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Stochastic methods are widely used because they constitute a low-cost computational-fluid-dynamics approach to

synthesize a turbulent velocity field from time-averaged variables of a flowfield. A new combined stochastic method

based on the sweeping hypothesis is introduced in this paper. This phenomenon, stating that inertial range structures

are advected by the energy containing eddies, is known to be an important mechanism of the turbulent velocity field

decorrelation process. The proposed method presents the advantage of being easily implementable and applicable to

any three-dimensional configuration as long as a steadyReynolds-averagedNavier–Stokes computation of the flow is

available and assuming that the considered turbulence physics is compatible with the hypotheses made to build the

current numerical model. The developed method is applied on a subsonic round cold free jet. The validation study

shows that the synthesized turbulent velocity fields reproduce statistical features of the flow, such as two-point two-

time velocity correlation functions, comparable to those found experimentally and integrates shear effects of themean

flow. The mean convection velocity of the turbulent structures is also correctly modeled. In addition, the turbulent

kinetic energy spatial distribution is preserved by the stochastic method.

Nomenclature

An = amplitude of the nth mode
CK = Kolmogorov constant
D = nozzle diameter
D1∕2 = half-velocity diameter
E = von Kármán-Pao energy spectrum
k = wave number
kc = cutoff wave number
ke = wave number for which themaximum of energy occurs
kmin = minimum wave number
kmax = maximum wave number
kn = wave number of the nth mode
kt = turbulent kinetic energy
kt max = maximum turbulent kinetic energy
L = integral length scale
Lη = Kolmogorov length scale
N = number of modes
Rij = velocity correlation function

r =
�����
ξ2j

q
, separation vector

t = time
u = total turbulent velocity field
�u = mean flow velocity field

ua = mean velocity on the jet axis u�x; y � 0; z�
ubulk = carrier vector field
uc = convection velocity
ul = large-scale turbulent velocity field
us = small-scale turbulent velocity field
uj = jet exit velocity
x, y, z = positions
xi = positions
αL = length calibration factor
ατ = time calibration factor
δ = boundary-layer thickness
δθ = momentum thickness
ε = dissipation rate
ζ = random velocity field
ν = kinematic viscosity
ξi = separation in the ith direction
σn = direction of the nth mode
τ = time delay
τc = time scale
φn = phase of the nth mode
ωn = pulsation of the nth mode

Subscripts

l = large scale
n = mode number
s = small scale

I. Introduction

S INCE the beginning of the 1970s, the understanding of turbulent
flows is a topic of the highest importance for actors of the

aeronautic industry working on energy efficient or quiet designs for
aircraft. As a result of the significant advancement in computational
capabilities over the last decades, many numerical tools allowing the
simulation of turbulent flows have been developed. In most of
the computational fluid dynamics (CFD), the turbulence modeling is
needed and constitutes a key issue of the simulations. For instance,
one can quote the Reynolds stresses models used in the framework of
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steady Reynolds-averaged Navier–Stokes (RANS) computations or
the variety of subgrid-scale models developed for large-eddy simula-
tion (LES) applications.
Numerous studies in fields of application as diverse as particle

diffusion [1–5], turbulence injection at the inlet boundary of unsteady
calculations [6–9], or aeroacoustics [10–15] leaned upon stochastic
methods to model the turbulence. This kind of approach presents the
advantage of being easily applicable and less expensive than direct
computations. The challenge imposed by those methodologies is
to synthesize an unsteady turbulent velocity field with “realistic”
features starting from time-averaged information about a given
flowfield. Interested in particle diffusion in incompressible, station-
ary, and isotropic turbulence, Kraichnan [1] was the first to propose a
method to generate a stochastic velocity field u by considering a sum
of Fourier modes. The methods proposed since his former model [1]
to compute such fields can be separated into two families: those based
on the decomposition in turbulent modes, and those leaning upon the
filtering of a white noise.
The first family of models have been widely applied [13,15–20] in

the framework of aeroacoustics studies. The idea is to build the
stochastic velocity field as a sum of N modes whose amplitudes are
directly dictated by an imposed energy spectrum. Following thework
of Karweit et al. [10] on the propagation of an acoustic wave through
a turbulent medium, Bechara et al. [11] proposed an approach by
generating Nr pairwise independent realizations of the stochastic
field constituted of N spatial Fourier modes and considerating it as
a time series. With each local velocity signal being random, the
temporal coherence of the turbulence is then recovered by a filtering
of each local white noise in the frequency domain by a Gaussian
function centered on a characteristic frequency ε∕kt. Bailly et al. [21]
and later Bailly and Juvé [12] decided to take into account the
temporal evolution of u directly in the turbulence generation process.
In practical terms, they added a time-evolving term to Kraichnan’s
formulation [1] involving a convection velocity uc and a pulsation
ωn to generate unfrozen turbulence. The main issue of such an
improvement is that both uc and ωn have to be spatially constant to
avoid a total decorrelation of the velocity field at large times [22].
However, the turbulent fields generated by these methods [11,12,21]
reproduce the proper spatial characteristics, but their temporal
evolution is poorly modeled. To remedy the problem, Billson et al.
[14,23,24] considered locally that the turbulent field was a
superposition of a white noise and an advected term that is neither
more nor less the turbulent field at the previous time step convected
by the mean flow velocity. This method allows a good modeling
of the space and time statistical features of the turbulence and is
able to deal with inhomogeneous flowfield [18]. Nevertheless, the
preservation of the local turbulent kinetic energy, which is by
construction the base of a Fourier modes method, is lost because the
turbulent velocity field u partly depends on upstream point con-
ditions. Later, they also included an anisotropy model proposed
initially by Smirnov et al. [25].
Aswell, approaches in Fouriermodes are still widely used to study

particle diffusion [2–5,26] in turbulent media. One can quote the
development of the kinematic simulation (KS), which is very similar
to Kraichnan’s method [1]. In particular, Fung et al. [2] proposed an
alternative version to the KS initial formulation by considering the
sweeping hypothesis, or the fact that the small-scale vortices are
advected by the energy containing eddies. They introduced a
separation between large and small-scale velocity fields, with the
latter part being advected by the first one.
Turbulent modes-based formulations are used as well to impose

isotropic synthetic fluctuations as inlet boundary conditions for
unsteady simulations [9,27]. One can quote thework of Lee et al. [6],
who built a fluctuating signal by an inverse Fourier transform of
randomly phased Fourier coefficients preliminary computed from a
given two-dimensional (2-D) spectrum E�k1; k2� or the frozen
turbulence generation method proposed by Na and Moin [28].
Another way to compute a turbulent velocity field is by filtering,

which can be spatial or temporal, of a white noise. In the case of
spatial filtering, the filter kernel is builtwith either the targeted space–
time correlation functions or an imposed energy spectrum. Many

formulations have been proposed to improve the former works of
Careta et al. [29], who generated a stochastic field from a random
stream function. The randomparticlemesh (RPM)methoddeveloped
by Ewert and Edmunds [30], followed by Ewert [13], has been
applied to investigate slat [31] and jet [32] noise. In RPM, the
streamlines are discretized regarding the time step and the local mean
velocity of the flow. At each time step, the random particles, carrying
the local stream function, located at each point of this grid are
convected to the next point downstream before the advected random
field is filtered. The resulting stream function mapping is then inter-
polated on the Computational AeroAcoustics grid, and the turbulent
velocity field is obtained locally by the rotational of the stream
function.More recently, Ewert [13] significantly reduced the compu-
tation cost of RPM by reducing the number of injected particles (fast
RPM). Siefert and Ewert [32] and later Ewert et al. [33] also studied
the sweeping effect and its influence on sound generation in jets.
The filtering of the white noise can also be achieved in the time

domain. Initially frozen, the behavior of the turbulence carried by the
mean flow in the RPMmethod is now driven by a Langevin equation
[31,34,35], which is massively used to describe turbulence temporal
evolution [34,36,37]. Working with a Langevin equation, random
particles carrying the stream function are placed along the
streamlines according to the time step and themean flow. In this case,
the algorithm can be seen as series of convection and decorrelation
steps. The convection is modeled in the same manner as for the RPM
method, and the decorrelation process is achieved by applying a
Langevin equation. Numerical problems can arise when the latter
equations are used, source terms for the Acoustic Perturbation Equa-
tions or Euler equations coming from time derivatives of a filtered
white noise may be quite discontinuous, so that a second-order
Langevin model sometimes needs to be considered to overcome this
numerical issue [32,37]. The approaches by filtering present the
advantage of being capable to reproduce perfectly the second-order
two-point correlation tensor of homogeneous isotropic turbulence.
Nevertheless, these approaches are still difficult to apply to the study
of three-dimensional (3-D) complex geometries in spite of the recent
development of a 3-Dmodal stochastic source model designed for an
axisymmetric jet [38,39].
As for the Fourier modes formulations, the filtering-based

approaches also constitute a useful tool in the field of unsteady
computations initialization [27]. One can quote the contribution of
Klein et al. [7] or the development of the SEM method by Jarrin
et al. [8,40].
Pointing out the facts that, on one hand,methods relying onFourier

modes cannot model properly both convection and temporal
evolution of the turbulence, and on the other hand, that filtering
approaches are not suitable to study 3-D complex configurations, an
innovative stochastic model inspired by the previous presented
works is introduced in this paper. Developed initially for confined
subsonic jet applications, the main constraint is to take the sweeping
hypothesis into account. This phenomenon, stating that inertial range
structures are advected by the energy containing eddies, is identified
as an important mechanism of the decorrelation process of the
turbulent velocity field [2,41–43]. This approach should be able to
reproduce statistical properties of turbulence, such as velocity
correlation functions, and to preserve the spatial distribution of
the turbulent kinetic energy (TKE) imposed by the steady RANS
simulation inputs. This methodology presents the advantage of
being easily implementable and less expensive in CPU hours than
direct computations. It should be applicable to any 3-D complex
configurations as long as a steady computation of the flow is available
to feed the model and the considered turbulence physics is com-
patible with the hypotheses made to build the current numerical
model. This sweeping-based stochastic model and its parametri-
zation are presented in Sec. II. Section III is devoted to a validation
study concerning aerodynamics of a single subsonic cold free jet at
Mach 0.72. Computations have been performed on 2-D grids by
considering only the longitudinal and radial components of the
velocity field. The velocity field generator has then been applied to a
full 3-D subsonic jet configuration, and a discussion about the
turbulent kinetic energy preservation is developed in Sec. IV.
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II. Turbulence Generation Process

A stochastic method ensuring the generation of a turbulence
satisfying some requirements is introduced in this section.

A. Overview of the Model

The method presented in this work allows the generation of
stochastic turbulent velocity fields. The synthesization process of
these unsteady fields is based on the sweeping hypothesis because
this phenomenon is known to play a crucial role in the decorrelation
process of the unsteady velocity field [2,41–43]. A separation in the
turbulence scales is thus required. Following the former idea of Fung
et al. [2], the turbulent velocity field u is split into two parts,
respectively linked to the large and small-scale structures:

u�x; t� � ul�x; t� � us�x; t� (1)

The field ul is provided by the Bailly and Juvé [12] method deriving
straightforwardly from the former model of Kraichnan [1], while the
field us is obtained from an adaptation of the Billson et al. [14]
approach. The starting point to compute ul and us is the local defini-
tion of an energy spectrum. Following the homogeneous isotropic
turbulence hypothesis, a von Kármán–Pao spectrum is imposed at
each grid point depending on the local transport variables kt and ε:

E�k� � αE�εLe�2∕3�kLe�−5∕3fL�kLe�fη�kLη�Le (2)

where Le, corresponding approximately to the wave number ke to
whom the maximum of energy occurs [44], is related to the local
integral length scale L by the relation Le ≃ L∕0.747; with L being
defined by

L � αL�2∕3kt�3∕2ε−1 (3)

and Lη � �ν3∕ε�1∕4 designates the Kolmogorov length scale linked
to the smallest turbulent motions in the flow. The choice of the
calibration factor αL in Eq. (3) has always been a topic of discussion
and particularly in the field of aeroacoustics, where this coefficient is
determined by calibrating the model directly on the far-field acoustic
spectra. However, the setup of αL will be discussed in the Sec. III.C.
In Eq. (2), fL and fη are specified nondimensional functions. The
function fL drives the shape of the energy-containing part of the
spectrum, while fη represents its dissipation range. The specifi-
cations of fL and fη are

8<
: fL�kLe� �

�
kLe���������������

1��kLe�2
p

�
17∕3

fη�kLη� � exp�−2�kLη�2�
(4)

The function fL defined in relation (4) tends to unity for kLe ≫ 1 and
varies proportionally to �kLe�4 when kLe ≪ 1. Conversely, the
definition of fη in relation (4) leads to fη → 0 for kLη ≪ 1. In the
inertial subrange, the Kolmogorov −5∕3 spectrum is recovered.
In Eq. (2), the constant αE is set to the value 1.2∕α−2∕3L . The
von Kármán–Pao energy spectrum is plotted in Fig. 1 for a given
doublet �kt; ε�.

As shown in Fig. 1, the separation between large and small scales is
achieved by introducing a cutoff wave number kc. Because the
sweeping hypothesis corresponds to the advection of the inertial
range turbulent structures by the energy-containing eddies [32], kc is
chosen locally to fall just after the spectrum maximum:

kc � 1.8 ke �
1.8

Le
(5)

The energy spectrum is discretized using N modes of wave number
kn linearly distributed between a minimum wave number kmin and a
maximum wave number kmax. One can remark that logarithmic
distributions providing a better discretization of the spectrumE in the
lower wave number range have been tested as well in [11,12], but
numerical results showed no major differences. In the case of
inhomogeneous flowfield, kc varies spatially so that the numbers of
modes respectively linked to the large-scale structures Nl and small-
scale structures Ns � N − Nl vary spatially as well. However, the
same wave-number range [kmin, kmax] is used for the whole compu-
tational domain.

1. Computation of the Large-Scale Velocity Field ul
Following the expression proposed by Bailly and Juvé [12], the

velocity field ul associated to the large-scale eddies is decomposed as
a sum of Nl Fourier modes:

ul�x; t� � 2
XNl
n�1

An cos�kn�x − uct� � ωnt� φn�σn (6)

with amplitude An �
���������������������
E�kn�Δkn

p
built from the von Kármán–Pao

energy spectrum,which depends on the local steadyRANSvariables.
kn and φn are the wave vector and the phase of the nth mode,
respectively. kn is defined by the coordinates (kn,ϕn, θn) as shown in
Fig. 2. The incompressibility hypothesis imposes kn · σn � 0; σn is
therefore perpendicular tokn and exclusively defined by the angleαn.
The isotropic nature of the modeled turbulence requires to pick kn

randomly on a sphere of radius kknk � kn. The probability density
functions for the parametersϕn, θn, and αn are defined in Table 1. The
homogeneity hypothesis imposed to the flowfield leads to pick φn
randomly between �0; 2π�.
In Eq. (6), the convection velocity uc and the pulsation ωn need

imperatively to be constants in space to avoid a decorrelation of the
generated velocity field at large times [22]. With ul being defined
locally, uc allows the modeling of the turbulent structure’s displace-
ment downstream of the flow. For instance, for subsonic jet
application, uc might be set to 0.6uj in accordance with experiments
[45], where uj designates the jet exit velocity. ωn stands for the
temporal pulsation of the nth mode. The Kolmogorov pulsation
defined by Eq. (7) is chosen for ωn because it is the most appropriate
choice for low wave numbers [3], and it gives more accurate results
than, for instance, the Heisenberg pulsation [44,46]. To avoid spatial
variations ofωn, which could lead to unwanted decorrelation process,
a mean value of the dissipation rate < ε > is used to calculate ωn,

Fig. 1 Contribution of ul and us in a generic von Kármán–Pao
spectrum. Fig. 2 Wave vector geometry for the nth Fourier velocity mode.
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where < . > designates the average over the most energetic points
(i.e., all the points where kt is greater than a prescribed threshold
value kthreshold):

ωn � C1∕2
k < ε >1∕3 k

2∕3
n (7)

The term ul can therefore be explicitely formed at each time step of
the numerical simulation. One can note that, by construction, ul
preserves the turbulent kinetic energy locally imposed to the large-
scale structures:

1

2
�uliuli �

XNl
n�1

A2
n �

XNl
n�1

E�k�Δk ≈
Z
kc

kmin

E�k� dk (8)

2. Computation of the Small-Scale Velocity Field us
Fung et al. [2] wrote the temporal evolution of the small-scale

structures velocity field us as resulting from the association of
advection and decorrelation processes. They wrote, for a medium at
rest,

∂us
∂t
� −ul · ∇us|��{z��}

advection

−��us · ∇�ul � �ul · ∇�us � 1∕ρ∇p�|�������������������������������{z�������������������������������}
decorrelation

(9)

In Eq. (9), p cannot be explicitly modeled so that Fung et al. [2]
neglected the decorrelation term. In the present work, the building of
the velocity field us linked to the small-scale vortices can also be seen
as an association of advection and decorrelation processes. At a given
temporal iteration m, the small-scale velocity field ums is computed
using a modified Billson et al. approach [14]. In other terms, the
small-scale velocity field is defined by the following temporal filter

ums �x� � a�x�um−1∕2s �x� � b�x�ζ�x� (10)

In Eq. (10), ums is written as a sum of an advected contribution
a�x�um−1∕2s �x� and a random contribution b�x�ζ�x� that holds the
decorrelation process. Unlike the works of Billson et al. [14,23] who
resolve an advection equation with the conservative variables for
u
m−1∕2
s , the advected term is here considered to be the small-scale

velocity field at the previous time step um−1s , which is advected by the
vector field (ubulk � ul), with ubulk being a carrier velocity vector
field. In other words, um−1∕2s is obtained from um−1s by solving the
advection equation [Eq. (11)] that ensures the modeling of the
sweeping effect:

um−1s ⇒
∂us
∂t
� �ubulk � um−1l � · ∇us � 0 ⇒ um−1∕2s (11)

One can note that, in the Fung et al. [2] study, us was simply advected
by the field ul because of a zero mean velocity field. In Eq. (10), the
random term ζ is obtained as a sum of Ns spatial Fourier modes:

ζ�x� � 2
XN

n�Nl�1
An cos�kn · x� φn�σn (12)

where the setup of the stochastic parameters An, kn, φn, and σn is
achieved the sameway than for ul, except that they are regenerated at
each iteration. Consequently, ζ is a signal uncorrelated in space and

time with a zero statistical mean value in time. In other terms, ζ is a
locally white noise. This term therefore ensures the progressive
decorrelation of us. In Eq. (10), the definition of a � e−Δt∕τc
guarantees the exponential decorrelation of the velocity field ac-
cording to a characteristic time scale τc � ατkt∕ε, with ατ being a
calibration factor. Finally, the coefficient b �

��������������
1 − a2
p

allows the
conservation of the turbulent kinetic energy in homogeneous flows.
One should note that the present methodology does not include an

explicit model for anisotropy. Few recent studies [17,18] showed that
adding or not adding an anisotropy model to a Billson stochastic
model had almost no influence on numerical results. Nevertheless,
the advection equation [Eq. (11)] solved to compute the evolution of
us introduces some anisotropy in the turbulent velocity field due to
the mean flow inhomogeneity.

B. Description of the Algorithm Numerical Implementation

The initialization of the computation is achieved by calculating
ul�x; t0� and imposing us�x; t0� � ζ�x; t0�. For a detailed explana-
tion of the manner the algorithm works, one resumes the different
steps of the method. At each iteration:
1) The field ul is the first to be generated from Eq. (6).
2) Once done, the velocity field ut−Δts linked to the small-scale

structures at the previous time step is advected by the vector field
�ubulk � ut−Δtl � to obtain v from Eq. (11).
3) The white noise ζ is generated from Eq. (12).
4) The term us is computed, and finally, the turbulent velocity field

u is formed using Eq. (1).
5) ul and us are then stored to solve the advection equation

[Eq. (11)] at the next time step.

III. Reproduction of the Space–Time Velocity
Correlation Functions

The model presented in Sec. II is now evaluated in a free subsonic
jet configuration. Aerodynamic statistical quantities of the flow such
as two-point two-time velocity correlation functions Rij defined by

Rij�x; r; τ� �
ui�x; t�uj�x� r; t� τ������������������
ui�x; t�2

q �����������������������������������
uj�x� r; t� τ�2

q (13)

are computed. The studied jet is a cold subsonic jet at Mach 0.72,
corresponding to a jet exit velocity ofuj � 250 m · s−1 with a nozzle
diameter D � 80 mm. Numerical results are compared to experi-
mental data obtained by Fleury et al. [45] for free jets at Mach 0.6
and 0.9.

A. Reynolds-Averaged Navier–Stokes Simulation

Mean flow and transport variables of the flowfield are provided by
a RANS solution using the standard kt-ε turbulence model. Many
results concerning this jet configuration are available at ONERA,
including experiments conducted in CEPRA 19 (ONERA’s open-
circuit anechoic wind tunnel, which is located in Saclay, France),
LES calculations [47], or stochastic methods [15,17,19,48,49]. The
first step of the study is to validate the RANS mean flow because it
will serve as input data for the stochastic model. Some of the results
obtained by Fleury et al. [45] are reminded concerning the half-
velocity diameter and the momentum thickness. The respective
evolutions of the half-velocity diameter D1∕2 and the momentum
thickness δθ along the jet axis are depicted in Figs. 3a and 3b. RANS
solution shows a good agreement with experimental data obtained by
Fleury et al. [45].
Radial profiles of the axialmeanvelocity �u for various longitudinal

positions are shown in Fig. 4. The data collapsewell with the classical
hyperbolic tangent profile in the shear layer defined by

u

ua
� 0.5

�
1 − tanh

�
D

8δθ

�
2y

D
−
D

2y

���
(14)

Table 1 Densityprobability functions of the
stochastic parameters

Variables Probability functions Interval

ϕn P�ϕn� � 1∕�2π� 0 ≤ ϕn ≤ 2π
φn P�φn� � 1∕�2π� 0 ≤ φn ≤ 2π
αn P�αn� � 1∕�2π� 0 ≤ αn ≤ 2π
θn P�θn� � �1∕2� sin�θn� 0 ≤ θn ≤ π
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B. Computational Setup

A validation study concerning the two-point two-time velocity
correlation functionsRij in the shear layer is conducted on 2-D grids,
and results are compared to PIV measurements in the same planes.
In this section, only the longitudinal and radial components of
the velocity field are computed from the 3-D von Kármán–Pao
spectra. Numerical results are shown for two points located at the
center of the shear layer (y � 0.5D), as shown in Fig. 5. For the
point P1, a 161 × 61 points regular Cartesian grid is used with
Δx � Δy � 1 mm. According to the acoustic dispersion relation
k � ω∕c, this spatial resolution allows a kmax of 1000 m−1 so that kn
wave numbers are picked between 1 and 1000 m−1. For the point
P2, a 181 × 81 point grid is used with Δx � Δy � 2 mm and
1 < kn < 500 m−1. The chosenvalues of kmax allow the discretization
of 75% of the turbulent kinetic energy provided by the RANS
computation at the point P1 and more than 85% of kt at the point P2.
The time step Δt is set to 2.10−6 s for P1 against 4.10−6 s for P2. In
both cases, 100 modes are used to discretize the von Kármán–Pao
spectra. This choice allows a sufficient randomness of the velocity
field while preserving a low computation time [44,46]. A simulation
consists of 30,000 temporal iterations and is performed in a few
minutes on an NEC SX8� supercomputer. An averaging between 10
simulations is done to increase the statistics. The mean velocity �u
is taken for the carrier velocity vector field ubulk in Eq. (11) because it
allows to include in the modeling the mean flow effects on the
turbulence. The coefficient ατ is set to 1 according to the literature
[14,18]. Equation (11) is solved using the low-storage second-order
optimized Runge–Kutta of Bogey and Bailly [50] with six under-
stages and an 11-point fourth-order optimized Dispersive Relation
Preserving scheme. An 11-point fourth-order spatial filtering is
applied as well. Tam andDong’s [51] radiation boundary condition is

set at the inlet of the computational domain, while outflow boundary
conditions are imposed at the outlets.

C. Space Scales

In this section, the focus is on the purely spatial correlation func-
tions Rij�x; r; 0� to check the coherence lengths of the synthesized
turbulent velocity field.

1. Calibration Factor αL
As mentioned before, the choice of the calibration factor αL in

Eq. (3) is a key point. In the field of free-jet aeroacoustics, many
values can be found for αL in the literature [14,17,18]. For instance,
αL � �2∕3�3∕2 � 0.544 has been used by Billson et al. [14] or
Dembinska [18] against αL � 0.13 by Omais et al. [17]. When used
for acoustics applications, stochastic methods generally lead to an
overestimation of the far-field acoustic spectra [11,12,14,18].
Decreasing αL has the direct consequence to shift down the far-field
spectra so that it has been used as an adjustment variable for those
spectra levels.
This influence of αL was expected because αL governs ke and

therefore the energy distribution among the Fourier modes. The von
Kármán–Pao spectrum at a given mesh point is shown in Fig. 6 for
various values of αL. For a constant kmax, the calibration factor drives
the amount of turbulent kinetic energy injected in the simulation and
the definition of the most energetic modes.
Nevertheless, there should be a physical value for αL depending on

the configuration of interest. Experimentally, Fleury et al. [45] found
that, for subsonic jets, the longitudinal integral length scaleL1

11 in the
shear layer is nearly equal to 2δθ, with δtheta themomentum thickness.
Approximating the momentum thickness δθ from the RANS compu-
tation by the relation

δθ �
Z

∞

0

u

ua

�
1 −

u

ua

�
dr (15)

The ratio between 2δθ and �2∕3kt�3∕2∕ε provides an estimate of the
value of αL. This quantity is plotted along the center of the shear layer
in Fig. 7 and is found to be nearly equal to 1. Consequently,αL is set to
1 in the present work.

a) b)

Fig. 3 Representations of a) evolution of the half velocity diameterD1∕2 along the xdirection, andb) evolution of themomentum thickness δθ along the jet
axis.

Fig. 4 Radial profiles of the axial mean velocity �u for various
longitudinal positions compared to the similarity law given in Eq. (14).

Fig. 5 Location of the two points studied in the present work.
Fig. 6 Influence of the calibration factor αL on the von Kármán–Pao
spectrum.

LAFITTE ETAL. 285

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

Fe
br

ua
ry

 1
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
23

68
 



2. Numerical Results

The spatial correlation coefficient Rii�x; r; 0� is investigated at the
pointP1. Correlation functions isocontours are depicted in Fig. 8 and
compared to those measured by Fleury et al. [45]. The size and
stretching of R11 and R22 patterns are modeled in a satisfying way.
Nevertheless, the nonisotropic turbulence in the jet, which is not
taken into account in this model, could explain some of the
discrepancies between numerical and experimental results and
the slight gap between R11 and R22 curves. The inclination of the
isocontours ofR11, highlighted byFleury et al. [45] and reported to be
a mean flow effect, is recovered. The principal direction of R11 is
approximately Θ � 19 deg from the axial direction against Θ �
18 deg in the literature [45]. Numerical errors arise at the entrance of
the domain on both R11 and R22 isocontour patterns because of the
influence of the inlet boundary condition because the extent of the

computational domain is small and no turbulent structure is imposed
at its inlet. The behavior of Rii�x; r; 0� along the line y � 0.5D is
plotted in Fig. 9a. A good agreement is found with experimental
results obtained by Fleury et al. [45] at M � 0.9. One can note that
R11 and R22 reach zero for points distant from P1. Repeating this
operation at different locations along the y � 0.5D axis between
x � 2D and x � 10D, the longitudinal integral length scale L�j�11
along the jth direction fromR11 can be computed at each longitudinal
position by Eq. (16):

L�j�11 �
1

2

Z �∞
−∞

R11�x; xj; 0� dxj (16)

The longitudinal integral length scales L�1�11 along the center of
the shear layer are depicted in Fig. 9b. Even if L�1�11 are overestimated
by about 25%, the linear growth of L�1�11 along the y � 0.5D axis is
correctly simulated. Note that these results corroborate the setup
of αL � 1.

D. Time Scales

The space–time velocity correlation functions Rij�x; r; τ� are now
studied at the point P2. Rii�x; r; τ� patterns are plotted for different
values of the time delay τ in Fig. 10. The attenuation of Rii�x; r; τ� is
clearly visible as τ increases. The displacement of the correlation
patterns according to the time delay τ is similar to those found in the
experiments [45]. This is illustrated in Fig. 11, where present work
results match the experimental curve. The location of the maximum
of R11�x; r; τ� according to the time delay τ along the center of the

Fig. 7 Evolution of the ratio �2δθ�∕��2∕3kt�3∕2∕ε� along the axis
y � 0.5D.

a) b)

c) d)

Fig. 8 Isocontours ofR11�x;r;0� (Figs. 8a and 8c) andR22�x;r;0� (Figs. 8b and 8d). The distance r �
���������������
ξ21 � ξ22

q
.R11 levels are (0.05, 0.2, 0.4, 0.6, 0.8), and

R22 levels are (0.1, 0.2, 0.4, 0.6, 0.8). Experiments led by Fleury et al. [45] (top) and present work (bottom).

a) b)

Fig. 9 Representations of a) evolution of Rii�x;r;0� along the center of the shear layer (the reference point is P1), and b) evolution of the
nondimensionalized longitudinal integral length scale L�1�11 ∕D along the center of the shear layer.
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shear layer is well reproduced. Furthermore, the slope of the curve
in Fig. 11, corresponding to the mean convection velocity of the
structures, is correctly modeled and equal to 0.6ua, with ua being the
velocity on the jet axis. The stochasticmodel developed in the present
work therefore takes correctly into account the modeling of the
turbulent structures in the shear layer. The decorrelation of the
velocity field is studied at the point P2 as well. The attenuation of
the correlation functions R11 and R22 in the center of the shear layer
is first investigated in an Eulerian frame in Fig. 12a. These curves
show that R11 and R22 follow the same decorrelation law close to the
R11 attenuation experimental function. Experiments [45] reveal
more discrepancies between R11 and R22 decorrelation processes. In
particular, theR22 attenuation curve decreases faster than theR11 one.
This phenomenon is not reproduced by this approach. The attenua-
tion of the correlation functions in a Lagrangian frame moving at the

a)

b)

c)

d)

Fig. 10 On the left: R11�x;r;τ� patterns. On the right: R22�x;r;τ� patterns. The reference point is P2. a) τ � 0 μs, b) τ � 50 μs, c) τ � 150 μs, and
d) τ � 245 μs. Isocontour levels are (0.05, 0.2, 0.4, 0.6, 0.8).

Fig. 11 Separation corresponding to the maximum of R11�x;r;τ� in the
convected frame according to the time delay τ. The reference point is P2.
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velocity uc, i.e.,Rii�x; ucτ; τ� as a function of τ, is shown in Fig. 12b.
Results are in good agreement with experimental data [45]. Using the
present stochastic model, the decorrelation process of the turbulent
velocity field is described more precisely in the Lagrangian frame.
This is not a surprising result because Eq. (10) can be seen as a
Langevin equation written in a Lagrangian frame. Such an equation
states that, for a variable U along a streamline,

∂
∂t
U � −

1

τ
U�

���
2

τ

r
ζ (17)

When Eq. (17) is solved numerically [31,37], it shows similarities
with Eq. (10). Indeed, one has

U�t� Δt� �
�
1 −

Δt
τ

�
|����{z����}
FEof e−Δt∕τ

U�t� �
��������
2Δt
τ

r
|�{z�}

FE of
���������������
1−e−2Δt∕τ
p

ζ (18)

where FE designates the first-order finite expansion of the given
functions around the value 0, i.e., when τ ≫ Δt.

IV. Application to a Full Subsonic Jet

The sweeping-based stochastic model developed in Sec. III is able
to synthesize a turbulent velocity field. In the case of a subsonic jet,
it especially allows the reproduction of the velocity correlation
functions in the shear layer, includes effect of the mean flow on the
turbulence, and deals correctly with the convection velocity of the
turbulent structures. Nevertheless, the validation study has been
achieved by taking only the longitudinal and radial components of the
unsteady velocity field and computing 2-D calculations on restricted
grids. Full 3-D unsteady fields might be needed for certain appli-
cations such as aeroacoustics. Computing 3-D configurations implies
a coarser resolution of the grid, and consequently a decreased kmax,
to keep a competitive computation time. In this section, the
methodology has been evaluated on a 3-D computation including the
whole jet plume. In addition, a discussion on the turbulent kinetic
energy preservation is led.

A. Computational Setup

A 3-D cartesian grid consisting of 519 × 108 × 108 mesh points
has been generated. It extends up to 43D in the x direction and is
bounded between −5.5D and 5.5D in the y and z directions. In the
vicinity of the nozzle exit,Δx � Δy � Δz � Δ � 5 mm, leading to
the ratio Δ∕D � 0.0625. This spatial resolution is held up to 28D
in the x direction. According to the acoustic dispersion relation,
this grid is therefore able to support a kmax up to 200 m−1, leading to
kmaxD � 16, which is a good compromise between the CPU cost and
the quality of the aerodynamics modeling in the jet plume (see
Sec. IV.B). Nevertheless, one can assume that this spatial resolution
will lead to a poor discretization of thevonKármán–Pao spectra in the
vicinity of the nozzle exit because kmax has been reduced by a factor
of 5 from 1000 m−1 to 200 m−1 in comparison with the study led at
the point P1. The time step Δt is set to 8.10−6 s, and 100 modes are
used to discretize the von Kármán–Pao spectra. A sponge zone is set
up from x � 20D to the exit of the computational domain to avoid
the creation of spurious reflections that could contaminate the
numerical solution when turbulent structures cross the exit boundary
condition. According to the literature [44,46], a ktreshold equal to one-
third of the maximum kinetic energy observed in the computation
domain kt max is taken. A resulting averaged dissipation rate of
< ε >� 278; 000 m2 · s−3 is then used to compute the ωn. One can
notice that simulations have also been achieved by changing the
parameter kthreshold from kt max∕5 to kt max∕2, but results showed no
significant differences. Numerical results have been obtained from a
single simulation consisting of 20,000 temporal iterations, which has
been achieved in 7 h on an NEC SX8� supercomputer.

B. Reproduction of the Space–Time Velocity Correlation Functions

It is essential to check that the results obtained in Sec. III are not to
highly affected computing 3-D simulations with a lower kmax. During
the 3-D computation, a 2-D grid comparable in size to the one used in
Sec. III at the point P2 has been extracted to compute space–time
velocity correlation functions. Rii�x; r; 0� isocontours are plotted in
Fig. 13. The sizes and inclination of the correlation patterns are
preserved in comparison with Fig. 10a.
The displacement of the maximum of R11�x; r; τ� is plotted versus

the time delay τ in Fig. 14. The diminution of the resolution has
a clear impact on the modeling of the convection velocity of the

a) b)
Fig. 12 Representations of a) Eulerian decorrelation of the velocity field at the point P2, and b) Lagrangian decorrelation of the velocity field. The
reference point is P2.

a) b)

Fig. 13 The reference point isP2: a)R11�x;r;0� correlation patterns, and b)R22�x;r;0� correlation patterns. Isocontour levels are (0.05, 0.2, 0.4, 0.6, 0.8).
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structures in the shear layer, passing from 0.6uj to approximately
0.52uj. The decorrelation of the synthesized velocity field in an
Eulerian and a Lagrangian frame is shown in Fig. 15. Results are
slightly altered as well by the change in the parameterization, but the
decorrelation process is not destructed, with results being in good
agreement with those of [45]. The use of a coarser mesh than the 2-D
onemay be responsible for the observed discrepancies in comparison
with the results provided by the 2-D study. The grid size has been
increased from 2 to 5mm at pointP2, and the corresponding range of
wave numbers is reduced by the same ratio 2.5. To show the impact of
a decreased maximum wave number, 2-D simulations have been
performed at pointsP1 andP2 (as explained in Sec. III.B by changing
the modeled kmax). Figure 16 shows the modeling of L�j�ii , the
directional integral length scale (longitudinal or radial) in the jth
direction, as a function of the chosen maximum wave number. Ten
simulations with a constant Δk � 5 m−1 have been averaged to
compute L�j�ii . The curves on Figs. 16a and 16b both show that
maximum wave numbers set in Sec. III at points P1 and P2 allow a
reasonable modeling of L�j�ii . Generally, the predicted values of L�j�ii
slightly increase when the mesh is coarsened (also equivalent to a
reduction of kmax). At point P2, the grid convergence of L

�1�
11 is quite

difficult to obtain with such a small grid size because the vicinity of
the inlet boundary condition affects the longitudinal velocity on the
axis y � 0.5 and therefore the computation of L�1�11 ; see Eq. (16).
Furthermore, one can remark that the third component of the mean

flow is now taken into account in the model, through Eq. (11), and
thismight impact the decorrelation process. One can point out as well
that numerical results in 3-D have been obtained from a single
computation, while 10 simulations have been averaged in the 2-D
validation study.
Regarding these results, one can conclude that, even if the

synthesized velocity field is clearly affected by the lower spatial
resolution, the present choice is a good compromise between the
CPU cost and the quality of the aerodynamics modeling in the
jet plume.

C. Turbulent Kinetic Energy Preservation

A snapshot of the velocity vector field in the x-y median plane
is shown in Fig. 17 for a physical time t � 20; 000Δt s. The effects
of the mean flow are clearly visible, in particular in the region
located right after the end of the potential core where the velocity
field is highly stratified. This velocity vector field is comparable
to those obtained by Billson et al. [24]. One can remark that the
length of the potential core prescribed by the steady RANS
computation, equal to Lc � 6.8D, is reproduced by the stochastic
simulation. In Fig. 18, a mapping of the reconstructed turbulent
kinetic energy 1∕2� �u2 � �v2 � �w2� is compared to that injected from
the von Kármán–Pao spectra during the initialization of the compu-
tation, that is

XN
n�1

E�kn�Δkn

There are significant discrepancies between these two fields. First,
a part of turbulent kinetic energy has been obviously lost during the
calculation. Second, in the simulation, the energetic zone located
downstream of the end of the potential core extends further

Fig. 14 Separation corresponding to the maximum of R11�x;r;τ� in the
convected frame according to the time delay τ. The reference point is P2.

a) b)
Fig. 16 Evolution of L�j�ii as a function of kmax at point a) P1, and b) P2. Results have been obtained by averaging 10 simulations with a constant
Δk � 5 m−1.

a) b)a) b)
Fig. 15 Representations of a) Eulerian decorrelation of the velocity field at the point P2, and b) Lagrangian decorrelation of the velocity field. The
reference point is P2.
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downstream. Nevertheless, the method is able to reproduce the two
lobes located in the shear layer. This is corroborated by the turbulent
kinetic energy profiles plotted in Fig. 19. The evolution of kt along
the y � 0.5D axis is shown in Fig. 19a. A slight loss of energy of
about 15% at x � 8D, where the maximum of energy is located,
occurs during the calculation. Equation (11) implies that, at a given
point,us depends on turbulence built fromupstream conditions plus a
certain amount of local energy. If the TKE is not a constant of space,
then the injected energy cannot be exactly recovered from the
stochastic velocity field.
Consequently, the loss of energy occurs during the resolution of

Eq. (10) because of the inhomogeneity in kt of the mean flow.
Nevertheless, the longitudinal position corresponding to the
maximum of energy is correctly modeled as well as the energy
decay slope after x � 8D. The same conclusions can be drawn
regarding Fig. 19b, which represents radial profiles of kt at different
longitudinal positions and shows that the location of the most
energetic points and the energy decay at the boundary of the jet plume
are both correctly mimicked. Assuming the slight loss of energy

occurring during the computation, the turbulence generation process
is able to preserve the spatial distribution of the most energetic points
of a given inhomogeneous mean flowfield.

D. Turbulent Kinetic Energy Correction

Because of the inhomogeneity of the mean flow, the resolution of
Eq. (11) leads to turbulent kinetic energy loss. This loss is linked to
the computation of the term v, which carries a part of energy coming
from upstream points with different flow conditions. The random
field ζ is, however, built locally so that it carries the correct amount of
energy. In other terms, there would be no energy loss if us had the
same absolute value as ζ. To avoid this drawback, an adaptative
correction has been tested. At each temporal iteration, the velocity
field associated to small-scale structures is renormalized by applying

u 0s �
kζk
kusk

us (19)

To do that, the 2-D computation conducted at the point P2 in Sec. III
has been repeated, considering that u � ul � u 0s. Radial profiles of
the turbulent kinetic energy are plotted in Fig. 20. The reconstructed
curve matches the initial plot. The discrepancies showing at the
maximum of energy are due to the weak amount of energy contained
in the cross term ul · us.
Regarding Fig. 21, the modeling of the decorrelation process is

found to be highly damaged by the renormalization so that the
temporal coherence of the velocity field is completely altered. The

Fig. 17 Instantaneous velocity vector field

a)

b)
Fig. 18 kt mapping: a) injected from the vonKármán–Pao spectra, and
b) reconstructed from the stochastic field by averaging over 12,000
temporal iterations. Levels between 0 and 1000 m2∕s2.

a) b)

Fig. 19 Comparison between the reconstructed (solid line) and the initial TKE (dashed line): a) profile along the y � 0.5D axis, and b) radial profiles at
various longitudinal position x.

Fig. 20 Radial profiles of the turbulent kinetic energy after the energy
correction.
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time and space gradients of the renormalization factor are so strong
that it leads to a total decorrelation of the velocity field at large times.
This solution is therefore not viable.

V. Conclusions

The sweeping-based stochastic method presented in this paper is
able, starting from a given mean flowfield, to generate an unsteady
turbulent velocity field that satisfies aerodynamic statistical
constraints. This paper details themodel validation process, achieved
on a simple configuration: a free cold subsonic jet forwhich reference
data are available. The whole 3-D subsonic jet has been modeled in
only a few hours. Assuming a careful parameterization of the
calibration factor αl, the proposed approach allows the reproduction
in 2-D and 3-D of the space–time velocity correlation functions and
thus the correct modeling of the integral length and time scales of the
flow compared to experiments. The generated turbulent field is clearly
marked by the shear effect of the mean flow and takes correctly into
account the advection of the turbulent structures. It allows the preser-
vation of the spatial distribution of themost energetic points and, in the
case of kt-homogenous mean flow, ensures the conservation of
turbulent kinetic energy imposed at the beginning of the computation.
Furthermore, the present method has been developed to estimate
acoustic sources on 3-D complex geometries such as axisymmetric
isolated or nonaxisymmetric confined subsonic jets.
Owing to its ease of use, this model is also suitable for any

methodology in various fields of application that requires the
generation of turbulence by keeping a low computational cost. In
aeroacoustics, for instance, the synthesized unsteady field can be
used to compute acoustic source terms. One can notice that, in this
field of application, the current model will only be able to process
turbulence noise and no other mechanisms such as dipolar noise
arising from von Kármán streets, for instance. As well, one can apply
this methodology as Fung’s kinematic simulation sweeping method
to generate a homogeneous and isotropic turbulent medium for
particle diffusion investigation. Then, the turbulence initialization at
the inlets of direct computations could be enforced by the current
model, assuming a given length of injection allowing a sufficient
development of the turbulence.
Once implemented, the main difficulty of the methodology lies in

the building of the mesh in accordance with the maximum wave
number the user wants to model. The computational cost induced by
the method is a little bit higher than the classical Stochastic Noise
Generation and Radiation model because added advection equations
have to be solved. However, for practical cases, this cost is lower than
the one needed to solve at each time step Euler equations, for
instance. Furthermore, the cost fully depends on the numerical
implementation; parallel implementation using classical Message
Passing Interface library could be used to reduce this cost, but it is not
of our concern in the present study.
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reference point is P2.

LAFITTE ETAL. 291

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

Fe
br

ua
ry

 1
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
23

68
 

http://dx.doi.org/10.1063/1.1692799
http://dx.doi.org/10.1063/1.1692799
http://dx.doi.org/10.1063/1.1692799
http://dx.doi.org/10.1017/S0022112092001423
http://dx.doi.org/10.1017/S0022112092001423
http://dx.doi.org/10.1063/1.3276290
http://dx.doi.org/10.1063/1.3276290
http://dx.doi.org/10.1063/1.3276290
http://dx.doi.org/10.1017/S0022112004002915
http://dx.doi.org/10.1017/S0022112004002915
http://dx.doi.org/10.1103/PhysRevE.74.036309
http://dx.doi.org/10.1103/PhysRevE.74.036309
http://dx.doi.org/10.1103/PhysRevE.74.036309
http://dx.doi.org/10.1103/PhysRevE.74.036309
http://dx.doi.org/10.1063/1.858425
http://dx.doi.org/10.1063/1.858425
http://dx.doi.org/10.1063/1.858425
http://dx.doi.org/10.1016/S0021-9991(03)00090-1
http://dx.doi.org/10.1016/S0021-9991(03)00090-1
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.007
http://dx.doi.org/10.1121/1.400415
http://dx.doi.org/10.1121/1.400415
http://dx.doi.org/10.1121/1.400415
http://dx.doi.org/10.2514/3.12008
http://dx.doi.org/10.2514/3.12008
http://dx.doi.org/10.2514/3.12008
http://dx.doi.org/10.1016/j.compfluid.2007.02.003
http://dx.doi.org/10.1016/j.compfluid.2007.02.003
http://dx.doi.org/10.1016/j.compfluid.2007.02.003
http://dx.doi.org/10.1016/j.compfluid.2007.02.003
http://dx.doi.org/10.1016/j.compfluid.2007.02.003
http://dx.doi.org/10.1016/j.compfluid.2007.02.003


[15] Lafitte, A., Laurendeau, E., La Garrec, T., and Bailly, C., “A Study
Based on the SweepingHypothesis to Generate Stochastic Turbulence,”
17th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2011-2888,
June 2011.

[16] Snellen, M., Van Lier, L., Golliard, J., and Védy, E., “Prediction of the
Flow Induced Noise for Practical Applications Using the SNGR
Method,”Proceedings of the 10th International Congress on Sound and
Vibration, Stockholm, July 2003.

[17] Omais, M., Caruelle, B., Redonnet, S., Manoha, E., and Sagaut, P., “Jet
Noise Prediction Using RANS CFD Input,” 5th AIAA/CEAS
Aeroacoustics Conference, AIAA Paper 2008-2938, May 2008.

[18] Dembinska, F., “Modélisation Stochastique des Sources Acoustiques
Générées par la Turbulence: Application au Bruit de Jet,” Ph.D. Thesis,
Pierre-and-Marie-Curie Univ., Paris, 2009.

[19] Le Garrec, T., Manoha, E., and Redonnet, S., “Flow Noise Predictions
Using RANS/CAA Computations,” 16th AIAA/CEAS Aeroacoustics
Conference, AIAA Paper 2010-3756, June 2010.

[20] Casalino, D., and Barbarino, M., “A Stochastic Method for Airfoil
Self-Noise Computation in Frequency-Domain,” 16th AIAA/CEAS
Aeroacoustics Conference, AIAA Paper 2010-3884, June 2010.

[21] Bailly, C., Lafon, P., and Candel, S., “A Stochastic Approach to Com-
pute Noise Generation and Radiation of Free Turbulent Flows,”
1st AIAA/CEAS Aeroacoustics Conference, AIAA Paper 1999-1872,
June 1995.

[22] Batten, P., Goldberg, U., and Chakravarthy, S., “Reconstructed Sub-
Grid Methods for Acoustic Predictions at All Reynolds Numbers,” 8th
AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2002-2511,
June 2002.

[23] Billson, M., Eriksson, L., Davidson, L., and Jordan, P., “Modeling
of Synthetic Anisotropic Turbulence and Its Sound Emission,” 10th
AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2004-2857,
May 2004.

[24] Billson, M., Eriksson, L., and Davidson, L., “Jet NoiseModeling Using
Synthetic Anisotropic Turbulence,” 10th AIAA/CEAS Aeroacoustics
Conference, AIAA Paper 2004-3028, May 2004.

[25] Smirnov, A., Shi, S., and Celik, I., “Random Flow Generation Tech-
nique for Large Eddy Simulations and Particle-Dynamics Modeling,”
Journal of Fluids Engineering, Vol. 123, No. 2, 2001, pp. 359–371.
doi:10.1115/1.1369598

[26] Fung, J., and Vassilicos, J., “Kinematics Simulation of Homogeneous
Turbulence by Unsteady Random Fourier Modes,” Physical Review E,
Vol. 57, No. 2, 1998, p. 1677.
doi:10.1103/PhysRevE.57.1677

[27] Chicheportiche, J., “Calcul Direct du Rayonnement Acoustique Généré
par une Cavité Cylindrique Sous une Aile d’Avion,” Ph.D. Thesis, Arts
et Métiers ParisTech, Paris, 2011.

[28] Na, Y., and Moin, P., “Direct Numerical Simulation of a Separated
Turbulent Boundary Layer,” Journal of Fluid Mechanics, Vol. 374,
Nov. 1998, pp. 379–405.
doi:10.1017/S0022112098009987

[29] Careta, A., Sagués, F., and Sancho, J., “Stochastic Generation of Ho-
mogenous Isotropic Turbulence with Well-Defined Spectra,” Physical
Review E, Vol. 48, No. 3, 1993, pp. 2279–2287.
doi:10.1103/PhysRevE.48.2279

[30] Ewert, R., and Edmunds, R., “CAA Slat Noise Studies Applying
Stochastic sound Sources Based on Solenoidal Filters,” 11th AIAA/
CEAS Aeroacoustics Conference, AIAA Paper 2005-2862, May 2005.

[31] Ewert, R., Dierke, J., Pott-Pollenske, M., Appel, C., Edmunds, R., and
Sutcliffe, M., “CAA-RPM Prediction and Validation of Slat Setting
Influence onBroadbandHigh-Lift NoiseGeneration,” 16th AIAA/CEAS
Aeroacoustics Conference, AIAA Paper 2010-3883, June 2010.

[32] Siefert, M., and Ewert, R., “Sweeping Sound Generation in Jets
Realized with a Random Particle-Mesh Method,” 15th AIAA/CEAS
Aeroacoustics Conference, AIAA Paper 2009-3369, May 2009.

[33] Ewert, R., Dierke, J., Siebert, J., Neifeld, A., Appel, C., Siefert, M., and
Kornow, O., “CAA Broadband Noise Prediction for Aeroacoustic
Design,” Journal of Sound and Vibration, Vol. 330, No. 17, 2011,
pp. 4139–4160.
doi:10.1016/j.jsv.2011.04.014

[34] Dieste, M., and Gabard, G., “Broadband Fan Interaction Noise
Using Synthetic Inhomogeneous Non-Stationary Turbulence,” 17th

AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2011-2708,
June 2011.

[35] Dieste, M., and Gabard, G., “Random Particle Methods Applied to
Broadband Fan Interaction Noise,” Journal of Computational Physics,
Vol. 231, No. 24, 2012, pp. 8133–8151.
doi:10.1016/j.jcp.2012.07.044

[36] Dieste, M., and Gabard, G., “Synthetic Turbulence Applied to
Broadband Interaction Noise,” 15th AIAA/CEAS Aeroacoustics
Conference, AIAA Paper 2009-3267, May 2009.

[37] Dieste, M., and Gabard, G., “Random-Vortex-Particle Methods for
Broadband Fan Interaction Noise,” 16th AIAA/CEAS Aeroacoustics
Conference, AIAA Paper 2010-3885, June 2010.

[38] Neifeld, A., and Ewert, R., “Jet Mixing Noise from Single Stream Jets
Using Stochastic Source Modeling,” 17th AIAA/CEAS Aeroacoustics
Conference, AIAA Paper 2011-2700, June 2011.

[39] Ewert, R., Neifeld, A., and Fritzsch, A., “A 3-D Modal Stochastic Jet
Noise Source Model,” 17th AIAA/CEAS Aeroacoustics Conference,
AIAA Paper 2011-2887, June 2011.

[40] Jarrin, N., Prosser, R., Uribe, J., Benhamadouche, S., and Laurence, D.,
“Reconstruction of Turbulent Fluctuations for Hybrid RANS/LES
Simulations Using a Synthetic-EddyMethod,” International Journal of
Heat and Fluid Flow, Vol. 30, No. 3, 2009, pp. 435–442.
doi:10.1016/j.ijheatfluidflow.2009.02.016

[41] Chen, S., and Kraichnan, R., “Sweeping Decorrelation in Isotropic
Turbulence,” Physics of Fluids A, Vol. 1, No. 12, 1989, pp. 2019–2025.
doi:10.1063/1.857475

[42] Nelkin, M., and Tabor, M., “Time Correlations and Random Sweeping
in Isotropic Turbulence,” Physics of Fluids A, Vol. 2, No. 1, 1990,
pp. 81–83.
doi:10.1063/1.857684

[43] Praskovsky, A., Gledzer, E., Kuryakin, M., and Zhou, Y., “The
Sweeping Decorrelation Hypothesis and Energy-Inertial Scale Inter-
action in High Reynolds Number Flows,” Journal of Fluid Mechanics,
Vol. 248, March 1993, pp. 493–511.
doi:10.1017/S0022112093000862

[44] Bailly, C., Gloerfelt, X., and Bogey, C., “Report on Stochastic Noise
SourceModelling,” École Centrale de Lyon, Tech. Rept. UMR-CNRS-
5509, JEAN Projet, 2002.

[45] Fleury, V., Bailly, C., Jondeau, E., Michard, M., and Juvé, D., “Space–
Time Correlations in Two Subsonic Jets Using Dual Particle Image
Velocimetry Measurements,” AIAA Journal, Vol. 46, No. 10, 2008,
pp. 2498–2509.
doi:10.2514/1.35561

[46] Gloerfelt, X., Bailly, C., and Bogey, C., “Full 3-D Application of the
SNGR Method to Isothermal Mach 0.9 jet (Jet 4),” École Centrale de
Lyon, Final Rept. UMR-CNRS-5509, JEAN Projet, 2003.

[47] Muller, F., “Simulation de Jets Propulsifs: Application à l’Identification
de Phénomènes Générateurs de Bruit,” Ph.D. Thesis, Numerical
Simulation and Aeroacoustic Dept., ONERA–The French Aerospace
Lab., Châtillon, France, 2006.

[48] Lafitte, A., Laurendeau, E., Le Garrec, T., and Bailly, C., “Prediction of
Subsonic Jet Noise Relying on a Sweeping Based Turbulence
Generation Process,” 18th AIAA/CEAS Aeroacoustics Conference,
AIAA Paper 2012-2149, June 2012

[49] Lafitte, A., Laurendeau, E., Le Garrec, T., and Bailly, C., “Jet Noise
Prediction Using a Sweeping Based Turbulence Generation Process,”
Acoustics 2012, 11ème Congrès Français d'Acoustique and 2012
Annual IOA, Inst. of Acoustics, Nantes, France, April 2012, pp. 1317–
1322.

[50] Bogey, C., and Bailly, C., “A Family of Low Dispersive and Low
Dissipative Explicit Schemes and Noise Computations,” Journal of
Computational Physics, Vol. 194, No. 1, 2004, pp. 194–214.
doi:10.1016/j.jcp.2003.09.003

[51] Tam, C. K. W., and Dong, Z., “Radiation and Outflow Boundary
Conditions for Direct Computation of Acoustic and Flow Disturbances
in a Nonuniform Mean Flow,” Journal of Computational Acoustics,
Vol. 4, No. 2, 1996, pp. 175–201.
doi:10.1142/S0218396X96000040

A. Lyrintzis
Associate Editor

292 LAFITTE ETAL.

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

Fe
br

ua
ry

 1
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
23

68
 

http://dx.doi.org/10.1115/1.1369598
http://dx.doi.org/10.1115/1.1369598
http://dx.doi.org/10.1115/1.1369598
http://dx.doi.org/10.1103/PhysRevE.57.1677
http://dx.doi.org/10.1103/PhysRevE.57.1677
http://dx.doi.org/10.1103/PhysRevE.57.1677
http://dx.doi.org/10.1103/PhysRevE.57.1677
http://dx.doi.org/10.1017/S0022112098009987
http://dx.doi.org/10.1017/S0022112098009987
http://dx.doi.org/10.1103/PhysRevE.48.2279
http://dx.doi.org/10.1103/PhysRevE.48.2279
http://dx.doi.org/10.1103/PhysRevE.48.2279
http://dx.doi.org/10.1103/PhysRevE.48.2279
http://dx.doi.org/10.1016/j.jsv.2011.04.014
http://dx.doi.org/10.1016/j.jsv.2011.04.014
http://dx.doi.org/10.1016/j.jsv.2011.04.014
http://dx.doi.org/10.1016/j.jsv.2011.04.014
http://dx.doi.org/10.1016/j.jsv.2011.04.014
http://dx.doi.org/10.1016/j.jsv.2011.04.014
http://dx.doi.org/10.1016/j.jcp.2012.07.044
http://dx.doi.org/10.1016/j.jcp.2012.07.044
http://dx.doi.org/10.1016/j.jcp.2012.07.044
http://dx.doi.org/10.1016/j.jcp.2012.07.044
http://dx.doi.org/10.1016/j.jcp.2012.07.044
http://dx.doi.org/10.1016/j.jcp.2012.07.044
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.016
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.016
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.016
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.016
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.016
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.016
http://dx.doi.org/10.1063/1.857475
http://dx.doi.org/10.1063/1.857475
http://dx.doi.org/10.1063/1.857475
http://dx.doi.org/10.1063/1.857684
http://dx.doi.org/10.1063/1.857684
http://dx.doi.org/10.1063/1.857684
http://dx.doi.org/10.1017/S0022112093000862
http://dx.doi.org/10.1017/S0022112093000862
http://dx.doi.org/10.2514/1.35561
http://dx.doi.org/10.2514/1.35561
http://dx.doi.org/10.2514/1.35561
http://dx.doi.org/10.1016/j.jcp.2003.09.003
http://dx.doi.org/10.1016/j.jcp.2003.09.003
http://dx.doi.org/10.1016/j.jcp.2003.09.003
http://dx.doi.org/10.1016/j.jcp.2003.09.003
http://dx.doi.org/10.1016/j.jcp.2003.09.003
http://dx.doi.org/10.1016/j.jcp.2003.09.003
http://dx.doi.org/10.1142/S0218396X96000040
http://dx.doi.org/10.1142/S0218396X96000040

