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ABSTRACT

Spherical microphone arrays are widespread nowadays, es-
pecially with the advent of techniques for decomposing
acoustic fields on the basis of spherical harmonics (i.e.
Ambisonics). In these approaches, the corresponding ar-
rays require a quadratically increasing number of micro-
phones as the degree of the components to be estimated in-
creases. Besides, for some applications, it is unnecessary
to represent the whole solid angle of the sound field from
the array point of view: for instance as soon as the array
is placed near the boundaries of the acoustic field of study
(i.e. walls in a room). To tackle these issues, one proposes
a geometry which uses the acoustic rigid boundary con-
dition at room walls to decrease the number of required
microphones. With one eighth of a sphere array placed
in the corner of a room, only certain spherical harmonics
are required for the sound pressure field decomposition,
and the microphone number can drop up to 8 times lower
when compared to the full spherical array configuration.
A microphone array prototype having the geometry of one
eighth of a sphere is described, built, and evaluated in a
rigid bounded eighth of an anechoic space.

1. INTRODUCTION
Spherical Harmonics (SH) beamforming is a common

technique for sound field analysis which rely on the sound
pressure field decomposition onto the SHs basis with
Spherical Microphone Arrays (SMA) [1]. This approach
allows to steer a rotationnaly-invariant beampattern in the
whole 4π steradian solid angle. However, in many situa-
tions, especially in rooms, not all these directions are use-
ful for the sound field analysis. For instance, if the SMA
is close to a room wall, all the acoustic sources lie in the
same angular sector from the SMA point of view. In [2],
an approach is proposed to consider only spherical fraction
(SF) domains, bounded by rigid conditions to perform SF
beamforming. It is shown that the sound pressure decom-
position is done onto a sub-basis of SH, called the Spher-
ical Fractions Harmonics (SFH). In this work, a spherical
fraction domain of one eighth, bounded by rigid planes,
is considered. A Spherical Fraction Microphone Array
(SFMA) is designed and evaluated in one-eighth anechoic
chamber. The paper is organized as follows: In Sec. 2, the

SFH Yl,m,1/8 for the eighth of a sphere are recalled. Then,
the SF beamforming equations are presented in Sec. 3. In
Sec. 4 the design of an SFMA with one eighth of a sphere
geometry is described. Details on its building are given in
Sec. 5. An experimental evaluation is carried out in Sec. 6.
The results are presented in Sec. 7 and discussed in Sec. 8.
The paper concludes in Sec. 9.

2. SPHERICAL FRACTION HARMONICS
In [2], the SFH are derived: It is a basis of orthonormal

functions on a rigid-bounded fraction of the unit sphere,
among one eighth-, a quarter- or a half-sphere. It is
shown that the SFHs form sub-basis of SH. In the present
work, one deals with one eighth of spherical domain rigid
bounded with planes x = 0, y = 0 and z = 0 (gray planes
on Fig. 1). The corresponding SFHs are denoted Yl,m,1/8

and are defined by:

Yl,m,1/8(θ, φ) = 2
√

2Yl,m(θ, φ) for (l,m) ∈M1/8.
(1)

In Eq. (1), Yl,m(θ, ϕ) is the fully normalized SH of degree
l and orderm, evaluated at azimuth angle φ and polar angle
θ. The set M1/8 is defined by:

{(l,m) ∈ (N,Z) |m ≤ l ∧ l ∈ 2N ∧m ∈ 2N}, (2)

where the symbol ∧ is the AND logical operator. From
Eq. (2), it can be seen that there is no SFHs Yl,m,1/8 for
odd degree l. The SFHs Yl,m,1/8 number up to degree L,
denoted Q(L) is given by:
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The number Q(L, 1/8) converges to 8 times less the num-
ber of SH, (L+ 1)2 as L increases [2].

3. SPHERICAL FRACTION BEAMFORMING

3.1 Beamforming equations
Beamforming with SFH is shown to be similar to SH

beamforming in [2]. As it is a modal beamforming, the
sound pressure field is firstly decomposed onto the SFH ba-
sis with the Spherical Fraction Fourier Transform (SFFT),
in order to obtain the components b ∈ CQ(L)×1 up to
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degree L. Then, these components are multiplied with
the SFH weights according to a beampattern up to degree
L and are summed to obtain the beamformer output [1].
These operations are given by:

y(θ, φ) = wTb, (4)

where y(θ, φ) is the beamformer output for a steering di-
rection (θ, φ), w ∈ RQ(L)×1 are the beampattern weights
and T is the transpose operator. For a regular beamformer
(i.e. plane wave decomposer [3]) with steering direction
(θ, ϕ), the weights are given by [2]:

wl,m,1/8 = Yl,m,1/8(θ, φ). (5)

Note that in case of SF beamforming, the regular beampat-
tern described by Eq. (5) is not rotationnaly-invariant, as
image beampatterns are generated due to the rigid domain
boundaries. See [2] for more details.

3.2 Response to a plane wave
The SFHs components for a plane wave with Direction

Of Arrival (DOA) (θs, φs) are given by:

bl,m,1/8 = Yl,m,1/8(θs, ϕs). (6)

4. MICROPHONE ARRAY DESIGN
In this section, the design of one eighth of a sphere

SFMA is described.

4.1 Mesh construction

4.1.1 Gauss-Legendre cubature
For the prototype in the present work, the mesh is cho-

sen starting from a Gauss-Legendre cubature rule at de-
gree L [4, p. 66]. This weighted cubature rule can operate
the Discrete Spherical Harmonics Transform (DSHT) up
to a maximal degree L with no error. On the full sphere,
the nodes are positioned with an equal-angle in azimuth
φ, and at zenith angles θ corresponding to the zeroes of
PL+1(cos(θ)). Each node is weighted with the weight αq .
At degree L there are N = 2(L + 1)2 nodes on the full
sphere. The node positions and weights are given by the
following formulas:
φn = (n+

1

2
)

2π

2L+ 2
, n ∈ {0, · · · , 2L+ 1}

PL+1(cos(θq)) = 0, q ∈ {0, · · · , L}

αq =
π

L+ 1

2(1− cos(θq)2)

(L+ 2)2(PL+2(cos(θq))2
, q ∈ {0, · · · , L}

(7)

4.1.2 One eighth of spherical mesh
From Eq. (7), for an odd degree L, there are L+ 1 even

number of roots for PL+1(cos(θ)) = 0. The correspond-
ing directions θq , are grouped by pair, symmetric to plane
z = 0 without possibility of north and south poles direc-
tion. As well, there are an even number of azimuth direc-
tions φn which are symmetrical with respect to the x = 0
and y = 0 planes. Note that the starting angle for n = 0 in

Figure 1: One eighth of a spherical Gauss-Legendre mesh
for L = 5. The full sphere mesh is shown as the union
of gray, blue and red nodes; the eighth of spherical mesh
as the union of blue and red node. The mesh used for the
SFMA prototype is shown in blue. The eigth of spherical
fraction is shown in orange and the rigid bounding planes
x = 0, y = 0 and z = 0 are shown in gray.

Eq. (7) ensures that no nodes will be on the planes x = 0
or y = 0, in order to facilitate the mounting of microphone
during the prototype building. Finally, the resulting mesh
presents symmetries with respect to plane x = 0, y = 0
and z = 0. From the full sphere mesh, by retaining only
the nodes belonging to one eighth of a sphere, one eighth
of a spherical mesh is obtained with a number of nodes
N1/8 = N/8. According to the image source principle [5],
this mesh is able to operate the Discrete Spherical Fraction
Harmonics Transform (DSFHT) on a eighth of a sphere up
to degree L. Note that the node weights αq should be mul-
tiplied by 8 to ensure the orthonormality of Yl,m,1/8. The
full sphere mesh at degree L = 5 with N = 72 nodes is
visible on Fig. 1 as the union of gray, blue and red nodes.
The blue and red nodes only correspond to one eighth of a
sphere mesh with N1/8 = 9 nodes. Note that other mesh-
ing strategies are possible, using an optimization algorithm
as in [6] for instance.

4.1.3 Removing one node
A drawback of the Gauss-Legendre cubature is that it

concentrates nodes close to the poles as it can be seen on
Fig. 1. This can be cumbersome when making the pro-
totype due to the size of the MEMS microphone Printed
Circuit Board (PCB). Moreover, the sound card embed-
ded inside the prototype allows to stream a maximum of
8 channels (see Sec 5.3). For these reasons, it was cho-
sen to use a Gauss-Legendre quadrature up to L = 5, to
take the eighth of the resulting spherical mesh, and to re-
move a node, shown in red in Fig.1. This gives a total of
8 nodes to integrate 6 SFHs Yl,m,1/8. As a consequence,
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the Gauss-Legendre cubature weights in the Eq. 7 can not
be used anymore. The sound pressure projection DSFHT
is then performed as follows:

p = Y†s. (8)

In Eq. (8), s ∈ CN1/8×1 are the sensors pressure sig-
nals, Y ∈ RN1/8×Q1/8(L) is matrix containing the SFHs
evaluated at the nodes directions up to degree L, Y† =(
YTY

)−1
YT ∈ RQ1/8(L)×N1/8 is the Moore-Penrose

pseudo-inverse of the Y and p ∈ RQ(L)×1 are the DSFHT
pressure coefficients. Note that this approach can be used
as long as the number of nodes is greater or equal to
Q(L) [7].

4.1.4 Sound pressure field components estimation
After DSFHT operation, the components p are

weighted with the following radial filters in the case of a
rigid sphere configuration of radius a [8]:

El(ka) = i1−l(ka)2h′l(ka). (9)

In Eq. (9), i =
√
−1, a is the array radius, k = 2πf/c

is the wave number with f the frequency and c the sound
speed. The function h′l is the first derivative, with respect
to argument ka, of the spherical Hankel function of second
kind. Note that such filters present excessive amplification
at low frequencies and higher degree L. A regularized ver-
sion, using the Thikhonov approach [7] is used in practice.
The sound field components b are then obtained by:

b = Ep. (10)

In Eq. (10), E ∈ RQ(L)×Q(L) is a diagonal matrix with
diagonal terms given by El(ka).

4.2 Aliasing error analysis
During the Discrete Spherical Fraction Fourier Trans-

form (DSFFT) of the sound pressure, spatial aliasing oc-
curs [9]. The orthornomality error matrix is good indicator
to assess the aliasing. This matrix is denoted D and it is
given by [7, 8]:

D = Y†Y − I, (11)

where, D ∈ RQ(L)×Q(L′) and I ∈ RQ(L)×Q(L′) is a ma-
trix with ones on the diagonal and zeros elsewhere. The or-
thonormality error matrix for L = 4 and L′ = 10 is shown
on Fig. 2. From Fig. 2, it can be seen that the orthonormal-
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Figure 2: Orthonormality error matrix D for the proposed
8-node mesh.

ity error is negligible up to degree L = 4. Beyond that, er-
rors are sometimes negligible, but some are high enough to
bring spatial aliasing when estimating sound pressure field
components using Eq. (10). Following [8, Eq. 46], the
average aliasing error at capture for plane waves is plotted
versus frequency for an array radius of a = 0.1 m in Fig. 3.
For this plot, the orthonormality errors were taken into ac-
count up to degree L′ = 30. From Fig. 3, it can be seen
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Figure 3: Average aliasing error at capture versus fre-
quency for plane wave, for the proposed 8-node mesh.

that average aliasing error does increase with frequency. If
one takes −3 dB as a maximum acceptable relative error,
the corresponding aliasing frequency is falias ' 4474 Hz.

5. PROTOTYPE REALIZATION
In this section, the realization of a 0.1 m radius, one

eighth of a sphere SFMA is described. The prototype is in-
tended to be easy and low-cost to produce. The one eighth
SF is made with 3D printing. The microphones used are
digital Micro Electro-Mechanical System (MEMS) micro-
phones, pre-soldered on PCB. The acquisition board is in-
tegrated to the assembly and connected to a computer by
Universal Serial Bus (USB). The following sections de-
scribe these different elements in more detail.

5.1 3D Printing
A spherical shell design is chosen, to allow the inclu-

sion, of all the microphone circuitry and the embedded ac-
quisition card, in the prototype. It is realized by Fused De-
position Modeling (FDM) 3D-Printing in PolyLactic Acid
(PLA) plastic. The shell is 15 mm thick with external ra-
dius a = 0.1 m. Its design on OpenScad 1 Computer-
Aided Design (CAD) software is shown in Fig. 4a and the
final printed shell is shown in Fig. 4b.

5.2 MEMS Microphones
The 8 microphones used for the prototype are Knowles

SPH0645LM4H, Integrated Interchip Sound (I2S) pro-
tocol, omnidirectional digital MEMS. 2 They are pre-
soldered on PCB, as evaluation boards manufactured by

1 https://www.openscad.org/
2 https://cdn-shop.adafruit.com/product-files/

3421/i2S+Datasheet.PDF
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Adafruit. 3 Each microphone PCB is clipped on the 3D
printed shell, as shown on the left side of Fig. 4c. The
wiring to the USB Streamer are done using Dupont proto-
type cable, as shown on the right side of Fig. 4c.

(a) (b)

(c)

Figure 4: One eight of a sphere SFMA design and build-
ing. (a) Spherical shell design on OpensCAD software.
(b) The spherical shell built using a FDM 3D printer. (c)
The SFMA prototype with MEMS microphones and USB
streamer embedded.

5.3 Embedded USB streamer
A Mini-DSP© USB Streamer Kit 4 is embedded inside

the 3D printed shell. It is able to synchronize and stream
up to 8 I2S MEMS microphone signals to the computer. It
is visible on the right side of Fig. 4c. A custom-made PCB
was used to easily connect the Dupont cable to the USB
Streamer.

6. EXPERIMENTAL MEASUREMENTS
Once built, the prototype is tested in a rigid bounded

eighth of space lying in an anechoic environment. It is
mounted at the junction of three wooden panels of dimen-
sions 2 × 2 m2 in the LAUM anechoic room, as shown in
Fig. 5. A metallic circular rod allows to place a 2-inches
AuraSound loudspeaker at a radial distance of 1 m from the
SFMA center and various angle of incidence. The loud-
speaker is playing an exponential sweep sine from 200 Hz

3 https://www.adafruit.com/product/3421
4 https://www.minidsp.com/products/

usb-audio-interface/usbstreamer

Figure 5: Experimental layout: The SFMA is placed at the
corner of 3 wooden panels mounted in a anechoic room. A
loudspeaker can move on a eighth of a 1 m radius spherical
surface, centered on the corner.

to 8 KHz in order to estimate the corresponding frequency
responses on each SFMA microphone. Then, Eq. (8) and
Eq. (10) are used to decompose the sound pressure field
onto the SFH Yl,m,1/8 basis.

7. RESULTS
Two DOAs of the acoustic source and two frequen-

cies are chosen for simulation and experimental results.
The angles are (θ1 = 44.8◦, φ1 = 45.2◦) and (θ2 =
67.5◦, φ2 = 27.2◦) and the frequencies f1 = 2500 Hz
< faliasing and f2 = 7500 Hz> falias. The degree of decom-
position is L = 4. The normalized squared beamformer
output |y(θ, φ)|2/|y(θ1,2, φ1,2)|2 is plotted for all possible
steering directions (θ, ϕ) ∈ (0◦, 90◦)× (0◦, 90◦). The re-
sults are shown in Fig. 6. In these figures, the sound source
DOA is shown with a black dot. The maximum of the di-
rectivity map is shown with a circle. The first row corre-
sponds to the theoretical SF beamforming situation, where
the sound field components are those of a plane wave, ac-
cording to Eq. (6). The second and third rows correspond
to the theoretical results of the SFMA meshing proposed in
Sec. 4, also for a plane wave. Finally, the fourth and fifth
lines correspond to the experimental results of Sec. 6.

8. DISCUSSION

Theoretical beamforming For the theoretical beam-
forming situation, the results are independent of frequency.
It can be observed that the direction of the maxima is not
coincident with the the plane wave DOA. In particular, for
the DOA (θ2, φ2) where the angular deviation is important.
This result is expected as a limitation to work in a rigid-
bounded SF domain. Indeed, image beampatterns, sym-
metric to the rigid boundary planes, are generated during
the beamforming procedure and their superposition tends
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(θ1 = 44.8◦, φ1 = 45.2◦) (θ2 = 67.5◦, φ2 = 27.2◦)

Theoretical SF beamforming

Simulated SFMA beamforming
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Figure 6: Beamforming results for two sources DOA (θ1 = 44.8◦, φ1 = 45.2◦) and (θ2 = 67.5◦, φ2 = 27.2◦) and the
frequencies f1 = 2500 Hz and f2 = 7500 Hz. The normalized squared beamformer output |y(θ, φ)|2/|y(θ1,2, φ1,2)|2 is
plotted for all possible steering directions (θ, ϕ) ∈ (0◦, 90◦)× (0◦, 90◦).
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to deflect the position of the SF resulting beampattern max-
imum. This phenomenon is studied in more detail in [2].
In particular, the SF beampattern can be seen as the sum of
eight free-field beampatterns. The free field beampattern
Full Width at Half Maximum (FWHM), denoted Θ, will
govern the position of the resulting maxima. In particu-
lar, at degree L = 4, a free-field beampattern FWHM is
around Θ ' 52◦. When the plane wave DOA (θ1,2, φ1,2)
is at an angular distance of a rigid boundary ≤ Θ/2 , the
resulting maxima will snap on the boundary. This is the
case for (θ2, φ2), on the first row, second column of Fig. 6.
The reader is referred to [2] for more details on this phe-
nomenon.

Simulated SFMA beamforming When a SFMA is
used, spatial sampling introduces a spatial alasing phe-
nomenon, as specified in Sec. 4.2. Compared to the theo-
retical situation, the results become frequency-dependent.
For the frequency f1 < falias, when the degree L = 4,
aliasing is negligible, as can be seen in Fig. 3. Thus, sim-
ilar results to the theoretical situation are found, as can be
observed by comparing the second and first line of Fig. 6.
However, for the frequency f2 > falias, the sound pressure
field components of degree l > 4 aliases strongly on the
lower components (see Fig. 3). This results in the gen-
eration of side lobes, which, when added to their image,
degrades strongly the results, as it can be observed when
comparing the first and third rows of Fig. 6.

Experimental SFMA beamforming Comparing the
fourth and fifth lines with the second and third lines of
Fig. 6, it can be observed that the experimental results are
very similar to those simulated for the SFMA, although the
acoustic source used is not a plane wave, and the wooden
walls may not be perfectly rigid. In particular, it is interest-
ing to observe the similarity of the results for the frequency
f2 > falias, beyond the aliasing frequency.

9. CONCLUSION
In this work a geometry of a microphone array in one

eighth of a sphere was presented. By inserting this device
at the junction of three reflecting walls, it is possible to
operate SF beamforming in an eighth fraction of a sphere.
The proposed mesh allows with 8 microphones to make a
SF beamforming up to the degreeL = 4. An aliasing study
has been done, a prototype has been realized and tested in
experimental conditions. The results are in a good agree-
ment with the theory. Future work aims at studying the
behavior of SFMA in a real environment (living room).
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