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IntrRopUCTION. — Recent investigations have shown that turbulence strongly affects the
perceived loudness of sound. mainly by changing its amplitude (peak pressure) and rise
time (time portion between 10 and Y0% of peak pressure). The results have been of
oreat importance for sonic booms because perceived loudness of the sonic boom when

iam‘r{i outdoors (Niedzwiecki ef al, 1978: Leatherwood ef al, 1992) is a Iar% factor in
ﬁiwnm}mma he acceptability of xupﬁ,rmma flight. Missing in these investig uts{ms 15 the
_effect of turbulence on the propagation of the sonic hoom through the ;}izfi@:‘,‘g‘;ﬁmm. The
_interaction of finite amplitude sound with turbulence is still not very well understood,
aiﬁ*mvh m;seh research has been done in the 1960s and 70s. For a literature rewiew see
ki 1993, 1995 Up to now the interaction b{:éwei'n %itmmi and mri’zz,:iﬁm.c has been
%imﬁ*wﬁ mzisz as a linear ;}%mmmmmn, It is therefore important to investigate the mﬁu&fx{:ﬁ
 of acoustical nonlinearity on the interaction of intense sound with turbulence.

The numerical model described here consisis of the following parts. First, a turbulence
mnﬁgi is used to generate individual realizations of a homogeneous. ia@tmpza turbulent
’i}f i Tam;wmmm and velocity random ﬁeid% are zencrated as a super ion of a finite
_ number of random ‘fi)smu modes { Blanc-Benon er al, 1991). Second, linear geometric
acoustics s used to trace rays ihm%h each r{:ai;?'mon of the turbulent field. Third, a
nonlinear transport equation is derived for the propagation along the rays. The transport
eqaam}a is solved by a Pestorius type g}gm{hm, Absorption and dispersion are included
in the model. The first two parts have already been used in a study of the occurrence of
caustics for high-frequency acoustic waves propagating through turbulent fields (Blanc-

Benon e al., 1991; Karweit er al., 1990), and are not treated in detail here. In this study
_we focus entirely on the nonlinear transport equation.

IONLINEAR TRANSFORT EQUATION. — A lossless nonlinear transport equation is derived for
the propagation of the waves along the eigenrays. Linear geometric acoustics is used (o
{race rays ihﬁfsugh\eam realization of the turbulent field and find the eigenravs that connect
source and receiver (Candel, 1977). The step size ds in the integration of the geometric
acoustics equations is a function of the maximum wave number value K, that we consider
in the turbulence energy spectrum and equals ds = 1/2 K. A Runge Kutta fourth order
numerical scheme is used to solve the system of differential z?qtmmi:rxs

Several assumptions are made in the {ic.u,mpzmm 0% the nonlinear equation and are
listed here: 1) parameters of mhamag&n&ﬁy vary slowly on a ilmmx:t;,mim signal d!;r{iiwm
2) the medium is frozen, ie. during passage of the acoustic wave the turbulent field
is constant in time, 3) miiwrﬂi;dz.imn 1% not ‘accounted for, ;M",, first order terms are
sufficient 1n the ray equations while second order terms are only important in dmmbmfr
the transport equation, 4) loss terms are ﬁ&ﬂle:cmi in the development of the ray path and
transport equations, but absorption is added in the numerical algorithm and is dominated
by iéf* MOVISCOUS g%:}mrptmn and dispersion and “absorption of oxvgen and nitrogen, 5 the
fluid motion is isentropic, 6) only quasi-linear terms are retained in the development of
the immg}@ﬂ equation, le a weak shock approximation. ‘ ~ ~

Starting from the fundamental laws of fluid mechanics and ;mkuw use of the above
stated assumptions, we derive a transport equation for the propagation through turbulence.

i
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m %%%i, i e é&;}mm and an absorption step in the frequency (éf}iﬁém andd 15 able o handle
: sse of weak shock theory. ‘
then: 1) create realizations of the turbulent field, 2) find
V5 i%z@,ﬁ connect mszm gm{s receiver, 31 apply Pestorius algorithm to solve nonlinear
tran g}{:«rf equation, 4} combine eigenrays 1o find the waveform at the receiver
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temperature turbulence. and velocity turbulence. For the turbulence cases 3 bar mark
shows the values of the average + the standard deviation o. I is seen that z? he presence
of mzmimw always results in a lower value for the equivalent distortion distance,
ie. the noplinear distortion is weaker when turbulence is present. The effect is more
pronounced when propagation distance increases. and stronger for the velocity turbulence.
At a propagation distance of 2/ = 80 the equivalent distortion distance for the velocity
turbulence is slightly more than 50% that of the no twrbulence case. Graph (5) presents the
values of the amplitude factor K. The factor increases rapidly with ;}rgt‘;:iégz‘siim distance.
and the effect is more pronounced for the velocity turbulence. Once the rays pass through
2 first caustic, A starts to increase. However, increasing values of K do not imply
rily a decrease in pe eak pressure because of the increased number of eigenrays that
wnmmm to the total signal at the receiver,
In figure 3 an smmpim ot a waveform calculation is presented. In this particular case
five eivenrays were found that connect source and receiver. The waverform associated
with gach ;::mey ix sbmm in graph {a). \,&hfiﬂ graph (b shows the wi }:sfdcarm (:gf the total
signal. As is seen, the w saveform variation is caused mainly by the mmmmti}s effects. ‘
- The average values of peak pressure and rise time of the total waveform calculated at
different receiver distances are shown in figure 4. The rise time is calculated as the time
_portion E}a:‘iaa een 10 and 90% of the peak pressure of the total waveform. A{.f;t‘:r{img o

Average peak pressurs

fis
3

Ca __ Nouwbulence
5, oo Temperature
S Welooity

S/

; a4
Aplpoeg

(mysy OB

e

i d
0.6
0,50

4 %12 16 200240 23
T

32
distance source - recerver (/L)

1

«
S
S
5

PvE

0040812 16 20 24 28

Fig 4, Average values of peakl pressise (o and vise time (8 of the 10t wineform,

Fig oo !*mfw;mz aveca distance X/ L de o surpression (et du femps de montde (B,




484 ‘ ~ B. Lipkens and Ph. Blane-Benon

reased in
“pg@f:m&m and

ihmush ti}g ﬁi’x'cfma{m, ’2‘%& %izfsrm &mmmgj 1 the
- *z;:;iag 15 %hﬁ: g}umkﬁf ﬁapmm‘n from {hm fm zzzsmﬁa, we

‘ mm@ raaimm sy@a{mm ﬁ‘.w‘ ;}mm: gmmrumg :an(i ihg :miusmﬁ e:;sf %}mmﬁaﬁm

Faﬁ{iﬁ f%w ai‘za( first msam:»r s&eew pr mi by ;@ms«ﬁmmm% f&i?u‘%x&,p of the French %‘kw&% ﬂ%‘ Eihe 41@*;.-;

- zs;xffmim: §§f~1 ;m&;a‘im ie 28 «w

s‘wwaﬁm in g satifed maw&m&m *a‘%ﬁfz ewn

o throueh i%i?%’i%

: "ﬂ“«z‘mi! S

w somie booms, J



