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Large-eddy simulations (LES) of fully developed channel flows are performed using relaxation filtering as
a subgrid-scale model in order to investigate the performance of the LES methodology for wall-bounded
flows. For this, LES are carried out using different spatial resolutions, and then for channels flows at dif-
ferent Reynolds numbers. The accuracy of the results is discussed both a priori and a posteriori, by exam-
ining the transfer function of the dissipation mechanisms associated with molecular viscosity and
relaxation filtering in the wavenumber space, the quality of the discretization of the dominant turbulent
scales based on velocity snapshots and integral length scales, the convergence of the velocity profiles
with respect to the grid, and their consistency with data from Direct Numerical Simulation of the liter-
ature. In the first step, a channel flow at a friction-velocity-based Reynolds number Res ¼ 300 is com-
puted using fourteen grids with mesh spacings 15 6 Dxþ 6 45 in the streamwise direction,
0:5 6 Dyþ 6 4 at the wall in the wall-normal direction, and 5 6 Dzþ 6 15 in the spanwise directions, in
wall units. A very good accuracy is obtained for Dxþ ¼ 30; Dyþ ¼ 1 and Dzþ ¼ 10. In the second step,
three channel flows at Reynolds numbers Res ¼ 350, 600 and 960 are simulated using grids with mesh
spacings smaller than, or equal to the mesh spacings reported above. The results are shown to be reliable,
and demonstrate that the Reynolds number effects are well captured in the present LES of wall-bounded
turbulent flows.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last two decades, computational fluid dynamics has
become an efficient tool for the study of wall turbulence. In partic-
ular, wall-bounded flows at ever-higher Reynolds numbers have
been simulated, which enabled the effects of the Reynolds number
on flow statistics and coherent structures to be discussed [1]. It
remains, however, difficult to reproduce the features of wall-
bounded flows numerically, because wall turbulence is strongly
influenced by the dynamics of the small scales developing close
to the wall, which exhibit strong anisotropy and complex interac-
tions with larger scales. These small scales must therefore be accu-
rately calculated in simulations. This has been done in most cases
using Direct Numerical Simulation (DNS) for channel flows [2–8]
and boundary layers [9–13]. Unfortunately, as the Reynolds
number increases, the computational cost of a DNS is rapidly pro-
hibitive. As an illustration, note for instance that twenty years have
elapsed between the DNS by Kim et al. [2] and by Hoyas and
Jiménez [8] for channel flows at Reynolds numbers differing by
one decade only.

In order to reduce the numerical cost, Large Eddy Simulations
(LES), in which only the largest eddies are resolved, can be used.
The effects of the under-resolved eddies are then taken into
account by a so-called subgrid-scale model, which classically relies
on the assumptions that the large scales carry energy, and that the
small scales have mainly dissipative effects [14]. Depending on the
possible near-wall resolution, wall-modelled or wall-resolved LES
can be performed. In the first approach, only the outer part of
wall-bounded flows is resolved, whereas the inner part is modelled
[15]. In this way, very high Reynolds numbers can be reached [16],
but the near-wall structures are not captured. In the second
approach, both the outer and inner parts of the flows are computed
at the expense of the computational cost. Accordingly, the range of
Reynolds numbers affordable with wall-resolved LES is much
smaller, and falls within the range of Reynolds numbers considered
in DNS [17–20]. The cost is however significantly lower using LES.
For example, the number of grid points is about 10 times smaller in
the LES of a boundary layer performed by Schlatter et al. [20] than
in a DNS.
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Fig. 1. Damping function of the explicit 6th-order 11-point filter [37] used for the
relaxation filtering, as a function of the normalized wavenumber kD, where D is the
grid spacing.
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In wall-resolved LES, various numerical parameters such as the
inflow and boundary conditions, the grid resolution, the subgrid-
scale model and the discretization schemes can affect the calcula-
tion of the near-wall turbulent structures. It is consequently neces-
sary to validate the simulation methods carefully. Regarding the
impact of the inflow conditions, for example, Schlatter and Örlü
[13] have reviewed data from several DNS of boundary layers,
and pointed out some differences in basic integral quantities and
in flow statistics. They showed in particular that flow features
are significantly influenced by the inflow parameters and the
boundary-layer tripping [21]. Such difficulties do not exist for
fully-developed channel flows, where periodic conditions are
imposed in the streamwise direction where turbulence is homoge-
neous. It appears therefore particularly interesting to study the
quality of the LES of wall-bounded flows by simulating channel
flows. This is the case for instance in the papers by Rasam et al.
[22] and by Vuorinen et al. [23], who examined the effects of sub-
grid-scale model and grid resolution, and of a space discretization
method, respectively.

In the present work, turbulent channel flows are simulated by
LES using relaxation filtering as a subgrid-scale model. This LES
approach was proposed by Visbal and Rizzetta [24], Mathew
et al. [25] and Bogey and Bailly [26], among others. It consists in
filtering the flow variables every n-th time step using a high-order
low-pass filter at a strength r between 0 and 1, in order to relax
turbulent energy from the smallest discretized scales, character-
ized by wave numbers close to the grid cut-off wave number, while
leaving larger scales mostly unaffected. In practice, the filtering is
usually applied every time step at a fixed strength r ’ 1 in order
to ensure numerical stability, which is not guaranteed when low-
dissipation and/or centered discretization schemes are used.
Note, however, that dynamic procedures can be built to adjust
the parameters of the filtering to the flow characteristics, e.g. in
Tantikul and Domaradzki [27]. In previous studies, the validity of
the LES approach was explored for a Taylor–Green vortex flow
[28], free shear layers [29] and jets [26,30–32]. The approach has
also been successfully employed for a flow around an airfoil [33]
or for a turbulent boundary layer [19]. Here, the performance of
the LES method is investigated for wall-bounded flows by simulat-
ing fully developed channel flows on grids at different spatial res-
olutions and for different Reynolds numbers. The first objective is
to determine for which mesh spacings accurate results, converged
with respect to the grid, can be obtained. The second one is to
check that Reynolds number effects [30,34] on wall turbulence
are reproduced. For this, velocity profiles and spectra obtained near
the wall, and in particular in the buffer-layer region, where small
scales play an important role, will be presented, and comparisons
with DNS data of the literature will be provided. Transfer functions
associated with molecular viscosity and relaxation filtering will
also be shown in the wavenumber space.

The paper is organized as follows. The LES performed for a chan-
nel flow at different spatial resolutions are presented in Section 2.
The LES of channel flows at different Reynolds numbers are
reported in Section 3. Finally, concluding remarks are given in
Section 4.

2. LES of a turbulent channel flow at different spatial
resolutions

2.1. Parameters

Large-eddy simulations of a turbulent channel flow are per-
formed by solving the three-dimensional compressible Navier–
Stokes equations on Cartesian meshes. The channel flow is at a
Reynolds number of Res ¼ ush=m ¼ 300 and a Mach number of
M ¼ U0=c ¼ 0:4, where U0 is the centerline velocity, c is the speed
of sound, h is the channel half-width, us ¼
ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
is the friction

velocity, sw is the wall shear stress, and m and q are the kinematic
molecular viscosity and the density of the flow. The streamwise,
wall-normal and spanwise coordinates are denoted by x; y and z,
respectively. The sizes of the computational domain in the stream-
wise, wall-normal and spanwise directions are Lx ¼ 12h; Ly ¼ 2h
and Lz ¼ 6h. The walls of the channel are located at y ¼ 0 and
y ¼ 2h, where a no-slip condition is imposed. Periodic boundary con-
ditions are implemented in the x and z directions. The spatial deriva-
tives are computed using an explicit 4th-order 11-point centered
finite-difference scheme [35]. Time integration is performed with
an explicit 4th-order 6-step Runge–Kutta algorithm [36]. An explicit
6th-order 11-point centered filter [37] is applied every time itera-
tion to the density, momentum and pressure variables with a
strength r ¼ 1 in order to remove spurious grid-to-grid oscillations,
whose wavelength is equal to twice the mesh spacing, and to relax
subgrid-scale energy. Since centered finite differences and a low-
dissipation time integration scheme are used, the filtering is neces-
sary to ensure numerical stability.

It is applied sequentially in the three spatial directions x; y and
z. The filtering of the variable u in the direction a yields, for
instance, the following filtered variable

~uðaiÞ ¼ uðaiÞ � rDðuÞji ð1Þ

where ai is the coordinate of the ith grid point, and D is the filtering
operator

DðuÞji ¼
XN

j¼�N

djuðaiþjÞ ð2Þ

based on the filter coefficients dj. The damping function D� ¼ FðDÞ
in the Fourier space of the filter used in the present LES is repre-
sented in Fig. 1 as a function of the wavenumber k normalized by
the grid spacing D. It is equal to 1 for the highest wavenumber taken
into account by the grid, namely kD ¼ p, corresponding to k ¼ 2D,
whereas it is smaller than 10�2 for kD K p=2, and even than 10�5

for kD K p=4. Therefore, the grid-to-grid oscillations are com-
pletely removed by the filtering, whereas the larger scales are very
weakly affected.

The influence of the spatial resolution is examined by perform-
ing fourteen simulations on grids with different mesh spacings,
which are given in Table 1 in wall units. In all cases, the mesh spac-
ings in the streamwise and spanwise directions, Dx and Dz, are con-
stant. On the contrary, the mesh spacing in the wall-normal
direction is stretched from the wall at an expansion ratio r ’ 4%

in order to save computational time. The mesh spacings at the wall
and at the center of the channel are denoted by Dyw and Dyc ,
respectively. The effects of the mesh spacing in the x; y and z



Table 1
Parameters of the grids used for the LES of the channel flow at Res ¼ 300 and for LES
and DNS in the literature: mesh spacings Dxþ in the x direction, Dyþw and Dyþc in the y
direction at the wall and at the center of the channel, and Dzþ in the z direction, in
wall units; stretching ratio r of the mesh spacing in the y direction.

Case Dxþ Dyþw Dyþc Dzþ r
(%)

gridX45 45 0.95 15 7.5 4.4
gridX35 35 0.95 15 7.5 4.4
gridX30 30 0.95 15 7.5 4.4
gridX25 25 0.95 15 7.5 4.4
gridX15 15 0.95 15 7.5 4.4

gridY4 15 3.7 15 7.5 3.5
gridY2 15 1.9 15 7.5 4.0
gridY1 15 0.95 15 7.5 4.4
gridY0.5 15 0.47 15 7.5 4.5

gridZ15 15 0.95 15 15 4.4
gridZ12.5 15 0.95 15 12.5 4.4
gridZ10 15 0.95 15 10 4.4
gridZ7.5 15 0.95 15 7.5 4.4
gridZ5 15 0.95 15 5 4.4

LES of Viazzo et al. [17] 31.4 0.88 51.84 15.7
LES of Gloerfelt and Berland [19] 37 0.98 14.7 2
LES of Schlatter et al. [20] 25.3 <1 14.2 10.8

DNS of Kim et al. [2] 12 0.05 4.4 7
DNS of Moser et al. [3] at Res ¼ 395

and 590
6 10 6 0:04 6 7:2 6 6:5

DNS of del Alamo et al. [6] at
Res ¼ 950

7.6 0.03 7.6 3.8

DNS of Hu et al. [7] 16.88 6 0:12 6 9:42 8.44
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Fig. 2. Representation of the dissipation transfer functions obtained for a mesh
spacing D in the LES of the channel flow at Res ¼ 300 using a time step
Dt ¼ 0:8Dyw=c with Dyþw ¼ 0:95, as a function of the normalized wavenumber kD:

relaxation filtering, and molecular viscosity for � � � � � � � Dþ ¼ 45 � � ��
Dþ ¼ 30, – – – Dþ ¼ 15, Dþ ¼ 7:5.
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directions are investigated by considering three sets of grids. In the
five grids referred to as gridX45, gridX35, gridX30, gridX25 and
gridX15, the mesh spacings are Dyþw ¼ 0:95; Dyþc ¼ 15 and
Dzþ ¼ 7:5, whereas Dxþ decreases from 45 down to 15. In gridY4,
gridY2, gridY1 and gridY0.5, they are equal to Dxþ ¼ 15; Dyþc ¼
15; Dzþ ¼ 7:5, whereas the mesh spacing at the wall in the
y direction reduces from Dyþw ¼ 3:7 to 0.47. Finally, in gridZ15,
gridZ12.5, gridZ10, gridZ7.5 and gridZ5, the mesh spacings are
Dxþ ¼ 15; Dyþw ¼ 0:95; Dyþc ¼ 15, and Dzþ ¼ 15, 12.5, 10, 7.5 and
5. Note that gridX15, gridY1 and gridZ7.5 are one and the same
case. For the comparison, the mesh spacings in the LES of a channel
flow performed by Viazzo et al. [17], and in the LES of turbulent
boundary layers carried out by Gloerfelt and Berland [19] and by
Schlatter et al. [20] are reported in Table 1. The mesh spacings in
the DNS of Kim et al. [2], Moser et al. [3], del Alamo et al. [6] and
Hu et al. [7] are also given. They are significantly larger in the
LES than in the DNS, especially at the wall where the normal mesh
spacings are around Dyþw ¼ 1 in the former case, but close to or
smaller than Dyþw ¼ 0:1 in the latter.

Concerning the number of points in the present grids, it varies
because of the fixed sizes of the computation domain, yielding
87 6 nx � 257; 85 6 ny � 161 and 129 6 nz � 385. In each case,
the time step Dt is chosen such that CFLy ¼ cDt=Dyw ¼ 0:8 is
obtained, ensuring the stability of the explicit time integration.

2.2. Dissipation transfer functions

In this section, the quality of the present LES is assessed a priori
by comparing the contributions of the dissipation mechanisms,
namely molecular viscosity and relaxation filtering, in the simula-
tions. For that purpose, their respective transfer functions are plot-
ted against the normalized wavenumber kD, where D is the mesh
spacing, as proposed in Bogey et al. [32]. These functions, when
multiplied by the turbulent energy spectrum EðkÞ, provide the
spectral density of energy dissipation. For molecular viscosity,

the latter quantity is known to be mk2EðkÞ yielding a transfer func-

tion equal to mk2, and to mðkDÞ2=D2 when expressed as a function of
the normalized wavenumber kD. For the relaxation filtering
applied every time step, the transfer function is found to be
rD�ðkDÞ=Dt, where D�ðkDÞ is the damping function of the filter
defined and plotted in previous section, and r is the filtering
strength. In the LES, the key issue is to determine whether, given
a specific mesh spacing, the scales well calculated by the numerical
methods, which here are the scales discretized by at least 5 points
per wavelength, are mainly dissipated by viscosity or by the relax-
ation filtering. The second case is not desirable because it may
result in the excessive damping of the largest turbulent scales
and in the artificial reduction of the effective flow Reynolds num-
ber [30].

The transfer functions are calculated for the simulations per-
formed using gridX meshes, including gridX15 also known as
gridY1 and gridZ7.5, with Dyþw ¼ 0:95 at the wall and a time step
Dt ¼ 0:8Dyw=c. They are represented in Fig. 2 as a function of the
normalized wavenumber kD, for the mesh spacings Dþ ¼ 7:5, 15,
30 and 45, in wall units. These values are chosen because
Dþ ¼ 7:5 and Dþ ¼ 15 correspond to the mesh spacings in the z
direction and in the y direction at the center of the channel, and
Dþ ¼ 15, 30 and 45 are equal to the mesh spacing in the x direction
using gridX15, gridX30 and gridX45, respectively. One curve is
obtained for the relaxation filtering, whose normalized transfer
function does not depend on the mesh spacing. On the contrary,
four curves are found for the transfer function associated with
molecular viscosity, which varies as 1=D2, and consequently moves
upwards with decreasing D or increasing grid resolution.

For Dþ ¼ 7:5, the transfer function associated with molecular
viscosity is above that of the relaxation filtering for kD < 1:1, and
below for kD > 1:1. This indicates that the wavelengths discretized
by more than k=D ¼ 2p=1:1 ¼ 5:7 points are mainly dissipated by
viscosity, whereas the shorter wavelengths are damped by the
filtering. For Dþ ¼ 15, a similar behavior is noticed, with two trans-
fer functions intersecting at kD ¼ 1:0, or k=D ¼ 6:3. For these two
grid resolutions, the well-calculated scales are therefore mainly
affected by viscous dissipation, and not by the subgrid dissipation
provided by the relaxation filtering. For Dþ ¼ 30, the transfer func-
tion of molecular viscosity is higher than that of the filtering for
wavenumbers kD < 0:48. For higher wavenumbers, the two trans-
fer functions are relatively close up to the value kD ¼ 0:95, from
which that of the filtering predominates. For Dþ ¼ 45, similarly,
the transfer function of molecular viscosity is above that of the
filtering for kD < 0:35, and below for kD > 0:35. This suggests that
for Dþ ¼ 30 and 45, the well-calculated scales characterized
by wavelengths k=D ¼ 2p=0:48 < 13 and k=D ¼ 2p=0:35 < 18,
respectively, are significantly damped by the filtering.
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The dynamics of the turbulent scales computed in the LES using
gridX30 and gridX45 with Dxþ ¼ 30 and 45 can consequently be
expected to be governed not only by the physical mechanisms
associated with molecular viscosity, but also by the relaxation fil-
tering. This does not appear, however, to be the case using
gridX15 and gridX25 in which the mesh spacings in the three spa-
tial directions satisfy Dþ < 30.

In the two other sets of simulations carried out using gridY and
gridZ meshes, the mesh spacings are all smaller than 15 wall units.
Based on the results above, this should ensure that the scales well
calculated in these LES are not dissipated by the filtering.

2.3. Flow visualization

Following the a priori study of the LES quality, suggesting that
some of the LES in this work may not be accurate, the simulation
results are now analyzed a posteriori in order to assess their con-
vergence with respect to the grid resolution. This point is first dis-
cussed qualitatively by visualizing the turbulent structures
developing close to the wall in the buffer layer, which must be cor-
rectly computed in the LES of wall-bounded flows as mentioned in
the introduction. For this, snapshots of velocity fluctuations in a
plane at a distance to the wall of yþ ¼ 16 are examined for the
LES using gridZ5, gridX45 and gridZ15. The first grid is the finest
grid with Dxþ ¼ 15 and Dzþ ¼ 5. The two others are the coarsest
grids in the streamwise and the spanwise directions, respectively,
with Dxþ ¼ 45 in the first case and Dzþ ¼ 15 in the second case,
which may lead to the insufficient discretization of the flow turbu-
lent structures.

Streamwise and wall-normal velocity fluctuations obtained
using gridZ5 with Dxþ ¼ 15; Dyþw ¼ 0:95 and Dzþ ¼ 5 are repre-
sented in Fig. 3(a) and (b). In the streamwise velocity field,
Fig. 3. Snapshots of streamwise and wall-normal velocity fluctuations u and v obtained
(a) streamwise velocity (black: u < U � urms , white: U � urms < u < U þ urms , gray: u > U
v < �v rms , white: �v rms < v < v rms , gray: v > v rms).

Fig. 4. Snapshots of streamwise and wall-normal velocity fluctuations u and v obtain
Dzþ ¼ 7:5: (a) streamwise velocity, (b) wall-normal velocity; same color scales as in Fig
elongated structures are found, colored in black and gray indicat-
ing low-speed and high-speed fluid. These structures correspond
to high-speed and low-speed streaks [39], which are approxi-
mately 1000 wall units long and 100 wall units wide. In the
wall-normal velocity field, a great number of structures consisting
in pairs of black and gray regions elongated in the streamwise
direction, where black and gray denote fluid moving toward the
wall and away from the wall, are noted. These structures are
induced by quasi-streamwise vortices [39], which are from 200
to 400 wall units in length and about 50 wall units in diameter.
The turbulent structures observed in Fig. 3 have sizes which are
substantially larger than the mesh spacings. They are consequently
well discretized by the grid. Furthermore, these structures look
very similar to those in the velocity snapshots obtained using
DNS by Jiménez et al. [40] at yþ ¼ 16 for a channel flow at
Res ’ 1000. The LES using gridZ5 therefore seems to be well
resolved at the wall.

Snapshots of velocity fluctuations provided by the LES using
gridX45 with Dxþ ¼ 45; Dyþw ¼ 0:95 and Dzþ ¼ 7:5 are shown in
Fig. 4. Compared to the results obtained with Dxþ ¼ 15 in Fig. 3,
there are less differences for the streamwise velocity in Fig. 4(a)
than for the spanwise velocity in Fig. 4(b). In the former case, sim-
ilar high-speed and low-speed streaks are found, which can be
explained by the fact that they remain much longer than the
streamwise mesh spacing Dxþ ¼ 45. In the latter case, on the con-
trary, the turbulent structures are more numerous and longer than
those in Fig. 3(b), and have lengths typically between 400 and 500
wall units. The quasi-streamwise vortices developing close to the
wall thus appear to be poorly resolved by the grid.

Finally, snapshots of velocity fluctuations given by the LES using
gridZ15 where Dxþ ¼ 15; Dyþw ¼ 0:95 and Dzþ ¼ 15 are displayed
in Fig. 5. The streaks and the quasi-streamwise vortices are up to
at the same time at yþ ¼ 16 using gridZ5 where Dxþ ¼ 15; Dyþw ¼ 0:95 and Dzþ ¼ 5:
þ urms , where U is the mean streamwise velocity), (b) wall-normal velocity (black:

ed at the same time at yþ ¼ 16 using gridX45 where Dxþ ¼ 45; Dyþw ¼ 0:95 and
. 3.



Fig. 5. Snapshots of streamwise and wall-normal velocity fluctuations u and v obtained at the same time at yþ ¼ 16 using gridZ15 where Dxþ ¼ 15; Dyþw ¼ 0:95 and Dzþ ¼ 15:
(a) streamwise velocity, (b) wall-normal velocity; same color scales as in Fig. 3.
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200 and 100 wall units wide, respectively. They are wider than
those obtained using Dzþ ¼ 5 in Fig. 3, indicating that they are
insufficiently discretized in the spanwise direction. In particular,
the width of quasi-streamwise vortices should be around 50 wall
units, which is only about 3 times the spanwise mesh spacing
Dzþ ¼ 15.

2.4. Integral length scales

In order to check the suitability of the LES resolution, character-
istic length scales are calculated from the velocity fluctuations in
the buffer region, and they are compared to the mesh spacings
Dx and Dz. The integral length scales in the streamwise and span-
wise directions are defined, respectively, by

LðxÞuu ¼
R1

0 Ruuðx;0Þdx

LðzÞuu ¼
R1

0 Ruuð0; zÞdz

(
ð3Þ

where

Ruuðx; zÞ ¼
u0ðx0; y0; z0Þu0ðx0 þ x; y0; z0 þ zÞ

u02ðy0Þ
ð4Þ

is the correlation function obtained for the streamwise velocity
fluctuations at the wall distance yþ0 ¼ 16. The overbar denotes aver-
aging over time and over all the positions ðx0; z0Þ because turbu-
lence is homogeneous in the x and z directions.

In order to obtain reliable values of integral length scales, the
correlation functions Ruuðx;0Þ and Ruuð0; zÞ are computed from
the results obtained with the finest grid, namely gridZ5 with
Dxþ ¼ 15; Dyþw ¼ 0:95 and Dzþ ¼ 5. They are represented in Fig. 6
as a function of separation distances normalized by wall units.
They both tend to zero as the separation distance increases, as
expected. The correlation function in the streamwise direction
decreases slowly and monotonically, and becomes smaller than
0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

1

x+, z+

R
uu

Fig. 6. Correlation functions obtained for the streamwise velocity fluctuations u at
yþ ¼ 16 from the LES using gridZ5 where Dxþ ¼ 15; Dyþw ¼ 0:95 and Dzþ ¼ 5:

Ruuðxþ;0Þ in the x direction, – – – Ruuð0; zþÞ in the z direction; separation
distances in wall units.
0.1 for a separation distance of about 600 wall units, which is
not shown in the figure. The correlation function in the spanwise
direction decreases much faster than the previous one, and pre-
sents negative values for zþ P 40. The integral length scales are
then estimated by integrating the correlation functions up to
x ¼ Lx=2 for Ruuðx;0Þ, and up to zþmax ¼ 40 where Ruuð0; zþmaxÞ ¼ 0
for Ruuð0; zÞ. Integrating Ruuð0; zÞ further in z, where the function

is negative, would indeed artificially reduce the value of LðzÞuu

þ
.

Finally, the integral length scales are found to be LðxÞuu

þ ¼ 210 and

LðzÞuu

þ ¼ 20, in wall units.
The ratios of the integral length scales with different mesh spac-

ings Dxþ between 15 and 45 and Dzþ between 5 and 15 are calcu-
lated, and reported in Table 2. In the streamwise direction, the
ratio LðxÞuu=Dx is equal to or larger than 4.6 for all values of Dxþ. In

the spanwise direction, on the contrary, the ratio LðzÞuu=Dz is only
of 4 for Dzþ ¼ 5, of 2.7 for Dzþ ¼ 7:5 and of 2 or less for
Dzþ P 10. Based on these results, and considering from Fig. 1 that
a minimal resolution of about 4 mesh spacings is required for a
proper computation, the grids described in Section 2.1 appear fine
enough in the streamwise direction, but may be too coarse in the
spanwise direction. In particular, for Dzþ > 10, the spanwise inte-
gral length scale is discretized by less than two grid points, which
is likely to affect the LES results significantly.
2.5. Mean and fluctuating velocity profiles

The convergence of the results with respect to the grid is inves-
tigated by examining the profiles of mean streamwise velocity
Uþ ¼ U=us and of rms streamwise velocity fluctuations

uþrms ¼
ffiffiffiffiffiffi
u02

p
=us, represented as a function of the wall distance

yþ ¼ yus=m.
Table 2
Ratios LðxÞuu =Dx LðzÞuu=Dz between the integral length scales
obtained from velocity u at yþ ¼ 16 in the LES using
gridZ5 and mesh spacings for different values of Dxþ and
Dzþ .

Dxþ LðxÞuu =Dx

45 4.6
35 6.0
30 7.0
25 8.4
15 14

Dzþ LðzÞuu=Dz

15 1.4
12.5 1.6
10 2.0
7.5 2.7
5 4.0
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The results provided by the LES using gridY4, gridY2, gridY1 and
gridY0.5 are shown in Fig. 7. The velocity profiles obtained with
Dyþw ¼ 3:7, 1.9 and 0.95 differ, whereas those obtained with
Dyþw ¼ 0:95 and 0.47 are very close, which suggests grid conver-
gence for Dyþw ¼ 0:95. It can be noted that in the simulations car-
ried out with Dyþw ¼ 3:7 and 1.9, the values of Uþ and uþrms are
appreciably underestimated. This is particularly the case for the
peak value of rms velocity fluctuations in Fig. 7(b), highlighting
the importance of the first grid point in the y direction near the
wall.

The mean and rms velocity profiles obtained in the simulations
gridZ where Dzþ varies between 5 and 15 are presented in Fig. 8.
Overall, the profiles do not change much with the spanwise mesh
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Fig. 7. Representation (a) of the mean value and (b) the rms fluctuations of streamwise v
gridY0.5, as a function of the wall distance using wall units.

(a)

1 4 16 64 256
0

5

10

15

20

y+

U
+

Fig. 8. Representation (a) of the mean value and (b) the rms fluctuations of streamwis
gridZ7.5, gridZ5, as a function of the wall distance using wall units.
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Fig. 9. Representation (a) of the mean value and (b) the rms fluctuations of streamwis
gridX25, gridX15, as a function of the wall distance using wall units.
spacing for Dzþ 6 10, but discrepancies are observed for Dzþ > 10,
which is in agreement with the conclusions of the analysis of
Section 2.4. Convergence is thus practically reached for Dzþ ¼ 10.
Moreover, with respect to the well-resolved LES, the values of
mean and rms streamwise velocities in the under-resolved LES
with Dzþ ¼ 12:5 and 15 are overestimated, respectively, in the
outer part of the flow and in the buffer region.

The results obtained in the cases gridX with 15 6 Dxþ � 45 are
plotted in Fig. 9. For both mean velocity and rms velocity fluctua-
tions, the profiles are very similar for Dxþ 6 30, indicating grid con-
vergence, as expected given the results of Section 2.2. For Dxþ > 30,
as previously using coarse grids in the z direction, the values of mean
and rms velocities are higher than those found using fine grids.
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elocity obtained in the LES using � � � � � � � gridY4, � � �� gridY2, – – – gridY1,
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2.6. Spanwise velocity spectra

Spanwise spectra /uuðkzÞ of the streamwise velocity fluctuations
at yþ ¼ 16 are computed for the LES performed using gridZ15,
gridZ10 and gridZ7.5 with a streamwise mesh spacing Dxþ ¼ 15,
and spanwise mesh spacings Dzþ ¼ 15, 10 and 7.5. They are repre-
sented in Fig. 10 as a function of the spanwise wavenumber kz, nor-
malized by wall units. They all slowly increase with wavenumber
at low wavenumbers, reach a maximum around a value

kmax
z
þ ¼ 0:038 indicated by a vertical gray line. Besides, at high

wavenumbers, they exhibit a very sharp decrease beyond
kþz ¼ 0:07, 0.1 and 0.15, respectively, for Dzþ ¼ 15, 10 and 7.5. In
the three cases, these wavenumbers correspond to wavelengths
kz ¼ 2p=kz discretized by approximately kz=Dz ¼ 6 points.
Therefore, the sharp decreases can be attributed to the effects of
the relaxation filtering, which is designed to damp wavelengths
shorter than about 5 mesh spacings.

In the three LES, the dominant components in the velocity spec-

tra are centered around kmax
z
þ ’ 0:038, yielding kmax

z
þ ’ 166. This

length scale gives an estimate of the size of the turbulent struc-
tures contributing the most to the kinetic energy at the wall. The
components on the right side of the peak exhibit lower levels than
those on the left side, but they extend over a wider range of
wavenumbers, namely from kþz ¼ 0:4 to approximately 1.5 in the
LES using gridZ7.5, and thus contribute significantly to the total
energy. This wavenumber range is reduced for smaller mesh spac-
ings Dzþ. In particular, it lies between about kþz ¼ 0:4 and 0:7 for
Dzþ ¼ 15, suggesting that a non-negligible portion of the energy
is artificially damped in the LES using gridZ15.
3. LES of channel flows at different Reynolds numbers

3.1. Parameters

Three large-eddy simulations of turbulent channel flows at a
Mach number of M ¼ 0:5 and at Reynolds numbers of Res ¼ 350,
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Fig. 10. Representation of the power spectral densities of the streamwise velocity
fluctuations obtained at yþ ¼ 16 in the LES using � � � � � � � gridZ15, – – – gridZ10, and

gridZ7.5, as a function of the spanwise wavenumber kþz using wall units;
kþz ¼ 0:038.

Table 3
LES of channel flows at varying Reynolds numbers Res: Mach number M, number of
grid points nx � ny � nz , and mesh spacings Dxþ in the x direction, Dyþw and Dyþc in the
y direction at the wall and at the center of the channel, and Dzþ in the z direction, in
wall units; stretching ratio r of the mesh spacing in the y direction.

Case Res M nx � ny � nz Dxþ Dyþw Dyþc Dzþ r (%)

Re350 350 0.5 247� 133� 247 17 0.97 16 8.5 4.4
Re600 600 0.5 285� 185� 355 25 0.97 10 10 4.4
Re960 960 0.5 457� 261� 571 25 0.93 10 10 4.4
600 and 960, referred to as Re350, Re600 and Re960, are per-
formed. The Mach number is slightly higher than the Mach number
of M ¼ 0:4 considered in Section 2. However, both are low enough
so that compressibility effects are very weak, and that the flow fea-
tures do not appreciably depend on the Mach number [45]. In the
three LES, the dimensions of the computational domain are
Lx � Ly � Lz ¼ 12h� 2h� 6h, where h is the half-width of the chan-
nel. The grids used contain from 8.1 million points for Re350 up to
68 million points for Re960. Their main parameters are given in
Table 3. In the Re350 case, the mesh spacings in wall units are
Dxþ ¼ 17 and Dzþ ¼ 8:5 in the streamwise and spanwise direc-
tions, and Dyþw ¼ 0:97 at the wall and Dyþc ¼ 16 at the center of
the channel in the wall-normal direction. In the Re600 and
Re960 cases, the streamwise and spanwise mesh spacings are
Dxþ ¼ 25 and Dzþ ¼ 10. They are slightly larger than those in the
Re350 case in order to keep computational costs at a reasonable
level. In the y direction, the mesh spacing at the wall is
Dyþw ¼ 0:97 for Re600, and Dyþw ¼ 0:93 for Re960, and the mesh
spacing at the center of the channel is Dyþc ¼ 10 in both cases.
These values are smaller than, or at least equal to the maximal
mesh spacings required according to the study conducted in previ-
ous section for a channel flow at Res ¼ 300. The same resolution
requirements most probably apply to the present LES, because
the near-wall properties of channel flows, when scaled by m and
uf , are nearly independent from the Reynolds number for
Res 6 1000 [1].

As reported in Table 4, time integration in the Re350 simulation is
performed using an explicit fourth-order six-step Runge–Kutta algo-
rithm [36]. The CFL number CFLy ¼ cDt=Dyw at the wall in the wall-
normal direction, where Dt is the time step, is equal to 0.8. In the
Re600 and Re960 simulations, a semi-implicit third-order six-step
Runge–Kutta scheme is used in order to reduce computational time.
A detailed description of the scheme can be found in a previous
paper [38]. The CFL number CFLz ¼ cDt=Dz in the spanwise direction
is equal to 1.0, yielding a CFL number CFLy ¼ 11 at the wall. The
number of time iterations is nit ¼ 480;000, 24,000 and 35,000, and
the duration of the simulations is TLESU0=h ¼ 490, 203 and 165,
respectively, for Re350, Re600 and Re960.

The numerical methods for spatial differentiation and relax-
ation filtering are identical to those used for the LES of Section 2.
The spatial derivatives are approximated with an explicit 4th-order
11-point finite-difference scheme [35], while an explicit 6th-order
11-point filter [37] is applied to the flow variables at every itera-
tion with a strength r ¼ 1.
3.2. Dissipation transfer functions

Since the aim is to investigate the possibility of studying
Reynolds number effects in turbulent channel flows using LES with
relaxation filtering, the magnitude of the dissipative mechanisms
in the simulations are compared in the same way as in
Section 2.2, in order to ensure that the effective flow Reynolds
number is not artificially reduced. The transfer functions associ-
ated with molecular viscosity and relaxation filtering are thus
Table 4
LES of channel flows at varying Res: time integration algorithm, CFL numbers
CFLy ¼ cDt=Dyw in the y direction and CFLz ¼ cDt=Dz in the z direction, time duration
TLES scaled by the centerline velocity U0 and the channel half-width h, number of time
iterations nit .

Case Algorithm CFLy CFLz TLESU0=h nit

Re350 Explicit RK [36] 0.8 0.1 490 480,000
Re600 Semi-implicit RK [38] 11 1.0 203 24,000
Re960 Semi-implicit RK [38] 11 1.0 165 35,000
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computed for the three LES based on the largest mesh spacing, that

is Dx in the streamwise direction, yielding mðkxDxÞ2=Dx2 and
rD�ðkxDxÞ=Dt, respectively. They are represented in Fig. 11 as a
function of the normalized wavenumber kxDx. For the Re350 case
in Fig. 11(a), the transfer function associated with viscosity is
above that of filtering for kxDx 6 1:0, and below for kxDx P 1:0.
Viscous effects are consequently stronger than the filtering effects
for components discretized by more than kx=Dx ¼ 2p=1:0 ¼ 6:3
points per wavelength, and weaker for shorter components.
Similarly, in the Re600 and Re960 cases in Fig. 11(b) and (c), viscos-
ity is dominant for components with more than kx=Dx ¼ 5:7 points
per wavelength. These results show that in the present simula-
tions, molecular viscosity provides dissipation of most of the large
turbulent scales. Reynolds number effects are therefore expected
to be well reproduced.

3.3. Flow visualization

In order to illustrate the fine discretization of the near-wall
structures in the LES, snapshots of the velocity fluctuations
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Fig. 11. Representation of the dissipation transfer functions obtained in the LES (a) Re350
kxDx: relaxation filtering, – – – molecular viscosity.

Fig. 12. Snapshots of velocity fluctuations u and v obtained at the same time at yþ ¼ 18:
u > U þ urms , where U is the mean streamwise velocity), (c, d) wall-normal velocity (black
d) Re960.
obtained at a distance to the wall of yþ ¼ 18 are presented in
Fig. 12 for the Re600 and Re960 cases. The results of the former
case in Fig. 12(a) and (c) and those of the latter in Fig. 12(b) and
(d) look similar to each other.

For both Reynolds numbers, the streamwise velocity fields in
Fig. 12(a) and (b) show regions of low-speed and high-speed fluid,
elongated in the streamwise direction, corresponding to the near-
wall streaks [39]. As for the wall-normal velocity fields in Fig. 12(c)
and (d), they exhibit a great number of structures, also elongated in
the streamwise direction. These structures are arranged in pairs of
regions with fluid moving toward and away from the wall, and
they are induced by quasi-streamwise vortices [39].

3.4. Mean and fluctuating velocity profiles

The profiles of mean streamwise velocity Uþ ¼ U=us obtained in
the Re350, Re600 and Re960 cases are presented in Fig. 13 as a
function of the distance to the wall yþ ¼ yus=m. For yþ 6 100, the
profiles are superimposed. They follow the mean velocity laws
Uþ ¼ f ðyþÞ typically found in turbulent boundary layers,
) (c)

kxΔxΔx
π/4 π/2 π π/32 π/16 π/8 π/4 π/2 π

, (b) Re600 and (c) Re960 as a function of the normalized streamwise wave number

(a, b) streamwise velocity (black: u < U � urms , white: U � urms < u < U þ urms , gray:
: v < �v rms , white: �v rms < v < v rms , gray: v > v rms), from cases (a, c) Re600 and (b,
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Fig. 13. Representation of the mean streamwise velocity obtained from cases � � ��
Re350, – – – Re600 and Re960, as a function of the wall distance using wall
units; � � � � � � � Uþ ¼ yþ for yþ 6 10 and Uþ ¼ lnðyþÞ=jþ B with j ¼ 0:41 and B ¼ 5
for yþ P 10.
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represented by dots, namely the linear law Uþ ¼ yþ for yþ � 5 in
the viscous sublayer, and the logarithmic law Uþ ¼ lnðyþÞ=jþ B
with j ¼ 0:41 and B ¼ 5 for 30 < yþ < 100 in the so-called loga-
rithmic layer. These values of j and B fall within the range of val-
ues given by numerical and experimental studies [42].

For 5 < yþ < 30, the velocity profiles deviate from the two ana-
lytic curves. This is expected because this region, named the buffer
layer, corresponds to a transition zone between the viscous sub-
layer and the logarithmic layer.

Finally, for yþ P 100, the well-known outer-layer wake devia-
tion of the mean velocity profile with respect to the logarithmic
law is observed. Slight differences appear between the three LES,
because the velocity profiles in this flow region scale with outer
variables [41].
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Fig. 14. Representation of the rms streamwise velocity fluctuations uþrms obtained from ca
(a) yþ and (b) y=h.
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Fig. 15. Representation (a) of the mean streamwise velocity and (b) the rms velocity fluc
and from the DNS of Moser et al. [3] at Res ¼ 395, as a function of the wall dis
The profiles of rms streamwise velocity fluctuations
uþrms ¼ urms=us calculated from the Re350, Re600 and Re960 simula-
tions are represented in Fig. 14(a) as a function of the distance to
the wall yþ in wall units. They are very similar for 5 6 yþ � 50 in
the buffer region. The peak of rms velocity is located at
yþ ’ 14:5, and slightly increases with the Reynolds number, as
observed, for example, in the DNS of Hu et al. [7] for channel flows
at Res ¼ 90� 1440. Another change is noted for yþ P 50, where
the profiles present a hump growing in magnitude and shifting
toward higher values of yþ as the Reynolds number increases.

The rms velocity profiles are re-plotted in Fig. 14(b) as a func-
tion of y=h. In that case, they strongly differ near the wall, whereas
they are very close farther away for y=h > 0:2. In the outer flow
region, the fluctuating streamwise velocity thus appears to follow
a similarity law when a mixed scaling based on us for the velocity
scale and h for the length scale is used.
3.5. Comparison with reference data

The mean and fluctuating velocity profiles obtained in the
Re350, Re600 and Re960 cases are compared with the reference
DNS data provided by Moser et al. [3] and del Alamo et al. [6] for
turbulent channel flows at Res ¼ 395, 590 and 950. These
Reynolds numbers are not exactly identical to those of the LES,
but they are fairly close to them, which should allow relevant com-
parisons to be made. It can be noted that the mesh spacings are sig-
nificantly larger in the LES than those in the DNS, which are
indicated in Table 1. This leads to a substantial reduction in the
number of grid points. For instance, the LES grid in the Re960 case
contains 68 million points, when 2.7 billion points are used in the
DNS of del Alamo et al. [6] at Res ¼ 950.
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The profiles of mean streamwise velocity and of rms stream-
wise, wall-normal and spanwise velocity fluctuations given by
the Re350 computation and the DNS at Res ¼ 395 are presented
in Fig. 15. The LES and DNS results are very similar for yþ � 50.
For larger distances to the wall, the fluctuation levels are slightly
stronger in the DNS than in the LES, which may be due to the
higher Reynolds number in the DNS. The mean and fluctuating
velocity profiles from the Re600 simulation and the DNS at
Res ¼ 590 are shown in Fig. 16. The agreement between the LES
and the DNS results is excellent in all cases. In particular, the hump
around yþ ¼ 200 pointed out in Section 3.4 in the LES profile of rms
streamwise velocity fluctuations also appear in the DNS corre-
sponding profile. Finally, the velocity profiles from the Re960 case
and the DNS at Res ¼ 960 are given in Fig. 17. Here again, the LES
and DNS results are in very good agreement.
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Fig. 16. Representation (a) of the mean streamwise velocity and (b) the rms velocity fluc
and from the DNS of Moser et al. [3] at Res ¼ 590, as a function of the wall dis
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Fig. 17. Representation (a) of the mean streamwise velocity and (b) the rms velocity fluc
and from the DNS of del Alamo et al. [6] at Res ¼ 950, as a function of the wal
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Fig. 18. Representation of the power spectral densities of the streamwise velocity fluctua
of the spanwise wavenumber kz using (a) inner units and (b) outer units.
These successful comparisons with DNS data demonstrate that
the present LES of turbulent channel flows are reliable, and prop-
erly take into account Reynolds number effects both qualitatively
and quantitatively.
3.6. Velocity spectra

Finally, power spectral densities /uu of the streamwise velocity
fluctuations are computed in the buffer region at a distance to the
wall of yþ ¼ 18 for the Re350, Re600 and Re960 cases. They are
represented as a function of the spanwise wavenumber kz in
Fig. 18(a) using a normalization by inner scales. For low wavenum-
bers kþz 6 0:02, there are strong differences between the results
from the three LES, which will be discussed below. For
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kþz P 0:02, the spectra are very close, those from the Re600 and
Re960 simulations even being superimposed. They are rather flat
between kþz ¼ 0:02 and 0.035, and decrease at higher wavenum-
bers. The slope of the curves does not vary much between
kþz ’ 0:06 and 0.15, and then becomes steeper. The latter collapse
is due to the relaxation filtering, which affects wavelengths shorter
than 5Dz, corresponding to wavenumbers kþz P 0:15 for Re350 and
kþz P 0:12 for Re600 and Re960.

The very good fit of the velocity spectra obtained at different
Reynolds numbers for kþz P 0:02 in Fig. 18(a) using an inner nor-
malization illustrates the independence of the small turbulent
structures in the buffer region, namely the near-wall streaks, from
the outer scales of the flow. The dominant components in this
spectral region are located at kþz ¼ 0:02� 0:035, which indicates
that the spanwise scale of the most energetic streaks ranges from
kþz ¼ 180 to 300. These values are higher than the spanwise sepa-
ration of about 100 wall units classically found in the literature
for turbulent boundary layers [43]. They are however similar to
those measured by Tomkins and Adrian [44], who obtained domi-
nant spanwise scales between kþz ¼ 200 and 400 in a turbulent
boundary layer at Res ¼ 426.

The results provided by the LES for low wavenumbers kþz 6 0:02
are now examined. In this spectral region, strong components
clearly emerge for kþz ¼ 0:003� 0:005 in the Re960 case and for
kþz ¼ 0:005� 0:01 in the Re600 case, with magnitudes two times
smaller in the second simulation. In the Re350 case, no significant
peak is observed, and the levels are again two times smaller than
those of the Re600 case. An higher Reynolds number thus results
in the amplification of low-wavenumber components, which do
not scale using wall units. On the contrary, when normalized using
outer units as in Fig. 18(b), the spectra are in good agreement for
spanwise wavenumbers in the range 3 6 kzh � 6, corresponding
to spanwise wavelengths h 6 kz � 2h. The low-wavenumber com-
ponents are consequently related to the outer scales of the flow.

4. Conclusion

In this paper, LES of fully developed channel flows using relax-
ation filtering as subgrid model are reported. The simulations are
performed using different grid resolutions and for various
Reynolds numbers, in order to assess the validity of the LES
approach for turbulent wall-bounded flows.

For the LES at a fixed Reynolds number Res ¼ 300 carried out
with different spatial resolutions, the mean and rms velocity pro-
files are found not to change significantly with the grid for mesh
spacings Dxþ � 30 in the axial direction, Dyþ � 1 in the wall-nor-
mal direction at the wall and Dzþ � 10 in the spanwise direction,
in wall units. The severe limitation on Dyþ at the wall is expected
because of the need to take into account the small scales develop-
ing close to the wall. Based on the calculation of integral length
scales and spectra, the constraint on Dzþ is shown to be due to
the necessity to sufficiently discretize the scales dominating in
the spanwise direction. In the present LES, more than 4 mesh spac-
ings, which corresponds approximately to the limit above which
the scales are not damped by the filtering, are required. Finally,
the constraint on Dxþ is explained in the light of the dissipation
transfer functions associated with molecular viscosity and relax-
ation filtering. It is indeed found that a part of the resolved turbu-
lent scales may be affected by the filtering for Dxþ P 30 in the
present simulations.

For the LES of channel flows at Reynolds numbers Res ¼ 350,
600 and 960 performed using fine grids, the results are shown to
be reliable, and agree very well with DNS results of the literature.
This demonstrates that the Reynolds number effects are well
captured in the simulations. In particular, the emergence of a
hump in the outer part of the profiles of rms velocity fluctuations
as the Reynolds number increases is accurately reproduced. The
shapes of the streamwise velocity spectra in the buffer region also
change with the Reynolds number. High-wavenumber components
in the spectra scale using inner units, whereas low-wavenumber
components scale using outer units.

The present study indicates that the LES method based on
relaxation filtering can be used to simulate fully turbulent wall-
bounded flows, provided that, as should be the case in all simula-
tions, care is taken to ensure that grid resolution is sufficient and
that largest scales are not overly affected by numerical dissipation.
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