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For low Mach number applications, the acoustic and fluid dynamics physical phenomena are very
disparate in terms of characteristic length and energy scales. In the hybrid approach proposed
in this paper, the turbulent unsteady flow solution is processed in order to determine equivalent
noise sources. These are considered as the forcing terms for the Linearized Euler Equations
(LEE), which are solved to obtain the acoustic field. The acoustic propagation is computed us-
ing a high-order adaptive discontinuous Galerkin (DG) scheme in the time domain. Frequency
domain results are obtained through a discrete Fourier transform. The choice of high-order DG
methods for solving the LEE in the time domain present the advantages of: (i) the element interpo-
lation can be locally increased to accurately represent the phenomena, i.e. propagation and source
representation; (ii) the numerical method has a high parallel scalability and, therefore, suited to
large acoustic problems with an acceptable computational cost. In the present work, the solution
for a low Mach (M < 0.1) simplified HVAC duct with a rectangular cross section is presented.
Even if the size of the model does not specifically require the usage of the LEE or DG methods,
this configuration is compared to a solution provided by an aeroacoustic solver already exten-
sively validated and dedicated to acoustically compact problems. Finally, the numerical results
are also compared to equivalent solutions obtained through a finite-element based discretization
of Lighthill’s analogy.

1. Introduction

The theory of aerodynamic generated sound has been constantly reviewed over the last six decades.
All this started with Lighthill [1, 2] who defined the concept of acoustic analogy as a reformula-
tion of the fluid dynamics equations into a form of a wave operator in l.h.s (left-hand side) and
the remaining terms on the r.h.s (right-hand side) as the sound sources produced by turbulence.
As stated by Doak[3], Lighthill’s analogy is a set of equivalent quadrupole sources computed by
means of fluid dynamics equations that are propagated in a fictitious but convenient fluid at rest. The
quadrupole sources are expressed as second spatial derivatives of Lighthill’s tensor ∂2Tij/∂xi∂xj ,
where Tij = ρvivj + δij(p− c2ρ)− τ ij . The wave propagation is governed by d’Alembert’s operator
applied to the fluctuating density, i.e. 1

c2
∂2

∂t2
−∇2. This corresponds to an hybrid approach in which

the flow is computed first and the noise sources are extracted and then propagated in a second step.
Further improvements and modifications to Lighthill’s theory have been added in both sides of the
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equation, the left-hand side (operator) and the right-hand side (sources). For instance: (i) Curle [4]
took into account solid boundaries effects; (ii) Ffowcs-Williams & Hawkings [5] considered solid
boundaries and uniform convection effects; (iii) Ribner [6] proposed aerodynamic source terms pro-
portional to the first derivative in time of the turbulent pressure fluctuations; (iv) a third-order operator
was proposed by Lilley [7] to take into account the effects of non-uniform flows with vorticity; and (v)
Howe [8], Doak [3] and Möhring [9] proposed acoustic analogies based in convected wave operators
for arbitrary but potential flows in terms of the total enthalpy with turbulent, entropic and temperature
sources.

Since the large majority of acoustic analogies requires the aerodynamic information as input data,
the progress of computational fluid dynamics (CFD) is closely linked with aeroacoustics[10]. The
advance of computational methods in fluid dynamics has increased the quality and complexity of
the aerodynamic information available and therefore the source predictions. Likewise, the operator
used in the acoustic analogies has evolved from scalar to vector operators, i.e. the linearised Euler
(LEE) or linearised Navier-Stokes equations (LNSE). There are two main reasons: (i) the rich variety
of effects over the wave motion, i.e. classic convection, mean vorticity, thermal and viscous effects
among others; and (ii) the fact that they are well-adapted to high efficient and parallelizable numerical
methods such as discontinuous Galerkin (DG) method. For instance, (i) Bogey et al. [11] have
imposed aerodynamic sources to the momentum equation in the LEE; (ii) Billson et al. [12] by using
Favre’s decomposition of variables included sources on the momentum and energy equations of the
LEE in conservative form; (iii) Goldstein [13] starting from the Navier-Stokes equations formulated
a modified form of the LEE using auxiliary variables with sources in the momentum and energy
equations; and (iv) Ewert et al. [14] have proposed a family of acoustic perturbation equations (APE)
with mass, momentum and energy sources.

The present article describes an efficient implementation of the LEE using a high-order adaptive
DG scheme in time domain [15], with aeroacoustic sources imposed on the right-hand side of the
momentum equation (Section §2). The sources are computed from time-dependent CFD results using
OpenFOAM (Section §3), while ActranDGM is used as the acoustic solver (Section §2). Since the DG
method operates with large-size elements of high p−order interpolation, the aerodynamic sources are
sub-sampled inside the element to take into account the small turbulent scales present in comparison to
the wavelength of the problem. As numerical reference, the present method is compared to equivalent
solutions obtained through a finite-element (FE) based discretization of Lighthill’s analogy, using
Actran [22] in frequency domain (Section §4). The advantages that represent the implementation
of an hybrid approach in time domain for aeroacoustics (LEE with sources) in a DG context are
the following: (i) the p-adaptivity allows to use the same mesh for different frequencies adjusting
dynamically the elements’ order; (ii) to explore new physics in propagation and generation of sound
using the LEE, i.e. mean flow with vorticity, propagation and coupling of entropy and vorticity
waves with acoustics; and (iii) high parallel scalability suited to large acoustic problems and high
frequency, characteristic of industrial problems. The case study selected for this work is a simplified
HVAC (Heating, Ventilation, and Air Conditioning) system consisting of a duct with rectangular
cross section and a 90◦ bend as depicted in figure 1a. This case has been extensively discussed in
the literature [16, 17]. Finally the results are discussed and analysed (Section §5) followed by some
concluding remarks and possible further investigations (Section §6).

2. Theory

Considering the vector of variables q, the flux matrix F, a matrix gradient s and the vector of
sources R, the isentropic linearised Euler equations with source terms may be written in the following
compact form:

∂q

∂t
+

∂

∂xj
(Fj.q)− s.q = R, (1)
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in which q contains the fluctuating density, velocity and pressure, q = [ρ, u, v, w, p] and:

R =


0(

R1 − R̄1

)
/ρ0(

R2 − R̄2

)
/ρ0(

R3 − R̄3

)
/ρ0

0

 , Fj =



v0j ρ0δ1j ρ0δ2j ρ0δ3j 0

0 v0j 0 0
δ1j

ρ0

0 0 v0j 0
δ2j

ρ0

0 0 0 v0j
δ3j

ρ0
0 ρ0c2δ1j ρ0c2δ2j ρ0c2δ3j v0j


,
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0 0 0 0 0
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(2a-c)

Where the aerodynamic source R applied to the momentum equation is defined by:

Rj = −∂ρvivj
∂xi

, Rj = −∂ρvivj
∂xi

. (3a,b)

The index “0” denotes the mean flow, sub-index is used for the mean flow pressure p0 and density
ρ0, super-index for the mean flow velocity v0

j . The speed of sound is denoted by c while δij is
Kronecker’s delta. Furthermore, the expression of the aerodynamic sources (2a;3a,b) is found by
analogy with Lighthill’s equation [1] in the case of no flow or Lilley’s equation [7] in the case of
unidirectional shear flow [11]. Besides, the source term (2a) is assumed to be known, non-linear and
their mean values are subtracted. In contrast to second-order scalar operators used in well-known
acoustic analogies [1, 3, 8, 9], the LEE does support the presence of vortical and entropy waves
[18, 19]. These waves are completely absent or decoupled from pressure waves: in a medium at rest,
or with constant convection or in presence of a potential mean flow. The same waves are coupled
to acoustics in the case of arbitrary mean flows with vorticity. Additionally, the source term R may
contain vortical and entropy waves that in a vortical mean flow can rapidly grow causing physical
instabilities (Kelvin-Helmholtz) and therefore polluting the solution.

2.1 Numerical Method

Considering equation (1) being multiplied by the Lagrange high-order polynomial shape functions
Nα and integrated over the volume Ω, this results in:∫

Ω

Nα
∂q

∂t
dΩ +

∫
Ω

Nα
∂

∂xj
(Fj.q) dΩ−

∫
Ω

Nαs.qdΩ =

∫
Ω

NαRdΩ. (4)

Integrating by parts the second term of equation (4) to transfer the derivative in space ∂/∂xj to the
shape functions Nα, equation (4) results in:∫

Ω

Nα
∂q

∂t
dΩ =

∫
Ω

∂Nα

∂xj
Fj.qdΩ +

∫
Ω

Nαs.qdΩ−
∮

Γ

Nα(Fj.q).ndΓ +

∫
Ω

NαRdΩ. (5)

In DG methods the solution can be discontinuous from one element to the other. Moreover, the surface
integral of equation (5) is computed from the solutions on both sides of the element ensuring a good
stability of the numerical method. One of the strengths of the variational formulation presented in
equation (5) is that using an explicit time discretization, the linear system becomes block diagonal.
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Therefore, the linear system inversions at each time step may be avoided and it can be replaced by
matrix multiplications. In addition, the last term of equation (5) represents the volume sources applied
to the momentum equation. Since the acoustics (5-l.h.s) and aerodynamic sources (5-r.h.s) are very
disparate in terms of characteristic length, the variability of the source terms is taken into account
inside element by the high-order Lagrange shape functions Nα of the numerical algorithm.

3. Flow solution

The CFD simulation is performed using OpenFOAM for the simplified HVAC duct with rectan-
gular cross section which dimensions are expressed in mm as depicted in figure 1a. The domain is
represented by a cavity of dimensions 2 m × 2 m × 1.6 m with two main boundary conditions: (i) an
inlet boundary condition with constant velocity U = 7.5 m/s in one side of the duct; and (ii) outlet
boundary conditions (pressure outlet) at each side of the cavity; as depicted in figure 1d. Since the
flow is incompressible, the solver selected was pimpleFOAM, a large time-step transient solver for
incompressible flows based on PIMPLE (merged PISO-SIMPLE) algorithm [21].
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Figure 1: Flow model. (a) Geometry of the simplified HVAC duct, the values are expressed in mm. (b) Detail
of mesh used in the CFD simulation near the duct’s discharge. (c) Instantaneous norm of the velocity for
t = 0.7 s computed by the CFD solver. (d) CFD model with boundary conditions and dimensions indicated
over the figure.

The fluid is air at standard conditions with constant density ρ0 = 1.225 kg/m3 and kinematic
viscosity ν = 1.7 × 10−5 m2/s. The Reynolds number for the configuration is estimated to exceed
Re = 3.5 × 104 based on the duct’s transverse length L = 0.08 m. The structured mesh depicted in
figure 1b is composed by 3.0 × 106 cells of different sizes: (i) at the boundary layer over the duct
walls ∆x = 4.5× 10−4 m; (ii) in the middle of the duct ∆x = 1.0× 10−3 m; (iii) at the duct discharge
∆x = 3.0 × 10−3 m; and (iv) near the outer boundaries ∆x = 1.5 × 10−2 m. The simulation was
performed from t0 = 0 s to tf = 8.5 s with a time step ∆t = 1.0 × 10−5 s while the unsteady
flow quantities needed for the aeroacoustic simulation where recorded from t = 0.6 s until the end of
the CFD simulation (tf = 8.5 s). For instance, the snapshot of velocity field at t = 0.7 s is shown
in figure 1c. The Spalart-Allmaras improved DDES (delayed detached eddy simulation) turbulence
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model available in OpenFOAM 2.3.1 was used. The CFD simulation was performed in a cluster of 32
processors Intel Xeon E3-1240 v2 at 3.40 GHz taking a computation time of 7500 CPU.hr with 1.1 Tb

of stored data.

(a)

buffer zone

acoustic domain

source domain

infinite domain

acoustic domain

source domain

(b)

(c)

R = 1 m

virtual microphones

(d) (e)

Figure 2: Acoustic model of a rectangular duct. (a) Mesh used in the DG computations. (b) Mesh used in the
FE computation. (c) Sketch of the acoustic model with the spherical array of microphones. (d) Array of virtual
microphones used in the simulations. (e) Outer surface for computing the sound power.

4. Acoustic models

The acoustic propagation of aerodynamic sources generated by the duct’s discharge is now con-
sidered. The rectangular duct is immersed in a fluid at rest placed in an anechoic room. As a con-
sequence, the aerodynamic noise produced by the unsteady flow coming out of the duct is the only
acoustic source. The fluid media for the propagation of the acoustic waves is assumed homogeneous
with constant mass density (same as in the CFD model) and speed of sound c0 = 340 m/s. Two
acoustic models are considered: (i) a time domain model solved by means of ActranDGM solver and;
(ii) a frequency domain model using the implementation of Lighthill’s volume sources and solved by
means of Actran which has been validated [17]. The ActranDGM model solves the LEE with source
terms in the momentum equation (section §2) using DG method with p−adaptivity for the interpo-
lation order inside the element. The mesh used in the ActranDGM computation consists in (figure
2a): (i) an acoustic domain corresponding to the duct and the duct’s discharge (yellow domain, fig-
ure 2a); (ii) a source domain where the acoustic sources are imposed being the same as the previous
acoustic domain (yellow domain, figure 2a); (iii) a transition acoustic domain where no sources are
applied (turquoise domain, figure 2a); (iv) a buffer zone to damp the sound waves propagated out the
physical domain (red domain, figure 2a); and (v) non-reflecting boundary conditions surrounding the
buffer zone and the end of the duct. All the domains necessary for the above model form a mesh of
18366 3D-Tetrahedra with 510 2D-Triangular elements. On the other hand, the Actran model solves
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Lighthill’s acoustic analogy in frequency domain as follows:

∂2ρ

∂t2
− c2

0

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj
, Tij ' ρ0vivj, (6a,b)

with acoustic disturbances having harmonic time dependency exp (iωt), ω = 2πf being the angular
frequency. The numerical technique used this time is the classic FE method. The acoustic mesh used
in the FE method is more refined because no p−adaptivity is used (figure 2b). As an illustration,
the FE mesh contains the following domains: (i/ii) acoustic and source domains corresponding to the
duct and the duct’s discharge (yellow domain, figure 2b); (iii) an acoustic domain for transition where
no sources are applied (turquoise domain, figure 2b) contoured by; (v) a domain supporting a non-
reflecting boundary condition (infinite elements [20]). The aforementioned domains form a quadratic
mesh of 266820 3D-Tetrahedra with 10232 2D-Triangular elements. Besides, the difference in the
number of elements between the DG method ( ∼ 18000) and the FE method (∼ 260000) is notable,
this is because, the DG method is based on p−adaptivity and at least an interpolation of sixth order
is used to assure quality in the solution; instead the FE method is sufficiently refined to use only a
quadratic interpolation in the elements. A mesh convergence analysis has been done in each model
to assure that the meshes do not need to be refined further. Both acoustic meshes (figures 2a,b)
are designed to solve frequencies up to 3 KHz. The degrees of freedom for the ActranDGM model
rise up to Ndof = 6.53 × 106 for the maximal frequency in contrast to the Actran model having
Ndof = 7.55 × 105 for all frequencies. Finally, it is reasonable to think that the computed sources
are less reliable when the CFD mesh coarsens. Therefore, a spatial filter has been used to mitigate
the truncation effects at the end of the zone where the CFD results are converted into sources; and
to remove the sources computed from coarse CFD cells (far from the duct’s discharge). A relative
independence of the position of this filter has been observed in additional investigations performed
(not presented here).

5. Results and comparisons

The broadband computations on both models (figures 2a,b) are performed in a frequency range
from 10 Hz to 2000 Hz with a step of 10 Hz. The average pressure in dB (pref = 2 × 10−5 Pa) is
computed from a spherical collection of 1445 virtual microphones placed outside the source region
(far field) at 1 m from the duct discharge (figures 2c,d). In addition, the sound power was also com-
puted (dB, Wref = 1× 10−12 W) in a surface surrounding the duct discharge (figure 2e) as the surface
integral of the acoustic intensity I = 1

2
p v∗.

In figure 3a, an excellent agreement is found between the ActranDGM model, represented as
momentum sources in the LEE (red line), and the numerical reference, Actran model, represented by
Lighthill’s analogy (black line). The noise generated by the duct is predominant at lower frequencies
(50 Hz - 500 Hz) and rapidly decay as the frequency increases for both numerical models. A similar
behaviour is observed for the sound power emission in figure 3b, for ActranDGM (red line) and Actran
(black line). The sound power emission as quadratic indicator behaves as the acoustic pressure,
i.e. mostly predominant at lower with a rapid decay at higher frequencies. Few maps illustrating
the real part of the acoustic pressure are depicted in figures 4a-h for 100, 500, 1000 and 2000 Hz.
The ActranDGM (figures 4a-d) and Actran (figures 4e-h) models present the same pressure patterns
outside the source zone, while inside, the patterns are fundamentally different. Such difference is due
to the the source term used in each model. In one hand, the Actran model uses the second derivative
of Lighthill’s tensor ∂2Tij/∂xi∂xj (scalar) emitting pure acoustic waves (non-rotational). On the
other hand, the ActranDGM model uses the first derivative of Reynolds’ tensor ∂ρuiuj/∂xi (vector)
as sources emitting both acoustic (non-rotational) and hydrodynamic-vortical (pure rotational) waves,
where the former reach the far field.
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Figure 3: Broadband noise spectra. (a) Average pressure over a spherical collection of microphones computed
by ActranDGM model (red line) and Actran model (black line). (b) Sound power emission computed on a
surrounding surface (figure 2e) for ActranDGM (red line) and Actran model (black line).
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Figure 4: Real part of the acoustic pressure computed by ActranDGM (a-d) and Actran (e-h) for 100, 500,
1000 and 2000 Hz.

Some comments about the computational time and memory consumption are finally addressed.
The acoustic computations corresponding to the ActranDGM model were performed in 2 GPU accel-
erators Nvidia Tesla K80 (domain parallelism) taking in average 1800 s (total time 1d4h20m) with 3.2
Gb of memory consumption per case. It is noticeable the low memory consumption of the DG method
to solve the LEE (1-l.h.s) in time domain, this is one of the features that renders DG methods suitable
to acoustic problems in large domains and high frequency. Additionally, the current implementation
of aerodynamic sources in ActranDGM solver allows parallel computations in multiple CPUs using
MPI communicators (not presented here). Loading several sources at different frequencies is not
available at the time of performing these investigations but planned for a short term future, leading to
a significant reduction of the total computational time.
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6. Concluding Remarks

A novel methodology for the computation of aerodynamic sound implemented in a high-order
DG method context has been presented. The aerodynamic sources are imposed in time domain on the
right-hand side of the LEE as momentum sources, and calculated from unsteady CFD data (hybrid
approach). Such sources are mapped inside the high-order acoustic elements to accurately represent
the physical phenomena. Moreover, one may mention the advantages of the present method: (i)
the numerical method used (DG) has high parallel scalability suited to large acoustic problems and
high frequency; (ii) the physical model used (LEE combined with sources) paves the way towards
more complete acoustic analogies; a rich variety of sources terms, i.e. mass, momentum and energy
sources, convected in a inhomogeneous medium with complex propagation phenomena, i.e. classic
flow convection, temperature and mean vorticity effects (shear layers). Finally, future work includes
the modelling of sound generated aerodynamically in large industrial applications such as side-mirror
noise in cars or pantograph noise in high-speed trains.
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