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Abstract

The problem of localizing and quantifying acoustic sources from a set of acoustic measurements

has been addressed, in the last decades, by a huge number of scientists, from different commu-

nities (signal processing, mechanics, physics) and in various application fields (underwater, aero, or

vibro acoustics). This led to the production of a substantial amount of literature on the subject,

together with the development of many methods, specifically adapted and optimized for each

configuration and application field, the variety and sophistication of proposed algorithms being

sustained by the constant increase in computational and measurement capabilities. The counter-

part of this prolific research is that it is quite tricky to get a clear global scheme of the state of the

art. The aim of the present work is to make an attempt in this direction, by proposing a unified

formalism for different well known imaging techniques, from identification methods (acoustic

holography, equivalent sources, Bayesian focusing, Generalized inverse beamforming. . .) to beam-

forming deconvolution approaches (DAMAS, CLEAN). The hypothesis, advantages and pitfalls of

each approach will be established from a theoretical point of view, with a particular effort in trying

to separate differences in the problem definition (a priori information, main assumptions) and in

the algorithms used to find the solution. Numerical simulations will be proposed for different

source configurations (coherent/incoherent/extended/sparse distributions), and an experimental

illustration on a supersonic jet will be finally discussed.

Keywords

Microphone arrays, acoustic imaging, beamforming, deconvolution

Date received: 14 January 2017; revised: 26 March 2017; accepted: 22 April 2017

1University of Lyon, INSA-Lyon, Laboratoire Vibrations Acoustique, Villeurbanne, France
2University of Lyon, Ecole Centrale de Lyon, LMFA UMR CNRS 5509, Ecully, France
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Introduction

A common problem in acoustics is the need for characterizing sources of sound or noise.
Examples of such characterization are the estimation of direction-of-arrival of sound waves,
the precise location of a source, its directivity, the spatial reconstruction of the source radi-
ation pattern, the quantification/ranking of the acoustical power from different sources,
among others. It often happens that measurements on the source itself are not practical
and a well-established practice is to sense propagating acoustical waves coming from the
source by means of an array of sensors. The idea behind this is to use the information gathered
by the array together with a model of the propagation path to infer on source parameters. The
inconvenient is that measurements are discrete in space due to practical reasons (mainly cost
and hardware) and measuring all over a surface surrounding the source is barely feasible.
Shortly stated, the aim of the methods discussed in this paper is thus to recover (estimate)
parameters of noise sources from partial measurements of their radiated sound field.

Several researchers have been working on this subject for many decades1(published
research in the acoustics community has been seen since the pioneering work of
Billingsley and Kinns2 in the 70s). Applications of array processing on real-life problems
cover a variety of domains (just in acoustics!) such as: underwater acoustics, speech, aero-
acoustics, structural acoustics or ultrasound. Needless to say that array signal processing in
general also finds its use in many fields of science, ranging from geophysics (seismology),
radio astronomy up to bio-medical applications. A direct consequence is that original meth-
ods (aimed to particular applications) are constantly being developed, following the
advances in computational and experimental resources. Due to the large amount of available
techniques for processing array data aimed to source characterization, it is probably too
ambitious to give a detailed description of the state of the art. Rather than providing an
exhaustive list of existing methods, one goal of this work is to class different approaches by
setting a unified formalism. Starting from the same formulation of the problem (precisely
estimation of source parameters), the aim is to explicit the different branches (extensions)
followed by each technique to achieve the solution. In other words, to specify which par-
ticular case of the original problem each method is trying to solve. One motivation is to
allow the end-user to better choose which combination of algorithm/formulation fits best to
a particular objective.

In this paper, the attention is mainly focused on techniques which provide an ‘‘image’’ (or
map) of the acoustical source field of interest, thus the label acoustic imaging techniques. The
majority of published methods in this domain may be divided into two main groups: beam-
forming-type and inverse problem-type methods. Distinction which is based on how the
multiple degrees of freedom (i.e. source parameters to estimate) are treated. Notice that
the term identification is also used in the literature to group methods based on an inverse
problem formulation. This reasoning is followed on the next sections of the paper, in which
references are given to well-known methods along with a discussion on their main assump-
tions, advantages and limitations.

The remainder of the paper is organized as follows. In next section, the problem of
interest is formulated as the relation between a set of discrete ‘‘field’’ measurements (typically
acoustical pressure or particle velocity) and source parameters (typically amplitude and
location), by assuming that the propagation path is known. Then, the different ‘‘paths’’
taken to solve the problem of interest as well as computational aspects of the methods are
given. Numerical simulations are then used in the following section with the aim of testing
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available methods on different source scenarios (e.g. mutually coherent/incoherent sources,
extended/narrow source spatial distribution). In the last section, an experimental application
is proposed, with a discussion on the diversity of results obtained through the different
methods.

Formulation of the problem

In the frequency domain, the acoustic localisation problem is based on a linear relationship
between a set of m acoustic pressure measurement points p and a set of n source strengths to
be determined q

p ¼ Gq ð1Þ

where G (m� n) represents the acoustic transfer matrix, that depends on the frequency, the
source definition and propagation medium. The sources can be defined as plane waves,
(plane wave beamforming,2 nearfield acoustic holography (NAH),3 statistically optimized
NAH (SONAH)4), spherical harmonics (HELS),5 vibration velocity of numerical models
(inverse boundary element method IBEM6), or a cloud of monopoles (spherical wave beam-
forming,7,8 equivalent source methods9–11). The propagation medium is described by its
acoustic celerity, with Sommerfeld boundary conditions (free field). It means that no reflec-
tion or diffraction is considered, except for the reflection and diffraction of the source itself,
for the particular case of the IBEM. Note that an infinite reflective plane can, however, be
taken into account quite easily, using an image source model (see Leclere et al.12 for
instance).

The computation of p from a known source q, through equation (1), is called the direct
problem: the effects (acoustic field) are estimated from the causes (sources). The estimation
of q from p is thus an inverse problem, and suffers from several difficulties related to its ill-
posed nature (non-uniqueness of the solution, high sensitivity to measurement noise).
Generally speaking, a solution is expressed also with a linear system

~q ¼Wp ð2Þ

where elements of ~q are the estimated source strengths and where the inverse operator W

(n�m) depends not only on the chosen approach (assumptions, quantities to minimize,
a priori information) but also in most cases on the measured quantities p. Note that columns
of matrix W0 are called steering vectors in the beamforming literature (with W0 the complex
conjugate transpose of W).

In equations (1) and (2), p, q and ~q are complex-valued vectors, that represent the Fourier
transformed data of a single time snapshot. Alternatively, they can be assessed from statis-
tically stationary measurements using a phase reference, in the case of fully coherent meas-
urements. However, a more general way to tackle stationary measurements is to directly
formulate the direct and inverse problems in terms of auto and cross power spectral densities
(PSD) averaged over several snapshots (time blocks)

Sp ¼ GSqG
0, ~Sq ¼WSpW

0 ð3Þ

where superscript 0 denotes the complex conjugate transpose, and Sp and Sq (resp. ~Sq) are
matrices of auto (diagonal terms) and cross (off-diagonal terms) spectra of measurements
and (resp. estimated) sources.

The aim of the next section is to present briefly the various ways of estimating matrix W.
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Building the inverse operator

Data-independent beamforming

The output of standard beamforming is based on a least squares (LS) resolution of n inde-
pendent systems relating the pressure vector p to the n-th entry in q through the n-th column
of G. This is done by using either plane or spherical waves: the strength of each candidate
source is estimated independently from the others, in the LS sense. This leads to

W ¼ 0R<G00L< ð4Þ

where G0 is the complex conjugate transpose of the direct problem matrix G, and 0L< and
0R< are diagonal matrices of positive weights equal to I for the simplest formulation. 0L<
consists of weights attributed to microphones (typically a spatial window), and 0R< are
source scaling terms. The classical LS solution leads to the choice of source scaling terms
equal to the inverse squared norm of columns of G8, but other scaling strategies can be
applied, to compensate for the effects due to large differences between averaged source-
microphone distances, for instance Pereira and Leclere.13 It is important to note that beam-
forming only gives an estimation of source strength at each focusing point as if it was the
only source in the search grid, and thus cannot be directly re-introduced in equation (1). A
global scaling can be applied afterward, but it is generally adjusted depending on the data.12

Data-dependant beamforming

A well-known data-dependent beamforming formulation is called minimum variance distor-
tionless response (MVDR, also known as Capon14,15). For each candidate point source i, the
corresponding line in matrix W, noted Wi: is chosen to minimize Wi:SpW

0
i: while keeping

Wi:G:i ¼ 1 (G:i, is the i-th column of matrix G). It can be seen as a way of minimizing the
contribution of all sources except source i. The optimum is given by16

Wi: ¼
G0:iS

�1
p

G0:iS
�1
p G:i

ð5Þ

or, in a matrix form

W ¼ Dg G0S�1p G
� ��1

G0S�1p ð6Þ

where Dg Að Þ is the diagonal matrix constituted of diagonal terms of A.
A major assumption of this method is that all sources contributing to the measurements

are uncorrelated, and it is very sensitive to violations of this hypothesis, or to a non-con-
verged estimation of Sp.

17 The robustness of the approach is generally enforced by artificially
loading the diagonal of Sp. It is interesting to note that in this case, equation (6) tends to a
standard beamforming (equation (4)) as the diagonal loading factor increases. It is also
possible to separate in Sp the contribution of sources from the noise (using eigenvalue ana-
lysis, Bienvenu and Kopp18). Other modified versions can be obtained, to extend the method
to potentially coherent sources.19
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Inverse methods

Beamforming approaches aim at solving a scalar inverse problem: the strength of each
source is identified independently from the others. The steering vectors (columns of W0)
are determined as a function of the source (position, angle of incidence), and then the
beamformer is ‘‘scanned’’ over the source area covering the location of potential sources.
Inverse methods, in contrast, consider the problem for all sources at once. The advantage of
such approaches is that interferences between potential coherent sources are taken into
account: the idea is to find the linear combination of sources (or the whole source covariance
matrix) to obtain reconstructed pressures (through equation (1) or equation (3)) that are as
close as possible to the measured ones. The choice on the nature of sources will define
different methods in the literature, beginning with a basis of plane waves (including evan-
escent ones) for planar NAH or SONAH,3,4 BEM-based radiation functions,6 monopole
distributions9–11 or spherical harmonics.5

A common difficulty is that these methods can be very sensitive to measurement noise,
and often require a regularization procedure. In addition, the inversion is generally under-
determined, because the number of microphones is limited due to practical aspects, and the
number of source degrees of freedom (dofs) is thus often larger than the number of meas-
urement points. These two issues are typical characteristics of ill-posed problems, in the
sense of Hadamard.20 A very common approach to handle this issue is known as
Tikhonov regularization,21 which is based on the minimization of both the standard LS
error and the norm of the solution (source terms). The quantity to be minimized as a func-
tion of q is

jjp�Gqjj2 þ �2jjqjj2 ð7Þ

where �2 is the Tikhonov regularization parameter, which controls the trade-off between the
minimization of the LS error and the solution’s norm. When dealing with quadratic versions
of the problem, i.e. involving cross spectral matrices (equation (3)), the quantity to be
minimized can be formulated as follows

jjP�GQjj2F þ �
2jjQjj2F ð8Þ

where Q is a (n�m) matrix to be determined (with QQ0 ¼ Sq) and jj jjF denotes the
Frobenius norm. Matrix P is a (m�m) matrix such that

PP0 ¼ Sp ð9Þ

The matrix W allowing to obtain the solution of this minimization problem is

W ¼ Gþ� ¼ G0 GG0 þ �2I
� ��1

ð10Þ

Gþ� denoting the regularized pseudo-inverse of G. The difficulty is to choose correctly the
parameter �2. Various automated methods exist for this purpose, such as the general cross
validation,22 the L-curve23 or more recently a Bayesian criterion11 which shows better
robustness than the former two methods for the inverse acoustic problem.24 It is also pos-
sible to add left and right weighting matrices, as it is the case for beamforming (matrices L
and R in equation (4)), to adjust the importance given to either microphone or source dofs in
the minimization problem (8). These matrices are, however, skipped here for the sake of
simplicity.
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Note that when �2 tends to1, the pseudo-inverse tends towards the conjugate transpose
(with a scaling factor ��2), the over-regularized inverse method is thus similar to standard
beamforming. In practice, the consequence is that the automated choice of � may select
�¼ 0; this is the case when matrix G has a low condition number (generally at high frequen-
cies). In this particular case, the pseudo inverse solves the following minimization problem
(still assuming under-determined cases):

Minimize tr Sq

� �
subject to GSqG

0
¼ Sp ð11Þ

This problem is no more a trade-off, and its solution is simply the least norm one, among
all solutions satisfying GSqG

0
¼ Sp. It means that the method is not able to separate the

noise from the signal in Sp, it just gives as a result, among the infinity of potential exact
solutions, the minimum norm one. Practically speaking, consequences are that the results
can strongly under-estimate the real source strengths. A solution to this problem is to add
more a priori information, such as sparsity constraints. This is the subject of the next section.

It is worth noting that several methods are based on this inverse formulation, but have
been developed in relatively disjoint scientific communities. Some approaches come from the
aeroacoustics beamforming community, for which this approach is an improvement of
beamforming (soap,25 generalized beamforming26), and some others come from the acoustic
inverse problem community (sonah,4 ESM,9,10 Bayesian focusing11,24). This formulation can
somehow be understood as a kind of convergence of NAH-related methods and
beamforming.

Sparsity constraints

A fundamental limitation of inverse formulations of the acoustic problem is due to the fact
that they are generally underdetermined, because of the practically limited number of micro-
phones used to sample the acoustic field, that is often much lower than the number of source
degrees of freedom. The regularization principle to choose, among the infinite number of
solutions, the one of minimal norm, is in this situation somewhat arbitrary, and has a
tendency to give underestimated source powers. It is shown in Pereira27 and Pereira
et al.28 that identified sources have radiation patterns directed towards the array. That’s
why source powers are systematically underestimated, especially at high frequencies when
the optimal regularization parameter is equal to 0 (yet the localization ability remains gen-
erally satisfying). Note that this effect is also mentioned in the plane-wave version of the
method (sonah4).

The correct quantification of source powers thus requires the addition of a priori infor-
mation about the source. This can be done by assuming that the source distribution
may be represented by only a few non-zero components, in a given basis. In this case, the
initial choice of elementary sources (monopoles, plane waves, spherical harmonics) used to
build the direct operator G is fundamental, since it will determine in which basis the sparsity
is assumed: this choice is equivalent to a priori assumptions on the nature of the source. The
set of elementary sources is referred to as the dictionary in sparse modeling, and the image of
each elementary source on the microphones (columns of G) is called atom or word.

The simplest way to measure sparsity is the L0 norm of the solution, corresponding here
to the number of non-zero components on the diagonal of Sq. However, the minimization of
this quantity is not an easy task, from the mathematical point of view, because it
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corresponds to a non-convex problem: it requires a combinatory exploration of potential
solutions that may be not unique. The L0 minimization is thus often relaxed to the convex L1

minimization problem, which is known to lead under some conditions to equivalent solu-
tions.29 It is in fact possible to adjust a level of sparsity, by using an Lp norm, with p varying
between 1 (strong sparsity) and 2 (no sparsity). The identification problem with sparsity
constraint is thus to find q minimizing the following quantity

jjp�Gqjj2 þ �2
X
i

jqij
p ð12Þ

where qi is the i-th element of q. When dealing with quadratic versions of the problem,
assuming Spp ¼ PP0, the quantity to be minimized can be formulated as follows

jjP�GQjj2F þ �
2
X
i

X
j

jQijj
2

 !p=2

ð13Þ

where Q is a (n�m) matrix to be determined (with QQ0 ¼ Sq) and Qij the i-th element of the
j-th column of Q. Several approaches can be used to minimize equation (13), such as heur-
istics, iterative inverse methods and sparse optimization.

Heuristic solutions. As already stated, defining the sparsity constraint through the minimiza-
tion of the L0 norm of the solution leads to an optimization problem that is difficult to
handle correctly. However, it is possible to apply very simple iterative methods to search for
‘‘not so bad’’ solutions, without any guarantee to find a global optimum. Heuristic
approaches, such as (Orthogonal) Marching Pursuit,30 offer such results with very simple
algorithms. In acoustic imaging, several methods belong to this class (see for instance Wang
et al.31).

An application of OMP to the quadratic form of the acoustic problem (equation (3)) can
be formulated as follows. First, initial conditions are defined as

�ð0Þ ¼ ;, Sð0Þr ¼ Sp

Then, for each n � 1, the following steps are iteratively operated:

. The support of the source � is enlarged by including the source dof maximizing the
beamforming output of the residual matrix Sr

�ðnÞ ¼ �ðn�1Þ [ argmaxi G0:,iS
ðn�1Þ
r G:,i

� �

. The inverse operator is calculated over the new support (:ðnÞ standing for a Boolean
matrix selecting source dofs included in the set �ðnÞ and þ standing for the pseudo-inverse)

WðnÞ ¼ :ðnÞ G:ðnÞ
� �þ
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. The new source and residual matrices are finally updated

SðnÞq ¼WðnÞSpW
ðnÞ0 , SðnÞr ¼ Sp �GSðnÞq G0

The stopping criterion of this iterative process can either be a maximum number of
iterations (maximum dimension of the support), the norm of the residual matrix, or the
condition number of the pseudo-inversed matrix.

Iterative inverse methods. This family of methods is related to iterative reweighted least squares
(IRLS32,33). The idea is starting from the classical problem (equation (8)) to inject a penalty
term at iteration n+1 derived from source strengths at iteration n. In doing so, more and
more weight is given to strong sources, to finally converge to a sparse result. Among the
acoustic applications of this approach, we can cite the L1-generalized beamforming,34,35and
Bayesian methods.27,36 A comparison of these two approaches is realized in Oudompheng
et al.37 In the former, the possibility of using an overcomplete dictionary is illustrated by
identifying jointly monopole and dipole distributions. In the latter, a direct link is done
between the a priori law of the source distribution (a generalized Gaussian law) and the
power p of the norm in equation (13). The inverse operator W can be expressed, at iteration
n+1, as follows

Wðnþ1Þ ¼ RðnÞ GRðnÞ
� �þ�

¼ R2
ðnÞG

0 GR2
ðnÞG

0
þ �2I

� ��1
where RðnÞ is a right diagonal weighting matrix, adjusting the importance given to the mini-
mization of the contribution of each source, and that is computed using the solution at
iteration n

½R2
ðnÞ�i,i ¼ ½SqðnÞ�i,i

� �1�p=2
A study of the effect of p on the results of acoustic imaging problems is given in Leclere

et al.38

Sparse optimization. Other methods search for global solutions through the minimization of
the L1 norm of the solution (e.g. BPDN,39 LASSO40). Several tools are available41 to solve
them and have also been implemented for acoustic imaging purposes.38,42 However, a dif-
ficulty remains in finding solutions corresponding to the quadratic version of the problem
(equation (3)). A possibility is to use the decomposition (9), and to process the sparse opti-
mization independently for each component.34,35 This is, however, not fully satisfying,
because the L1 norm is not minimized globally, as it would be the case in considering jointly
all diagonal terms of Sq (note that this is different if there is more than one component, i.e.
more than one statistically independent source).

Deconvolution methods

The acoustic imaging approaches presented in the previous sections aim at estimating the
source strengths. This estimation is noted ~q considering equation (2) or ~Sq considering
equation (3). In this section, one considers the possibility to recover true values of q
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or Sq, conditioned by additional assumptions. The use of equation (1) in equation (2) dir-
ectly gives

~q ¼WGq, ~Sq ¼WGSqG
0W0 ð14Þ

This illustrates the fact that generally inverse methods are not exact, considering that WG

is not equal to identity. In fact, columns of matrix WG are representing the output of the
method to single unit sources. The columns of the matrix constituted of terms of WG in
squared absolute values are called point spread functions, representing the power output of
the method to unitary point sources

½A�i,j ¼ ½WG�i,j
�� ��2 ð15Þ

Assuming uncorrelated sources, equation (14) boils down to

e�q2 ¼ Aq
2

ð16Þ

where �q2 and e�q2 represent the diagonals (autospectra) of Sq and ~Sq, respectively. The iden-
tification of �q2 from e�q2 and A has been studied in Blacodon and Elias,43 and is introduced as
the DAMAS inverse problem in Brooks and Humphreys44 (deconvolution approach for the
mapping of acoustic sources). The approach is presented as a deconvolution problem, the
aim being to remove from the source energy maps the blurring effects of the inverse
operator.

It is noteworthy that the hypothesis of uncorrelated sources is generally assumed for using
equation (14), as it is a sufficient one. However, this is not a strictly necessary one. Indeed, if
coherent sources are far enough so that the spatial supports of their PSF are disjoint (or
almost disjoint), equation (16) remains (almost) true. Problems are expected either in the low
frequency range, where PSFs supports are wider due to low resolution, or when correlated
sources are close to each other (typically radiating panels, or multipole sources).

Several ways exist to solve equation (14), for which an inversion under constraint is
needed, because the result has to be positive (source autospectra). In the original work,44

this problem is solved by using a Gauss–Seidel iterative algorithm, with a thresholding at
each iteration to enforce the positivity of the result. The iteration is stopped after a given
number of iterations, which has a significant effect on the result. Another way of solving
equation (16) is the non-negative least squares.45 Several approaches are compared in
Ehrenfried and Koop.46 Note that the inversion under the positivity constraint is relatively
well-posed: regularization is not required and in addition, the results have a sparse aspect
(only few components of e�q2 are found non zero).

Sparse optimization and heuristic methods have also been implemented to solve this
problem, related to matching pursuit (CLEAN,47,48OMP49), basis pursuit (SC-DAMAS50)
or Bayesian formalism.51 It is interesting to note that assuming the sparsity through a L1

minimization of e�q2 is equivalent to the L2 norm used in Tikhonov’s regularization (equation
(8)). Consequently, the sparsity of the results can somehow be attributed more to the non-
negativity constraint than to the sparsity constraint. The link between non negativity con-
straints and sparse results is discussed in Bruckstein et al.52 and Foucart and Koslicki.53

CLEAN-PSF and CLEAN-SC47,48 have become quite popular in the field of aeroacous-
tics in the last decade due to their robustness and computational efficiency. The idea is to
iteratively remove from the measured pressures (a part of) the contribution of the
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beamforming map maximum. This contribution is computed differently for the two algo-
rithms: CLEAN-PSF uses the Green function between the maximum position and the array,
while CLEAN-SC uses the coherence between the maximum and the measured pressures on
the array. CLEAN-PSF is thus basically equivalent to a Matching Pursuit algorithm.
CLEAN-SC uses more advanced tools related to conditioned spectral analysis54 where
conditioning is performed iteratively with respect to a linear combination of micro-
phones that corresponds to the steering vector pointing to the maximum of the residual
beamforming map.

Global classification of acoustic imaging methods

A global classification of acoustic imaging approaches is proposed in Figure 1 to try to sum
up all methods raised in previous sections. The proposed classification is separated first in
either beamforming-related methods (for which each source dof is handled independently) or
inverse methods (all source dofs are considered at once). Approaches are then classified,
based on the definition of the minimization problem, and some corresponding methods/
algorithms are appended in red font. Note that deconvolution is seen as a post processing of
standard beamforming, for which additional hypotheses are assumed, and for which all
source dofs are processed at once. Deconvolution belongs thus to the class of inverse prob-
lems, with an additional non-negativity constraint. That is why some algorithms are shared
by deconvolution and inverse methods (typically greedy algorithms CLEAN, OMP. . .).

Numerical illustrations

Configuration

The studied configuration is drawn in Figure 2. A linear acoustic array (32 microphones,
70 cm length, non-regular spacing), is placed at 70 cm from a parallel linear source. Different

Figure 1. Global classification of acoustic imaging approaches.
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source configurations are tested in this work to illustrate the behavior of the different acous-

tic imaging methods presented in the theoretical part. The input of the simulation is a source

spectral matrix Sq, and the matrix of acoustic pressures is obtained thanks to equation (3).

A cross spectral matrix of noise is added to the matrix of acoustic pressures. The noise is

independent on each microphone, and its correlation matrix is randomly built at each fre-

quency following asymptotic laws (cf. Leclere et al.55 with 200 time snapshots). The signal to

noise ratio is arbitrarily set to 10 dB. The interest of considering a 1D problem is that the

results are easily represented as a function of the frequency on 2D maps, with the frequency

on the first axis and the space on the second one. Simulations are carried out from 1 to

20 kHz with a step of 100Hz. Results are presented systematically in the following section,

for different methods introduced in this work:

. standard beamforming (cf. ‘Data-independent beamforming’ section, with terms of the

source scaling matrix 0L< equal to the inverse of the norm of the columns of G),
. Orthogonal Matching Pursuit (cf. ‘Heuristic solutions’ section 3.4.1),
. Inverse method (Bayesian regularization, functional JMAP in Pereira et al.,24 ‘Inverse

methods’ section),
. IRLS (Bayesian regularization ‘Iterative inverse methods’ section) with p¼ 1 and p¼ 0,
. deconvolution (‘Deconvolution methods’ section) with DAMAS (original algorithm,44

1000 iterations),
. deconvolution (‘Deconvolution methods’ section) with NNLS (solution of equation (16)

using Matlab lsqnonneg function).
. CLEAN (CLEAN-PSF algorithm described in Sijtsma,48 loop gain set to 0.1),
. CLEAN-SC (CLEAN based on source coherence Sijtsma,48 loop gain set to 0.1.

The considered source configurations are:

. 14 uncorrelated monopoles (same amplitudes, positions given in Figure 2),

. 14 correlated monopoles (in phase, same amplitudes, positions given in Figure 2),

Figure 2. Simulated configuration. Blue dots: microphone positions. Black line: candidate sources. Red

dots: actual source positions used in simulations 1 and 2 (‘Uncorrelated monopoles’ section and

‘Correlated monopoles’ section).
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. uncorrelated uniform spatial distribution on interval ½0; 0:5�m,

. correlated in phase uniform spatial distribution on interval ½0; 0:5�m.

These configurations are inspired from an experimental application of acoustic imaging
applied to jet noise,56 that is addressed in the following section. Monopole positions corres-
pond to the positions of cells, at the origin of the broadband shock noise. The uniform
distribution could be representative of a turbulent mixing noise. Note that uniform distri-
butions are practically constituted of monopoles with a high density (1mm spacing, i.e. 500
sources between in the interval ½0; 0:5�m).

Uncorrelated monopoles

Results for the configuration with uncorrelated monopoles are drawn in Figure 3. This
configuration can be seen as favorable for all the methods: sources are really punctual
and uncorrelated, which satisfies the hypothesis of conventional beamforming and decon-
volution. In all cases, the results are generally better in the high frequency range, because of
the resolution of imaging methods related to the acoustic wavelength. The sources that are
closer to x¼ 0 are separated above 8 kHz, while sources around x¼ 0.5 are separated above
13 kHz. This observation, common to all results, is due to the fact that the distance between
point sources decreases with x: from about 4.5 cm (wavelength at 7500Hz) between the first
two to 2.6 cm (wavelength at 13 kHz) between the last two, confirming the fact that two
sources are separated when they are more than one acoustic wavelength away from each
other. It is interesting to compare the low frequency behavior of all the methods, some of
them giving a relatively distributed result (beamforming, inverse method, IRLS p¼ 1,
DAMAS) while others give punctual results, but at erroneous places (OMP, IRLS p¼ 0,
NNLS, CLEAN). The methods are also characterized by results with very different back-
ground noise and secondary lobes, for which the inverse method IRLS with p¼ 0 seems to
give especially good results, as well as CLEAN-SC for which the energy recovered outside
the actual source region is significantly lower than CLEAN-PSF.

Correlated monopoles

Results for the configuration with correlated monopoles are drawn in Figure 4. It is inter-
esting to note, when looking at beamforming results, that the interferences complexify the
source map (as compared to the previous case). It is thus expected that the deconvolution
approaches, which assume that the source map is an energetic summation of PSFs, will meet
with difficulties. However, similar remarks as for the previous case (uncorrelated sources)
can be made: at low and mid frequency, the sources are not well separated for all methods.
Some methods (Bayes p¼ 2, IRLS p¼ 1, Damas) return distributed sources, while others
(Bayes p¼ 0, NNLS, CLEAN-PSF) lead to point sources at wrong locations. The frequency
above which sources are separated is higher than in the previous case, illustrating the
increased difficulty of the identification problem when sources are correlated. Once again,
the method giving the most satisfying results in terms of dynamic range is IRLS p¼ 0. It is
also noted that OMP, despite the simplicity of its implementation, gives quite good results at
high frequencies as compared to deconvolution approaches. CLEAN-SC, as expected in this
case, fails to identify several sources because of its implementation based on the source
coherence. In this, configuration, sources are indeed fully correlated with one another,
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which means that all the signal is removed when applying spectral conditioning with respect
to any point of the source map. That’s why only one source is recovered by CLEAN-SC in
such a situation.

Uncorrelated uniform distribution

The third source configuration consists of an incoherent line source between x ¼ ½0, 0:5�m,
results are drawn in Figure 5. This source is constituted of a distribution of uncorrelated
unitary monopoles, with a spatial resolution of 1mm (500 sources). In this case, matrix Sq is
a ð500� 500Þ identity matrix. The methods once again can be split into two families, a first
one leading to a uniform distribution and a second one to clouds of point sources.
Deconvolution approaches give good results, because of the satisfied hypothesis of inde-
pendence between sources. Among deconvolution approaches, DAMAS only seems capable
of recovering an almost uniformly distributed source. CLEAN also gives a continuous
source in the high frequency range, thanks to a relatively low loop gain, equal to 0.1. It
can be noted that deconvolution approaches, especially DAMAS and NNLS, are disturbed
by strong secondary lobes outside the source area. IRLS (p¼ 1) offers an interesting com-
promise between the capability to recover a distributed source and a good dynamic range.
NNLS as well as IRLS (p¼ 0) lead to clouds of monopoles well distributed in the support of
the real source (x ¼ ½0, 0:5�m). However, once again, a characteristic distance is observed
between punctual sources that depends upon the frequency. One must take special care not
to interpret it as a property of the source, but as an effect of the method.

Correlated uniform distribution

The fourth source configuration consists of a line source between x ¼ ½0, 0:5�m, results are
drawn in Figure 6. This source is constituted of a distribution of correlated unitary in-
phase monopoles, with a spatial resolution of 1mm (500 sources). This configuration can
be seen as the 1D baffled piston case. A strong difference appears between inverse methods
and deconvolution: inverse methods recover correctly the uniformity of the source
strengths, while deconvolution approaches are characterized by a spatial envelope whose
maximum around a value of x � 0:2 corresponds to the center of the array. Note that this
envelope is already present on beamforming results, and not corrected by deconvolution.
The inverse method (p¼ 2) and IRLS (p¼ 1) give spatially distributed results, with a better
dynamic range for the latter. The DAMAS result is also somehow distributed, but not
uniformly. Sparse approaches lead to a set of punctual sources instead of a distributed
source, the number of which depending on the frequency: it is worth noting that this kind
of result can lead to misinterpretations concerning the structure of the source distribution.
CLEAN-SC returns, as expected, a unique source in this particular case of a fully corre-
lated source distribution.

Acoustic power estimation

It is not straigthforward to compare results of acoustic imaging methods in terms of inte-
grated source strength. It can be realized in terms of the acoustic power integrated by regions
that can be obtained by calculating the acoustic power associated to each point of the source
grid (monopole sources are considered here). This quantity depends on the source strength
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of the i-th grid point qi and on the pressure generated at the i-th source position by all other
sources p̂i:

wi ¼
1

2�c

jqij
2

4�
�

1

k
I p̂iqið Þ

� �
¼

1

2�c

½Sq�i,i

4�
�

1

k
I
X
j6¼i

gij½Sq�j,i

 ! ! ð17Þ

where �, c, k stand, respectively, for the density, acoustic celerity and wavenumber of the
medium at the considered frequency, and where gij ¼ expð�{krij=ð4�rijÞÞ is the Green’s func-
tion of the point source between points i and j of the source grid separated by the distance rij.

This formulation is used here to obtain the acoustic power distributions from the results
of inverse methods (OMP, Bayes, and IRLS Bayes), for which full source matrices Sq are
estimated, and also to compute the actual acoustic power of the simulated source configur-
ation. For deconvolution methods (DAMAS, NNLS, CLEAN-SC and CLEAN PSF), the
hypothesis of source incoherence is admitted. The second term of equation (17) can thus be

Figure 3. Configuration 1: Uncorrelated monopoles. Color dynamic 30 dB. Horizontal axis: Frequency

in kHz, vertical axis: source position in meters.
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considered as equal to 0, the acoustic power associated to each point of the source grid being

equal to ½Sq�i,i=ð8��cÞ.
The acoustic power map obtained for each method is integrated between 05 x5 0:6 and

compared to the true acoustic power. Ratio between the estimated and true values for each

method is drawn in Figure 7 in dB, for all considered source configurations.
When dealing with uncorrelated source distributions (configurations 1 and 3), the decon-

volution methods (NNLS, DAMAS, CLEAN), relying on the hypothesis of uncorreralted

sources, are correctly assessing the input power. Inverse methods without or with a smooth

sparsity constraint (Bayes p ¼ 2; 1) are systematically underestimating the input power

(approximately 5 dB or 3 dB for p¼ 2 and 1, respectively), as expected (see discussion at

the end of ‘Inverse methods’ section). Inverse methods with a strong sparsity constraint

(OMP, Bayes p¼ 0) do not suffer from this underestimation, but the robustness of the

estimation is less good than deconvolution methods. However, the estimation error of the

Bayesian approach with p¼ 0 remains lower than 1 dB on a very wide frequency range.
Concerning configurations with correlated sources (configurations 2 and 4), deconvolu-

tion results (NNLS, DAMAS, CLEAN-PSF) are overestimating the input power, only in the

low frequency range (<8 kHz) for configuration 2 (correlated monopoles) and on the whole

Figure 4. Configuration 2: Correlated monopoles. Color dynamic 30 dB. Horizontal axis: Frequency in

kHz, vertical axis: source position in meters.
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frequency range for configuration 4 (correlated distribution). This can be explained by the

fact that above 8 kHz, the PSFs of the monopoles of configuration 2 are sufficiently disjoint
so that equation (16) is almost valid even for correlated sources (see discussion in
‘Deconvolution methods’ section). The power estimated using CLEAN-SC is wrong for
configurations 2 and 4, because of the correlation between sources. Results of the inverse

method with a strong sparsity constraint (p¼ 0) are very similar to deconvolution. Results of
OMP for configurations 2 and 4 are very disturbed, highlighting the limitation of heuristic
approaches in the case of correlated sources. Results obtained for configuration 2 without or
with a soft sparsity constraint (p¼ 2 and 1) are the most reliable, particularly the results of

Bayes p¼ 1 which gives a very low error on the whole frequency range.

Application to supersonic jet noise

The various algorithms introduced in this study are now informed with measured pressure

signals. The case of an underexpanded supersonic round jet corresponding to an ideally
expanded jet Mach number Mj ¼ 1:35 is retained to assess these algorithms. The data
were simultaneously acquired during a previous study by André et al.,56 aiming to

Figure 5. Configuration 3: uncorrelated uniform distribution. Color dynamic 30 dB. Horizontal axis:

Frequency in kHz, vertical axis: source position in meters.
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characterize the influence of screech on broadband shock-associated noise. The baseline
nozzle diameter is D¼ 38mm, and screech can be removed by using a notched nozzle. A
picture of the two nozzles is displayed in Figure 8, the full geometry can be found in André
et al.56

Experimental setup

The unheated supersonic jet flow originates from a continuously operating compressor
mounted upstream of an air drier, and exhausts into the 10 m� 8 m� 8 m anechoic
room of the Laboratoire de Mécanique des Fluides et d’Acoustique at Ecole Centrale de
Lyon, France. The facility employed in the present study has already been described in
André et al.56,57 Pressure signals are recorded by a one-dimensional array of 32 PCB
Piezotronics condenser microphones, mounted in normal incidence without protecting
grid. The microphones are irregularly spaced on 70 cm length, as illustrated in Figure 2,
in order to optimize the co-array. The linear array is positioned parallel to the jet axis near
the nozzle exit, at a radial distance of 0.70m. All microphone signals are sampled at
51,200Hz with 30 s duration.

Figure 6. Configuration 4: correlated uniform distribution. Color dynamic 30 dB. Horizontal axis:

Frequency in kHz, vertical axis: source position in meters.
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The efficiency of the notched nozzle as a screech reduction device is illustrated in Figure 9
with the acoustic PSD averaged over all the array microphones. Screech tones can be
clearly observed with the baseline nozzle and have been identfied as sinuous mode B.57

These tones are removed by using the notched nozzle, except for the fundamental frequency
fs ’ 3270 Hz. It must be also pointed out that the two other noise components, that is the
mixing noise and the broadband shock-associated noise, are significantly affected by the
presence of tones.56

Case 1: Baseline nozzle – M¼ 1.35

The algorithms that have been evaluated in ‘Numerical illustrations’ section by using syn-
thetic data are now applied to the supersonic screeching jet introduced above. The first data-
set is obtained with the baseline nozzle. Space-frequency maps are drawn in Figure 10 for all
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Figure 7. Acoustic power estimation error (estimated/true) in dB. Horizontal axis: Frequency in kHz.

Solid blue: uncorrelated monopoles (config. 1). Dotted black: correlated monopoles (config. 2). Dash-dot

pink: uncorrelated uniform distribution (config 3). Dashed red: correlated uniform distribution (config. 4).

Figure 8. View of the two convergent nozzles: notched nozzle (left) and baseline nozzle (right), taken

from André et al.56
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Figure 10. Jet noise result - baseline nozzle – M¼ 1.35. Horizontal lines: positions of shock cells.

Vertical lines: screech frequencies. Color dynamic 30 dB. Horizontal axis: Frequency in kHz, vertical axis:

source position in meters.

Figure 9. Acoustic PSD (dB/Hz) averaged over the 32 microphones, obtained with the baseline nozzle

in solid line, and the notched nozzle in dashed line. The vertical dash-dotted lines indicate screech

frequencies.
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the methods. A first observation, common to all the methods, is that results are very different
when looking either on or outside screech harmonics. On harmonics, results are much less
distributed, and sometimes exhibit strong sources at positions that are outside the expected
source area, for instance around x¼ 0 at the nozzle exit plane for the fundamental frequency
at fs, or between x ¼ �0:05 and –0.2m for the first harmonic at 6500Hz. This may be due to
a specific directivity of the source structure on the second harmonic of screech, with a strong
directivity towards the jet axis,58 generating a potential diffraction contribution by the
mock-up. Concerning the broadband noise component, the source energy is well recovered
inside the expected source area, between x¼ 0 and x¼ 0.5m. A maximum is observed in the
space-frequency map between around 5 to 12 kHz – x¼ 0.15 to 0.40 cm, for all the methods.
A spatial structure is also observed on the broadband shock-associated noise, especially
between 8 and 13 kHz, for shock cells #2 to 6. However, the aim of this work is not to
analyse deeply the source itself, but only to illustrate the strong diversity of results that are
obtained through the different imaging methods. Some methods systematically provide very
sparse results (OMP, IRLS p¼ 0, NNLS), and others systematically distributed results
(IRLS p � 1, Capon). Furthermore, DAMAS and CLEAN seem to be able to recover
either sparse or distributed sources, which is a very interesting property if the a priori of
sparsity is not justified for the whole frequency range. In the present case, it may help to
separate the broadband shock-associated noise from the contribution linked to the inter-
action of turbulence with the shock cell structure (that may be rather sparse) from mixing
noise (rather distributed).

The integrated acoustic power spectra, estimated as described in ‘Acoustic power estima-
tion’ section, are displayed in Figure 11. Two integration regions have been defined,
05 x5 0:3 (upstream part of the jet) and x> 0.3 (downstream part of the jet).
Concerning the broadband part of the power spectra, all methods agree that the two regions
have equivalent integrated acoustic powers above 10 kHz, and that the upstream and down-
stream part seem to dominate between 5 and 10 kHz and below 5 kHz, respectively. More
discrepancies appear at screech tones: the identified power on the dominant harmonic

Figure 11. Jet noise result – baseline nozzle – M¼ 1.35. Acoustic power spectra (dB ref 1e-12 W) of

the identified sources integrated for 05 x5 0:3 (solid blue), x> 0.3 (dashed red). Horizontal axis:

Frequency in kHz.
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(6500Hz), for instance, varies between about 120 and 126 dB, and its contributions to the
two regions of interest are also varying according the different methods.

Case 2: Notched nozzle – M¼ 1.35

The second data-set is obtained with the same underexpanded supersonic jet, but screech
tones have been removed thanks to a notched nozzle. The efficiency of such a device has
already been quantified in the frequency domain (see Figure 9), and the consequences on the
source distribution are assessed by comparing Figures 10 and 12. The same color scale is
used to ease these comparisons. The broadband shock-associated noise is slightly shifted
towards high frequencies, as already mentioned regarding pressure spectra, but a shift in
space in the downstream direction can also be observed. The main lobe between 5 and
12 kHz is now located between x¼ 0.2 and x¼ 0.5m. The spatial structure related to
shock cells is still visible above 9 kHz on almost all maps. However, more cells are visible
for this configuration with the notched nozzle, and cells # 4 to 8 seem to be the major sources
of jet noise.

Figure 12. Jet noise result – notched nozzle – M¼ 1.35. Horizontal lines: positions of shock cells.

Vertical lines: screech frequencies. Color dynamic 30 dB. Horizontal axis: Frequency in kHz, vertical axis:

source position in meters.
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The acoustic power spectra for the notched nozzle case are drawn in Figure 13. The power
is integrated over the same two regions as defined for the baseline nozzle (‘Case 1: Baseline
nozzle – M¼ 1.35’ section). It is clear, comparing Figures 13 and 11, that the center of
gravity of the source has been shifted downstream. All methods agree that the acoustic
power of the downstream part of the jet is 3 to 6 dB louder than the one of the upstream
part. As for the previous case, it seems that the power spectra estimated using inverse
methods without or with smooth sparsity (Bayes p ¼ 2; 1) are few dBs below the ones
estimated by other methods. Inverse methods with strong sparsity constraints (OMP,
Bayes p¼ 0) are in good agreement with deconvolution methods up to 16 kHz.

Conclusion

Several acoustic imaging approaches have been presented in this work, with specific effort
dedicated to the use of a unified formalism. Some of them have been compared in the frame
of a numerical benchmark and of an experimental application, in order to illustrate the
diversity of images of an acoustic source that can be obtained through different methods.
Results have been also compared quantitatively through integrated acoustic power spectra.
It has been shown in the numerical benchmark that the capability of each method to recover
a correct power level depends on the application case (incoherent or coherent source distri-
butions). Methods based on the hypothesis of source incoherence (deconvolution methods)
do not recover the correct power in case of correlated sources. The capability of inverse
methods to recover the correct input acoustic power depends on the amount of sparsity that
is enforced. None of the method is able to recover a correct input power for every source
configuration. The application to the characterization of a supersonic jet noise is particulary
interesting, because the nature of the source distribution depends on the frequency. Sources
are expected to be strongly correlated and discrete on screech tones, partially uncorrelated
and discrete for broadband shock noise and uncorrelated and distributed for mixing noise.
In such a situation, it would be interesting to be able to recover the coherence information as
well as the level of sparsity of the real source. Unfortunately, the different methods are based

Figure 13. Jet noise result – notched nozzle – M¼ 1.35. Acoustic power spectra (dB ref 1e-12 W) of

the identified sources integrated for 05 x5 0:3 (solid blue), x> 0.3 (dashed red). Horizontal axis:

Frequency in kHz.
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on strong hypothesis concerning these two aspects (correlation and/or sparsity). A pragmatic
approach is then to analyse jointly results obtained through different methods in order to
avoid errors and bias that could result from the use of a unique approach.
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Appendix

Notation

A (n� n) matrix of point spread functions.
G (m� n) complex matrix of acoustic transfers.

0L< (diagonal m�m) left weighting matrix (real positive).
� regularization parameter.
p (m� 1) complex vector of acoustic pressure coefficients.
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P (m�m) pressure matrix verifying PP0 ¼ Sp.
q (n� 1) complex vector of source strength coefficients.

�q2 (n� 1) real positive vector, constituted of diagonal terms of Sq.
Q (n�m) source matrix verifying QQ0 ¼ Sq.

0R< (diagonal n� n) right weighting matrix (real positive).
Sp (m�m) pressure cross spectral matrix.
Sq (n� n) source cross spectral matrix.
Sr (m�m) residual cross spectral matrix.
wi acoustic power associated to the i-th source element.
W (n�m) complex matrix of source mapping.
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