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Spherical Fraction Beamforming
Pierre Lecomte , Manuel Melon , and Laurent Simon , Member, IEEE

Abstract—This paper describes a beamforming method for one-
eighth, quarter, and half-spaces, bounded by rigid planes. The
proposed approach is based on the spherical fraction harmonic de-
composition, similar to that of spherical harmonics decomposition
for the whole sphere. The definition of these functions is given in
detail. It is also proved that they form a sub-basis of the spherical
harmonics, with a fraction-dependent normalization gain, which
makes it easy to adapt from existing spherical harmonics imple-
mentation. Taking advantage of the rigid boundary condition, it
is shown that the number of spherical fraction harmonics used
to construct a beamformer is less than the number of spherical
harmonics used in the case of an unbounded domain. However,
image beams are generated and can degrade the performance of
the beamformer. For the response to a plane wave, it is shown that
the angular error on the maximum, as well as the directivity factor
are a function of the spherical fraction under consideration, the
plane wave direction of arrival and the degree of decomposition
L. As the latter increases and the spherical fraction is large, these
two parameters are converging towards the unbounded case values
with fewer functions to evaluate. An application case is presented.

Index Terms—Beamforming, spherical harmonics.

I. INTRODUCTION

THE decomposition of an acoustic field on the basis of
Spherical Harmonics (SH)s, relying on the Spherical

Fourier Transform (SFT), is a widespread technique that serves
as an entry point for the analysis of acoustic fields [1] for their
reproduction [2] or for beamforming applications [3]. In the
latter case, the principle consists in weighting the components
of the SFT before summing them to obtain the beamformer
output signal. The weights describe a beampattern. It is relatively
straightforward to form rotationally invariant and axisymmetric
beampatterns [4], when approaches such as delay-and-sum do
not offer this characteristic [5]. By using a Spherical Micro-
phone Array (SMA), it is then possible to analyze all directions
homogeneously in the 4π steradian solid angle.

In many situations, however, not all these directions are
relevant for sound field analysis. For example, as soon as the
decomposition point is close to the limits of the acoustic domain
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of interest, as in a room for example. In these situations, the
sound sources all lie within the same angular sector from the
SMA point of view. For example, a SMA placed on a table for
teleconferencing applications has all its sources in the upper
half space. Thus, the lower hemisphere is not relevant for the
analysis and the reflections that occur there may even degrade
the beamforming performance.

To overcome this difficulty, one solution is to consider only a
part of the solid angle with a rigid condition at the boundaries
of the domain [6], [7]. In order to operate the decomposition
in this bounded space, a new basis of harmonics has to be
calculated [8]–[10]. Another approach introduces a linear com-
bination of SHs, orthonormal over the considered space, by using
a Singular Value Decomposition (SVD) of the Gram matrix: the
Spherical Slepian Functions [11], [12]. A comparative study
between these two approaches is proposed in [13].

In this paper, a theoretical study is conducted for beamforming
in the following domains: one-eighth, quarter and half-spaces.
Each domain is bounded by rigid planes. Such configurations
occur frequently in rooms: for instance, a corner of room con-
sisting of the intersection of two vertical walls and the ceil-
ing/floor is one-eighth of a space. Similarly, at the junctions
between two walls, or a wall and the floor/ceiling, a quarter
of space is described. Finally, the domain bounded by a single
wall/ceiling/floor is an half-space. A possible application con-
sists in placing a Spherical Fraction Microphone Array (SFMA)
on one wall or at some wall junctions to carry a sound scene
analysis through beamforming. Wide range of applications are
then possible, ranging from medical supervision of the elderly,
to intrusion detection, voice commands, etc.

More specifically, it is shown that the angular solution of the
Helmholtz equation, i.e., the equivalent of the SFT on a Spherical
Fraction (SF), is obtained by using a sub-basis of SHs, with
a fraction-dependent normalization gain. These functions are
called the Spherical Fraction Harmonics (SFH)s in this paper. As
a consequence, the number of SFHs used to form a beampattern
is less than the number of SHs, in the case of the unbounded do-
main. Then, it becomes possible to carry out an acoustic analysis
using SFHs and SFMAs with minor modifications to existing
SH implementations. However, the rigid boundary condition of
the domain introduces image beampatterns whose main lobes
can superimpose themselves on the main beampattern if the
resolution of the decomposition is too low. The study of this
compromise is carried out in this paper. Indeed, the number of
functions to be manipulated represents the minimum number
of microphones to be used, when designing a SFMA [8]. Thus,
it is important to quantify the number of harmonics that can
be spared on a SF configuration in comparison with the whole
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spherical domain. The paper is organized as follows: in Section II
the different definitions and mathematical notations used for
the demonstrations are introduced. In particular, the different
symmetries of SHs are demonstrated, using the Appendix A.
From these symmetry relations and the Neumann boundary
condition, the definition of SFHs is established in Section III and
Appendix B. In particular, it is shown that SFHs form a basis of
orthonormal functions in the SF (Appendix C). Similarly, it is
shown that for the same degree of decomposition L, the number
of these functions (Appendix D) decreases with the SF size in
comparison with the whole sphere. Finally, it is demonstrated
that the decomposition formulas of a sound pressure field in
the SF are similar to those for the whole sphere. In Section IV,
the beamforming output for a plane wave traveling in the SF
is studied. The beampattern used is that of a directional Dirac,
which then gives an analogy with the plane wave decomposition
using SHs [14]. In comparison with the whole sphere, it is shown
that image beampatterns appear symmetrically with respect to
the domain boundaries. These images are superimposed and can
degrade the performance of the beamformer in terms of the
position of the maximum and of the Directivity Factor (DF).
These two criteria are studied respectively in Secs. IV-B and
IV-C. It is shown that the performance of the beamformer in
the SF domains converges towards that of the whole sphere
as the degree of truncation L increases and as the SF is large.
Finally, in Section V, a case study is carried out for an acoustic
field composed of two plane waves. The paper concludes in
Section VI.

II. DEFINITIONS AND NOTATIONS

In this section, the definitions, notations and useful relation-
ships used throughout the paper are introduced.

A. Spherical Coordinate System

In the spherical coordinate system, a point at r = (r, θ, φ) is
located by its radius r, with r ∈ [0,∞[, its azimuth angle φ, with
φ ∈]0, 2π] and its zenith angle θ, with θ ∈ [0, π], such that:⎧⎪⎪⎨

⎪⎪⎩
x = r sin(θ) cos(φ),

y = r sin(θ) sin(φ),

z = r cos(θ).

(1)

B. Spherical Fraction

a) Euclidian space division: In this paper, the three-
dimensional Euclidian space and three possible divisions with
planesx = 0, y = 0 and z = 0 are considered. One denotes such
domains Oq with q ∈ {1/8, 1/4, 1/2, 1}. Their definition is as
follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O1/8 = {(x, y, z) ∈ R3|x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0},
O1/4 = {(x, y, z) ∈ R3|y ≥ 0 ∧ z ≥ 0},
O1/2 = {(x, y, z) ∈ R3|z ≥ 0},
O1 = {(x, y, z) ∈ R3}.

(2)

Fig. 1. Different Spherical Fraction domains Fq under consideration. The Oq

plane boundaries are shown in gray.

In (2), (x, y, z) are the Cartesian coordinates, ∧ is the AND
logical operator. The domains O1/8,O1/4,O1/2 and O1, cor-
respond to an eighth, a quarter, a half and the entire three-
dimensional Euclidean space respectively. Note that the defini-
tion of Oq for q ∈ {1/8, 1/4, 1/2} is not unique. Indeed, when
we divide the space O1 with the planes x = 0, y = 0 and z = 0
it is possible to construct 8 eighths of space, 12 quarter-spaces
and 6 half-spaces. The demonstrations proposed in the rest of
this work can be adapted to any of these configurations.

b) Spherical Fraction: From each domain Oq, the Spherical
Fractions (SF)s are defined by adding a condition on unit radial
distance to the origin. The domains Fq are given by:

Fq = Oq ∩ {x2 + y2 + z2 = 1}. (3)

and are depicted in Fig. 1. Consequently, the SFs considered in
this work correspond to an eighth, a quarter, a half sphere and
the whole unit sphere.

C. Vector Space L2(Fq)

A vector space of square-integrable functions for each SF
domain Fq is defined. This vector space is denoted L2(Fq).

a) Inner product. Let f and g be two functions defined in
L2(Fq). The inner product in L2(Fq) is defined as [3]:

〈f, g〉Fq
=

∫
Fq

f(θ, φ)g(θ, φ) sin(θ)dθdφ. (4)

b) Norm: In L2(Fq), the norm of a function f is given by:

‖ f ‖Fq
=

√
〈f, f〉Fq

. (5)

D. Spherical Harmonics

The homogeneous Helmholtz equation is given by:


p(r, ω) + k2p(r, ω) = 0, (6)

where p is the acoustic pressure, k is the wave number. The
Laplace operator is denoted 
. Equation (6) is solved in the
spherical coordinate system by using a separation of vari-
ables [15, p. 184] for the whole unit sphere (i.e., the domain
F1 in (3)). The angular solutions form a basis on L2(F1) called
the SHs. The SHs are defined by:

Yl,m(θ, φ) =

{
Nl,|m|Pm

l (cos(θ)) cos(mφ) for m ≥ 0

Nl,|m|Pm
l (cos(θ)) sin(mφ) for m < 0

,

(7)
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where Pm
l are the associated Legendre polynomial of the first

kind of degree l and order m, with {(l,m) ∈ (N,Z)||m| ≤ l}.
Nl,|m| is a normalization factor ensuring the orthonormality of
the SHs on the unit sphere. It is given by:

Nl,|m| =

√
(2− δm)(2l + 1)

4π

(l − |m|)!
(l + |m|)! , (8)

where δm is the Kronecker delta function. In this paper, the real
SHs definition is used, but the method is valid for complex SHs
as well. The SHs form a basis on L2(F1) and the following
relationships are provided:

Orthonormality: For (l,m) and (l,′ m′) pairs, one has:

〈Yl,m, Yl,′m′ 〉F1
= δl,l′δm,m′ . (9)

b) Spherical Fourier Transform: Let f be a function defined
in L2(F1). It can be decomposed on the SHs basis as:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

fl,mYl,m(θ, φ), (10)

with the coefficients fl,m given by:

fl,m = 〈f, Yl,m〉F1
. (11)

Equations (10) and (11) are the inverse and direct SFT respec-
tively.

c) Parseval’s relation: The Parseval’s relation is given by [3]:

〈f, f〉F1
=

∞∑
l=0

l∑
m=−l

f2
l,m. (12)

E. Symmetry Planes for the Spherical Harmonics

1) Azimuth Symmetry Planes: Equation (7) shows that the
SHs have a periodicity 2π

|m| for m ∈ Z∗ along the azimuth angle
φ. According to the symmetries of the cosine and sine functions,
the SHs have the azimuth even symmetry planes such that:⎧⎪⎪⎨

⎪⎪⎩
{φ =

2nπ

m
, n ∈ Z} for m > 0,

{φ =
2nπ

m
+

π

2m
,n ∈ Z} for m < 0.

(13)

In the same way, they have the azimuth odd symmetry planes
such that:⎧⎪⎪⎨

⎪⎪⎩
{φ =

2nπ

m
+

π

2n
, n ∈ Z} for m > 0,

{φ =
2nπ

m
, n ∈ Z} for m < 0.

(14)

Note that for the case l = m = 0, the corresponding SH, Y0,0 =
1 has an infinite number of symmetry planes.

2) Zenith Symmetry Plane: The associated Legendre poly-
nomials have the following parity relationship [16, 12.97]:

Pm
l (cos(θ)) = (−1)(l+m)Pm

l (− cos(θ)), (15)

which gives the zenith even symmetry plane such that:{
θ =

π

2

}
for (l +m) ∈ 2Z. (16)

TABLE I
CONDITIONS ON INDICES l AND m FOR THE CORRESPONDING SH TO PRESENT

THE SYMMETRY PLANE DEFINED IN THE LEFT COLUMN

As well, the zenith odd symmetry plane is such that:{
θ =

π

2

}
for (l +m) ∈ 2Z + 1. (17)

3) x = 0, y = 0, z = 0 Symmetry Planes By using (1), the
conditions x = 0, y = 0 and z = 0 are equivalent on the unit
sphere to:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 0 ⇒ φ =
π

2
∨ φ =

3π

2
∨ θ = 0 ∨ θ = π

y = 0 ⇒ φ = π ∨ φ = 2π ∨ θ = 0 ∨ θ = π

z = 0 ⇒ θ =
π

2

, (18)

where ∨ stands for the logical OR. In order to find the SHs
exhibiting symmetry planes x = 0, y = 0 or z = 0, one looks
for the azimuth and zenith symmetry planes of (13), (14), (16)
and (17) which respect the conditions of (18). By replacing θ and
φ in (13), (14), (16) and (17) into (18), one obtains a set of indices
l and m such that the corresponding SHs present the symmetry
planes x = 0, y = 0 or z = 0. The demonstration is carried out
in Appendix A. The results are summarized in Table I.

Note that the relationships in Table I for even symmetry
were extrapolated in [17] from the SHs expression in Cartesian
coordinate system at the first degrees. For the three planesx = 0,
y = 0 and z = 0, if the sets of indices (l,m) for even and
odd symmetries are joined together, one shows that {(l,m) ∈
(N,Z)||m| ≤ l}, which represents all possible SH indices. This
means that for any SH Yl,m, the planes x = 0, y = 0 and z = 0
are either odd or even symmetry planes.

III. SPHERICAL FRACTION HARMONICS

In this section, the SFHs are derived, which are the angular
solutions of the Helmholtz equation in a SF Fq bounded by
Neumann conditions. It is shown that they form a basis of vector
space L2(Fq). It should be noted that the SFHs established in this
paper correspond to a particular case in a more general frame-
work of establishing a complete basis of functions on portions of
spheres bounded by rigid surfaces of fixed coordinates, studied
in [10].

A. Rigid Boundary Condition and Symmetry Planes

From Euler equation, imposing a rigid boundary condition
for the pressure means that the perpendicular particle velocity
vanishes. This results in Neumann condition on the boundaries.
One considers the angular part of the Helmholtz equation solu-
tion, i.e., the SHs of (7): in order to respect the rigid boundary
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TABLE II
SET Mq DEFINITION. NUMBER Qq(L) UP TO DEGREE L SFHS NORM Nq . �·� IS THE FLOOR FUNCTION

condition, one should have a zero-valued pressure derivative
with respect to θ and φ respectively. Moreover, from (7), the
SHs are C∞ class functions, as the product of polynomials
and trigonometric functions. Besides, they exhibit several even
symmetry planes as shown in Section II-E. Thus, on these planes,
their normal derivative is necessarily zero. Therefore, for the
SHs, looking for a zero-valued normal derivative is equivalent
to looking for particular even symmetry planes.

B. Spherical Fraction Harmonics

For each SF Fq , a SHs family is extracted from the SHs basis
by only keeping those that have a null derivative with respect to
θ and φ on the Fq domain boundaries. Such harmonics are called
SFHs and denoted Yl,m,q. They are defined on L2(F1) by:

Yl,m,q(θ, φ) = NqYl,m(θ, φ) for (l,m) ∈ Mq. (19)

In (19), Nq represents the SFH norm which is derived in Ap-
pendix C, and Mq are sets defined in the next section.

C. Sets Mq

As shown in Section III-A, finding the harmonics Yl,m,q that
fit with the rigid boundary condition is equivalent to finding the
SHs that have even symmetry planes containing the Fq domain
boundaries. The Fq domain definition is recalled from (3).
Then, using the corresponding conditions on (l,m) indices in
Table I, a set of (l,m) indices is build and denoted Mq . This
set gives the SH indices (l,m) to construct the SFH family
Yl,m,q. The derivation of the sets Mq is given in Appendix B for
q ∈ {1/8, 1/4, 1/2}. The results are summarized in Table II.

D. SFHs Orthonormality

As the SFHs family Yl,m,q is a subset of the SH family, they
are orthogonal on L2(F1). To prove that they are orthonormal
on L2(Fq), their symmetry properties are used. An example of
demonstration is carried out in Appendix C. As the family Yl,m,q

is orthogonal, it is a linear independent family in L2(Fq) and one
has:

〈Yl,m,q, Yl,′m,′q〉Fq
= δl,l′δm,m′ . (20)

Note that orthonormality is ensured by norm Nq in (19), whose
values are given in Table II.

E. SFHs Completeness

The last step to prove that the SFs family Yl,m,q forms a
complete basis of L2(Fq) is to show their spanning property
over L2(Fq). This proof of completeness can be done using

the Sturm-Liouville theory [18, p. 79]. In [10], it is described
how this theory is applied for the case of harmonic functions
on spherical portions with Neumann or Dirichlet boundary
conditions. Consequently, any function f defined on L2(Fq),
can be represented as a linear combination fl,mYl,m,q such that:

f(θ, φ) =

∞∑
l=0

l∑
m=−l

(l,m)∈Mq

fl,mYl,m,q(θ, φ), (21)

where fl,m are the combination weights. To find the latter, let
multiply both sides of (21) by Yl,′m,′q , integrate the result over
Fq and use (20) to show that:

fl,m = 〈f, Yl,′m,′q〉Fq
. (22)

Equations (21) and (22) are the inverse and direct SF Fourier
Transforms (SFFT) respectively. Finally, the family Yl,m,q is
orthonormal and spans the vector space L2(Fq), thus it is a
complete basis of L2(Fq). In particular, the Parseval relation of
(12) is valid.

F. SFHs Number up to a Degree L

Up to L, the SFHs number Qq(L) for each SF Fq is given by:

Qq(L) =
L∑

l=0

l∑
m=−l

(l,m)∈Mq

1. (23)

Closed-form expressions are given in Tab II. Their derivation
is done in Appendix D. The number Qp(L) is plotted from
L = 0 to L = 30 in Fig. 2. From Fig. 2(a), one observes that
Qq(L) ≤ Q1(L). That is to say, the SFHs number Qq(L), for
the bounded domains Fq is less than the number of SHs for the
unbounded domain F1. In addition, as shown in Fig. 2(b), the
ratio Qq(L)/Q1(L) decreases with increasing L and converges
to the SF number q. For instance, the domain F1/8 represents
one eighth of the domain F1, i.e., the unit sphere. Thus, the
number Q1/8/Q1 converges to 1/8 when L, increases. Simi-
larly, the numbers Q1/4/Q1, Q1/2/Q1 converge to 1/4 and 1/2
respectively.

Thus, by bounding the spherical domain, one can significantly
reduce the number of harmonics to decompose the sound pres-
sure field. This is of great interest as the SFHs number represents
the minimum number of microphones in a SFMA for an accurate
decomposition [8].
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Fig. 2. (a) Qq : SFHs number up to degree L. (b) Ratio Qq/Q1 versus
maximum degree L.

G. Sound Pressure Field Representation With SFHs

Let us consider a domain Oq from (2). Following the same
method as for the free field case [15], the solutions of the
homogeneous Helmholtz equation (6) are:

p(k, r, θ, φ) =
∞∑
l=0

l∑
m=−l

(l,m)∈Mq

iljl(kr)bl,m,pYl,m,q(θ, φ). (24)

In (24), i =
√−1, and jl are the spherical Bessel functions of

degree l. The coefficients bl,m are given from the pressure SFHs
coefficients pl,m using (22) and the orthonormality of SFHs (20):

pl,m,p = iljl(kr)bl,m,p. (25)

Plane wave representation. Similarly to the free field
case [19], a unit-amplitude plane wave in the rigid bounded
domain Gq , with the Direction Of Arrival (DOA) (θs, φs), is
represented as follows:

p(k, r, θ, φ) =

∞∑
l=0

l∑
m=−l

(l,m)∈Mq

iljl(kr)Yl,m,q(θs, φs)Yl,m,q(θ, φ),

(26)

which gives, by identification with (24) the following pressure
SFFT coefficients:

bl,m,p = Yl,m,q(θs, φs). (27)

To prove (26), the image source approach [20] is used. In the
rigid-bounded domain Oq, the acoustic pressure due to a source
is equivalent to the sum of the acoustic pressure of the source in
the unbounded domain plus the acoustic pressure of the image
sources which are placed symmetrically with respect to the rigid
boundaries. An example of demonstration is carried out for the
rigid-bounded domain O1/2 in Appendix E.

IV. SF BEAMFORMING

In this section, SFH beamforming on the different SF Fq

is studied. The SF beamforming is a modal beamforming [4].
Therefore, the beamformer output y(θ, φ) is a weighted sum of
coefficients bl,m in (25):

yq(θ, φ) =

∞∑
l=0

l∑
m=−l

(l,m)∈Mq

wl,m,pbl,m,p. (28)

In (28), wl,m,p are the SFH weights for a beampattern w(θ, φ).

A. Beamformer Output for a Unit-Amplitude Plane Wave

A directional Dirac is chosen as weighting function, with the
steering angle (θs, φs), such that:

w(θ, φ) = δ(θs − θ)δ(φs − φ). (29)

From (22), it follows:

wl,m,p = Yl,m,q(θ, φ). (30)

Finally, from plane wave coefficients, (27) and weights of (30)
applied to (28), the following beamformer output express as:

yq(θ, φ) =
∞∑
l=0

l∑
m=−l

(l,m)∈Mq

Yl,m,q(θ, φ)Yl,m,q(θs, φs). (31)

This latter equation corresponds to the Inverse SFFT of (21)
for a plane wave with DOA (θs, φs). It is also referred to as
the plane wave decomposition for F1 domain [14]. (31) can be
further simplified with Legendre Polynomial in the case of F1,
by using the addition theorem of SHs [16]:

y1(Θ) =

∞∑
l=0

2l + 1

4π
Pl(cos(Θ)), (32)

where Pl represents the Legendre polynomial of degree l. The
angle Θ is the angle between directions (θ, φ) and (θs, φs). It is
given by:

cos(Θ) = sin(θ) sin(θs) cos(φ− φs) + cos(θ) cos(θs). (33)

In practice, (31) is truncated to a maximum degree L. This trun-
cation determines the beampattern main lobe width and side lobe
heights [14]. The normalized magnitude |yq(θ, φ)/yq(φs, φs)|
is plotted for (θ, φ) ∈ F1 for two maximum degrees L = 4 and
L = 6 and for two plane waves with DOA (θs = 45◦, φs = 45◦)
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Fig. 3. Normalized magnitude |yq(θ, φ)/yq(φs, φs)| for the different SF Fq , for a plane wave with DOA (a) (θs = 45◦, φs = 45◦) and (b) (θs = 27◦, φs =
45◦). First row L = 4, second row L = 6. The gray planes show the domain Oq boundaries. For each index q, the function is plotted in gray when outside the
corresponding domain Fq . The dark/purple regions are of negative sign and the bright/yellow region are of positive sign.

and (θs = 27◦, φs = 45◦) in Fig. 3. For sake of comparison,
the plane wave DOAs (θs, φs) are chosen in F1/4, such as it is
contained in all the SF Fq .

a) Observations: The rigid boundaries impact on the beampat-
tern shapes and performance in terms of directivity and position
of the maximum, in comparison with the free field case given
at the right column of Fig 3. As q increases, or equivalently as
the SF Fq is less bounded, the beampattern shape tends towards
that of F1. In the same way, one can notice that increasing L
decreases the influence of the rigid boundaries on the shape of
the beampattern, which tends more rapidly towards the one of
the free field case in F1. Finally, by comparing Figs. 3(a) and
3(b), one notices that the plane wave DOA (θs, φs) influences
the beampattern shape for SF F1/8,F1/4,F1/2. For the free field
case (F1), the shape of the beampattern is invariant to the plane
wave DOA [4].

b) Interpretation: Following the image source approach, the
beampatterns obtained in SF Fq can be considered as the super-
position of free field beampatterns in (32) for plane waves whose
DOAs are symmetric with respect to the domain boundaries [6].
Depending on the plane wave DOA, the superposition and
interference with the image beampatterns influence the resulting
shape in Fq and break the rotational-invariance property that one
has in the free field case [4]. This influence depends on the plane
wave DOA with respect to the Fq domain boundaries and to the
beampattern main lobe width and side lobes amplitudes. For a
beampattern in free field, the main lobe width decreases as well
as the side lobes amplitudes when the degree L increases [14].
Thus, as the degreeL increases, the interferences with the image
beampatterns outside Fq decrease, which can be observed by
comparing rows L = 4 and L = 6 in Fig. 3. However, it is
important to remember that, to build beampatterns in the domain
Fq , the more bounded the SF Fq is, the less SFHs are needed to
build a beampattern as shown in Fig. 2. In the following sections,
one details the beampattern performance as a function of the SF
Fq , the degree L and the plane wave DOA (θs, φs).

B. Angular Error

A first criterion to assess the quality of the proposed method
is the angular error between the beampattern maximum and
the plane wave DOA (θs, φs). As the beampattern used is
a directional Dirac (29), in the free field case, its maximum
corresponds to the plane wave DOA (θs, φs). However, for the
other SFs Fq with q ∈ {1/8, 1/4, 1/2}, the image beampatterns
may interfere constructively, which tends to deflect the result-
ing beampattern maximum. The direction of this maximum is
denoted by (θq, φq). The angular error, denoted Ψq , is derived
from (33) as:

Ψq = arccos (sin(θq) sin(θs) cos(φq − φs)

+ cos(θq) cos(θs)) . (34)

The angular error Ψq is plotted for L ∈ {4, 8, 30}, and for
q ∈ {1/8, 1/4, 1/2} in Fig. 4. Note that Ψ1/4 is symmetrical
with respect to the plane φs = 90◦ and Ψ1/2 does not de-
pend on the angle φs. Therefore, for all SF, Ψ is plotted for
(θs, φs) ∈ (0, 90◦)× (0, 90◦). From Fig. 4, it can be observed
that the angular error Ψq increases as one moves away from
the domain boundaries. This increase reaches a maximum and
then Ψq falls abruptly down to a zone of very low error. The
latter widens as L increases. Likewise, the maximum error Ψq

decreases and its position moves closer to the limits of the
domain as L increases. The increase of Ψq as the plane wave
DOA (θs, φs)moves away from the domain boundary shows that
the main lobe superposition from image beampatterns tends to
keep the maximum of the resulting beampattern on the domain
boundary. This can be seen on the example of Fig. 3(b) forL = 4
and q = 1/8 or q = 1/4.

To better analyze this, let us consider the case where only one
image beampattern is present, as for q = 1/2. Then, the resulting
beampattern is the superposition of two free field beampatterns
of (32) for two plane waves whose DOAs are separated by
an angle Θ, as given in (33), and symmetrically distributed
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Fig. 4. Angular error Ψ between the beampattern maximum (θq , φq) and
the plane wave DOA (θs, φs), for all possible DOAs (θs, φs) ∈ (0, 90◦)×
(0, 90◦) for the SF Fq with q ∈ {1/8, 1/4, 1/2} and for L ∈ {4, 8, 30}.

around θ = 90◦. Therefore, the angleΘ/2 is the angular distance
between the rigid boundary and the main beampattern. In Fig. 5,
the two free field beampatterns are represented as a function of
angle θ for L = 8, Θ = 20◦ (Fig. 5(a)) and Θ = 40◦ (Fig. 5(b))
by the dotted and dashed curves respectively. The symmetry
plane corresponding to θ = 90◦ is represented by the thick line.
The resulting beampattern is the sum of these two functions
and is shown as a solid line. From Fig. 5, it can be seen that
resulting beampattern present a single global maximum, located
at θ = 90◦, when:

Θ ≤ Θlim, (35)

where Θlim is the Full Width at Half the Maximum (FWHM) of
the free field beampattern of (32). Beyond this angular distance,
the resulting beampattern has two maxima located symmetri-
cally with respect to the rigid boundary (Fig. 5(b)). The quantity
Θlim is plotted versus the degree L in Fig. 6. For instance, at
L = 8 one has Θlim � 28.33◦, for the SF F1/2, this results in a
limit zenith angle θs,lim = 90◦ −Θlim/2 � 75.83◦ (see Fig. 4).
For this angle, the maximum is still at θ = 90◦ and the angular
error Φ1/2 reaches its maximum as observed in Fig. 4. When
Θ ≥ Θlim the influence of the image beampattern main lobes
decreases and beyond the first zeros of the free field beampattern,
the angular error Ψq is governed by the image beampattern side
lobes superposition. This behaviour is similar for the SFs with
q ∈ {1/8, 1/4} even if more image beampatterns are superim-
posed in these cases. More specifically, this analysis is intimately
linked to the resolution given by the plane wave decomposition
with SHs [14]. In the free field case, if more than one plane
wave is present, the resolution that allows to discriminate the
directions of two plane waves is given by Θlim � π

L , when using

the Rayleigh criterion [3]. The situation is similar here when the
SF is rigid-bounded: this introduces several image plane waves
which can compromise the analysis when the angles between
the plane waves are less than the resolution at degree L.

a) Mean value: By averaging the angular error Ψq of (34) for
all possible DOAs in the solid angle offered by the SF Fq , one
obtains the mean value, denoted Ψq and given by:

Ψq =
1

q4π

∫
Fq

Ψq(θs, φs) sin(θs)dθsdφs. (36)

This quantity is plotted versus maximum degree L in Fig. 7,
where it can be observed that the average angular error decreases
rapidly as the degree increases. Indeed, as discussed in Section
IV-B, when L increases, the main lobe width decreases as well
as the amplitude of the side lobes. As a result, the influence of the
image beampatterns decreases and the mean angular error on the
maximum is smaller. This criterion is useful when designing a
SF regular beamformer. It must be set against the numberQq(L)
of SFHs involved. For instance, the angular error falls below 1◦

from L = 24 for F1/8, L = 20 for F1/4 of sphere and L = 15
for F1/2 for a gain of about 6.87, 3.64, 1.88 times fewer SFHs
than SHs respectively.

C. Directivity Factor

A second criterion for estimating the performance of the
proposed method is the Directivity Factor (DF). It is given by
the following formula [3]:

DFq(θs, φs) =
|yq(θs, φs)|2

1
4π

∫
Fq

|yq(θ, φ)|2 sin(θ)dθdφ
, (37)

where yq is defined in (31). Equation (37) can be interpreted as
the Signal-to-Noise Ratio (SNR) of an output signal when the
observation direction corresponds to the plane-wave DOA and
a spherically isotropic noise sound field. When working in the
bounded domains, i.e., for q ∈ {1/8, 1/4, 1/2}, the noise field
is evaluated for a SF, and not on the whole sphere. Therefore,
the denominator of (37) reduces which results in an improved
DF [21]. For instance, for L = 0, the beampattern shape is
omnidirectional and identical for all SFs Fq. However, one has
DF1/8 = 8 and DF1 = 1, as the isotropic noise field is evaluated
on a spherical region 8 times smaller for q = 1/8 in comparison
with q = 1. By replacing yq(θ, φ) in numerator of (37) from
(31), and by using Parseval relation of (12) for the denominator,
it can be shown that:

DFq(θs, φs) = 4π

∞∑
l=0

l∑
m=−l

(l,m)∈Mq

Yl,m,q(θs, φs)
2. (38)

In the case of F1, up to a maximum degree L, one has:

DF1 = Q1(L) = (L+ 1)2. (39)

Equation (39) is obtained by using the addition theorem of
SHs [16]. Therefore, in the case of the whole spherical domain
F1, the DF is independent of the steering angle. However, for
the other SFs Fq with q ∈ {1/8, 1/4, 1/2}, (38) can not be
simplified. To study the dependence of DF with the plane wave
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Fig. 5. Free field beampatterns at L = 8 in dashed and dotted lines, for plane waves whose DOAs are symmetrically distributed around θ = 90◦ (thick line).
The angular distance is: (a) Θ = 20◦, (b) Θ = 40◦. The sum of these two functions is shown in solid line. The FWHM angular distance is denoted Θlim and is
shown on a free field beampattern. .

Fig. 6. FWHM angular distance as a function of maximum degree L for a free
field beampattern.

Fig. 7. Average angular error Ψq in degrees.

DOA, the Directivity Index (DI), defined in (40), is plotted in
Fig. 8 for L ∈ {4, 8, 30} with

DIq = 10 log(DFq). (40)

In Fig. 8 the DI is constant over a larger area as the SF Fp is
larger and as L increases. As for the angular error analysis in
Section IV-B, this means that the interferences of the image lobes
are less and less significant and that the beampattern yq tends

Fig. 8. Directivity Index of the beampattern yq(θ, φ) for all possible DOAs
(θs, φs) in the solid angle of the SF Fq , with q ∈ {1/8, 1/4, 1/2} and for
L ∈ {4, 8, 30}.

to be invariant by rotation. However, the DI is systematically
better for grazing DOAs, at the boundary planes of the SFs.
This value is even more important at the intersection of two
boundary planes, for example for (θs = 90◦, φs = 0◦). For these
DOAs, all the image beampatterns add up and the DI increases
consequently (see Fig. 5(a)).

a) Mean value: By averaging the DFq of (38) for all possible
DOAs in the solid angle offered by the SF Fq, one obtains the
mean value, denoted DF and given by:

DFq =
1

q4π

∫
Fq

DFq(θs, φs) sin(θs)dφsdθs, (41)

where yq is defined in (31). (41) can be further simplified by
replacing DF in (38), then switching integral and sum, and finally
using the orthonormality property of the SFHs. Thus, one shows
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Fig. 9. (a) DFq/DF1: ratio of averages DFq and DF1 versus maximum degree
L. (b) Coefficient of variation versus maximum degree L.

that:

DFq =
1

q

∞∑
l=0

l∑
m=−l

(l,m)∈Mq

1. (42)

Therefore, for a maximum degree L, the average directivity
factor is the number of SFHs of (23) divided by the SF value q:

DFq(L) =
Qq(L)

q
. (43)

To compare the average DFq of the bounded domains with the
average of the unbounded one, the ratio DFq/DF1 is plotted on
Fig. 9(a). It converges to 1, which means that the averages DFq

and DIq of the bounded domains converge to the value of the un-
bounded domain. This phenomenon can also be observed on the
color scale in Fig. 8 forL = 30. Thus, beampatterns constructed
in SF q ∈ {1/8, 1/4, 1/2} are less and less corrupted by the
image beampattern interferences, as they are becoming narrower
when L increases. One reaches the DF performances of the free
field domain, furthermore with less SFHs required, as shown in
Fig 2(b). For instance, the relative error on average directivity
factor (DF) falls below 10% from L = 40 for SF1/8, L = 19 for
SF1/4 and L = 9 for SF1/2 for an gain about 7.27, 3.63, 1.82
times less SFHs than SHs respectively.

b) Coefficient of Variation:. Although the average of the DF
function, DFq , converges to that of the sphere in free field, it
remains to prove that the shape of the DF function converges to
a constant value (i.e., spherical shape), as observed in Fig. 8.

The Coefficient of Variation (cv) criterion is used for this
purpose. This quantity characterizes the standard deviation of
the function with respect to its mean. It is defined as:

cv =
σDFq

DFq

, (44)

where the standard deviation σDFq
is given by:

σDFq
=

√
1

q4π

∫
Fq

(
DFq(θs, φs)− DFq

)2
sin(θs)dθsdφs.

In fact, the standard deviation σDFq
increases as L increases.

This is due, on the one hand, to the fact that values far from the
SF Fq boundaries approach the mean value and contribute little
to the standard deviation, and, on the other hand, to the fact that
values close to these boundaries increase sharply, as shown in
Fig. 8. Furthermore, the mean value DFq also increases with L.
As shown in Fig. 9(b), the coefficient of variation decreases as L
increases. This means that the function DFq(θs, φs) converges
to a constant, i.e., to the value of the free field DF1. Finally,
as L increases, the SF Fq regular beamformer converges to a
rotationally-invariant one.

V. BEAMFORMING EXAMPLE

This section provides an example of beamforming for the
different SFs Fq . The acoustic scene consists of two unit ampli-
tude plane waves P1 and P2 with DOAs (θ1 = 75◦, φ1 = 15◦)
and (θ2 = 35◦, φ2 = 75◦) respectively. This gives an angle Θ �
60.72◦, from (33). Note that modal beamforming is applied here
directly to the SFHs components of the sound field, using (27)
and is independent of frequency. In practice, a SFMA can be
used to obtain these components as the SMA is used to estimate
the SHs components for the whole sphere [4]. However, the
microphone number and positions bring spatial aliasing which
gives an upper frequency limit for accurate estimation [22], [23].
As well, the array radius imposes a lower frequency limit for the
accurate estimation of high degree components, due to limited
dynamics for real-world applications when inverting the radial
function in (25) [3]. Some SFMA examples are already available
in the literature for the hemisphere [6], [7].

Using (27) the SFHs components of this acoustic scene are:

bl,m,p =
Yl,m,q(θ1, φ1)∑L

l=0

∑l
m=−l

(l,m)∈Mq

Yl,m,q(θ1, φ1)2

+
Yl,m,q(θ2, φ2)∑L

l=0

∑l
m=−l

(l,m)∈Mq

Yl,m,q(θ2, φ2)2
, (45)

where the denominators ensure unit-amplitude plane waves.
Using (31) the beamformer output is computed for all steer-
ing angles (θ, φ) ∈ (0, 90◦)× (0, 90◦). The resulting magnitude
|ỹq(θ, φ)| is plotted in Fig. 10 for L ∈ {4, 8, 30}. The two plane
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Fig. 10. Beamforming example: two unit-amplitude plane waves P1 and P2, with DOAs (θ1 = 75◦, φ1 = 15◦) and (θ2 = 35◦, φ2 = 75◦) respectively,
compose the acoustic scene. A regular beamformer is designed in the SFs Fq with q ∈ {1/8, 1/4, 1/2} and for L ∈ {4, 8, 30}. It is steered in directions
(θ, φ) ∈ (0◦, 90◦)× (0◦, 90◦).

waves DOAs are marked with black dots. The two local maxima
of |ỹq(θ, φ)| in the vicinity of P1 and P2 DOAs are marked with
circles.

From Fig. 10, it can be observed that the more L increases,
the closer the map maxima are located to the plane waves P1

and P2 DOAs and with the correct amplitudes. In the same way,
the less the SF is bounded, the more accurate the location is.

For the free field, the scene contains two plane waves. As
Θ � Θlim in this example, the side lobes of the two beampatterns
influence the position of the maxima on the map. However, for
the SFs Fq with q ∈ {1/8, 1/4, 1/2}, the image beampatterns of
the two plane waves add up and degrade the localization result.
For L = 4, plane wave P1 and the SFs F1/8,F1/4 and F1/2,
the angle between the wave P1 and its images is such that Θ <
Θlim. Thus, the maximum is found at (0◦, 90◦), as explained in
Section IV-B. As L increases and Θlim decreases (Fig. 6), the
maxima are found closer to their correct location. For the order
L = 30, the results are nearly identical for all domains. Tab III
lists some values of interest for this analysis, in particular, the

number Qq(L) of SFHs involved to calculate the maps, the ratio
with the SHs number to measure the gain in terms of functions
to manipulate, the angular errors between the DOAs of P1 and
P2 and the local maxima, denoted Ψp(θ1, φ1) and Ψp(θ2, φ2)
respectively, as well as the beamformer amplitudes in theP1 and
P2 DOAs. From Table III, the results converge rather quickly to
the free field behaviour, but with less SFHs than SHs. Regarding
the amplitudes in the plane waves DOAs, they can sometimes be
closer to unity for the bounded domains than in the free field case.
Again, this is the result of interferences between plane waves
and their images. Note that the values of Table III depend on the
acoustic scene, hence the interest of having average performance
criteria as presented in the Secs. IV-B and IV-C.

VI. CONCLUSION

In this paper the beamforming on 1/8, 1/4, 1/2 spaces bounded
with Neumann conditions has been studied. Using the SFHs
decomposition approach, it has been shown that the number
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TABLE III
SEVERAL INDICATORS FOR THE BEAMFORMING EXAMPLE OF FIG. 10: FOR

EACH MAXIMAL DEGREE L ∈ {4, 8, 30} AND EACH SF Fq WITH

q ∈ {1/8, 1/4, 1/2} THE NUMBER OF SFHS Qq IS GIVEN IN THE FIRST ROW,
THE RATIO WITH THE NUMBER OF SHS IN SECOND ROW, THE BEAMFORMER

OUTPUT ỹq(θ1, φ1) IN THE THIRD ROW, THE BEAMFORMER OUTPUT

ỹq(θ2, φ2) IN THE FOURTH ROW, THE ANGULAR DISTANCE Ψq(θ1, φ1)
BETWEEN LOCAL MAXIMA AND (θ1, φ1) AND THE ANGULAR DISTANCE

Ψq(θ2, φ2) BETWEEN LOCAL MAXIMA AND (θ2, φ2)

of functions to be used to realize a regular beamformer is
smaller than the number of SHs used for the unbounded domain.
However, the presence of rigid boundaries introduces image
beampatterns that break the axi-symmetry and rotational invari-
ance properties of regular beamformers of the unbounded case.
The performance has been evaluated for the angular error on
the maximum and the DF in the case of the response to a unit-
amplitude plane wave. It has been shown that the angular reso-
lution given for a maximal decomposition degree L determines
the superposition of the image beampatterns and the beamformer
performance. However, the latter improves and converges to the
performance of the beamformer in the unbounded domain as
L increases and as the SF is large. A case study to show the
different phenomena involved in the analysis by beamforming
of an acoustic field composed of two unit-amplitude plane waves
is proposed.

Future work will seek to design beampattern weights opti-
mized to mitigate the effect of image beampatterns. In addi-
tion, the robustness of beamforming with SFHs basis found
for Neumann boundary conditions has to be studied in more
realistic situations, such as in a room where the walls do not meet
such boundary condition. The kind of processing proposed here
makes it possible to use SFMA that are particularly suitable for
integration in business premises or private homes; room corners
are particularly common in many buildings. Thus, there are a
wide range of applications, ranging from medical supervision of
the elderly, to intrusion detection, voice commands, etc., which
can be integrated into a building. The next step will therefore be

to develop and test the proposed geometries in order to evaluate
their in situ performance.

APPENDIX A
CONDITIONS ON SHS INDICES (l,m) FOR SYMMETRY PLANES

x = 0, y = 0, z = 0

In this appendix, the conditions on (l,m) indices such that the
corresponding SHs present the symmetry planesx = 0, y = 0 or
z = 0 are derived. This is done by replacing φ and θ in (13) and
(16) into (18) for the even symmetries, and (14) and (17) into (18)
for the odd symmetries. The writing uses Boolean algebra. In the
following demonstrations, the multiplication properties of two
even and/or odd numbers are used. The results are summarized
in Table I.

A. Even Symmetry Plane x = 0

n ∈ Z ∧
(
m ∈ N∗ ∧

(
π

2
=

2nπ

m
∨ 3π

2
=

2nπ

m

)

∨m ∈ Z− ∧
(
π

2
=

2nπ

m
+

π

2m
∨ 3π

2
=

2nπ

m
+

π

2m

)

∨0 =
π

2
∨ π =

π

2

)
⇐⇒ n ∈ Z ∧ (m ∈ N∗ ∧ (m = 4n ∨ 3m = 4n)

∨m ∈ Z− ∧ (m = 4n+ 1 ∨ 3m = 4n+ 1)
)

⇐⇒ m ∈ 2N ∨m ∈ 2Z− + 1. (46)

B. Odd Symmetry Plane x = 0

n ∈ Z ∧
(
m ∈ Z− ∧

(
π

2
=

2nπ

m
∨ 3π

2
=

2nπ

m

)

∨m ∈ N∗ ∧
(
π

2
=

2nπ

m
+

π

2m
∨ 3π

2
=

2nπ

m
+

π

2m

)

∨0 =
π

2
∨ π =

π

2

)
⇐⇒ n ∈ Z ∧ (

m ∈ Z− ∧ (m = 4n ∨ 3m = 4n)

∨m ∈ N∗ ∧ (m = 4n+ 1 ∨ 3m = 4n+ 1))

⇐⇒ m ∈ 2N + 1 ∨m ∈ 2Z−. (47)

C. Even Symmetry Plane y = 0

n ∈ Z ∧
(
m ∈ N∗ ∧

(
π =

2nπ

m
∨ 2π =

2nπ

m

)

∨m ∈ Z− ∧
(
π =

2nπ

m
+

π

2m
∨ 2π =

2nπ

m
+

π

2m

)

∨0 =
π

2
∨ π =

π

2

)
⇐⇒ n ∈ Z ∧ (m ∈ N ∧ (m = 2n ∨m = n)
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∨m ∈ Z− ∧ (2m = 4n+ 1 ∨ 4m = 4n+ 1)
)

⇐⇒ m ∈ N. (48)

D. Odd Symmetry Plane y = 0

n ∈ Z ∧
(
m ∈ Z− ∧

(
π =

2nπ

m
∨ 2π =

2nπ

m

)

∨m ∈ N∗ ∧
(
π =

2nπ

m
+

π

2m
∨ 2π =

2nπ

m
+

π

2m

)

∨0 =
π

2
∨ π =

π

2

)
⇐⇒ n ∈ Z ∧ (

m ∈ Z− ∧ (m = 2n ∨m = n)

∨m ∈ N∗ ∧ (2m = 4n+ 1 ∨ 4m = 4n+ 1))

⇐⇒ m ∈ Z−. (49)

E. Even Symmetry Plane z = 0

π

2
=

π

2
∧ (l +m) ∈ 2Z

⇐⇒ (l +m) ∈ 2Z.
(50)

F. Odd Symmetry Plane z = 0

π

2
=

π

2
∧ (l +m) ∈ 2Z + 1

⇐⇒ (l +m) ∈ 2Z + 1.
(51)

APPENDIX B
SETS Mq DERIVATION

In this Appendix, the sets Mq of Section III-C are derived with
the following method: for each SF domain Fq , by using 3, the
domain boundaries planes are identified. Then, the conditions on
(l,m) indices for the corresponding planes in Table I are used
to build the set.

A. M1/8

From 3, the Yl,m,1/8 family is made of SHs having the
following conditions for their symmetry planes:

{x = 0} ∧ {y = 0} ∧ {z = 0}. (52)

Then, by using the relationships in Table I the set M1/8 is build:

M1/8 = {(l,m) ∈ (N,Z)||m| ≤ l ∧ (m ∈ 2N ∨m ∈ 2Z− + 1)

∧m ∈ N ∧ (l +m) ∈ 2Z}
= {(l,m) ∈ (N,Z)|m ≤ l ∧m ∈ 2N ∧ (l +m) ∈ 2N}
= {(l,m) ∈ (N,Z)|m ≤ l ∧ l ∈ 2N ∧m ∈ 2N}.

(53)

B. M1/4

From 3, the Yl,m,1/4 family is made of SHs having the
following conditions for their symmetry planes:

{y = 0} ∧ {z = 0}. (54)

Then, by using the relationships in Table I the set M1/4 is build:

M1/4 = {(l,m) ∈ (N,Z)||m| ≤ l ∧m ∈ N ∧ (l +m) ∈ 2Z}
= {(l,m) ∈ (N,Z)|m ≤ l ∧m ∈ N ∧ (l +m) ∈ 2N}.

(55)

C. M1/2

From 3, the Yl,m,1/2 family is made of SHs having the
following conditions for their symmetry planes:

{z = 0}. (56)

Then, by using the relationships in Table I the set M3 is build:

M3 = {(l,m) ∈ (N,Z)||m| ≤ l ∧ (l +m) ∈ 2Z}. (57)

APPENDIX C
SFHS ORTHONORMALITY

In this Appendix, the SFHs orthonormality property is de-
tailed (see Section III-D). The inner product of (4) and the
symmetry properties of the SFHs Yl,m,q are used in the demon-
stration. The demonstration is done for the family Yl,m,1/8.

From (4) for two SFHs Yl,m,1/8 and Yl,′m,′1/8, one has:

〈
Yl,m,1/8, Yl,′m,′1/8

〉
=

∫
F1/8

Yl,m,1/8(θ, φ)Yl,′m,′1/8(θ, φ) sin(θ)dθdφ. (58)

Using (1) with (3), one has:

〈
Yl,m,1/8, Yl,′m,′1/8

〉
=

∫ π
2

φ=0

∫ π
2

θ=0

Yl,m,1/8(θ, φ)Yl,′m,′1/8(θ, φ) sin(θ)dθdφ. (59)

By exploiting the SFHs Yl,m,F1
symmetry with respect to φ and

θ variables, the latter equation becomes:

〈
Yl,m,F2

, Yl,′m,′F2

〉
=

1

8

∫ 2π

φ=0

∫ π

θ=0

Yl,m,1/8(θ, φ)Yl,′m,′1/8(θ, φ) sin(θ)dθdφ.

(60)

The SFHs Yl,m,1/8 are orthogonal on L2(F1), therefore, using
(19) one obtains:〈

Yl,m,1/8, Yl,′m,′1/8
〉
=

1

8
N2

1/8δl,l′δm,m′ . (61)

Consequently, the SFHs Yl,m,1/8 are orthogonal on F1/8 and to
ensure orthonormality one has:

N1/8 = 2
√
2. (62)
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Following the same reasoning, one shows the orthonormality for
all SFHs Yl,m,q with q ∈ {1/4, 1/2}. The norm values Nq are
summarized in the right column of Table II.

APPENDIX D
SFHS NUMBER Qq(L)

In this Appendix, the SFHs number up to a degree L are
derived as closed form formulas. The results are summarized
in Table II. In the following computations, �·� are �·� floor and
ceiling functions respectively.

A. Q1/8(L)

Q1/8(L) =

L∑
l=0
l∈2N

l∑
m=0
m∈2N

1

=

L∑
l=0
l∈2N

(
l

2
+ 1

)
= (�L/2�+ 1) +

L∑
l=0
l∈2N

l/2

= (�L/2�+ 1) +

�L/2�∑
l=0

l

=
1

2
(�L/2�+ 1) (�L/2�+ 2) . (63)

B. Q1/4(L)

Q1/4(L) =

L∑
l=0

l∑
m=0

(l+m)∈2N

1 =

L∑
l=0
l∈2N

l∑
m=0
m∈2N

1 +

L∑
l=1

l∈2N+1

l∑
m=1

m∈2N+1

1

= Q1/8(L) +

L∑
l=1

l∈2N+1

l∑
m=1

m∈2N+1

1

=
1

2
(�L/2�+ 1) (�L/2�+ 2) +

L∑
l=1

l∈2N+1

�l/2�

=
1

2
(�L/2�+1) (�L/2�+2)+

1

2
�L/2� (�L/2�+1)

=
1

2
((�L/2�+ 1) (�L/2�+ 2)

+ (�(L− 1)/2�+ 1) (�(L− 1)/2�+ 2)) . (64)

C. Q1/2(L)

Q1/2(L) =
L∑

l=0

l∑
m=−l

(l+m)∈2N

1

=
L∑

l=0
l∈2N

l∑
m=−l
m∈2N

1 +
L∑

l=1
l∈2N+1

l∑
m=−l

m∈2N+1

1

=

L∑
l=0
l∈2N

(l + 1) +

L∑
l=1

l∈2N+1

(l + 1)

=

L∑
l=0

(l + 1) = 1/2(L+ 1)(L+ 2). (65)

D. Q1(L)

Q1(L) =

L∑
l=0

l∑
m=−l

1 =

L∑
l=0

(2l + 1) = (L+ 1)2 (66)

APPENDIX E
PLANE WAVE REPRESENTATION IN THE NEUMANN-BOUNDED

OCTANT UNION DOMAIN O3

In this Appendix, (26) is proven in the case of a rigid bounded
domain O3, that is to say a rigid bounded half-space. The angular
part of the solution is described in L1/2 using SFHs Yl,m,F1/2

.
Let us consider a plane wave with direction of arrival (θs, φs)

in O1/2. A rigid plane is placed at O3 boundary, that is to
say such that θ = π

2 (or z = 0). According to the image source
principle [20] the acoustic pressure is due to a plane wave coming
from (θs, φs) and a plane wave coming from (π − θ, φs). Using
(26) in the free space one has:

p(k, r, θ, φ) =
L∑

l=0

l∑
m=−l

(l,m)∈M1/2

iljl(kr)

(Yl,m(θs, φs) + Yl,m(π − θs, φs))Yl,m(θ, φ). (67)

Then, one splits the sums for (l,m) ∈ M1/2 and (l,m) /∈
M1/2:

p(k, r, θ, φ) =

L∑
l=0

l∑
m=−l

(l,m)∈M1/2

iljl(kr)(Yl,m(θs, φs)

+ Yl,m(π − θs, φs))Yl,m(θ, φ)

+
L∑

l=0

l∑
m=−l

(l,m)/∈M1/2

iljl(kr)(Yl,m(θs, φs)

+ Yl,m(π − θs, φs))Yl,m(θ, φ). (68)

As shown in Section II-E, for (l,m) ∈ M1/2, the plane of
symmetry θ = π

2 is an even symmetry plane, As well, for
(l,m) /∈ M3, θ = π

2 is an odd symmetry plane. As a conse-
quence one has:{

Yl,m(θ, φ) = Yl,m(π − θ, φ) for (l,m) ∈ M1/2

Yl,m(θ, φ) = −Yl,m(π − θ, φ) for (l,m) /∈ M1/2.
(69)
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Using (69) into (68) one obtains:

p(k, r, θ, φ)

= 2
L∑

l=0

l∑
m=−l

(l,m)∈M1/2

iljl(kr)Yl,m(θs, φs)Yl,m(θ, φ). (70)

Finally, using (19) with Tab. (II) one has:

p(k, r, θ, φ) =
L∑

l=0

l∑
m=−l

(l,m)∈M1/2

iljl(kr)Yl,m,1/2(θs, φs)Yl,m,1/2(θ, φ).

(71)
The demonstration for other domains Oq is similar.
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