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Abstract
Spherical weak blast propagation above a rough periodic surface is investigated by performing numerical simulations of the
Euler equations. The study of the reflection pattern shows that waves diffracted by the surface asperities merge to form an
effective reflected shock. It is initially detached from the incident shock but gradually catches up with it. If the source energy
is sufficient, the reflected shock interacts with the incident one and Mach reflection occurs. Thus, the triple point has a similar
trajectory to that over a smooth surface. In addition, the maximal overpressure is shown to be greater for small roughness
scales in a layer near the surface. Far from the surface, it is close to that of a smooth surface for small roughness scales and
to the free field for the highest ones. The increase in the maximal overpressure is related to oscillations on the waveforms
that appear behind the shock. These properties are associated with the existence of a surface wave that propagates along the
surface. Comparison of results in the linear regime with an analytic solution confirms this explanation.

Keywords Shock wave · Rough surface · Blast wave · Surface wave · Triple point

1 Introduction

When spherical blast waves propagate in outdoor envi-
ronments, they interact with the inhomogeneities of the
atmosphere as well as with the ground. The reflection of
a spherical shock wave over a flat smooth impermeable and
rigid ground surface is well documented in the literature (for
instance, [1,2]). The reflection pattern is at first a regular
reflection: The incident and reflected shocks intersect on the
ground and the angle of reflection usually differs from the
angle of incidence. At larger distances, the reflected shock
catches upwith the incident shock; the point of intersection is
no longer on the surface but above and a third shock, named
the Mach stem, is formed near the surface. The Mach stem
then grows with the shock wave propagation. The slopes of
the three shocks at the triple point are first different, and the
reflection pattern is referred to asMach reflection. The slopes
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of the Mach stem and the incident shock then become equal,
corresponding to the von Neumann reflection.

However, actual outdoor surfaces are neither flat nor
impermeable, nor rigid, nor smooth.Among the surface prop-
erties, roughness was shown to have a significant effect on
the reflection of spherical blast waves. Dewey and colleagues
[3,4] have investigated the characteristics of spherical blast
wave reflection over an ideal surface and two real surfaces.
For this, they use two identical explosive charges of approxi-
mately 500 kg of pentolite and consider the plane midway of
the two charges as a plane of symmetry. The shock along this
plane thus corresponds to a shock thatwould be reflected over
an ideal surface.With the help of a painted backdropor smoke
puffs, a high-speed camera was used to determine the shock
trajectories, andRankine–Hugoniot relationswere employed
to deduce the pressure jump from the measurements of the
shock speed. The shock characteristics for the ideal surface
were compared to those measured for two ground surfaces:
a smooth one and a rough one that was obtained by furrow-
ing in a circular pattern the smooth surface. It was observed
that the peak pressure along the ground and the length of the
Mach stem were reduced for real surfaces compared to the
ideal one, especially for the rough ground.

The characteristics of real ground in terms of roughness
or absorption can hardly be measured with precision, in
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particular over a large surface area. Consequently, outdoor
experiments provide valuable information but it is mostly
qualitative. An alternative to study the roughness effects
of spherical blast wave reflection is to perform controlled
experiments, in which the roughness can be known precisely.
The first study at laboratory scale was carried out by Huber
and McFarland [5]. Blast waves were generated by a small
explosive charge, andmeasurementswere taken along aprop-
agation line using flush-mounted surface microphones and
schlieren optical systems. Both a smooth surface and a rough
surface made of pyramid-shaped elements of 3.2-mm height
and 6.4-by-6.4-mm base were considered. It was found that
with the rough surface, the peak overpressure at the surface
was slightly reduced, the formation of the Mach stem was
delayed, and theMach stem height was reduced compared to
the smooth surface case, in agreement with Dewey et al. [3].
These are the main conclusions reported in Needham [6] on
the effects of roughness on blast wave propagation.

Experiments on the reflection of spherical shock waves on
a flat plane at laboratory scale have been recently reported
[7,8]. ln Karzova et al. [7], an electric spark source was used
to generate weak shock waves, with characteristics typical
of blast waves. The waveform duration was about 50 µs
corresponding to a wavelength of 20 mm. A significant con-
tribution of the study was the measurement of the pressure
waveforms thanks to aMach–Zehnder optical interferometry
method. Three different surface conditions were considered:
a smooth surface and two rough surfaces made of sandpaper
with correlation lengths of 0.18 and 0.34 mm. In accordance
with previous studies, it was noted that roughness induces
a reduction in the Mach stem height. For the largest rough-
ness scale, the Mach stem did not appear. In addition, close
to the surface, the waveforms for a rough surface exhibit
oscillations, whose pattern depends on the roughness scale.
Interestingly, these oscillations lead to an increase in peak
overpressure compared to a smooth surface, which seems to
contradict the previously mentioned experiments. Numeri-
cal simulations were also performed using a solver of the
axisymmetric Euler equations. For the three surface condi-
tions, close agreement between the measured and numerical
waveforms was obtained, which shows that numerical simu-
lations based on theEuler equations can accurately reproduce
the effects of roughness on weak shock wave propagation.

In Qin and Attenborough [8], weak spherical shock waves
were generated by focusing of a high-power laser beam.
Their characteristics were similar to those obtained with a
spark source. Several roughness values were considered with
length scales between 0.2 and 5mm.Microphones were used
for the measurements of pressure waveforms, limiting their
validity to the low-frequency range. Compared to the wave-
form for a smooth surface, a low-frequency component was
noticed for the largest roughness scales andwas identified as a
surface wave. Surface waves above rough surfaces have been

widely studied in the linear regime. Their existence is related
to the property that a rough surface canbe effectively replaced
by a smooth surface with a frequency-dependent surface
impedance [9,10]. The roughness causes an increase in, or
creation of, the imaginary part of the effective impedance,
thereby meeting one of the important conditions for the
formation of a surface wave [9]. The amplitude of surface
waves decays exponentially with height, but they undergo
cylindrical spreading, rather than spherical spreading, with
increasing distance from the source. At long range and graz-
ing incidence, they can become a significant contribution
to the pressure field. Since the 1970s, several experiments
have been carried out to bring surface waves to light using as
rough surfaces, either a lattice of rectangular cavities [11,12]
or rectangular strips and cylinder arrays on a smooth surface
[13,14], among others.

Experimental studies have been also performed using a
shock tube and, consequently, for planewave shocks. Though
not directly applicable to spherical blast waves, they can give
a hint as to the local reflection pattern [15]. In a series of
papers, Ben-Dor, Takayama, and colleagues [16–18] con-
sidered the diffraction at a rough wedge and the transition
from Mach reflection to regular reflection as the angle of
the wedge increases. They observed that the transition angle
was reduced due to roughness. For spherical blast waves, this
implies that the Mach reflection should appear at a larger
incidence angle for rough surfaces than for a smooth surface
and, consequently, at a larger distance. Following Reichen-
bach [19], a detailed experiment on the diffraction of a shock
with a Mach number of 1.425 at a crenellated wedge was
performed by Adachi et al. [20]. Three angles of incidence,
namely 20◦, 30◦, and 40◦, were investigated. The crenella-
tion had equal width and height, and six sizes (0.25, 0.5, 1,
2, 4, and 8 mm) were tested. A Mach stem was observed
in all configurations, and two mechanisms for its formation
were highlighted. The first mechanismwas only observed for
small angles of incidence (20◦ and 30◦). As the plane shock
impinges on the wedge, Mach reflection appears and a Mach
stem grows as the plane shock propagates on the top of the
first crenellation. The Mach stem then leaves it and contin-
ues growing in the crenellation cavity. As it impinges on the
top of the second crenellation, a second reflected shock and
Mach stem are observed at the foot of the first Mach stem.
This pattern is repeated each time the plane shock impacts
a new crenellation. A succession of triple points can thus be
seen at the shock foot. At long distance, the reflected shocks
merge into a single reflected shock, noted Ce. The second
mechanism was observed for all the angles of incidence. As
the plane shock propagates above the crenellation cavities,
diffracted shock waves are generated. At a long distance,
they also tend to merge into a single shock, noted Cse, which
can be of sufficient amplitude to interact with the incident
shock and form a Mach stem. In addition, in the cases for
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which the two mechanisms were at play, the shock Cse was
of larger amplitude than Ce and overtook it. Further analysis
[21] revealed that the triple-point trajectory was discontinu-
ous.

This paper aims at further studying the reflection of spher-
ical weak blast waves over rough surfaces by performing
a detailed numerical study. The objectives are to discuss
the reflection pattern for rough surfaces and (if existing) to
investigate some characteristics of the Mach stem observed
experimentally, namely the reduction in its length, the delay
in its formation compared to a smooth surface, and its absence
for large roughness scales. In addition, the evolution of the
peak pressure with the roughness scale is analyzed, with the
aim of explaining the increase in peak pressure, observed in
Karzova et al. [7].

The paper is structured as follows. In Sect. 2, the config-
uration, the numerical methods, and the source model are
described. The reflection pattern for spherical weak shocks
above a rough surface and its modification with source
amplitude and roughness scale is examined in Sect. 3. The
variations of the peak pressure along the surface, as well
as the presence of a surface wave, are discussed in Sect. 4.
Concluding remarks are given in Sect. 5.

2 Configuration and numerical model

2.1 Configuration

The propagation of a spherical blast wave above a rough sur-
face is investigated. For simplicity, axisymmetric rough and
flat surfaces are considered and the source is located on the
axis of symmetry of the surface. The study can therefore be
restricted to a two-dimensional (axisymmetric) problem. The
cylindrical coordinates are denoted by (r , z). Similarly, for
ease of analysis, the surface profile is chosen as sinusoidal:

σ(r) = h

2
cos

(
π
r

h

)
, (1)

where h is the only roughness parameter. It can be interpreted
as both the height and half-width of the asperities. In addition,
the atmosphere is homogeneous and at rest and the air is
assumed to be a perfect gas with the ratio of specific heats
γ = 1.4. The geometry of the problem is sketched in Fig. 1.

2.2 Equations and numerical methods

2.2.1 Equations

In what follows, ρ denotes the density, p the pressure, ρe
the total energy density, u andw the radial and axial velocity
components, respectively, and t the time. The variables are

Fig. 1 Propagation of a spherical shock wave over a flat surface with
axisymmetric roughness.An example of overpressure contours is shown

non-dimensionalized using the height of the source zs as the
length scale, the ambient density ρ0 as the density scale, the
ambient pressure p0 as the pressure scale, the ambient sound
speed c0 = √

γ p0/ρ0 as the velocity scale, and zs/c0 as the
time scale.

The axisymmetric Euler equations are solved using high-
order finite-difference techniques. To account for the rough
surface, a body-fitted grid is used. A curvilinear coordinate
transformation is then defined between the physical domain
(r , z) and its computational counterpart (ξ ,η).Using the nota-
tion i j = ∂i/∂ j for the metrics, the dimensionless equations
are written in quasi-conservative form as:

∂

∂t

(
U
J

)
+ ∂

∂ξ

(
ξrF + ηrG

J

)

+ ∂

∂η

(
ξzF + ηzG

J

)
+ H

J
= 0, (2)

whereU = [ρ ρu ρw ρe]T is the vector of the unknown vari-
ables, J = ξrηz − ξzηr is the Jacobian of the transformation,
and F, G, and H are vectors given by:

F =

⎡
⎢⎢⎣

ρu
ρu2 + 1

γ
p

ρuw

u(ρe + p)

⎤
⎥⎥⎦ G =

⎡
⎢⎢⎣

ρw

ρuw

ρw2 + 1
γ
p

w(ρe + p)

⎤
⎥⎥⎦

H = 1

r

⎡
⎢⎢⎣

ρu
ρu2

ρuw

u(ρe + p)

⎤
⎥⎥⎦ . (3)

These equations are complemented by the definition of the
total energy density, which for a perfect gas writes:

ρe = p

γ − 1
+ γρ

2

(
u2 + w2

)
. (4)
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Fig. 2 Illustration of the
computational domain with the
boundary conditions a for a
static frame and b for a moving
frame. Examples of
overpressure contours are shown

Note that the presence of the extra coefficient γ in (3) and (4)
compared to the standard formulation of the Euler equations
is due to the set of scales used.

The coordinate transformation proposed by Gal-Chen and
Sommerville [22] is employed:

r(ξ, η) = ξ, (5)

z(ξ, η) = σ(ξ) + η

zmax
[zmax − σ(ξ)], (6)

where zmax is the maximum height of the computational
domain.

2.2.2 Numerical methods

As we consider the propagation of a signal of finite dura-
tion and thus of finite spatial extent, the useful information
is contained near the incident and reflected shocks. It is
thus not necessary to compute the shock propagation for a
large domain in which the variables are mainly equal to their
constant ambient values. To reduce the computational cost,
the domain is thus restricted to a narrow domain that fol-
lows the propagation of the shocks. In detail, at each time
step, we determine the last position along the r -direction at
which the fluctuating pressure at the source height is greater
than a threshold value (set to ps/104). If this position is
too close to the right boundary, the mesh is shifted along
the r -direction by an integer number of mesh steps. This
methodology, referred to as the moving frame [23], is illus-
trated in Fig. 2. It should be noted the moving frame usually
employed for Cartesian grids can also be used for curvilinear
grids, provided that a suitable coordinate transformation is
adopted.

At the surface, a slip boundary condition is imposed by
setting the normal wall velocity to zero. At the top boundary,
the non-reflective boundary condition proposed by Bogey
and Bailly [24] is used. At the left boundary, as long as the
computational domain is static, axisymmetric boundary con-
ditions as presented in Mohseni and Colonius [25] are used.
More precisely, the symmetry of the variables is exploited
to compute the spatial derivatives and to apply selective fil-

tering using centered schemes along the ξ -direction. Note
also that the 1/r singularity in the equations is treated by
shifting the mesh in the ξ -direction by a half mesh size to
avoid placing grid points at r = 0. Once the computational
domain starts to move, non-reflective boundary conditions
are applied at the left boundary instead of the axisymmetric
boundary conditions.

Equation (2) is discretized by low-dispersion and low-
dissipation explicit numerical schemes, developed in com-
putational aeroacoustics. For the interior points, separated by
at least five points from the boundary, and for the boundary
points near the axis of symmetry, the centered fourth-order
finite-difference scheme of Bogey and Bailly [26] and the
centered sixth-order selective filter of Bogey et al. [27]
are used. For the other boundary points, the 11-point non-
centered finite-difference schemes and selective filters of
Berland et al. [28] are implemented. To handle shock dis-
continuities, the shock-capturing methodology presented in
Bogey et al. [27] with the detector proposed in Sabatini et al.
[29] is applied. Time integration is carried out using a fourth-
order six-stage Runge–Kutta algorithm [30].

The simulations are performed using an OpenMP-based
in-house solver. The solver has been already used in two
studies related to reflection of spherical weak shock waves
over flat or rough surfaces [7,31]. An excellent agreement
was obtained between the measured and simulated charac-
teristics of theweak shocks, and in particular the overpressure
waveforms. In addition, results of two test cases are presented
in Supplementary Material of this article. The first test case
deals with diffraction of a spherical pulse of small amplitude
by a sphere. It aims to verify that diffraction by a curved
surface is accurately simulated. The second test case consid-
ers plane-wave propagation of an N-wave. It aims to verify
that nonlinear propagation of weak shocks is accurately sim-
ulated and does not generate spurious waves on a distorted
mesh. Moreover, this solver was also employed in a related
study to characterize the topographic effects on sonic boom
reflection [32].
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2.2.3 Computational parameters

The computational domain is 0 ≤ ξ ≤ 4.5 and
0 ≤ η ≤ zmax = 5. The mesh is uniform, with a mesh size
equal to 4 × 10−3 in the η-direction and to 1.5 × 10−3 for
0.01 ≤ h ≤ 0.045 and 2.5×10−3 for h = 0 and h ≥ 0.05 in
the ξ -direction. This ensures that there are at least 13 points
per period of the sinusoidal surface profile. A grid conver-
gence studypresented inAppendix1 confirms that this choice
of grid sizes allows for an accurate prediction of weak shock
propagation over a rough surface. The mesh thus contains
2.25 or 3.75 million points, depending on the roughness. The
time step is set to 	t = 4.27 × 10−4 and the correspond-
ing CFL number is below 0.3 for all cases. The simulations
are run using eight processors for 85,000 iterations, which
allows for propagation distances up to r = 36.

2.3 Source and initial conditions

The source is set as an instantaneous release of energy with
a Gaussian spatial envelope via the initial conditions:

p(r , z, t = 0) = 1 + ps exp

(
− log(2)

r2 + (z − 1)2

B2

)
,

(7)

ρ(r , z, t = 0) = 1, (8)

ρu(r , z, t = 0) = 0, (9)

ρw(r , z, t = 0) = 0. (10)

This source model has previously been employed for the
study of spherical weak shock wave propagation above a flat
and smooth surface [31] and was shown to produce pressure
waveforms similar to those measured for an electric spark
source. The source is characterized by its width B and its
maximal overpressure ps. Unless otherwise stated, they are
set to B = 0.25 and ps = 7.5. An important parameter for
spherical shock wave is the source energy Es, which is the
main factor for the positive phase of the pressurewaveform. It
is obtained by integrating the energy density over the source
volume, which relates Es, Bs = B/

√
log(2), and ps with:

Es = ps
γ − 1

π3/2B3
s . (11)

A preliminary simulation is performed in free field to get
the characteristics of the incident shock wave on the surface.
Figure 3a shows the evolution of the Mach number along the
surface.The shockvelocitywas determined from thepressure
jump at the shock and the Rankine–Hugoniot relation. The
Mach number of the incident spherical shock does not exceed
1.3, it is smaller than 1.05 from r > 3.3, and it reaches 1.003
at r = 35. As an example, the time series of the overpressure

(a)

(b)

Fig. 3 a Mach number of the incident shock wave on the surface as a
function of the radial coordinate. b Example of an overpressure wave-
form in free field at r = 10

p′ = p−1 in free field at r = 10 is depicted in Fig. 3b.Notice
that the shape of the waveform generated by the source is
typical of a blast wave.

2.4 Discussion of the non-dimensionalization

The parameters of the source and of the rough surface have
been chosen to correspond to the measurements at laboratory
scale of Karzova et al. [7]. The height of the spark source was
about zs = 1 cmwith propagation distances up to r = 33 cm.
In the model for the spark source [31], the maximal over-
pressure is ps = 7.5 × 105 Pa and the source characteristic
length is B = 0.25 cm, which yields a source energy of
Es = 0.28 J. Assuming that a gram of TNT represents 4610 J
[1], this source is equivalent to a mass of 61.3 µg of TNT.
The roughness scales considered in the paper are between
100 and 1500 µm, which are in the order of the roughness
correlation lengths for the sandpapers used in Karzova et al.
[7].

For a source height of zs = 1 m with the same ratio B/zs
and the same source amplitude, the results shown in the paper
correspond to a source with an energy of 283.7 kJ or to an
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equivalent mass of TNT of 61.3 g and to roughness scales
between 1 and 15 cm.

3 Reflection pattern

3.1 General comments

In order to investigate the effect of roughness on the reflec-
tion pattern, schlieren pictures are shown at several instants
in time in Fig. 4 for three different surface conditions. They
are obtained by calculating the norm of the density gradient
|∇ρ| and allow for a clear visualization of the shocks. At
t = 0.43, the spherical incident shock impinges the surface.
At t = 0.85, a single reflected shock, which intersects the
incident shock on the surface, is observed for the smooth
surface, while additional diffracted shocks at the surface
asperities can be seen for the rough surfaces. At t = 1.71,
the reflection pattern for the smooth surface is of Mach type:
There are three shockswith different slopes at the triple point.
For the rough surfaces, a contribution is predominant over all
the diffracted shocks and can be interpreted as an effective
reflected shock. At following times, theMach stem grows for
the smooth surface and the reflection pattern progressively
switches from Mach reflection to von Neumann reflection,
as the shock front of the incident shock and of theMach stem
becomes continuous along the triple point. For the rough sur-
face h = 0.02, the effective reflected shock has caught up
and merged with the incident shock by t = 3.42. As for
a smooth surface, the Mach stem then grows at following
times. For h = 0.05, the effective reflected shock progres-
sively catches up with the incident shock at t = 3.42 and
7.26 before merging at t = 13.2.

Additional close-up schlieren pictures near the surface for
h = 0.05 are shown in Fig. 5 to clarify the reflection pat-
tern for the rough surface. A schematic drawing is depicted
in Fig. 6 to facilitate the discussion. The incident spherical
shock (I) is observed at t = 0.42. Once it has impinged on
the surface, diffracted waves are generated first, at the top
of the asperities, at t = 0.46. The majority of the energy
is diffracted leftward, and the amplitude of diffracted waves
propagating along with the incident shock wave is compar-
atively small. As the incident shock continues to propagate
in the surface cavities, a reflection pattern similar to a triple-
shock pattern is observed at its foot (at t = 0.55, 0.59, 0.67,
or 1.05). However, the amplitude of the diffracted wave is
expected to be too small to interact nonlinearly with the inci-
dent shock. Once the incident shock reaches the bottom of
the cavity, other diffracted waves are generated and propa-
gate upward, as seen for t = 0.5. As they propagate, the
different diffracted waves progressively coalesce into two
wavefronts (t > 0.55). The first one (Rt), corresponding to
the waves diffracted at the top of the asperities, is attached

to the incident shock. The second one (Rb), of larger ampli-
tude, corresponding to the waves diffracted at the bottom
of the asperities, is detached from the incident shock. At
long range, the latter becomes the effective reflected wave,
shown in Fig. 4, that may interact with the incident shock.
From the schlieren picture at t = 1.26, it is noted that the
space between the incident and reflected shocks near the sur-
face and close to the source is of the order of the roughness
period 2h. In addition, a fourth wavefront (D) can be seen at
t = 0.84, 1.05, and 1.26 and is due to diffracted waves that
are diffracted a second time at the surface asperities.

3.2 Effect of the source amplitude

Figure 7 shows schlieren pictures at time t = 19.1 for
three surface conditions and five source amplitudes. For
ps = 0.01, the source amplitude is sufficiently small for
the propagation to be essentially linear and there is no shock.
The pictures for the smooth surface and the rough surface
with h = 0.02 have similar patterns. For h = 0.05, addi-
tional contributions can be distinguished near the surface for
r < 18.5. For the smooth surface, the Mach reflection is
observed from ps = 1. As the source amplitude increases,
the Mach stem grows. With the rough surfaces, the inci-
dent and reflected shocks first appear separated. The space
between them reduces with increasing ps, and theMach stem
is formed starting from ps = 4 for h = 0.02 and ps = 8 for
h = 0.05.Moreover, the contributions observed near the sur-
face for h = 0.05 and ps = 0.01 are observed for ps ≥ 1
just behind the reflected shock. A similar pattern can also be
identified for h = 0.02 and ps ≥ 1.

The trajectory of the triple point for these three sur-
face conditions is now investigated for different source
amplitudes. It is determined graphically from the schlieren
pictures. The triple-point location is accurately estimated
when the slopes of the three shocks at the triple point dif-
fer significantly. However, at long range, these slopes have
comparable values, which makes the determination of the
triple-point location imprecise. In this case, the estimated
precision for the triple-point location is ±0.1. In addition,
for a rough surface, the merging of the incident and reflected
shocks can occur at a long distance from the source, at which
point the propagation direction and the speed of the incident
and reflected shock fronts are almost identical. The incident
and reflected shocks thus appear on the schlieren pictures
as two parallel lines that slowly come closer, and the exact
instant at which the Mach stem appears is then difficult to
determine. In the following, only the location of triple points
that can be clearly distinguished in the schlieren pictures is
reported, so that the starting point of the triple-point trajec-
tory for rough surfaces can not only be on the surface but
above.
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Fig. 4 Schlieren pictures showing the time evolution of the reflection pattern at t = 0.43, 0.85, 1.71, 3.42, 7.26, and 13.2 and for surfaces with
(top) h = 0, (middle) 0.02, and (bottom) 0.05. The source amplitude is ps = 7.5

The triple-point trajectory for the smooth surface and for
several source amplitudes is shown in Fig. 8a. As reported
for blast waves [1,6,33] and noticed previously for similar

simulations [31], the trajectory has a parabolic shape. The
source amplitude is a key parameter to estimate this trajec-
tory. As it increases, the triple point leaves the wall closer
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Fig. 5 Close-up schlieren pictures for h = 0.05 and for t = 0.42, 0.46, 0.5, 0.55, 0.59, 0.67, 0.84, 1.05, and 1.26

Fig. 6 Schematic diagram representing the reflection pattern for a rough
periodic surface observed in Fig. 5

to the source and its vertical velocity increases as well. For
comparison purposes, Fig. 8b, c shows the trajectory of the
triple point for the two rough surfaces with h = 0.02 and
h = 0.05, respectively. Contrary to the smooth surface, there
is no Mach stem for ps = 1 and h = 0.02. For h = 0.05,
the Mach reflection is only observed for ps = 6, 7, and 8.
It is also noticed that the roughness induces a delay in the
formation of the Mach stem. Thus, for ps = 4, the triple
point can be observed from r = 3.1 for the smooth surface
but from r = 6.2 for the rough surface h = 0.02. Once
formed, the growth of the Mach stem follows a similar evo-
lution than for a smooth surface. As discussed by Dewey et
al. [3], the reflection pattern for a rough surface at long range

is equivalent to the one with a smooth surface and a smaller
energy source at a closer distance. For instance, the trajec-
tory of the triple point for a smooth surface and for a source
amplitude ps = 3 is comparable to the one for a rough sur-
face h = 0.02 with a source that is more energetic, ps = 5,
and a delay in the apparition of the Mach stem 	r = 1. For
the larger roughness scale h = 0.05, the source amplitude
should be increased to ps = 8 and the delay to 	r = 5.5.

3.3 Effect of the roughness scale

Figure 9 shows schlieren pictures at t = 19.1 for several
roughness scales and for a source amplitude ps = 7.5. Mach
reflection is observed for h ≤ 0.05. The Mach stem gradu-
ally shortens with h. For the largest roughness scales h = 0.1
and 0.15, the incident and reflected shocks are detached. This
echoes the measurements of Karzova et al. [7] using sand-
papers in which the Mach stem was observed for the smaller
grain and was absent for the larger one. For h between 0.015
and 0.04, a fourth shock is observed behind the triple-shock
pattern. It is related to the double-diffracted waves noticed
in Fig. 5 and referred to as (D) in Fig. 6. Finally, for all the
roughness cases, the contribution located near the surface
and attached to the incident shock is observed. Its wavelength
appears to vary with the roughness scale.

The triple-point trajectories for the smooth surface and
rough surfaces for which h ≤ 0.06 are shown in Fig. 10. As
observed in outdoor or laboratory experiments [3,5,7], it is
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Fig. 7 Schlieren pictures at t = 19.1 for (top) h = 0, (middle) 0.02, and (bottom) 0.05 and for five source amplitudes ps = 0.01, 1, 2, 4, and 8

found that, for a given distance, the length of the Mach stem
reduces with the roughness scale. In addition, the delay in
the formation of the triple point is seen to increase with h.
Finally, once formed, the height of the Mach stem increases
less rapidly with the roughness scale. For instance, it grows

from zM = 1 to 2 over a distance of 	r = 4 for h = 0 but
over a distance of 	r = 4.4 for h = 0.02 and 	r = 6 for
h = 0.05.

This delay in the formation of the triple point for a rough
surface can be attributed to two factors. First, the roughness
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(a)(a)

(b)

(c)

Fig. 8 Trajectory of the triple point a for a smooth surface and for a
rough surface with b h = 0.02 and c h = 0.05 and for different source
amplitudes

induces a delay in the formation of the effective reflected
shock, because it originates from the merging of the waves
diffracted at the bottom of the surface asperities as seen
from the close-up schlieren pictures in Fig. 5. Second, the
amplitude of the effective reflected shock decreases with the
roughness, which tends to reduce the nonlinear interaction
between the direct and reflected shocks. These two points
are illustrated in Fig. 11,which shows the overpressurewave-

forms at r = 5 and z = 1 for h ≤ 0.1. At this location, the
Mach stem is not yet formed for any of the surfaces consid-
ered, and the direct and reflected shocks are separated. The
direct shock is first observed at the reduced time t−r = −0.9
and is the same for all the surfaces. The reflected shock is then
seen, starting from t − r = −0.7 for the smooth surface. It is
noticed that the arrival time of the effective reflected shock
increases with the roughness, while its amplitude reduces.

4 Overpressure

4.1 Profiles of peak overpressure

The evolution of themaximumvalue of the pressure along the
surface is now considered. For the rough surfaces, it presents
a periodic behavior associated with roughness periodicity,
with local minima and maxima, as suggested in Fig. 5, for
instance. For better readability, a moving average is applied
over three periods of the rough profile to smooth the curves.

The evolution of the peak pressure along the surface for
both the smooth and rough surfaces is shown in Fig. 12a.
As expected, the peak pressure diminishes with range for the
smooth surface. A slower decrease is observed near r = 5,
where the Mach stem is forming. The peak pressure on
the surface decreases with roughness scale. However, for
h ≤ 0.1, it is greater than with the smooth surface over
the entire range considered. The opposite behavior is only
observed for the largest roughness scales and at long range
(r ≥ 10). In order to extrapolate the overpressure decay
at larger distances, the curves are fitted by the power law
max(p′) ∝ rα over the range 20 ≤ r ≤ 35. The resulting
values of α are plotted as a function of h in Fig. 12b. For
the smooth surface, it is equal to α = −1.23, which is close
to the expected value for spherical shock waves in free field
[34]. For rough surfaces, α is smaller than with the smooth
surface for h < 0.04, which means that at longer range the
peak pressure for the smooth surface will be greater. The
opposite behavior is observed for h ≥ 0.04, implying that, in
particular, the peak pressure for 0.05 ≤ h ≤ 0.1 will remain
larger for rough surfaces at increased distances.

Figure 13 shows the vertical profile of the peak over-
pressure at r = 30. In accordance with Fig. 12, the peak
overpressure at the surface (z = 0) is greater for rough sur-
faces with h < 0.1 than for the smooth surface. Near the
surface, the peak overpressure decreases exponentially with
height for rough surfaces. In contrast, it is almost constant
along the Mach stem for a smooth surface. Above the sur-
face (z ≥ 2), the peak overpressure is comparable to that of a
smooth surface for the smallest roughness scales (h < 0.04)
and then gradually decreaseswith h to attain a constant value,
which corresponds to the peak overpressure value in free
field.
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Fig. 9 Schlieren pictures showing the reflection pattern at t = 19.1 for several roughness scales with the same source amplitude, ps = 7.5. The
height of the triple point is indicated by a dashed line

Fig. 10 Trajectory of the triple point for different surface conditions
with the same source amplitude, ps = 7.5

The overpressure waveforms for the smooth surface and
some rough surfaces at long range r = 30 and just above the
surface at z = 0.2 are depicted in Fig. 14. The waveform for
a smooth surface looks like a blast wave in free field, with
the peak overpressure at the shock discontinuity (see also
Fig. 3b). Roughness has a dramatic effect on the waveform.
First, the shock strength decreases with roughness scale. Sec-
ond, anoscillation appears after the shock. Its period is related
to the roughness scale, as it tends to increase with h. In addi-
tion, its maximum value is greater than the pressure at the
shock front. For small roughness scales, it is even greater than
the peak overpressure for a smooth surface. In addition, note
that the waveforms for the large roughness scales are similar
to the one reported in Fig. 11 in Qin and Attenborough [8]. In
particular, the low-frequency oscillation was associated with
the presence of a surface wave.

Figure 15 shows the peak overpressure and the shock pres-
sure jump determined from the waveforms in Fig. 14 as a
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Fig. 11 Overpressure waveforms at r = 5 and z = 1 for different
surface conditions

(a)

(b)

Fig. 12 a Evolution of the peak overpressure max(p′) along the sur-
face for the smooth and the rough surfaces. b Coefficient α of the fit
max(p′) ∝ rα over the range 20 ≤ r ≤ 35 as a function of roughness
scale

Fig. 13 Vertical profile of the peak overpressure at r = 30 for different
surface conditions

Fig. 14 Overpressure waveforms at r = 30 and z = 0.2 for different
surface conditions

function of h. It is observed that the maximum overpressure
first increases up to h = 0.03 before decreasing. At its max-
imum, the peak overpressure is one and a half times greater
than for a smooth surface. The shock pressure jump reduces
with h and becomes almost constant for h > 0.07. Compared
to a smooth surface, it diminishes at most by a factor of 4.
This could explain differences between experimental stud-
ies regarding the peak overpressure: In Dewey et al. [3] and
Huber and McFarland [5], roughness was noticed to induce
a reduction in peak overpressure, but, on the contrary, Kar-
zova et al. [7] observed an increase in peak overpressure.
While peak overpressure was determined directly from the
waveforms in Karzova et al. [7], they were calculated from
the shock speed in Dewey et al. [3] and Huber and McFar-
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Fig. 15 (Solid) Peak overpressure and (dashed) shock pressure jump
at r = 30 and z = 0.2 as a function of h

land [5]. This corresponds to the shock overpressure,which is
actually smaller for rough surfaces than for a smooth surface.

4.2 Surface wave

The characteristics of the pressure near the surface at long
range, namely the exponential decay of the amplitude with
height and the presence of oscillations on the waveforms,
evoke the presence of a surface wave. This section aims at
confirming this point and at examining the variations of the
surface wave with roughness scale and source amplitude.

4.2.1 Comparison in the linear regime

In order to confirm the oscillations observed on the wave-
forms are due to a surface wave, the numerical solution is
compared with an analytical solution in the linear regime, in
which the surface wave contribution is explicit.

In the linear regime (ps 	 1), the initial value problem
becomes:

∂2 p′

∂t2
− 	p′ = 0, (12)

p′(r , z, t = 0) = ps exp

(
− log(2)

r2 + (z − 1)2

B2

)
, (13)

∂ p′

∂t
(r , z, t = 0) = 0, (14)

with the slip boundary condition at the rough surface:

∂ p′

∂n
(r , z = σ(r), t) = 0, (15)

where ∂/∂n is the normal derivative.

Analytical solutions for this kind of initial value problem
can be formulated based on the Green’s function of the asso-
ciated Helmholtz equation. Indeed, the initial conditions in
(13)–(14) lead to the propagation of a pulse with a spheri-
cal symmetry, as if generated by a broadband point source.
The spectrum of this equivalent point source can be shown to
depend on the spatial Fourier transform of the pulse distribu-
tion [35]. For that, the Fourier transform of the overpressure:

p′(r , z, t) = 1

2π

∫ +∞

−∞
p̂(r , z, ω)e−iωtdω, (16)

is first introduced. In the above equation,ω denotes the angu-
lar frequency and is related to the frequency f = ω/(2π).
It is recalled that the frequency, like the other variables, is
dimensionless and that the frequency scale is c0/zs in accor-
dance with the set of scales proposed in Sect. 2.2.1. The
problem in (12)–(14) is then equivalent to:

	 p̂ + ω2 p̂ = S(ω)
δ(r)

πr
δ(z − 1), (17)

with the source spectrum:

S(ω) = psiωπ3/2B3
s exp

(
−ω2B2

s

4

)
. (18)

Before going further, the smoothed boundary condition
approach is introduced with the aim of formulating an ana-
lytical solution to the problem. It consists in replacing the
slip boundary condition on the rough surface z = σ(r) by
an admittance boundary condition on the smoothed surface
z = 0:

∂ p̂

∂z
(r , z = 0, ω) + iωβ p̂(r , z = 0, ω) = 0, (19)

with an admittance β that depends on the frequency, the
geometry, and the roughness characteristics. For a 1D rough
surface made of the sinusoidal profile introduced in (1), the
effective admittance is given by the boss model [9,36] at
grazing incidence and at low frequencies (ωh ≤ 1) by:

β(ω) = −iωαh, (20)

with α ≈ 0.2. Details on the derivation are given in
Appendix 2.

The analytical solution of (17) with the boundary condi-
tion in (19) can be written as a sum of three contributions:
[37]

p̂(r , z, ω) = p̂DW(r , z, ω) + p̂RW(r , z, ω) + p̂SW(r , z, ω).

(21)

123



392 T. Lechat et al.

The first one is the direct wave:

p̂DW(r , z, ω) = −S(ω)
exp(iωR1)

4πR1
, (22)

with R1 = √
r2 + (z − 1)2 being the distance between the

source and the receiver. The second contribution can be inter-
preted as the reflected wave and is given for Im(β) < 0 by:

p̂RW(r , z, ω) = −S(ω)

[
exp(iωR2)

4πR2

−2iωβ

∫ 0

−∞
exp(iωβq)

exp(iωRq)

4πRq
dq

]
, (23)

with R2 = √
r2 + (z + 1)2 being the distance between the

image source and the receiver and Rq = √
r2 + (z + 1 + q)2.

Finally, the third contribution is the surface wave:

p̂SW(r , z, ω) = S(ω)
ωβ

2

× exp[−iωβ(z + 1)]H (1)
0

(√
1 − β2ωr

)
, (24)

with H (1)
0 being the Hankel function of the first kind and

of zeroth order. It is noticed that the surface wave ampli-
tude decays inversely as the square root of the propagation
distance and exponentially with height, with a skin depth
1/|ω Im(β)|. The analytical solution for each of the contri-
butions in the time domain can then be calculated from the
Fourier transform in (16).

Comparisons between the numerical and analytical solu-
tions for a source amplitude ps = 0.01 and for two rough
surfaces with h = 0.02 and 0.05 at r = 30 and z = 0.2
are shown in Fig. 16. The contribution of the surface wave
component is also represented. The agreement between the
numerical and analytical solutions is satisfactory, especially
for the smallest roughness. It is noted that the oscillations at
the tail of the waveform for h = 0.05 are reproduced by the
analytical solution, although they are of reduced amplitude
and period. As expected, these are due to the surface wave
component. In fact, the entire waveform for h = 0.05 is due
almost exclusively to the surface wave. The discrepancies
between the numerical and analytical solutions for h = 0.05
may be due to the low-frequency assumption for determin-
ing the effective admittance (i.e., ωh ≤ 1), which starts to
be restrictive for this roughness scale: The period of oscil-
lations for the surface wave component is thus about 0.6,
corresponding to an angular frequency of 0.5/h.

4.2.2 Effect of the roughness scale

The variation of the surface wave characteristics with the
roughness scale is investigated. Information is first obtained

(a)

(b)

Fig. 16 Waveforms of the overpressure for ps = 0.01 at r = 30 and
z = 0.2 for two rough surfaces with a h = 0.02 and b h = 0.05: (solid)
numerical solution, (dash-dotted) analytical solution, and (dashed) sur-
face wave component

in the linear regime from the analytical expression in (24).
In the frequency range of interest, ωh 	 1, one has |β| 	 1
and

√
1 − β2 ≈ 1. Approximating |H (1)

0 (u)| ≈ √
2/(πu),

themodulus of the surfacewave component is then expressed
as:

| p̂SW(r , z, ω)| = ps ω5/2αhB3
s

π√
2r

× exp

[
−ω2

(
B2
s

4
+ αh(z + 1)

)]
. (25)

The maximum of | p̂SW| is thus obtained at the frequency
fSW:

fSW = 1

2π

(
5

4αh(z + 1) + B2
s

)1/2

. (26)
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(a)

(b)

Fig. 17 a Signal obtained by subtracting the waveform for the smooth
surface to the one for a rough surface at the same position r = 30 and
z = 0.2 andb corresponding energy spectral densities: (solid) h = 0.02,
(cross) h = 0.05, (triangle) h = 0.1, and (circle) h = 0.15. The vertical
lines in (b) indicate the central frequency fSW of the surfacewave hump.
The source amplitude is ps = 7.5

It depends on the roughness scale and also on the frequency
content of the pulse through the parameter Bs. As Bs is
notably greater than h, fSW is slightly dependent on h. For
instance, it is equal to 1.08 for h = 0.02 and 0.96 for
h = 0.05.

For higher values of ps, information about the surface
wave has to be extracted from the numerical solution. To do
so, the oscillations due to the surface waves are separated
from the rest of the waveform by examining the differ-
ence between the waveforms corresponding to the rough and
smooth surfaces. An example of the resulting signal is shown
in Fig. 17a for four values of h. While the shock disconti-
nuities at the start of the signal are not eliminated by this
procedure, the oscillations are clearly visible and they have

(a)

(b)

Fig. 18 Estimated a central frequency and b half-width of the surface
wave spectrum as a function of the roughness scale h for ps = 7.5

most energy. The corresponding one-sided energy spectral
densities (ESD[p]( f ) = 2| p̂( f )|2) are depicted in Fig. 17b.
They present a humpwhose central frequency and bandwidth
decrease with h. To quantitatively analyze this hump, the
energy spectral densities are fitted by a Gaussian function:

ASW exp

[
− log(2)

( f − fSW)2

σ 2
SW

]
, (27)

where ASW is the estimated amplitude of the surface wave
hump, fSW its central frequency, and σSW its spectral half-
width.

The variations of fSW and σSW with the roughness scale
h are depicted in Fig. 18. As observed above, the central
frequency decreases with h, approximately as h−0.9, while
in the linear regime it varies as h−0.5 [see (26)]. The spectral
half-width also tends to reduce with the roughness scale,
almost linearly.
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(a)

(b)

(c)

Fig. 19 Waveforms at r = 30 and z = 0.2 a for a smooth surface and
for rough surfaces with b h = 0.02 and c h = 0.05 and for source
amplitudes between 0.01 and 8

Fig. 20 Estimated central frequency of the surface wave spectrum as
a function of the source amplitude for (solid) h = 0.02, (dash-dotted)
h = 0.03, and (dashed) h = 0.05

4.2.3 Effect of the source characteristics

In this section, the evolution of the surface wave with the
source characteristics, notably the source amplitude, is inves-
tigated.

The waveforms of overpressure are shown in Fig. 19
for several source amplitudes and for three surface condi-
tions, namely a smooth surface and two rough surfaces with
h = 0.02 and 0.05, at r = 30 and z = 0.2. For the smooth
surface, the increase in source amplitude induces, first, the
appearance of the shock discontinuity from ps = 1 and then a
lengthening of thewaveform.Concerning the rough surfaces,
for h = 0.02 and ps ≥ 1, the shock discontinuity is observed
similarly and it is followed by the oscillations originating
from the surface wave. The number of oscillations increases
with ps, and the period seems to decrease.As observed for the
smooth surface, the signal lengthens with ps. For h = 0.05,
also note the presence of oscillations whose number tends to
increase with ps. Their period does not seem to vary with ps.
Finally, the oscillations at the tail of the waveform observed
in the linear regime are still noticed for ps ≥ 1.

The procedure described in Sect. 4.2.2 to extract the char-
acteristics of the surface waves is applied. The estimated
central frequency of the surface wave is plotted as a function
of the source amplitude in Fig. 20. Note that for ps = 0.01,
the value given by (26) has been used. The variations of
the central frequency with source amplitude are significant
mostly for ps ≤ 3. For ps ≥ 3, it slowly increases with the
source amplitude in the three cases.

Besides, the waveforms were obtained for a particular
source. In order to verify that this surface wave component is
a general feature that should be expected for weak blast wave
propagation above a rough surface, additional simulations
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Fig. 21 Waveforms of the overpressure for h = 0.02 at r = 30 and
z = 0.2 for two sources with the same energy (solid) ps = 7.5 and
B = 0.25 and (dashed) p′

s = ps/2 and B ′ = 21/3B

have been conducted for a source with a reduced amplitude
p′
s = ps/2 and an increased half-width B ′ = 21/3B (to keep

the same source energy E ′
s = Es). Figure 21 shows an exam-

ple of the waveforms for h = 0.02 at r = 30 and z = 0.2
obtainedwith the two sets of coefficients of the source.While
the details of the waveforms differ, the oscillations related to
the surface wave persist, which tends to confirm that surface
waves are excited by weak blast waves over a rough surface.

5 Conclusions

The propagation of weak spherical blast waves above a rough
periodic surface has been studied. To do so, numerical sim-
ulations of the Euler equations have been carried out. A
detailed analysis of the reflection pattern has been performed.
It has been shown that the waves diffracted by the rough sur-
face combine to form an effective reflected shock that is first
detached from the incident shock. For a sufficiently large
source energy, it may interact with the incident shock and
induce a Mach reflection pattern. Compared to a smooth sur-
face, the appearance of the Mach stem is delayed and its
height is reduced as if the source was of smaller amplitude
and at a larger distance. For large roughness scales, the inci-
dent and reflected shocks remain detached. As weak blast
waves degenerate to sound waves at long range, this behav-
ior is expected to persist even for larger distances than those
simulated. The variation of the peak overpressurewith rough-
ness scale has also been investigated. Near the surface, the
peak pressure is larger for small roughness scales than for a
smooth surface, but it is comparable or smaller far from the
surface in all cases. The increase in peak pressure is related to
oscillations that appear on the waveforms behind the shock.

These properties have been associated with the presence of a
surfacewave that propagates along the rough surface. A com-
parison with an analytical solution in the linear regime has
confirmed its existence. The evolution of the surface wave
properties with the source amplitude has thus been exam-
ined, showing that an increase in source amplitude induces a
shift toward higher frequencies.

There are several directions in which this work can be
continued. This kind of simulations can be used to develop
or extend empirical formula to account for roughness in pre-
dicting triple-point trajectory, as done recently by Xiao et al.
[38] for a smooth and flat surface.

Furthermore, as axisymmetric roughness has been con-
sidered, an extension would be to perform simulations for a
more realistic two-dimensional roughness. In addition, the
roughness has been characterized by a single parameter, as,
for simplicity, the roughness width was set to two times its
height. Effect of these two parameters on the reflection of
spherical weak blast waves could be investigated separately.
Viscosity and thermal conduction have also been neglected.
Nevertheless, in the experiments of Adachi et al. [20] for a
plane shock wave impinging on a crenellated wedge (with
a Mach number, however, larger than those considered in
this work), schlieren pictures show the generation of vortices
every time the plane shock wave passes above a roughness
element. This should bring extra dissipation, not accounted
for in the paper. This would also require to perform simu-
lations with two-dimensional roughness to avoid generating
unrealistic vortex rings and with a finer mesh near the walls
to accurately capture the boundary layer.

Moreover, an effective boundary condition has been
recently proposed for time-domain simulations in linear
acoustics [39] to avoid the extra cost due to a fine mesh at
a rough surface. It would thus be worthwhile to apply this
boundary condition to spherical blast waves and investigate
its range of validity in terms of Mach number.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00193-021-01024-
8.
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Appendix 1: Grid convergence

In this appendix, results of a grid convergence study are
presented. A rough surface with h = 0.01 is considered.
It corresponds to the smallest roughness scale investigated,
with the least number of points per period. It is thus the
most restrictive case. Simulations are performed for five grid
sizes along the ξ -direction, ranging from 	ξ = 1× 10−3 to
2×10−3, with 1.5×10−3 being the reference grid size used
in the paper. The number of points per period of the rough
surface 2h/	ξ is thus between 10 (for 	ξ = 2× 10−3) and
20 (for 	ξ = 1 × 10−3). For all simulations, the grid size
along the η-direction is 4× 10−3 and the CFL number is set
to 0.28.

The waveforms of the overpressure at r = 30 and z = 0.2
are plotted in Fig. 22 for the five grid sizes. Overall, an
excellent agreement is obtained for the different grid sizes.
In particular, the peak overpressure only fluctuates by 4%
between the finest mesh and the coarsest mesh. The effect of
the grid size on the waveforms can be noticed on the oscil-
lations after the first peak, whose period is about 0.18. They
appear smoothed for the coarsest mesh, and their peak-to-
peak amplitude slightly increases with the reduction in the
grid size.

The corresponding energy spectral densities are shown
in Fig. 23. Here as well, the curves show only little depen-
dence on the grid size. The main difference is observed on
the amplitude of the hump near f = 5.5, which is related to

Fig. 22 Waveforms of the overpressure for h = 0.01 at r = 30 and
z = 0.2 for several grid sizes

Fig. 23 Energy spectral density for h = 0.01 at r = 30 and z = 0.2
for several grid sizes

the oscillations on the waveforms discussed on the previous
paragraph.

Additional convergence tests have been performed for
roughness scales of h = 0.02 with the same grid sizes than
for h = 0.01 and of h = 0.15 with grid sizes 	ξ between
2×10−3 and 3×10−3. Results are not shown for conciseness.
Thewaveforms and the energy spectral densities present even
smaller differences with the different grid sizes than for the
case exemplified in Figs. 22 and 23.

In conclusion, the grid convergence study has shown that
the results in terms ofwaveforms and spectra onlymarginally
depend on the grid size. This demonstrates that grid conver-
gence is obtained with the mesh used in the study.

Appendix 2: Effective admittance

Several methods have been proposed in the literature for
deriving effective admittance of rough surfaces. Among

Fig. 24 Definition of the parameters to calculate I in the boss model
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them, the bossmodel [9,36] is especiallywell suited for rough
periodic surfaces. In this model, the rough surface is com-
posed of identical roughness elements with a characteristic
size h placed on an underlying smooth surface and spaced
apart by a distance b.

For a 1D rough periodic surface at low frequencies (ωh <

ωb ≤ 1), the effective admittance can be written at grazing
incidence as [9,36]:

β(ω) = −iωε, (28)

where ε is related to the geometric properties of the rough
surface via:

ε = V

(
1 + K

ν
− 1

)
, (29)

with ν given by:

ν = 1 + π

3
V
1 + K

b
. (30)

The parameter V is the cross-sectional area of the roughness
elements above the smooth plane per unit length, and K is a
hydrodynamic factor that depends on the shape of the rough-
ness element. Following Tolstoy [36] and Lauriks et al. [40],
it can be determined by the relation K = I/(1 − I ) with:

I = 1

π

∫

L

d · t
|d|2 dL · t, (31)

where the integral is performed along the surface of the
roughness element. In the above equation, t denotes the vec-
tor tangent to the smooth plane and d the vector between
the centroid of the roughness element plus its image by
the smooth plane and a point on the surface of the rough-
ness element (Fig. 24). Setting t = (1, 0) and using the
parametrization d = (x(t), y(t)) with a ≤ t ≤ c, one has
dL = (−y′(t), x ′(t)) dt , which yields:

I = − 1

π

∫ c

a

x(t) y′(t)
x2(t) + y2(t)

dt . (32)

The profile in (1) is modeled as a 1D rough surface with
roughness elements of sinusoidal shape and of width 2h sep-
arated by a distance 2h. This corresponds to b = 2h and
V = h/2. For determining K , the parametrization x(t) = ht
and y(t) = h/2[1+cos(π t)] for−1 ≤ t ≤ 1 is chosen. This
gives:

I = 1

2

∫ 1

−1

t sin(π t)

t2 + cos4(π t/2)
dt ≈ 0.55. (33)

Combining the values of the different parameters to deter-
mine ε in (29) finally leads to (20).
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