
similar to those of the standard Runge–Kutta scheme of order 4 for

wave components discretized by a number of points per period
between 4 and 16. Numerical tests illustrate the stability property of
these schemes. In particular, the stability limit of SIRK63-S is
independent of themesh refinement. The SIRK63-S algorithm is then
used in an LES of a compressible turbulent channel flow at Reτ �
360 andM � 0.1. The profiles of the mean and fluctuating velocities
are in good agreement with DNS data from the literature. Velocity
spectra are computed from the LES data, at two different distances to
the wall. The spanwise spacing of the turbulent structures appears to
be slightly larger in this channel flow case compared to the results
observed in turbulent boundary layers [25]. Wall-pressure fluctu-
ations are also examined. The streamwise wave number–frequency
spectrum displays the expected convective ridge, and some acoustic
components are also detected in the low-wave number region. This
point illustrates the ability of the compressible LES to compute
directly the noise generated by a turbulent wall-bounded flow.
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Appendix: Six-Stage Fourth-Order Semi-Implicit
Runge–Kutta Schemes

In this appendix, the coefficients of the implicit part of the semi-
implicit algorithms are listed in Fig. A1 for the SIRK63S scheme and

Fig. A1 Coefficients of the implicit part of the SIRK63-S scheme.
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Fig. A2 Coefficients of the implicit part of the SIRK63-A scheme.
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in Fig.A2 for the SIRK63-A scheme. The coefficients of their explicit
part are also given in Fig. A3. They are equal to the coefficients of the
RK46-Ber scheme of Berland et al. [10].
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