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Summary

A flux reconstruction technique is presented to perform aeroacoustic com-
putations using implicit high-order spatial schemes on multiblock structured
grids with nonconforming interfaces. The use of such grids, with mesh spac-
ing discontinuities across the block interfaces, eases local mesh refinements,
simplifies the mesh generation process, and thus facilitates the computation of
turbulent flows. In this work, the spatial discretization consists of sixth-order
finite-volume implicit schemes with low-dispersion and low-dissipation prop-
erties. The flux reconstruction is based on the combination of noncentered
schemes with local interpolations to define ghost cells and compute flux values
at the grid interfaces. The flow variables in the ghost cells are calculated from the
flow field in the grid cells using a meshless interpolation with radial basis func-
tions. In this study, the flux reconstruction is applied to both plane and curved
nonconforming interfaces. The performance of the method is first evaluated
by performing two-dimensional simulations of the propagation of an acoustic
pulse and of the convection of a vortex on Cartesian and wavy grids. No signif-
icant spurious noise is produced at the grid interfaces. The applicability of the
flux reconstruction to a three-dimensional computation is then demonstrated by
simulating a jet at a Mach number of 0.9 and a diameter-based Reynolds number
of 4 × 105 on a Cartesian grid. The nonconforming grid interface located down-
stream of the jet potential core does not appreciably affect the flow development
and the jet sound field, while reducing the number of mesh points by a factor of
approximately two.
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1 INTRODUCTION

For flows at high Reynolds numbers, the direct computation of the aerodynamic noise from the Navier-Stokes equations
requires accurate numerical methods to properly compute both the small turbulent motions and the low-frequency sound
waves in the radiated pressure field.1-3 To meet these requirements, in addition to high-order discretization schemes,
locally refined meshes are needed to capture the turbulent eddies generating noise.4

For aeroacoustic simulations performed on multiblock structured grids, the computational domain is usually divided
into subdomains composed of conforming grids characterized by a full point-matching distribution at the block interface,
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FIGURE 1 Representation of two-dimensional meshes with (A)
conforming and (B) nonconforming grid interfaces in blue [Colour
figure can be viewed at wileyonlinelibrary.com]

as shown in Figure 1A. Difficulties in performing high-fidelity computations with such grids arise when the geometries
are complex. Such geometries must be included in the numerical simulations to faithfully reproduce the conditions of
the experiments.5,6 In this context, high-quality structured meshes with conforming interfaces are in many cases almost
impossible to generate.7 For instance, for high-speed flows exhausting from turbofan jet engines or developing on aircraft
wings,8 extremely fine grids are required to resolve the flow in the boundary layers and the wakes. Using conforming grids,
local mesh refinements can be found in all the computational domains, leading to an excessive number of mesh points as
well as to the generation of extremely small cells in out of interest areas. Obviously, this increases the computational cost
of the simulation. In addition, using an explicit time discretization scheme, the presence of very small mesh cells imposes
severe constraints on the time step so that the Courant-Friedrichs-Lewy (CFL) restriction is verified.3

To perform aeroacoustic simulations of high-Reynolds-number flows at a reasonable computational cost, the use of
nonconforming grids9 without overlapping is attractive. Such meshes exhibit discontinuities of the grid lines across the
block interface. This is the case of Figure 1B, providing an example of a nonconforming mesh with discontinuous grid
spacings in the azimuthal direction at the block interface in blue. Using such a mesh for instance, the refinement at
the center of the grid in Figure 1A can be avoided. The size of the smallest cells and thus the time step are therefore
chosen such that the acoustic sources are well discretized. In addition, the use of nonconforming grids simplifies the
grid generation process since the mesh blocks composing the computational domain can be created independently and
then easily assembled. In return, to obtain high-fidelity numerical results using nonconforming grids, an accurate spatial
discretization at the grid interfaces is required. Indeed, as the grid spacing is discontinuous at the block interface, the
spatial discretization schemes cannot usually be applied close to the interface and their formulations have to be modified.

In computational aeroacoustics, the spatial discretization can be carried out using high-order low-dissipation and
low-dispersion schemes, among which the dispersion-relation-preserving schemes,10 the optimized explicit schemes
in the Fourier space,2 or the implicit schemes.11,12 In this study, the spatial discretization consists of the sixth-order
finite-volume implicit scheme of Pouangué et al12 in combination with the sixth-order implicit selective filter of Visbal
and Gaitonde.13 Implicit schemes are particularly attractive to reach a high-order spectral accuracy using a smaller num-
ber of grid points compared with explicit schemes. However, in the context of parallel computations, the flow equations
are generally solved locally in each subdomain of the multiblock grid. As a consequence, the implicit centered schemes
cannot be applied at the mesh block interfaces. Therefore, in a previous study,12 a technique of flux reconstruction at the
interface of conforming grids has been developed. Based on the application of noncentered spatial schemes at the block
interface and the use of ghost cells, the technique allowed us to successfully perform massively parallel aerodynamic and
aeroacoustic computations of jet flows.14-17

In the present study, a flux reconstruction technique for the interface of nonconforming grids is proposed. The tech-
nique, derived from the method developed for conforming grids,12 is based on the application of noncentered schemes
at the grid interface. Due to the mesh line discontinuities at the grid interface, an additional step consisting in recon-
structing ghost cells is required. The flow variables in the ghost cells are computed using a local interpolation technique,
based on a meshless method involving radial basis functions (RBFs).9,18 Meshless interpolations are useful in alleviating
the difficulties caused by the loss of the mesh topology at the interfaces of nonconforming grids. Indeed, since meshless
interpolations are performed from arbitrarily scattered spatial data without any geometrical information, computational
overheads due to topology reconstructions are avoided. Originally developed by Le Bras et al for plane nonconforming
grid interfaces,19 the technique of flux reconstruction is extended to curved interfaces in this study. In comparison with
the preliminary results presented by Le Bras et al,19 the properties of the RBF interpolation are examined in one dimen-
sion (1-D) in the wavenumber space, and the performance of the flux reconstruction is further assessed by simulating in
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two dimensions (2-D) the convection of a vortex on wavy grids and the propagation of an acoustic pulse. In addition, the
application of the technique to a three-dimensional (3-D) turbulent jet flow is presented.

The present paper is organized as follows. In Section 2, the high-order finite-volume approach used in this study, and the
flux reconstruction method for conforming interfaces are described. In Section 3, the reconstruction technique developed
at the interface of plane and curved nonconforming grids is presented. In Section 4, the properties of the RBF interpola-
tions are examined in 1-D in the wavenumber space. In Section 5, the accuracy of the flux reconstruction is evaluated by
simulating a 2-D acoustic pulse propagating through a nonconforming interface. In Section 6, the simulations of 2-D vor-
tex convection for Cartesian and wavy grids with different spatial resolutions are presented. In particular, the advantages
of using RBF interpolations for the reconstruction and the choice of the interpolation parameters are discussed. Finally,
the application of the technique to a 3-D turbulent jet flow is presented, using a nonconforming grid downstream of the
jet potential core. The reduction in the number of mesh points obtained using a nonconforming grid is evaluated. The
effects of the presence of a nonconforming interface on the sound field radiated by the jet are examined.

2 FLUX RECONSTRUCTION TECHNIQUE FOR CONFORMING GRIDS

2.1 Governing equations
In this study, the 3-D compressible Navier-Stokes equations are solved. Using Cartesian coordinates, they can be
written as

𝜕W
𝜕t

+ 𝜕Ec

𝜕x
+ 𝜕Fc

𝜕𝑦
+ 𝜕Gc

𝜕z
− 𝜕Ed

𝜕x
− 𝜕Fd

𝜕𝑦
− 𝜕Gd

𝜕z
= 0, (1)

where (Ec, Fc, and Gc) are the convective fluxes; (Ed, Fd, and Gd) are the diffusive fluxes; W = (𝜌, 𝜌u, 𝜌v, 𝜌w, 𝜌e)t is the
vector of the conservative variables; 𝜌 is the density; (u, v, w) are the velocity components; and 𝜌e is the total energy. For
a perfect gas, the total energy 𝜌e is given by

𝜌e =
p

𝛾 − 1
+ 1

2
𝜌(u2 + v2 + w2), (2)

where p is the static pressure and 𝛾 is the specific heat ratio. The convective fluxes write as

⎧⎪⎨⎪⎩
Ec = (𝜌u, 𝜌u2 + p, 𝜌uv, 𝜌uw, (𝜌e + p)u)t

Fc = (𝜌v, 𝜌uv, 𝜌v2 + p, 𝜌vw, (𝜌e + p)v)t

Gc = (𝜌w, 𝜌uw, 𝜌vw, 𝜌w2 + p, (𝜌e + p)w)t

(3)

and the diffusive fluxes as ⎧⎪⎨⎪⎩
Ed = (0, 𝜏11, 𝜏12, 𝜏13, 𝜏11u + 𝜏12v + 𝜏13w + H1)t

Fd = (0, 𝜏21, 𝜏22, 𝜏23, 𝜏21u + 𝜏22v + 𝜏23w + H2)t

Gd = (0, 𝜏31, 𝜏32, 𝜏33, 𝜏31u + 𝜏32v + 𝜏33w + H3)t

(4)

where H = (H1,H2,H3)t is the heat flux vector, 𝜏 i j = 2𝜇Si j is the viscous stress tensor, 𝜇 is the dynamic molecular viscosity
computed from Sutherland's law, and Si j is the deformation stress tensor:

Si𝑗 =
1
2

(
𝜕ui

𝜕x𝑗
+

𝜕u𝑗

𝜕xi
− 2

3
𝜕uk

𝜕xk
𝛿i,𝑗

)
. (5)

The heat flux vector H is computed from Fourier's law, yielding

H = −𝜆∇T, (6)

where ∇T is the temperature gradient, 𝜆 = Cp𝜇∕Pr is the thermal conductivity, Cp is the specific heat at constant pressure,
and Pr is the Prandtl number.
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2.2 High-order finite-volume approach
The computations are performed using the finite-volume multiblock structured solver elsA,20 allowing us to perform
direct numerical simulations or large-eddy simulations (LES). In a finite-volume approach, the integral form of the
Navier-Stokes equation (1) is solved at a discrete level. For this purpose, the computational domain is divided into nonover-
lapping control volumes Ωi, where i is the volume index. Integrating Equation (1) over the elementary volumes Ωi and
using the divergence theorem lead to

|Ωi|dUi

dt
+ ∫𝜕Ωi

(Ec + Fc + Gc) · n dS + ∫𝜕Ωi

(Ed + Fd + Gd) · n dS = 0, (7)

where n = (nx,ny,nz) is the outgoing unitary normal of Ωi, 𝜕Ωi represents the faces of Ωi, and Ui is the mean value of W
in the volume Ωi such as

Ui =
1|Ωi|∫Ωi

W dV . (8)

In the elsA solver, the diffusive fluxes in Equation (7) are calculated from the gradient∇U estimated at the cell interfaces
using a second-order method.21 For clarity, in the following, only the convective fluxes are presented in the equations.
Following Pouangué et al.12 and supposing that the volume Ωi is an hexahedron, the normal n is constant along the
interface, and the integral of the convective fluxes in Equation (7) can be approximated as

∫𝜕Ωi

(Ec + Fc + Gc) · n dS ≃ |𝜕Ωi| (Ec(Ũ𝜕Ωi )nx + Fc(Ũ𝜕Ωi)n𝑦 + Gc(Ũ𝜕Ωi )nz

)
, (9)

where Ũ𝜕Ωi is the averaged value of the variable vector W at the cell interface 𝜕Ωi:

Ũ𝜕Ωi =
1|𝜕Ωi|∫𝜕Ωi

W dS. (10)

The convective fluxes are thus computed from the interface-averaged values Ũ of the flow variables. To obtain a
high-order calculation of the convective fluxes derivatives, a high-order interpolation of vector Ũ is performed from the
cell-averaged values U. Considering the 1-D computational domain of Figure 2, the interpolated vector Ũ at the interface
i + 1∕2 is obtained by solving the implicit scheme:

𝛼i+1∕2Ũi−1∕2 + Ũi+1∕2 + 𝛽i+1∕2Ũi+3∕2 =
2∑

l=−1
alUi+l, (11)

where 𝛼i+1/2, 𝛽 i+1/2, and al are the scheme coefficients that are obtained from a fifth-order Taylor series.12 This scheme cor-
rectly resolves the wavelengths discretized by at least five points.14 Note that despite the use of approximation (9), which
is formally only second-order accurate, Pouangué et al.12 demonstrated that the numerical scheme (11) is equivalent to
Lele's sixth-order finite-difference scheme11 for a uniform Cartesian mesh.

To ensure the stability of the centered scheme (11), the sixth-order compact filter of Visbal and Gaitonde13 is applied to
the flow variables. The filtered values, denoted Û, are estimated from the values of U as

𝛼𝑓 Ûi−1 + Ûi + 𝛼𝑓 Ûi+1 =
3∑

l=0

𝛾l

2
(Ui+l + Ui−l) , (12)

FIGURE 2 Representation of a one-dimensional computational domain
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where 𝛼f = 0.47 and 𝛾 l are the filter coefficients.13 The filter is employed on a uniformly spaced grid due to a coordi-
nate transform. For LES computations, the filter also plays the role of a subgrid-scale model, relaxing turbulent energy
at high frequencies.22-24 Time integration is performed by applying a low-storage six-stage Runge-Kutta algorithm.2
Radiation boundary conditions, Navier-Stokes characteristic boundary conditions, and sponge zones are used to avoid
significant acoustic reflections at the mesh boundaries. A more detailed description of the numerical algorithm is given
by Pouangué et al.14

2.3 Reconstruction for conforming grid interfaces
2.3.1 Numerical scheme
At the mesh-block interfaces, the implicit centered scheme (11) used in the computation of the convective fluxes cannot
be applied. Thus, in a previous study,12 a flux reconstruction technique has been proposed at the interfaces of conform-
ing grids. It is presented in the following by considering a 2-D computational domain composed of two blocks L and R
separated by a conforming interface, as shown in Figure 3.

The reconstruction technique consists of two steps. In the first step, the flow variables Ũ at the grid interface in blocks
L and R are determined using upwind schemes. More precisely, in block L, as illustrated in Figure 3A, the vector ŨL at
the interface IL is computed using a noncentered scheme involving the flow variables in cells of blocks L and R such as

𝛼′Ũi=N−1∕2,𝑗 + ŨL = a′
0Ui=N−1,𝑗 + a′

1Ui=N,𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cells of block L

+ a′
2Ui′=0,𝑗 + a′

3Ui′=1,𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cells of block R

, (13)

where 𝛼′ and a′
i are the scheme coefficients determined using Taylor series. For block L, the values of U in the cells

(i ′ = 0, j) and (i ′ = 1, j) of block R are a priori not known. These cells are thus referred to as ghost cells for block L in the
following. The values of U in the ghost cells are obtained due to data exchanges between the blocks at each time iteration
of the simulation. Symmetrically, in block R, the vector ŨR at the interface IR in Figure 3B is determined from the upwind
scheme:

ŨR + 𝛽′′Ũi′=1∕2,𝑗 = a′′
0 Ui=N−1,𝑗 + a′′

1 Ui=N,𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cells of block L

+ a′′
2 Ui′=0,𝑗 + a′′

3 Ui′=1,𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cells of block R

(14)

where 𝛽′′ and a′′
i are the scheme coefficients. The values of ŨL and ŨR are usually not identical, since they are determined

from two different upwind schemes (13) and (14). Therefore, in a second step, a Riemann problem25 is solved to ensure
the unicity of the flux, hence the scheme conservativity, at the block interface.

2.3.2 Selective filter
In the vicinity of conforming grid interfaces, as for the centered scheme (11), the seven-point centered filter (12) cannot
be applied, and its formulation has to be modified. However, previous studies26 demonstrated that the change of the filter
formulation at the grid interface is likely to significantly decrease the accuracy of the filtering process and generate spuri-
ous noise. Therefore, to still apply the centered filter (12) at the grid interface, Pouangué26 proposed to artificially extend
the size of the mesh blocks using ghost cells, and to modify the filter formulation in the ghost cell regions exclusively.
In practice, according to the notations of Figure 4, in order to change the filter formulation as far as possible from the
interface, the block L is extended using five ghost cells represented by stars. These cells correspond to the cells of block R
indexed by i ′ = 0, 1, 2, 3, 4. Consequently, in block L, the centered filter (12) on seven points can be applied in cells

(A) (B)

FIGURE 3 Flux reconstruction for
conforming grids: (A) Step 1: computation
of the flow variables at the interface IL using
a scheme involving two cells (squares) and
an interface (cross) of block L and two ghost
cells (stars) of block R, and (B) step 2: flux
computation from the flow variables at the
interfaces IL and IR, using a Riemann solver
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i = … ,N − 1,N and in the ghost cell (i ′ = 0, j). Finally, a noncentered filter is used to determine the value of Û in the
ghost cell (i ′ = 1, j) in gray in Figure 4:

𝛼𝑓 Ûi′=0,𝑗 + Ûi′=1,𝑗 =
3∑

k=2

𝛾k

2
Ui=N−k+2,𝑗 +

𝛾1

2
Ui′=0,𝑗 + 𝛾0Ui′=1,𝑗 +

3∑
k=1

𝛾k

2
Ui′=k+1,𝑗 − 𝛼𝑓Ui′=2,𝑗 . (15)

The flux reconstruction for conforming grids presented in this section has been successfully applied to massively parallel
aeroacoustic simulations of jet flows at high Reynolds numbers.14,15,17

3 FLUX RECONSTRUCTION TECHNIQUE FOR NONCONFORMING GRIDS

In this section, the reconstruction presented above for conforming grids is extended to the cases of plane and curved
nonconforming meshes.

3.1 Plane interfaces
In the case of a nonconforming grid interface, as illustrated in Figure 5, the flux reconstruction technique described in
Section 2.3 cannot be used. Indeed, for such grids, as the mesh lines are discontinuous across the block interface, the
ghost cells represented by stars in Figure 4 are no longer defined. Therefore, the upwind schemes (13) and (14) and the
filter (15) cannot be applied. In this work, a new flux reconstruction is thus proposed at the nonconforming interfaces.
It consists in using noncentered schemes and meshless interpolations to define the flow variables in ghost cells and at
the grid interface. In this section, the flux reconstruction is presented for the plane grid interface displayed in Figure 5,
considering block L as the current block.

3.1.1 Numerical scheme
To compute the flux at the interface IL in block L, the key idea is to make possible the application of the schemes (13)
and (14) due to the reconstruction of the flow variables in ghost cells. For this purpose, a methodology, composed of four
steps depicted in Figure 5, is presented. In step 1, two ghost cells, represented in gray in Figure 5A, are defined. The centers
of these cells, depicted by stars, are located at the intersection between the mesh lines i ′ = 0 and i ′ = 1 and the straight
line passing by the centers of the cells (i = N − 1, j) and (i = N, j). The values of the flow variables U in the ghost cells
are determined from the values of U in the cells of block R using a meshless interpolation. The interpolation technique
is presented in Section 3.1.3. In Step 2, illustrated in Figure 5B, the upwind scheme (13) can be applied to compute the
flow vector ŨL at the interface IL of block L. In step 3, symmetrically with what was done in steps 1 and 2 for block L,
ghost cells are defined in block R, and the scheme (14) is employed to determine the vector Ũ at the interfaces (… , IR,𝑗′ ,
IR,𝑗′+1, … ) in gray in Figure 5C. Finally, in step 4, a ghost interface I′L, identical geometrically to IL, is defined in block R,
as shown in Figure 5D. The variable vector Ũ′

L at the interface I′L is interpolated from the values Ũ obtained in step 3.
This second interpolation method is also described in Section 3.1.3. Even if the interfaces I′L and IL are geometrically
identical, the values of Ũ at these two interfaces differ since they are computed from different schemes and interpolations.
Therefore, the convective flux at the block interface is determined from the values of ŨL and Ũ′

L by resolving a Riemann
flux problem.25

FIGURE 4 Filter application in block L in the vicinity of a conforming grid
interface: The flow variables in the ghost cell i′ = 1 in gray are filtered using grid cells
of block L (squares) and block R (stars)
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(A) step 1

(C) step 3

(B) step 2

(D) step 4

FIGURE 5 Flux
reconstruction for
nonconforming grids at the
interface IL in block L: (A) Step
1: Definition of two ghost cells
(stars); (B) Step 2: Computation
of the flow variables at the
interface IL using a noncentered
scheme involving an interface
(cross) and two cells (squares) of
block L, and two ghost cells
(stars); (C) Step 3: Computation
of the flow variables at the
interfaces in gray, applying steps
1 and 2 in block R; and (D) Step
4: Interpolation of the flow
variables at the ghost interface
I′L using the data computed in
step 3, and computation of the
resulting flux at the block
interface using a Riemann solver

3.1.2 Selective filter
Five ghost cells are necessary to apply the noncentered filter (15) near the block interface. For conforming grids, as
explained in Section 2.3, the flow variables in the ghost cells are directly obtained due to data exchanges between blocks.
However, for nonconforming grids, these variables first need to be interpolated before being exchanged. Consequently,
using five ghost cells results in an extra computational cost compared with conforming grids, which led us to only con-
sider two ghost cells. The application of the filter close to the nonconforming interface of block L is illustrated in Figure 6.
The cells and ghost cells of block L involved in the filtering are represented by squares and stars, respectively. As shown in
Figure 6A, using two ghost cells, the seven-point centered filter (12) can be applied as far as point (i = N− 1, j) in block L.
At the cell (i = N, j) adjacent to the block interface, in gray in Figure 6B, the filtered field Ûi=N,𝑗 is computed from the
upwind formulation:

𝛼𝑓 Ûi=N−1,𝑗 + Ûi=N,𝑗 + 𝛼𝑓 Ûi′=0,𝑗 =
4∑

k=0
𝛾 ′kUN−4+k,𝑗 + 𝛾 ′5Ui′=0,𝑗 + 𝛾 ′6Ui′=1,𝑗 . (16)

Finally, the flow variables in the ghost cells (i ′ = 0, j) and (i ′ = 1, j) are filtered using noncentered schemes on seven
points, as illustrated in Figures 6C and 6D, yielding

⎧⎪⎪⎨⎪⎪⎩
𝛼𝑓 Ûi=N,𝑗 + Ûi′=0,𝑗 + 𝛼𝑓 Ûi′=1,𝑗 =

4∑
k=0

𝛾 ′′k UN−4+k,𝑗 + 𝛾 ′′5 Ui′=0,𝑗 + 𝛾 ′′6 Ui′=1,𝑗

𝛼𝑓 Ûi′=0,𝑗 + Ûi′=1,𝑗 =
4∑

k=0
𝛾 ′′′k UN−4+k,𝑗 + 𝛾 ′′′5 Ui′=0,𝑗 + 𝛾 ′′′6 Ui′=1,𝑗 ,

(17)

where 𝛼f = 0.47 and 𝛾 ′k, 𝛾 ′′k , and 𝛾 ′′′k are the noncentered filter coefficients.27

3.1.3 Interpolation techniques
In the flux reconstruction for nonconforming grids, interpolations are performed to compute the flow variables U in two
ghost cells and the values of Ũ at the grid interface. As presented in Section 3.1.1, in block L, the interpolations are carried
out using values of U and Ũ in block R. In practice, block R can be divided into subdomains with a loss of topology
information between the domains. Therefore, in this study, meshless interpolations based on RBFs are employed.
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FIGURE 6 Filtering at the
nonconforming grid interface in
block L. Cells in block L
(squares) and ghost cells in
block R (stars) used in the filter
scheme applied at points:
(A) (i = N − 1, j), (B) (i = N, j),
(C) (i′ = 0, j), and (D) (i′ = 1, j)

(A) (B)

(C) (D)

First, the interpolation technique is described for the calculation of a component u of the vector U in the ghost cell
located at i ′ = 0 in Figure 5A. The calculation is performed using the value of u known in nv cells of block R surrounding
the ghost cell. These nv cells are located along the line i ′ = 0 for a 2-D mesh, in the plane i ′ = 0 for a 3-D straight mesh.
The RBF approximation uRBF of the variable u at point x writes9

uRBF(x) =
nv∑
𝑗=1

𝜉𝑗Φ(x, x𝑗) +
m∑

q=1
𝜁qPq(x), (18)

where 𝜉j and 𝜁q are the unknown interpolation coefficients, (x𝑗)𝑗=1,… ,nv are the centers of the nv cells, Φ are Wendland's
RBFs,9,28 and

∑
𝜁qPq(x) = 𝜁0 + 𝜁1x + 𝜁2𝑦 + … + 𝜁mzdeg(P) is a polynomial term of degree deg(P) that ensures the unicity

of the approximation uRBF.18,29 The calculation of the coefficients 𝜉j and 𝜁q is presented in Appendix A.1. Similarly, the
value of U in the second ghost cell in Figure 5A is interpolated using the RBF approximation (18) and nv points located
at i ′ = 1. The choice of the interpolation parameters nv and deg(P) in Equation (18) is discussed in Sections 6 and 7.

A second interpolation technique is proposed to interpolate the flow variables Ũ at the block interface I′L in Figure 5D.
As for the interpolation of the flow field in the ghost cells, an RBF interpolation is carried out. However, the quantity to
interpolate is not a single-point value u but an averaged value ũ on a grid interface. Therefore, the interpolation of ũ on
the interface I′L is performed from nv values of Ũ at the interfaces (IR,1, … , IR,𝑗′ , IR,𝑗′+1, … , IR,nv) represented in gray in
Figure 5C. The interpolation formulation at the grid interface I′L is obtained by integrating Equation (18) on I′L:

ũL′ = 1||I′L||∫I′L

uRBF(x)dx (19)

=
nv∑

𝑗′=1
𝜉𝑗′

(
1||I′L||∫I′L

Φ(x, x𝑗′ )dx

)
+

m∑
q=1

𝜁q

(
1||I′L||∫I′L

Pq(x)dx

)
,

where the point x𝑗′ is the center of the surface IR,𝑗′ . The calculation of the interpolation coefficients 𝜉𝑗′ and 𝜁q is detailed
in Appendix A.2.1. A third-order Gaussian quadrature is used to compute the integrals of Equation (19). In practice, the
interpolation coefficients in Equations (18) and (19) are computed only once at the beginning of the simulation and stored
in memory, yielding low CPU cost interpolations (see Appendix A).

3.2 Curved interfaces
For curved grid interfaces, the flux reconstruction presented in Section 3.1 cannot be applied. For the interpolation of the
flow variables at the grid interface using Equation (19), as the curvature of the surface is not taken into account to define
the ghost interface I′L, the integral (19) is evaluated on a plane interface that does match the shape of the nonconforming
interface. Therefore, a flux reconstruction for curved nonconforming interfaces is also proposed. The objective is to find
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a function 𝜎(x) to define a curved interface I′Lcurved
knowing only the position x of the mesh points. The flow variables at

the interface I′Lcurved
are then calculated as in Equation (19):

ũL′ = 1|||I′Lcurved

|||∫I′Lcurved

uRBF(x)dx (20)

=
nv∑

𝑗′=1
𝜉𝑗′

⎛⎜⎜⎝ 1|||I′Lcurved

|||∫I′Lcurved

Φ(x, x𝑗′ )dx
⎞⎟⎟⎠ +

m∑
q=1

𝜁q

⎛⎜⎜⎝ 1|||I′Lcurved

|||∫I′Lcurved

Pq(x)dx
⎞⎟⎟⎠

The calculation of the RBF coefficients 𝜉𝑗′ and 𝜁q is described in Appendix A.2.2.
The method to determine the function 𝜎 is presented for the 2-D grid of Figure 7A, composed of two blocks L and

R separated by a curved interface. The curved interfaces to be defined by the function 𝜎 are denoted by I′Lcurved
and

(IR,1curved , … , IR,𝑗′curved
, IR,𝑗′+1curved , … , IR,nvcurved

). To determine the function 𝜎, a technique proposed by Carr et al.30 for 3-D
imaging reconstruction is employed. First, relations to be verified by the function 𝜎 at given mesh points are imposed. In
particular, at the Np grid points of blocks L and R lying on the interfaces (IR,1curved , … , IR,𝑗′curved

, IR,𝑗′+1curved , … , IR,nvcurved
) in

Figure 7A, the function 𝜎 cancels out:
𝜎(xi) = 0 for 1 ≤ i ≤ Np, (21)

where xi = (xi, yi, zi) are the spatial coordinates of the ith mesh point. To ensure that function 𝜎 differs from the
zero-function, off-surface points are considered and nonzero values are given to the function 𝜎 at these points. In the
present study, nv points of block L and nv points of block R are selected, corresponding to the centers of the cells adjacent
to the grid interface. They are represented by black and gray circles in Figure 7B for nv = 3. A value of 𝜎 = −1 is given to
the nv points of block L, and 𝜎 = 1 is attributed to the nv points of block R. Thus, the objective is to find the function 𝜎 so
that the following relations are satisfied:

⎧⎪⎨⎪⎩
𝜎(xi) = 0 for 1 ≤ i ≤ Np

𝜎(xr) = 1 for 1 ≤ r ≤ nv

𝜎(xl) = −1 for 1 ≤ l ≤ nv

(22)

where (xr)1,… ,nv and (xl)1,… ,nv are the positions of the centers of the nv cells of blocks L and R, respectively. Then, given
the set of points SN = [(xi)1,… ,Np , (xr)1,… ,nv , (xl)1,… ,nv] = [(x𝑗)1,… ,NS ] and the relations (22), the function 𝜎 is calculated
by RBF interpolation30:

𝜎(x) ≃ 𝜎RBF(x) =
NS∑
𝑗=1

Θ𝑗Φ(x, x𝑗) +
m∑

q=1
𝜅qPq(x), (23)

where NS = Np + 2nv, and Θj and 𝜅q are the unknown interpolation coefficients computed similarly as for the ghost cells
(see Appendix A.1).

(A) (B)

FIGURE 7 Computation of the function
𝜎 that defines the curved interfaces I′Lcurved

and (IR,𝑗′curved
)1≤𝑗′≤nv=3: (A) Interfaces I′Lcurved

and (IR,𝑗′curved
)1≤𝑗′≤3 and Np points (squares)

lying on the interfaces, and (B) surface
points (squares) where 𝜎 = 0 and
off-surface points (circles) where 𝜎 ≠ 0
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4 PROPERTIES OF THE RBF INTERPOLATION IN THE
WAVENUMBER SPACE

The performance of the RBF interpolation is evaluated in the wavenumber space. For this purpose, a uniform 1-D mesh
extending over the range [0, 1], composed of 81 points (xj)1≤ j≤ 81 is considered:

x𝑗 = ( 𝑗 − 1)Δ for 1 ≤ 𝑗 ≤ 81 (24)

with Δ = 1∕80. At the points xj, a harmonic function 𝑓k(x) = exp(ikx) is imposed, where k is the wavenumber with kΔ
varying from 0 to 𝜋, and i is the complex number verifying i2 = −1. For RBF interpolations, a second 1-D mesh, referred
to as the RBF grid, is defined using NRBF = 41 points located at the following positions:

x′𝑗 =
(

0.2Δ + 𝑗 − 1
NRBF − 1

)
for 1 ≤ 𝑗 ≤ NRBF. (25)

In this way, the distance between two consecutive RBF grid points is equal to 2Δ, and there is a full point-mismatch
between the two 1-D meshes. The interpolation of fk on the RBF grid is denoted gk in the following. For consistency with
the finite-volume flux reconstruction proposed in this study, the function gk is defined over each segment [x′𝑗 , x′𝑗+1], with
j ∈ [1,NRBF − 1]. For x ∈ [x′𝑗 , x′𝑗+1], from Equation (18), the function gk writes as follows:

gk(x) =
nv∑

l=1
𝜉lΦ(x, xl) + P(x). (26)

The nv nearest mesh points (xl) that surround point x′𝑗M
= (x′𝑗 + x′𝑗+1)∕2 and where the values of fk are known are used

to determine the interpolation coefficients in Equation (26). In this section, the influence of the number of points nv is
evaluated by performing interpolations using nv = 4, 6, 8, and 20 points. The interpolations are carried out using the
second-degree polynomial function P(x) = 𝜁0 + 𝜁1x + 𝜁2x2, where (𝜁 j)0≤ j≤ 2 are the unknown interpolation coefficients.
The influence of the degree of P on the accuracy of the spatial discretization is discussed in Section 5.

First, the accuracy of the RBF interpolation is examined. For this purpose, an interpolation error 𝜖 is computed as a
function of the wavenumber k from the difference between the values of fk and gk over each segment [x′𝑗 , x′𝑗+1] as

𝜖(k) =
NRBF−1∑
𝑗=1 ∫

x′𝑗+1

x′𝑗
|𝑓k(x) − gk(x)|dx, (27)

where | · | is the complex modulus. Second, the energy of the interpolated signal gk is compared with the energy of the
original signal fk through the evaluation of the integrals Ef and Eg defined as

E𝑓 (k) = ∫
x′NRBF

x′1
|𝑓k(x)|2dx = 1 and Eg(k) = ∫

x′NRBF

x′1
|gk(x)|2dx. (28)

For comparison, interpolations are also performed using the polynomial functions of degrees 2 and 3 given by

P2(x) = c1 + c2x + c3x2, (29)

P3(x) = c4 + c5x + c6x2 + c7x3, (30)

where (cj)1≤ j≤ 7 are the interpolation coefficients. Note that, as for the RBF interpolations, the polynomial approxima-
tions (29) and (30) are defined by pieces over each segment [x′𝑗 , x′𝑗+1]. The interpolations coefficients (ci) are determined



LE BRAS ET AL. 597

(A) (B)

FIGURE 8 Representation of (A) the
energy Eg and (B) the interpolation error 𝜖
as a function of the normalized
wavenumber kΔ: Radial basis function
interpolations using ◦ nv = 4, nv = 6,

nv = 8, nv = 20, polynomial
interpolations of ◼ degree 2 and × degree 3.

Eg = E𝑓 = 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

using a least-square approximation involving nv nearest points surrounding point x′𝑗M
. More precisely, over each segment

[x′𝑗 , x′𝑗+1], the values of (ci) are calculated to minimize the functions 𝜒P2 and 𝜒P3 :

𝜒P2(c1, c2, c3) =
nv=4∑
l=1

|P2(xl) − 𝑓k(xl)|2(
xl − x′𝑗M

)2 (31)

𝜒P3(c4, c5, c6, c7) =
nv=6∑
l=1

|P3(xl) − 𝑓k(xl)|2(
xl − x′𝑗M

)2 . (32)

The variations of the energy Eg obtained from the RBF interpolations using nv = 4, 6, 8, and 20 points and from the
polynomial interpolations with P2 and P3 are represented in Figure 8A as a function of the normalized wavenumber
kΔ. When RBF is used, the value of Eg decreases with kΔ, indicating higher levels of dissipation at high wavenumbers.
The highest levels of dissipation are obtained using nv = 4. In particular, for kΔ = 𝜋∕3, the energy is equal to 0.995
for nv = 4, whereas values 0.99 < Eg < 1 are obtained for nv = 6, 8, and 20. The dissipation obtained using RBF is
lower than that calculated from a polynomial interpolation of degree 2 over all the wavenumber range. In addition, using
RBF, no energy amplification is observed, whereas energy values Eg > 1 are found using polynomial interpolation P3
for 𝜋∕8 ≤ kΔ ≤ 𝜋∕2 in Figure 8A. Therefore, it is interesting to use RBF to preserve the energy stability and to maintain
low dissipation levels for wavenumbers kΔ < 𝜋∕4, which are well resolved by the present spatial discretization schemes.

The interpolation errors 𝜖 obtained using RBF and polynomial interpolations are represented in Figure 8B as a function
of the wavenumber kΔ. When RBF is used, the highest values of 𝜖 are obtained for nv = 4. In this case, the interpolation
error is stronger than that calculated with the polynomial interpolation P3 for kΔ < 𝜋∕2. However, it is lower than the
error computed with P2, which involves the same number of interpolation points. When the number of interpolation
points nv increases, as expected, the value of 𝜖 decreases all over the wavenumber range. For nv = 20, as a result, the
error 𝜖 is lower than the error computed using P3 for 𝜋∕12 < kΔ < 𝜋. For kΔ < 𝜋∕12, it is higher than that obtained using
P3, but is very small and lower than 5 × 10−6.

5 ACOUSTIC PULSE

To examine the overall accuracy of the flux reconstruction presented for nonconforming grids above, an acoustic pulse is
imposed in the vicinity of a nonconforming interface in a medium at rest. For this purpose, the 2-D domain of size 𝓁 × 𝓁
shown in Figure 9A is considered, with 𝓁 = 100 m. It is composed of two blocks separated by a nonconforming interface
located at x = 0.6𝓁. At t = 0, the pulse is introduced at xp = 0.4𝓁 and yp = 0.5𝓁 as

⎧⎪⎨⎪⎩
𝜌′(x, 𝑦) = Ap exp

(
− ln 2 (x−xp)2+(𝑦−𝑦p)2

ℏ2

)
u′(x, 𝑦) = v′(x, 𝑦) = 0
p′(x, 𝑦) = c2

0𝜌
′(x, 𝑦),

(33)

http://wileyonlinelibrary.com
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where ℏ = 0.03𝓁 is the pulse half-width, Ap is the pulse amplitude, and c0 is the ambient sound speed. The ambient
pressure and temperature are equal to p0 = 105 Pa and T0 = 300 K, respectively. Radiation boundary conditions and
sponge layers are used. An exact solution of the problem can be derived from the linearized Euler equations.10 To compare
the numerical results obtained from the Navier-Stokes equations with the exact solution, an amplitude Ap of 0.1 Pa is
chosen. In addition, the viscous terms in Equation (1) are neglected in the simulations.

The performance of the flux reconstruction is evaluated using six Cartesian grids referred to as pulsegrid1, pulsegrid2,
pulsegrid3, pulsegrid4, pulsegrid5, and pulsegrid6, and two flux reconstruction techniques with and without RBF inter-
polation. The RBF interpolations are carried out using a number of nv = 8 points. The influence of the degree deg(P) of
the RBF polynomial function in Equation (18) is examined using polynomial functions of degrees 0, 1, and 2. For the flux
reconstruction without RBF, second-order interpolations are used to reconstruct the flow variables in the ghost cells and
at the grid interface.31 This reconstruction, available in the elsA solver,20 is described in Appendix A.3.

The mesh parameters, namely the grid spacings Δx, and the grid spacings ΔyL and ΔyR at the left-hand and right-hand
sides of the block interface are given in Table 1. The meshes pulsegrid2, pulsegrid3, pulsegrid4, pulsegrid5, and pulsegrid6
are respectively 2, 3, 4, 5, and 6 times finer than pulsegrid1. In all cases, at the left-hand side of the interface, a uniform
grid spacing Δx = ΔyL is used in the directions x and y. For pulsegrid1, it is equal to 0.02𝓁. At the right-hand side of the
interface, the grid spacing is also equal to Δx in x-direction, whereas the mesh spacing ΔyR is twice larger than ΔyL in
y-direction. To have a full point-mismatch at the grid interface, for x > 0.6𝓁, in all cases, the grid cells are shifted upwards
of 0.5ΔyL.

The time step Δt of the simulations is chosen sufficiently small so that the errors related to the time discretization are
negligible. More precisely, its value is calculated to provide a CFL number c0Δt∕Δx of 0.05 forΔx = 𝓁∕300. The fluctuating
pressure field p ′ obtained at t = 1200Δt using pulsegrid2 is represented in Figure 9A. At this instant, the acoustic wave
reaches the nonconforming interface. To evaluate the effective order of the spatial discretization in the presence of the
nonconforming interface, the pressure fluctuation obtained at t = 1200Δt is compared with the exact solution p′

exact
through the L2 relative error:

𝜖p =
⎛⎜⎜⎝
∫Ω𝜖

(
p′ − p′

exact
)2dΩ

∫Ω𝜖
p′2

exactdΩ

⎞⎟⎟⎠
1∕2

, (34)

where Ω𝜖 = {(x, 𝑦) ∈ R2 | 0.2𝓁 ≤ x, 𝑦 ≤ 0.8𝓁}. In finite volume, p ′ is the averaged value of the fluctuating pressure
over each cell of domain Ω𝜖 (see Equation (8)). Therefore, for consistency, the exact solution is calculated similarly. The

FIGURE 9 (A) Fluctuating pressure p′ at
t = 1200Δt using pulsegrid2, with ten
isocontours from 10−4 to 10−2 Pa following
a geometric progression of ratio 1.67. The
nonconforming interface is shown in blue.
(B) Error profiles 𝜖p as a function of the grid
spacing Δx∕𝓁: Radial basis function (RBF)
interpolations with polynomial
functions ▴ deg(P)=0, ◦ deg(P)=1, ×
deg(P)=2, • interpolation without RBF and
◻ grids without interface [Colour figure can
be viewed at wileyonlinelibrary.com]

(A) (B)

TABLE 1 Mesh spacings used in the simulations of the pulse Mesh 𝚫x 𝚫yL 𝚫yR

pulsegrid1 𝓁∕50 𝓁∕50 𝓁∕25
pulsegrid2 𝓁∕100 𝓁∕100 𝓁∕50
pulsegrid3 𝓁∕150 𝓁∕150 𝓁∕75
pulsegrid4 𝓁∕200 𝓁∕200 𝓁∕100
pulsegrid5 𝓁∕250 𝓁∕250 𝓁∕125
pulsegrid6 𝓁∕300 𝓁∕300 𝓁∕150

http://wileyonlinelibrary.com
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discrete form of Equation (34) thus writes as

𝜖p =
⎛⎜⎜⎝
∑

cell∈Ω𝜖

(
p′ − p′

exact cell

)2∑
cell∈Ω𝜖

p′2
exact cell

⎞⎟⎟⎠
1∕2

, (35)

where p′
exact cell = (1∕|Ωcell|)∫Ωcell

p′
exactdΩ and |Ωcell| is the volume of the cell. Simulations with four uniform Cartesian

meshes without grid interfaces with grid spacings of Δx = Δy = 𝓁∕50, 𝓁∕100, 𝓁∕200 and 𝓁∕300, respectively, have also
been done for comparisons.

The errors 𝜖p obtained using the nonconforming grids with and without the flux reconstruction based on RBF for
polynomial functions of degrees 0, 1, and 2 are presented in Figure 9B, as a function of the grid spacing Δx∕𝓁. Those
obtained using the meshes without grid interface are also indicated. In all cases, the amplitude of 𝜖p decreases as the value
of Δx tends to 0. Using the grid without interface, the error profile follows a sixth-order convergence slope. This result
is expected since the present spatial discretization is based on sixth-order numerical schemes (see Pouangué et al.12).
With nonconforming interfaces, the sixth-order convergence slope is not retrieved, and higher error levels are obtained
for Δx ≤ 0.005𝓁 compared with the simulations without interfaces. The stronger errors are obtained using the flux
reconstruction without RBF, with an error profile varying following a second-order slope. When RBF is used, lower errors
are obtained, and they decrease with the degree of P. In particular, the error profile calculated with deg(P)=2 is in good
agreement with that obtained for conforming grids. In the following, the RBF interpolations are therefore performed
using deg(P)=2.

6 CONVECTION OF A VORTEX

The performance of the flux reconstruction on nonconforming grids is then evaluated by performing 2-D simulations of
vortex convection on Cartesian and wavy meshes.

6.1 Cartesian grids
A round vortex is convected in a mean flow defined by a uniform Mach number M of 0.5, a pressure of 105 Pa and a
temperature of 300 K. The 2-D computational domain used in the simulations extends from x = 0 down to x = 3L in the
streamwise direction, and from y = 0 up to y = L in the transverse direction, where L = 0.1 m. It is divided into two
blocks separated by a vertical nonconforming interface located at x = L. The vortex is defined by the velocity and pressure
fluctuations: ⎧⎪⎪⎨⎪⎪⎩

u′ = − Γ
R2 (𝑦 − 𝑦c) exp

(
− ln 2 (x−xc)2+(𝑦−𝑦c)2

2b2

)
v′ = Γ

R2 (x − xc) exp
(
− ln 2 (x−xc)2+(𝑦−𝑦c)2

2b2

)
p′ = − 𝜌Γ2

2R2 exp
(
− ln 2 (x−xc)2+(𝑦−𝑦c)2

b2

)
,

(36)

where (xc = 0.5L, yc = 0.5L) is the position of the vortex center at the initial time t = 0, b = (
√

ln 2∕20)L ≃ 0.04L is the
vortex Gaussian half-width, and Γ represents the vortex intensity given by

𝜌Γ2

2R2 = 103 Pa, (37)

where R = b∕
√

ln 2. The velocity and pressure fluctuations are superimposed onto the mean flow at t = 0.
The performance of the flux reconstruction is examined by performing simulations using four meshes referred to as

Finegrid, Mediumgrid, Coarsegrid, and Verycoarsegrid, and two flux reconstruction techniques with and without RBF
interpolations. When RBF is applied, the influence of the number of interpolation points nv is studied by carrying out
interpolations with nv = 4, 6, 8, and 12 points. The RBF interpolations are performed using a second-degree polynomial
function in Equation (18). The influence of the degree of the polynomial function has been examined by performing
simulations using polynomial functions of degrees 0, 1, and 2. The use of the second-degree polynomial function provided
the lowest spurious noise levels at the grid interface. For the sake of concision, these results are not presented in this
study. Views of the four meshes close to the block interface are given in Figure 10. The mesh parameters, including the
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grid spacings Δx in the streamwise direction, and the grid spacings ΔyL and ΔyR at the left-hand and right-hand sides of
the block interface are provided in Table 2. In all cases, in the streamwise direction, a grid spacing of Δx = Δ = L∕255
is used. The vortex half-width b is thus discretized by ten points, given that b = 10.6Δ. In the transverse direction, on
the left-hand side of the interface, the grid spacing ΔyL is equal to Δ. On the right-hand side, the mesh resolution in the
y-direction is different from Δ. More precisely, the grid spacing ΔyR is respectively equal to 0.5Δ, 2Δ, 4Δ, and 6Δ, for
Finegrid, Mediumgrid, Coarsegrid, and Verycoarsegrid, corresponding to a discretization of the vortex half-width by 21.2,
5.3, 2.6, and 1.8 points. In addition, to ensure a full point-mismatch at the grid interface, for x > L, the cells are shifted
upwards of ΔyR∕2 for Finegrid and of ΔyL∕2 for the meshes Mediumgrid, Coarsegrid, and Verycoarsegrid.

The time step Δt in the computations is chosen to impose a CFL number (1+M)c0Δt∕Δ of 0.4, where c0 is the ambient
sound speed. When the vortex crosses the block interface, spurious waves are generated due to the difference in grid
resolution as well as to the specific spatial discretization at the interface. The objective here is to ensure that the amplitude
of these spurious waves is very low with respect to the pressure deficit in the vortex. For that, the pressure field pinterface
obtained in the multiblock simulations is compared with the pressure field pno-interface computed from a simulation without
block interface. That monoblock simulation is carried out using the same computational domain with mesh spacings
Δx = Δy = Δ. By comparing the pressure pinterface with pno-interface instead of with the analytical vortex solution (36), the
error thus obtained only results from the effects of the nonconforming grid and not from discretization errors. In addition,
the pressure field differences Δp = pinterface − pno-interface are only computed at the left-hand side of the block interface
where the mesh is similar in the two computations. In this way, the pressure fields pinterface and pno-interface are computed
at the same point. In particular, the time evolution of Δp is recorded at the two mesh points A and B, indicated by squares
in Figure 11. They are located, respectively, at the interface at x = L and y = 0.5L, and upstream of the block interface
at x = 0.8L and y = 0.75L. The signal recorded at point A provides information on the vortex deformation at the block
interface, while the signal at point B gives the amplitude of the spurious waves propagating from the interface.

TABLE 2 Mesh spacings for the Fine, Medium, Coarse, and Verycoarse grids Mesh 𝚫x 𝚫yL 𝚫yR

Finegrid Δ Δ 0.5Δ
Mediumgrid Δ Δ 2Δ
Coarsegrid Δ Δ 4Δ
Verycoarsegrid Δ Δ 6Δ

FIGURE 10 Representation of the meshes close to the block interface: (A) Finegrid, (B) Mediumgrid, (C) Coarsegrid, and
(D) Verycoarsegrid

FIGURE 11 Representation of the mesh points A and B (squares) where the
pressure field is recorded
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Mesh Flux reconstruction technique nv RBF polynomial degree
Finegrid RBF 8 2
Mediumgrid RBF 8 2
Coarsegrid RBF 8 2
Verycoarsegrid RBF 8 2

Abbreviations: RBF, Radial basis function.

TABLE 3 Parameters of the simulations in
the grid sensitivity study

6.1.1 Grid sensitivity
The influence of the mesh resolution is evaluated by performing four simulations using Finegrid, Mediumgrid, Coarseg-
rid, and Verycoarsegrid. The simulation settings are given in Table 3. In the four simulations, the flux reconstruction at the
block interface is performed using RBF, with interpolations on nv = 8 points and the second-degree polynomial function
(Pq)(1,… ,m) = (1, x, y, x2, y2, xy).

The time evolution of the pressure |Δp| = |pinterface − pno-interface| recorded at points A and B in the simulations is
presented in Figure 12, where | · | is the absolute value. The vertical blue line in the figures indicates the moment when
the vortex hits the block interface. The signal amplitudes are displayed in log scale to enhance the differences between the
simulations. At point A, in Figure 12A, the maximum value of |Δp| is obtained at the instant when the vortex crosses the
interface in all cases. Using Verycoarsegrid, the pressure fluctuation peak is equal to 28.1 Pa, corresponding to 2.7% of the
pressure at the center of the vortex. Using Coarsegrid, the pressure difference reaches a value of 5 Pa. Using the medium
and the refined meshes, the amplitudes of the spurious waves at point A are significantly lower than those found for the
coarse grids, and do not exceed 0.9 Pa and 0.2 Pa, respectively. At point B in Figure 12B, the noise level also decreases
as the mesh is refined at the right hand side of the block interface. Indeed, the maximum pressure differences of 3.6 Pa,
0.4 Pa, 0.1 Pa, and 0.03 Pa are obtained in Verycoarsegrid, Coarsegrid, Mediumgrid, and Finegrid. These levels are much
lower than those at point A. Note that using Verycoarsegrid, the vortex half-width b is only discretized by 1.8 points at the
right-hand side of the block interface. As a consequence, the mesh is not fine enough and the vortex structure is strongly
modified when it crosses the block interface, yielding |Δp| > 0.5 Pa at points A and B for t > 10000Δt. These results
demonstrate that nonconforming grids must be designed such that the flow field is correctly discretized at both sides of the
interface. In the present simulations, given the vortex Gaussian half-width b, a grid spacing ΔyR ≤ 4Δ is recommended,
corresponding to a discretization of the half-width b by 2.6 points (ie, 5.2 points in the vortex width). This result was
expected since the numerical methods used in this study well calculate the scales discretized by at least five points per
wavelength.14 Let us mention that values ΔyR > 4Δ could be used in sponge zones, which is to say in flow regions close
to the domain boundaries where the mesh is deliberately coarse to damp hydrodynamic fluctuations before they reach
the boundary conditions.

6.1.2 Influence of the number of points used for RBF interpolations
To study the influence of the number of points nv used for RBF interpolations, four simulations are carried out using nv =
4, 6, 8, and 12 points, respectively. The simulation parameters are given in Table 4. The medium grid with mesh spacings
Δx = ΔyL = Δ and ΔyR = 2Δ, and the second-degree polynomial function for RBF interpolation are used in all cases.

The time variations of the pressure difference Δp = pinterface − pno-interface recorded at points A and B are displayed in
Figure 13. The maximum spurious noise levels are observed using nv = 4, when interpolations are performed using four
points. In this case, peaks of 1.6 Pa and 0.3 Pa are obtained at the interface and upstream. When interpolations are carried

(A) (B)

FIGURE 12 Representation of the time
evolution of the pressure difference|Δp| = |pinterface − pno-interface| (A) at point A
and (B) at point B: Finegrid,

Mediumgrid, Coarsegrid, and
Verycoarsegrid. The vertical blue line

indicates the moment when the vortex hits
the interface [Colour figure can be viewed
at wileyonlinelibrary.com]
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TABLE 4 Parameters of the simulations in the
study of the influence of the number of points for
radial basis function (RBF) interpolations

Mesh Flux reconstruction technique nv RBF polynomial degree
Mediumgrid RBF 4 2
Mediumgrid RBF 6 2
Mediumgrid RBF 8 2
Mediumgrid RBF 12 2

out on six points, the noise levels are reduced by at least 60% at both points A and B compared to the case using nv = 4.
Increasing the number of interpolation points from 6 to 8 also leads to a decrease of noise levels upstream of the block
interface in Figure 13B, whereas no improvement is found at the interface in Figure 13A. Finally, the pressure signals
obtained using nv = 8 and 12 have similar shapes suggesting that using eight points for RBF interpolations is sufficient
to reach accurate results in the present test case.

6.1.3 Influence of the flux reconstruction technique
In this section, the performance of the flux reconstruction based on RBF interpolations is compared with that of a
flux reconstruction without RBF. The flux reconstruction without RBF, available in the elsA solver,20 is described in
Appendix A.3. In the following, four simulations are performed with and without RBF, using Mediumgrid and Coarseg-
rid. The simulation parameters are provided in Table 5. The RBF interpolations are carried out using nv = 8 points and
the second-degree polynomial function.

The time variations of the pressure error Δp obtained at points A and B in the simulations using Mediumgrid are
presented in Figure 14. The flux reconstruction technique without RBF provides higher noise levels compared to the
technique using RBF, especially at point B where the signal amplitude is 7.5 times higher. The pressure signals obtained
using Coarsegrid are displayed in Figure 15. Using the RBF technique, maximum values of 5 Pa and 0.45 Pa are reached
at points A and B, whereas values of 17.8 Pa and 2 Pa are obtained without RBF. Thus, the use of the flux reconstruction
technique based on RBF allows us to reduce both the modifications of the vortex structure and the generation of spurious
pressure waves at the block interface.

6.2 Wavy grids
To examine the performance of the flux reconstruction for curved nonconforming interfaces, the vortex defined in
Section 6.1 is convected on 2-D wavy grids. Three computational domains, presented in Figure 16, are considered. They
are composed of two blocks separated by a wavy nonconforming interface located close to x = L, where L = 0.1 m. The
wavy grid interfaces are defined by a sinusoidal shape of wavelength 𝜆x and of amplitude 𝜆y. The values of 𝜆x and 𝜆y are
provided in Table 6 for the different meshes. In the grid referred to as wavy1, the block interface has a height of 𝜆y = 24b
and a sinusoidal shape of amplitude of 𝜆x = 8b, where b is the vortex half-width. In wavy2, the amplitude of the sinusoidal

FIGURE 13 Representation of the time
evolution of the pressure difference
Δp = pinterface −pno-interface (A) at point A and
(B) at point B: nv = 4, ◦ nv = 6, ▴ nv = 8
and nv = 12 points. The vertical blue
line indicates the moment when the vortex
hits the interface [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

TABLE 5 Parameters of the simulations in
the study of the influence of the flux
reconstruction technique

Mesh Flux reconstruction technique nv RBF polynomial degree
Mediumgrid RBF 8 2
Mediumgrid no RBF 8 2
Coarsegrid RBF 8 2
Coarsegrid no RBF 8 2

Abbreviation: RBF, Radial basis function.
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(A) (B)

FIGURE 14 Representation of the time
evolution of the pressure difference
Δp = pinterface − pno-interface (A) at point A
and (B) at point B using Mediumgrid:

radial basis function (RBF), no
RBF. The vertical blue line indicates the
moment when the vortex hits the interface
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

FIGURE 15 Representation of the time
evolution of the pressure difference
Δp = pinterface − pno-interface (A) at point A
and (B) at point B using Coarsegrid:

radial basis function (RBF), no
RBF. The vertical blue line indicates the
moment when the vortex hits the interface
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

(C)

FIGURE 16 Representation
of the wavy computational
domains: (A) wavy1, (B) wavy2,
and (C) wavy3. The
nonconforming interface is
indicated by a bold line

Mesh 𝝀x 𝝀y

wavy1 8b 24b
wavy2 16b 24b
wavy3 8b 8b

TABLE 6 Parameters of the wavy grid interfaces

interface is two times higher than in wavy1, ie, 𝜆x = 16b, but 𝜆y = 24b as previously. In wavy3, the block interface is com-
posed of three sinusoidal arches with 𝜆x = 𝜆y = 8b. In all cases, a grid spacing Δx = Δ = L∕127 is used in the x-direction,
leading to a vortex half-width discretized by 5.3 points. In the y-direction, the grid spacing is equal to ΔyL = Δ at the
left-hand side of the interface. To create nonconforming grids, a mesh spacing ΔyR = L∕87 is applied at the right-hand
side of the interface, yielding b = 2.6Δ. The vortex, convected from the left to the right, is initially located at y0 = 0.5L,
and at equal distance from the domain inlet and the block interface in the x-direction.

http://wileyonlinelibrary.com
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TABLE 7 Parameters of the simulations in the study
of the influence of the flux reconstruction technique for
curved interfaces

Mesh Flux reconstruction technique nv RBF polynomial degree
wavy1 RBF curve 8 2
wavy2 RBF curve 8 2
wavy3 RBF curve 8 2
wavy1 RBF plane 8 2
wavy2 RBF plane 8 2
wavy3 RBF plane 8 2

Abbreviations: RBF, Radial basis function.

Six simulations are performed using wavy1, wavy2, and wavy3, and the flux reconstructions designed for plane and
curved interfaces. Their parameters are given in Table 7. In all cases, RBF interpolations are carried out using a number
of nv = 8 points and the second-degree polynomial function. The time step Δt in the computations is chosen such that
CFL number (1 + M)c0Δt∕Δ=0.2.

The spurious noise generated at the block interface is not recorded at specific points as for the Cartesian grids in
Section 6.1. Indeed, since the shapes of the block interfaces in wavy1, wavy2, and wavy3 differ, the distance between a
given point and the interface is not identical in the three grids. Therefore, the computation of the pressure difference
Δp = pinterface − pno-interface at specific points is not relevant. Instead, the pressure difference is determined over all the
computational domain. To compute the pressure field pno-interface, for each wavy grid, two simulations are carried out
using conforming meshes. The first conforming mesh coincides with the nonconforming grid at the left-hand side of the
interface, whereas the second mesh matches the resolution of the nonconforming grid at the right-hand side.

Snapshots of the pressure difference Δp obtained at t = 2800Δt using wavy1 and the flux reconstruction for plane and
curved interfaces are presented in Figure 17. At this time, the vortex core is located at x = 1.5L. In both cases, the presence
of the nonconforming grid interface results in a significant discretization error around the vortex core as well as in the
emission of spurious pressure waves of amplitude about 10 Pa. The simulation using the flux reconstruction technique
designed for curved interfaces provides a maximum noise level of 5.2 Pa, which is two times lower than that obtained in
the simulation using the reconstruction for plane interfaces.

The pressure difference Δp obtained at t = 2800Δt using wavy2 is plotted in Figure 18. Noise levels of 10-20 Pa are
found. They are higher compared with the results obtained using wavy1 in Figure 17. This is due to the block interface that
displays stronger variations than that using wavy1. The pressure difference obtained in Figure 18 A with the flux recon-
struction technique for curved interfaces shows weaker pressure wave amplitudes compared to the pressure difference
obtained in Figure 18B for the plane interface reconstruction.

Snapshots of the pressure difference Δp obtained using wavy3 at t = 2800Δt are displayed in Figure 19. As for wavy1
and wavy2, lower spurious noise is found using the curved reconstruction technique than the plane one. However, the
use of a block interface with three arches generates higher spurious noise levels than previously, with maximum values of
Δp of 200 Pa reached at this instant. In particular, the vortex core, located at x = 1.5L is strongly affected by the presence
of the block interface. The use of nonconforming interfaces with low curvature therefore seems to be recommended.

FIGURE 17 Representation
of the pressure difference Δp at
t = 2800Δt using wavy1: flux
reconstruction for (A) plane
interfaces and (B) curved
interfaces, levels given in Pa

FIGURE 18 Representation of the
pressure difference Δp at t = 2800Δt using
wavy2: flux reconstruction for (A) plane
interfaces and (B) curved interfaces, levels
given in Pa
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FIGURE 19 Representation of the
pressure difference Δp at t = 2800Δt using
wavy3: flux reconstruction for (A) plane
interfaces and (B) curved interfaces, levels
given in Pa

7 THREE-DIMENSIONAL JET

To demonstrate the applicability of the flux reconstruction technique to a 3-D simulation, a circular isothermal jet is
computed using a Cartesian mesh with a nonconforming interface. The aim is to prove that the use of nonconforming
interfaces does not significantly affect the jet flow development and the sound field radiated by the jet in the near-field
region.

7.1 Jet definition
The jet flow has a Mach number of M = uj∕c0 = 0.9 and a Reynolds number of ReD = ujD∕𝜈 = 4 × 105, corresponding to
the conditions of the jet in the numerical simulation of Bogey and Bailly,32 where D and uj are the jet diameter and velocity,
c0 is the sound speed and 𝜈 is the molecular viscosity. The ambient pressure p0 and temperature T0 are respectively equal
to 105 Pa and 300 K. The jet inflow, located at x = 0, is characterized by the mean longitudinal velocity profile given by
the hyperbolic tangent profile:

u(r) = 1
2

u𝑗

(
1 + tanh

(
r0 − r

2𝛿𝜃

))
, (38)

where 𝛿𝜃 = r0∕20 is the initial momentum thickness of the shear layer, r0 = D∕2 is the jet radius, and r =
√
𝑦2 + z2. The

mean density profile is computed from a Crocco-Busemann relation:

𝜌(r) = 𝜌𝑗

(
1 + 𝛾 − 1

2
M2 u(r)

u𝑗

(
1 − u(r)

u𝑗

))−1

. (39)

The azimuthal and radial velocities are initially null, and the pressure is equal to p0. To seed the laminar-turbulent
transition of the jet flow, vortex rings are added to the flow field in the shear layer at x = r = r0, at each time step of the
computation.33 The amplitude of the perturbations is equal to 𝛼 = 0.007 and the half-width of the Gaussian profile that
defines the vortices is equal to Δ0 = 0.045r0. The small disturbances are divergence free to minimize the production of
spurious acoustic waves.

7.2 Numerical setup
Two simulations are carried out using Cartesian grids with and without a nonconforming interface. The computational
domain extends from x = 0 up to x = 48r0 in the flow direction and from 0 up to 20r0 in the y-direction and z-direction.

The spatial discretization in the grid without a nonconforming interface is presented in Figure 20. In the x-direction, for
0 ≤ x ≤ 25r0, the axial mesh spacing is constant with Δx = 0.1r0, and then increases with a rate of 0.4% up to x = 35r0,
and with a rate of 8% for x > 35r0. In the y-direction and z-direction, the mesh is finer than in the x-direction to resolve
the shear layers. The grid spacing does not vary for y, z ≤ r0, with Δy = Δz = r0∕30. For y, z > r0, a stretching ratio of 2%
is applied up to r = 20r0.

The nonconforming mesh is built from the conforming mesh. Figure 21 provides a simplified representation of the two
meshes in the xy plane, with the nonconforming interface indicated by a bold line in Figure 21B. In the jet flow region, for
x ≤ 14r0, the two meshes are identical. Downstream of the end of the jet potential core expected to be around xp ≃ 10r0
according to reference,34 a nonconforming interface is defined at x = 14r0, as shown in Figure 21B. The location of the
interface is chosen downstream of the jet sound source region, which is found for x ≤ xp. For x > 14r0, the very fine
mesh spacings used in the y-direction and z-direction at the jet inlet to discretize the jet shear layers are not necessary
due to the jet spreading. Therefore, downstream of the interface, the grid spacings Δy and Δz in the nonconforming mesh
are twice as coarse as in the conforming grid. Thus, the number of mesh points in the nonconforming grid, equal to 42
million points, is reduced by 44% compared to the conforming grid.
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FIGURE 20 Representation of the
spatial discretizations in the conforming
grid: (A) axial discretization and
(B) discretization in the y-direction and
z-direction

(A) (B)

FIGURE 21 Sketch of (A) the
conforming grid and (B) the
nonconforming grid in the xy plane

(A) (B)

The conforming grid used in the present work is finer than the one used by Bogey and Bailly32 by factors of 1.3 and 2
in the axial and radial directions, respectively. In addition, since the resolutions of the two grids used in this study differ
for x > 14r0, small differences between the results from the two simulations are expected, as demonstrated by the grid
sensitivity of turbulent jet flows presented by Bogey.35

In each computation, the jet flow is simulated over a time period T = 2 × 105Δt = 2000r0∕c0. The flow initialization
lasts over 600r0∕c0. The velocity and pressure fields are then recorded during a sampling period Ts = 1400r0∕c0, leading
to a minimum Strouhal number Stmin = D∕(Tsuj) of 1.6 × 10−3. To study the development of the jet flow, the velocity
field is recorded along the jet axis and at r = r0. To examine the acoustic sound radiated in the near-field region, pressure
spectra at r = 8r0 are computed by averaging over eight points equally distributed on circles centered on the jet axis. The
data are sampled every ten time steps to compute spectra up to a maximum Strouhal number Stmax = fD∕uj = 5.55, and
the spectra are evaluated from overlapping samples of duration 93.3r0∕c0.

At the nonconforming interface, the flux reconstruction for plane interfaces presented in Section 3.1 is applied. The
RBF interpolations are performed using nv = 8 points and second-degree polynomial functions. The choice of the values
of nv and deg(P) is motivated by the fact that it provided accurate results for an acoustic pulse propagation and for a vortex
convection on nonconforming Cartesian grids in 2-D problems (see Sections 5 and 6.1).

7.3 Results
Snapshots of the vorticity magnitude and the fluctuating pressure obtained in the two simulations are presented in
Figure 22. The nonconforming interface at x = 14r0 is indicated by a vertical line in Figure 22B. In the two simulations,
the jet mixing layers are found to develop from x = r0 and to interact around x = 12r0. Further downstream, in Figure 22B,
vortical structures cross the nonconforming interface and display lower levels than those located upstream for x < 14r0.
These levels are also lower than those obtained for x > 14r0 in Figure 22A. This is most likely due to the mesh resolution
that is twice as coarse in the y-direction for x > 14r0 in the nonconforming grid.35 In the pressure field, acoustic waves
propagate from the jet with an angle of about 30◦ relative to the x-axis. In Figure 22B, no discontinuity of the pressure
waves radiated from the jet and no spurious reflection are visible in the vicinity of the nonconforming interface.

More quantitative results are shown in Figure 23, where the mean axial velocity profiles obtained in the two simulations
are given along the jet axis and at r = r0. In Figure 23A, the two profiles along the jet axis are superimposed for x ≤ 20r0.
They indicate that in both jets, the jet potential core ends at xp = 12r0. For x > 20r0, slightly lower velocity values are found
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FIGURE 22 Snapshots in the xy plane of
the vorticity modulus in the flow and of the
fluctuating pressure outside obtained from
the simulations using (A) a conforming grid
and (B) a nonconforming grid. The color
scale is from 0 to 2.5uj∕r0 for the vorticity
and the gray scale is from -70 Pa to 70 Pa for
the pressure [Colour figure can be viewed
at wileyonlinelibrary.com]

(A) (B)

FIGURE 23 Representation of the mean
axial velocity (A) along the jet centerline
and (B) at r = r0: simulations with a
conforming grid and a
nonconforming grid

using the nonconforming grid, with differences that do not exceed 0.025uj. In Figure 23B, the velocity profiles at r = r0
are also superimposed upstream of the grid interface, whereas velocity is lower by 0.02uj for x > 14r0 in the simulation
using a nonconforming grid.

The root-mean-square (RMS) axial and radial velocities < u′
xu′

x>
1∕2∕u𝑗 and < u′

ru′
r>

1∕2∕u𝑗 calculated at r = r0 are rep-
resented in Figure 24, where the prime stands for the fluctuating quantity and < · > for time average. In Figures 24A
and 24B, in the same way as for the mean profiles of Figure 23B, the profiles from the two simulations are identical for
x < 14r0, with the same peaks of turbulence. For x ≥ 14r0, small differences of less than 1% appear between the two com-
putations. In particular, using a nonconforming grid, the RMS profiles slightly decrease at the nonconforming interface
x = 14r0 and present a small hump downstream for 17r0 ≤ x ≤ 27r0. Despite this, for x ≥ 27r0, very similar turbulent
levels are found in the two simulations. The small differences reported between the two simulations in Figures 23 and 24
are likely due to the resolution of the nonconforming grid that is coarser for x ≥ 14r0. 35

(A) (B)

FIGURE 24 Representation of the
(A) axial and (B) radial root-mean-square
velocity profiles at r = r0: simulations with

a conforming grid and a
nonconforming grid
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(A) (B) (C)

FIGURE 25 Representation of the axial velocity spectra on the jet axis (A) upstream of the grid interface at x = 13.4r0, and downstream at
(B) x = 14.7r0 and (C) x = 20r0: conforming grid and nonconforming grid

To investigate the effects of the presence of the nonconforming interface on the jet flow features, axial velocity spectra
are computed at three locations along the jet axis, upstream of the nonconforming interface at x = 13.4r0, and downstream
of the interface at x = 14.7r0 and at x = 20r0. The spectra are represented in Figure 25 as a function of the Strouhal
number. At x = 13.4r0, the spectra exhibit similar shapes and levels, which suggests that the jet flow components are not
affected by the close proximity of the nonconforming interface. Downstream of the interface, at x = 14.7r0, the spectra
from the two simulations show similar levels for St < 2, whereas a more pronounced decrease is observed for St ≥ 2 for
the spectrum obtained using the nonconforming grid. At x = 20r0, the spectrum from the nonconforming grid displays
slightly higher levels at low Strouhal numbers and collapses more rapidly for St ≥ 2. The origin of the small differences
observed here does not seem to be related to the presence of the nonconforming interface but to a poorer discretization
of the jet coherent structures using the nonconforming mesh.35

Finally, to examine the acoustic results in the near-field region, pressure spectra at r = 8r0 are plotted in Figure 26
for the axial positions x = 13.4r0, x = 14.7r0 and x = 20r0. The spectra at the three locations display broadband shapes,
which is typical of subsonic turbulent jet noise.36 Upstream of the grid interface, at x = 13.4r0, the spectra from the
two simulations are very similar, which is expected since the two meshes are identical for x ≤ 14r0. Downstream of
the interface, at x = 14.7r0 and x = 20r0, the acoustic spectra predicted by the two simulations are in good agreement
for Strouhal numbers St< 2. For St ≥ 2, the spectrum obtained from the nonconforming grid collapses more rapidly.
This drop is due to the lower mesh cut-off Strouhal number in that case. Indeed, at r = 8r0, considering that the spatial
schemes resolve wavelengths discretized by at least five points,14 the cut-off Strouhal number is of Stcut-off = 2 for the
nonconforming grid and of Stcut-off = 4 for the conforming grid.

These results demonstrate that the present nonconforming grid methodology can be used in order to reduce the size of
the mesh and thus the computational cost, without appreciably biasing the jet development and the noise field radiated
by the jet.

(A) (B) (C)

FIGURE 26 Representation of the pressure spectra at r = 8r0 (A) upstream of the grid interface at x = 13.4r0, and downstream at
(B) x = 14.7r0 and (C) x = 20r0: conforming grid and nonconforming grid
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8 CONCLUSION

In this study, a flux reconstruction technique is presented to perform aeroacoustic computations using high-order
finite-volume spatial schemes on structured meshes including nonconforming grid interfaces. The spatial discretization is
carried out using a sixth-order implicit scheme in combination with a sixth-order implicit selective filter. The flux recon-
struction can be applied to plane or curved nonconforming interfaces. It is performed using noncentered formulations
for the spatial scheme and the selective filter at the nonconforming interface. These formulations require the definition
of ghost cells and ghost interfaces. The flow variables in the ghost cells and at the interfaces are computed using meshless
interpolations with RBFs. For computational efficiency, all the interpolation coefficients are computed once in the begin-
ning of the simulation and then stored in memory. The properties of the RBF interpolations in the wavenumber space are
studied. The accuracy of the flux reconstruction is evaluated for an acoustic pulse introduced in the vicinity of a noncon-
forming interface using 2-D Cartesian grids. RBF interpolations using nv = 8 points in conjunction with a second-degree
polynomial function are found to be sufficient to obtain accurate results. The performance of the flux reconstruction is
then examined for the convection of a vortex using 2-D Cartesian and wavy grids. The results on Cartesian grids high-
light the benefits of using RBF interpolations, instead of a low-order flux reconstruction, to reduce the spurious pressure
waves produced at the block interface. The results obtained with different spatial resolutions also show that the noncon-
forming grids must be designed such that the flow field is well discretized by the mesh before and after the grid interface.
The results of the computations performed on wavy grids demonstrate the advantages of using the flux reconstruction for
curved interfaces. More precisely, the flux reconstruction technique designed for curved interfaces produces lower spuri-
ous noise level than those obtained using the reconstruction for plane interfaces. It seems also recommended to use low
curvature nonconforming interfaces. Finally, the application of the flux reconstruction technique to 3-D flows is illus-
trated for a turbulent round jet flow at a diameter-based Reynolds number of 4 × 105. Simulations are performed with
and without a nonconforming grid interface downstream of the jet potential core. The jet development is only slightly
affected by the presence of the nonconforming grids, and the acoustic spectra in the near-field region are very similar.
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APPENDIX A

CALCULATION OF RBF INTERPOLATION COEFFICIENTS

A.1 Interpolation of the flow variables in the ghost cells
As presented in Section 3.1.3, to reconstruct the flow variables in the ghost cells, RBF interpolations are performed.
An RBF interpolation uRBF of the variable u at point x is defined as a linear combination of Wendland's RBFs Φ and a
polynomial term:

uRBF(x) =
nv∑
𝑗=1

𝜉𝑗Φ(x, x𝑗) +
m∑

q=1
𝜁qPq(x), (A1)

where 𝜉j and 𝜁q are the unknown interpolation coefficients. In this study, 2 Wendland's basis functions9,28 with compact
support are used:

Φ(x, x𝑗) = Φ(r𝑗) =
(

1 −
r𝑗
Rv

)4

+

(
4

r𝑗
Rv

+ 1
)

for 1 ≤ 𝑗 ≤ nv (A2)

where rj is the Euclidian distance between the points x and xj,
(

1 − r𝑗
Rv

)
+

is defined by

(
1 −

r𝑗
Rv

)
+
=

{(
1 − r𝑗

Rv

)
if 0 ≤ r𝑗 ≤ Rv

0 if r𝑗 > Rv
(A3)

and Rv is the radius of the circle of center x defined such that Rv = Armin, with rmin = min (r𝑗)( 𝑗=1,..,nv) and A is a value
chosen such that nv cells are contained inside the circle. A representation of the ghost cell and the nv cells is provided in
Figure A1.

The values of 𝜉j and 𝜁q are determined so that the approximation uRBF(x) is exact for all the nv points. Therefore, the
interpolation formulation (A1) satisfies the following relations:

uRBF(xk) = uk =
nv∑
𝑗=1

𝜉𝑗Φ(xk, x𝑗) +
m∑

q=1
𝜁qPq(xk) for 1 ≤ k ≤ nv, (A4)

where (uk)k=1,… ,nv are the values of u known in the nv cells considered for the interpolation. To ensure that approxima-
tion (A1) has a unique solution,18,29 the following orthogonality constraints are imposed:

nv∑
𝑗=1

Pq(x𝑗)𝜉𝑗 = 0 for 1 ≤ q ≤ m. (A5)

Therefore, the values of 𝜉j and 𝜁q are computed by resolving the linear system:

M
(
𝛏
𝛇

)
=
(

Φ P
PT 0

)(
𝛏
𝛇

)
=
(

uset

0

)
, (A6)

FIGURE A1 Representation of the cloud of nv cells used for the interpolation of
the flow variables in the ghost cell. The center of the ghost cell is indicated by a star
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where 𝛏 = (𝜉1, … , 𝜉nv)
T and 𝜻 = (𝜁1, … , 𝜁m)T are the vectors of the interpolation coefficients to be determined, uset =

(u1, … ,unv )
T , and Φ ∈ Rnv×nv and P ∈ Rnv×m are the matrices defined by

Φk𝑗 = Φ(xk, x𝑗) for 1 ≤ k, 𝑗 ≤ nv (A7)
Pkq = Pq(xk) for 1 ≤ k ≤ nv and 1 ≤ q ≤ m

The solution of the system (A6) writes

(
𝛏
𝛇

)
= M−1

(
uset

0

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

nv∑
k=1

m1,kuk

..

..
nv∑

k=1
mnv+m,kuk,

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A8)

where mi,j are the coefficients of the matrix M−1. Introducing Equation (A8) in Equation (A1), the RBF interpolation
applied to a ghost cell of center xghost is given by the relation:

uRBF(xghost) =
nv∑

k=1
Ψk(xghost)uk, (A9)

where the coefficients Ψk(xghost) are defined as

Ψk(xghost) =
nv∑
𝑗=1

m𝑗,kΦ(xghost, x𝑗) +
m∑

q=1
mnv+q,kPq(xghost). (A10)

Note that the nv coefficients Ψk(xghost) are independent of the flow variables. Therefore, they are computed and stored in
memory at the beginning of the simulation. The interpolation is therefore performed at a low CPU cost since the value of
uRBF is simply obtained from the sum (A9).

A.2 Interpolation of the flow variables at the nonconforming grid interface
A.2.1 Plane interfaces
As described in Section 3.1.3, the interpolation formulation at the block interface writes

ũL′ = 1||I′L||∫I′L

uRBF(x)dx (A11)

=
nv∑

𝑗′=1
𝜉𝑗′

(
1||I′L||∫I′L

Φ(x, x𝑗′ )dx

)
+

m∑
q=1

𝜁q

(
1||I′L||∫I′L

Pq(x)dx

)

The interpolation coefficients 𝜉𝑗′ and 𝜁q are determined by integrating Equation (A1) on the nv interfaces
(IR,1, … , IR,𝑗′ , IR,𝑗′+1, … , IR,nv) of Figure 5C, and by imposing that the integrals obtained are equal to the component ũ of
vectors (ŨR,1, … , ŨR,𝑗′ , … , ŨR,nv ) of block R. It yields for the interface IR,k:

ũR,k =
nv∑

𝑗′=1
𝜉𝑗′

(
1|IR,k|∫IR,k

Φ(x, x𝑗′ )dx

)
+

m∑
q=1

𝛽q

(
1|IR,k|∫IR,k

Pq(x)dx

)
for 1 ≤ k ≤ nv, (A12)
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where ũR,k is a component of the averaged field ŨR,k at the interface IR,k. In practice, the coefficients 𝜉𝑗′ and 𝜁q are estimated
by solving the linear system: (

Φ̃ P̃
P̃T 0

)(
𝝃̃

𝜻

)
=
(

ũset

0

)
, (A13)

where 𝝃̃ = (𝜉1, … , 𝜉nv)
T and 𝜻 = (𝜁1, … , 𝜁m)T are the vectors of the interpolation coefficients, ũset = (ũR,1, … , ũR,nv )

T ,
and Φ̃ ∈ Rnv×nv and P̃ ∈ Rnv×m are the matrices defined by

Φ̃k𝑗′ =
1|IR,k|∫IR,k

Φ(x, x𝑗′ )dx for 1 ≤ k, l ≤ nv (A14)

P̃kq = 1|IR,k|∫IR,k

Pq(x)dx for 1 ≤ k ≤ nv and 1 ≤ q ≤ m

As in Section A.1, the RBF interpolation (A11) can be reformulated as

ũL′ =
nv∑

k=1
Ψ̃kuk, (A15)

where the coefficients Ψ̃k are defined as

Ψ̃k =
nv∑

𝑗′=1

1||I′L||∫I′L

m′
𝑗′,kΦ(x, x𝑗′ )dx +

m∑
q=1

m′
nv+q,k

1||I′L||∫I′L

Pq(x)dx, (A16)

where m′
i,𝑗 are the coefficients of the inverse of the matrix of the system (A13). In practice, the values of Ψ̃k are computed

only once and then stored in memory at the beginning of the simulation.

A.2.2 Curved interfaces
To take into account the curvature effect of grid interfaces, the interface I′Lcurved

is defined by the function 𝜎. The
interpolation formulation to compute the flow component u at the interface I′Lcurved

writes, as in Equation (A11):

ũL′ = 1|||I′Lcurved

|||∫I′Lcurved

uRBF(x)dx (A17)

=
nv∑

𝑗′=1
𝜉𝑗′

⎛⎜⎜⎝ 1|||I′Lcurved

|||∫I′Lcurved

Φ(x, x𝑗′ )dx
⎞⎟⎟⎠ +

m∑
q=1

𝜁q

⎛⎜⎜⎝ 1|||I′Lcurved

|||∫I′Lcurved

Pq(x)dx
⎞⎟⎟⎠

The interpolation coefficients 𝜉𝑗′ and 𝜁q are calculated by integrating Equation (A1) on the nv interfaces
(IR,1curved , … , IR,𝑗′curved

, IR,𝑗′+1curved , … , IR,nvcurved
) also defined by the function 𝜎, and by imposing that the integrals thus

obtained are equal to the component ũ of vectors (ŨR,1, … , ŨR,𝑗′ , … , ŨR,nv) of block R. It yields for the interface IR,kcurved :

ũR,k =
nv∑

𝑗′=1
𝜉𝑗′

(
1||IR,kcurved

||∫IR,kcurved

Φ(x, x𝑗′ )dx

)
+

m∑
q=1

𝜁q

(
1||IR,kcurved

||∫IR,kcurved

Pq(x)dx

)
for 1 ≤ k ≤ nv, (A18)

where ũR,k is a component of the averaged field ŨR,k at the interface IR,kcurved . The coefficients 𝜉𝑗′ and 𝜁q are then computed
from the resolution of a linear system similar to (A13).

A.3 Flux reconstruction without RBF interpolation
The technique of flux reconstruction without RBF interpolation is identical to the technique presented in Section 3, except
for the calculation of the flow variables in the ghost cells and at the grid interfaces which is performed using 2nd-order
interpolations.
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FIGURE A2 Representation of a nonconforming grid where the interface IL is divided
in two interfaces IAM and IMB. The flow variables in the ghost cell indicated in gray are
computed as a weighted sum of the flow variables in cells (i′ = 0, j′) and (i′ = 0, j′ + 1)
[Colour figure can be viewed at wileyonlinelibrary.com]

A.3.1 Interpolation for ghost cells
The interpolation technique is described for the calculation of the flow variables U in the ghost cell located at (i′ = 0, j)
in Figure 5A. For this purpose, as shown in Figure A2, the interface IL in blue is divided in two parts IAM and IMB. The
interface IAM is the intersection between the interfaces IL and IR,𝑗′ , and the interface IMB is the intersection between the
interfaces IL and IR,𝑗′+1. The value of U in the ghost cell is determined as the weighted sum of U in the cells (i′ = 0, j′) and
(i′ = 0, j′ + 1) in block R:

Ui′=0,𝑗 =
SAM

SAB
Ui′=0,𝑗′ +

SBM

SAB
Ui′=0,𝑗′+1, (A19)

where Sk is the surface of interface Ik. Similarly, the value of U in the second ghost cell in Figure 5A is calculated as the
weighted sum of U in the cells (i′ = 1, j′) and (i′ = 1, j′ + 1).

A.3.2 Interpolation at the grid interface
In order to compute the convective flux at the nonconforming interface, the value of the vector Ũ at the ghost interface
I′L in block R is computed as the weighted sum:

Ũ′
L = SAM

SAB
ŨR,𝑗′ +

SBM

SAB
ŨR,𝑗′+1, (A20)

where the values of Ũ at the interfaces IR,𝑗′ and IR,𝑗′+1 are computed from the upwind scheme (14). The value of Ũ at the
interface IL is calculated from the upwind scheme (13). Finally, the convective flux at the block interface is determined
from the values of ŨL and Ũ′

L by resolving a Riemann flux problem.25

http://wileyonlinelibrary.com
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