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Great ideas, it has been said, come into the world
as quietly as doves. Perhaps then, if we listen at-
tentively we shall hear, among the uproar of em-
pires and nations, the faint fluttering of wings,
the gentle stirrings of life and hope. Some will
say this hope lies in a nation; others in a man. I
believe rather that it is awakened, revived, nouris-
hed by millions of solitary individuals whose deeds
and works every day negate frontiers and the cru-
dest implications of history. Each and every one,
on the foundations of their own suffering and joy
builds for all.
– Albert Camus

Anyone who believes exponential growth can go
on forever in a finite world is either a madman
or an economist.
– Kenneth Boulding
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ABSTRACT

Abstract
Open rotors are known to have significant advantages in terms of propulsive efficiency.
These advantages translate directly in reduced fuel burn so that they nowadays benefit
from a surge of interest. At the same time, recent advances in numerical simulations
make the application of multidisciplinary optimization for the demanding design of
transonic propeller blades, an affordable option. Therefore, an optimization method
in which the performance objectives of aerodynamics, aeroacoustics and aeroelasticity
compete against each other, is developed and applied for the design of high-speed
single-rotation propellers.

The optimization is based on Multi-Objective Differential Evolution (MODE).
This technique is a particular kind of evolutionary algorithm that mimics the natural
evolution of populations by relying on the selection, recombination and eventually
mutation of blade designs, each of them being represented by a vector of design
variables (e.g. chord width, tip sweep, etc). MODE has the advantage of dealing
concurrently with all the objectives in the selection of potentially promising designs
among a population. In order to keep the computational cost within reasonable
margins, the assessment of the performance of proposed designs is done in a two-level
approach. A metamodel provides performance estimates for each proposed design at
extremely low computational effort while high-fidelity analysis codes provide accurate
performance values on some promising designs at much higher cost. To safeguard the
accuracy of the estimates, the metamodel is initially trained on a population that is
specifically assembled for that purpose. The training is repeated from time to time
with the high-fidelity performance values of promising designs. Different high-fidelity
tools have been developed and used for the assessment of performance.

The CFD-tool performs steady RANS simulations of a single blade passage of the
isolated propeller in free air under zero angle of attack. These simulations provide
the aerodynamic performance values. The full propeller is modelled thanks to cy-
clic boundary conditions. The k − ε turbulence model is used in combination with
wall treatment. Adiabatic no-slip wall conditions are imposed on the spinner and
blade surfaces whereas the test-section radial boundary is reproducing the effects
of a pressure far-field. This approach has proven its robustness and, above all, its
accuracy as satisfactory agreement with experimental results has been found for dif-
ferent operating conditions over a wide range of blade shapes, as well as sufficient
grid independency.

In the post-processing of the aerodynamic results, the Sound Pressure Level (SPL)
is computed for tonal noise at various observer locations by the aeroacoustic solver
(CHA). Formulation 1A from Farassat is used for this purpose. This formulation is
related to the inhomogeneous wave equation derived from Lighthill’s acoustic analogy
by Ffowcs Williams and Hawkings (FW-H). It benefits from the partial decoupling
of the acoustic and aerodynamic aspects and is particularly suited to compute the
noise from propellers. The thickness noise and loading noise are expressed by separate
equations in the time-domain whereas the quadrupole source term is dropped from
the original FW-H equation. The blade surface is chosen as integration surface and a
newly developed truncation technique is applied to circumvent the mathematical sin-
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gularity arising when parts of the blade reach sonic conditions in terms of kinematics
with respect to the observer. This approach delivers accurate values at acceptable
computational cost.

Besides, CSM-computations make use of a finite elements solver to compute the
total mass of the blade as well as the stresses resulting from the centrifugal and aero-
dynamic forces. Considering the numerous possibilities to tailor the blade structure
so that it properly takes on the stresses, only a simplified blade model is implemented.
The simplified blade is a monocoque design. The shell is composed of several layers
of braided composite and the core is filled with foam. Additionally, the aeroelastic
problem is decoupled from the aerodynamic one as the analysis is performed solely on
the ’cold’ blade shape. Hence the CSM computations provide a convenient, yet rudi-
mentary, sanity check from a structural point of view. Nonetheless, the optimization
tends to minimize the mass and stresses; to some respect, this should also benefit a
tailored structure analyzed with full coupling.

A first optimization is performed by integrating the CFD and CHA tools in the
optimizer. It uses a broad set of design variables controlling the spanwise variations
of chord, thickness, sweep and twist of the blade as well as the airfoil shape. The
propellers are assessed under different operating conditions corresponding to cruise
(M∞ = 0.75) and take-off/landing (M∞ = 0.2), each time at various rpm so that off-
design performance is also taken into account. The objectives aim at increasing the
efficiency while reducing the noise in and out of the propeller plane. This optimization
delivered a small number of optimized blades (28). All of them satisfy an extensive set
of operational constraints. Moreover, it pointed out the weaknesses and deficiencies
of the way the optimization method and high-fidelity tools have been implemented.
A few specific blade designs are analyzed in more detail to better understand the
potential of the set of design variables. These designs have peculiar geometrical
features and offer only small improvement in terms of efficiency but a substantial one
in terms of noise.

A second optimization is performed with complete integration of the CFD, CHA
and CSM tools. The design variables allow again complete control of the blade shape.
Propellers are assessed under both operating conditions, though this time cruise is at
M∞ = 0.7. One objective is defined to improve the aerodynamic efficiency, another
to minimize noise emissions and a last one to decrease blade mass and stress levels.
The optimization provided a set of 61 optimized designs that are fully compliant with
operational as well as structural constraints. Specific designs are once more subject to
a thorough analysis. These designs also have innovative geometrical features. They
come with a substantial increase in efficiency but a moderate decrease of the emitted
noise. Their geometrical features do not cause unacceptable levels of stresses.

Both optimizations illustrate the feasibility and the capabilities of the method. It
is proficient in exploring the search space and delivering designs with features that
are worth further investigation. One of them is the humps on the blade obtained
by smoothly increasing the chord of a specific region of the blade. Finally, general
conclusions are drawn and improvements to the method are proposed.
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RESUME

Résumé
Les hélices sont connues pour leur avantage significatif en termes de rendement pro-
pulsif. Ces avantages se traduisent directement par une réduction de la consommation
de carburant de sorte qu’elles connaissent aujourd’hui un regain d’intérêt. Actuelle-
ment, les avancées récentes en simulations numériques rendent possible d’appliquer
l’optimisation multidisciplinaire au cas exigeant du design de pales d’hélice trans-
sonique. Pour ces raisons, une méthode d’optimisation est développée, dans laquelle
les objectifs de performance aérodynamique, aéroacoustique et aéroélastique sont en
concurrence. Cette méthode est appliquée au design de pales d’hélice à haute vitesse
et à simple rotation.

L’optimisation s’appuie sur l’Evolution Différentielle Multi-Objectifs (Multi-Objec-
tive Differential Evolution - MODE). Cette technique est une des formes d’algorithme
évolutionnaire qui mimique l’évolution naturelle des populations par le concours de
la sélection, de la recombinaison et de l’éventuelle mutation de formes de pales, cha-
cune d’elles étant représentée par un vecteur de variables (corde, angle de flèche,
etc. . .). MODE offre l’avantage de considérer tous les objectifs en concurrence lors de
la sélection des designs prometteurs au sein d’une population. Afin de garder le coût
computationnel dans des limites acceptables, l’évaluation des performances des desi-
gns proposés est faite par une approche à deux niveaux. Un meta-modèle fournit les
estimations de performance pour chaque design à un coût computationnel extrême-
ment faible alors que des codes d’analyse à haute fidélité calculent les performances
précises à un coût nettement plus élevé. Pour préserver la précision des estimations, le
meta-modèle est initialement entraîné sur une population composée à cet effet. L’en-
traînement est ensuite répété de temps à autres avec les performances haute fidélité
de designs prometteurs. Différents outils à haute fidélité ont été développés et utilisés
dans ce cadre.

L’outil CFD exécute la simulation RANS stationnaire d’un seul passage d’entre-
pales pour une hélice isolée sans angle d’attaque dans un écoulement libre. Ces si-
mulations délivrent les valeurs de performance aérodynamique. L’hélice complète est
modélisée grâce à des conditions aux limites cycliques. Le modèle de turbulence k− ε
est utilisé en combinaison avec un traitement adapté près des murs. Des conditions
adiabatiques et sans glissement sont imposées sur le carénage et la surface de la pale
tandis que la limite radiale de la section d’essais reproduit les effets d’un champ de
pression lointain. Cette approche a prouvé sa robustesse et, par-dessus tout, sa pré-
cision puisque une correspondance acceptable avec des résultats expérimentaux est
obtenue pour différentes conditions d’utilisation et un large éventail de formes de
pales. De plus, l’indépendance par rapport au maillage est satisfaisante.

Lors de l’analyse a posteriori des résultats aérodynamiques, le Sound Pressure
Level (SPL) est calculé par l’outil aéroacoustique (CHA) pour le bruit tonal en dif-
férentes positions. La formulation 1A de Farassat est utilisée à cette fin. Cette for-
mulation découle de l’équation non-homogène d’onde dérivée de l’analogie acoustique
de Lighthill par Ffowcs Williams et Hawkings (FW-H). Elle bénéficie du découplage
partiel des aspects aérodynamiques et aéroacoustiques en plus d’être particulièrement
adaptée pour le calcul du bruit d’hélice. Le bruit d’épaisseur et le bruit de charge sont
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exprimés par des termes séparés dans le domaine temporel tandis que les quadripôles
de l’équation de FW-H sont négligés. La surface de la pale est utilisée comme surface
d’intégration et une nouvelle technique de troncation a été développée et appliquée
pour circonvenir la singularité mathématique qui apparaît lorsque des parties de la
pale ont des conditions soniques en termes de cinématique par rapport à l’observateur.
Cette approche délivre des résultats fiables à un coût acceptable.

En outre, l’outil CSM utilise un programme d’éléments finis pour calculer la masse
de la pale ainsi que les contraintes qui résultent des forces centrifuges et aérodyna-
miques. Considérant les nombreuses possibilités pour adapter la structure de la pale
afin de reprendre les efforts au mieux, seul un modèle simplifié est implémenté. La pale
simplifiée a une structure monocoque dont la peau se compose de plusieurs couches de
composite tressé et le cœur est rempli de mousse. De plus, le problème aéroélastique
est découplé du problème aérodynamique puisque l’analyse est effectuée sur la forme
non-déformée de la pale seulement. De ce fait les calculs CSM fournissent un moyen
commode, même si rudimentaire, de réaliser une vérification d’intégrité structurelle.
Néanmoins, l’optimisation tend à réduire la masse et les contraintes, ce qui devrait
profiter aussi à une structure plus sur mesure qui serait analysée avec un couplage
total des problèmes.

Une première optimisation intégre les outils CFD et CHA. Un ensemble extensif
de variables contrôle la distribution radiale de la corde, de l’épaisseur, de l’angle de
flèche et de l’angle de torsion de la pale ainsi que la forme du profil. Les hélices
sont considérées sous différentes conditions correspondant au vol de croisière (M∞ =
0.75) et au décollage/atterrissage (M∞ = 0.2), à chaque fois pour différents régimes
de sorte que la performance hors design soit aussi prise en compte. Les objectifs
visent à augmenter le rendement tout en réduisant le bruit dans et en-dehors du
plan de l’hélice. Cette optimisation aboutit sur un petit nombre de pales (28). Toutes
satisfont un ensemble extensif de contraintes opérationnelles. De plus, elle permet
d’identifier les faiblesses et les défauts de la façon dont l’optimisation et les outils
haute fidélité ont été implémentés. Quelques designs particuliers sont analysés plus
en détails pour mieux comprendre le potentiel des variables de design. Ces designs ont
des caractéristiques géométriques originales et n’offrent qu’une faible amélioration du
rendement mais bien une amélioration substantielle en termes de bruit.

Une seconde optimisation est effectuée avec l’intégration complète des outils CFD,
CHA et CSM. Les variables permettent encore un contrôle complet de la forme de la
pale. Les hélices sont considérées sous les deux conditions de vol bien que cette fois le
vol de croisière soit àM∞ = 0.7. Un objectif est défini pour améliorer le rendement, un
autre pour minimiser les émissions de bruit et un dernier pour réduire la masse et les
contraintes. Cette optimisation fournit un ensemble de 61 designs qui obéissent à des
contraintes opérationnelles et structurelles. Des designs spécifiques sont une fois de
plus analysés en profondeur. Ces designs ont aussi des caractéristiques géométriques
innovatrices. Ils offrent une augmentation confortable en rendement mais seulement
une amélioration modeste par rapport au bruit. Leur forme ne cause pas de niveau
inacceptable de contraintes.

Les deux optimisations illustrent la faisabilité et les capacités de la méthode. Elle
est efficace pour l’exploration de l’espace de design et pour délivrer des formes avec des
attributs qui méritent de plus amples d’investigations. Parmi eux sont les bosses sur la
pale, obtenues par une augmentation locale de la corde. Finalement, des conclusions
plus générales sont tirées et des améliorations à la méthode sont proposées.
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SAMENVATTING

Samenvatting
Propellers staan bekend om hun voordelen met betrekking tot het propulsierende-
ment. Die voordelen geven aanleiding tot een gereduceerd brandstofverbruik en dit
is ook de reden voor de huidige vlaag van interesse. Tegelijkertijd, zorgen recente
ontwikkelingen in numerieke simulaties ervoor dat het toepassen van multidiscipli-
naire optimalisatie voor het veeleisende design van transsone propellerschoepen, een
te veroorloven optie wordt. Om die reden, wordt een optimalisatiemethode ontwik-
keld, in dewelke de prestatiedoelstellingen van aerodynamica, aero-akoestiek en aero-
elasticiteit in concurrentie zijn. Deze wordt toegepast voor het ontwerp van hoge
snelheid, enkelroterende propellers.

De optimalisatie baseert zich op Multi-Objectieven Differentiële Evolutie (MODE).
Het is een type evolutionair algoritme dat de natuurlijke evolutie van populaties na-
bootst door selectie, recombinatie en eventueel mutatie van schoepontwerpen, elk
bestaande uit een vector van designvariabelen (bv. koordlengte, pijlhoek, enz...).
MODE heeft het voordeel dat het alle objectieven concurrerend behandelt bij de se-
lectie van veelbelovende designs onder een populatie. Om de rekenkost te begrenzen,
gebeurt de beoordeling van de prestatiekenmerken van de voorgestelde designs op twee
niveaus. Een metamodel levert de geschatte prestatie van de voorgestelde ontwerpen
met een zeer lage computationele kost, terwijl analysecodes met hoge nauwkeurigheid
het precieze prestatiekenmerk berekenen voor veelbelovende schoepen, maar tegen
een hogere kost. Om de nauwkeurigheid van de geschatte waarden te garanderen,
wordt het metamodel aanvankelijk getraind op een populatie die daarvoor specifiek
samengesteld is. De training wordt nadien van tijd tot tijd herhaald met de hoog
nauwkeurige waarden van veelbelovende designs. Verscheidene rekencodes met hoge
nauwkeurigheid worden daarvoor gebruikt.

De CFD-code voert stationaire RANS-berekeningen uit voor een bladkanaal van
een geïsoleerde propeller in vrije lucht en zonder aanvalshoek. Deze simulaties ge-
ven de aerodynamische prestatiekenmerken weer. De volledige propeller wordt door
middel van cyclische grensvoorwaarden gemodelleerd. Het k − ε turbulentiemodel
wordt gebruikt in combinatie met gepaste behandeling bij de wanden. De spinner
en het bladoppervlak worden adiabaat en zonder verschuivingen verondersteld, daar
waar de radiale grens van het domein de effecten van een ver drukveld nabootst. De-
ze aanpak heeft zijn robuustheid aangetoond en, bovenal, zijn nauwkeurigheid, daar
een bevredigende overeenstemming bekomen wordt voor meerdere werkingspunten en
bladvormen, alsook voldoende gridonafhankelijkheid.

In de postprocessing van de aerodynamische resultaten, wordt de Sound Pressure
Level (SPL) berekend door de aero-akoestische solver (CHA) voor toongeluid bij een
aantal locaties. Formulering 1A van Farassat wordt daarvoor gebruikt. Het is gere-
lateerd aan de niet-homogene golfvergelijking die door Ffowcs Williams en Hawkings
(FW-H) afgeleid werd uit de akoestische analogie van Lighthill. Ze haalt voordelen
uit de partiële ontkoppeling van de akoestische en aerodynamische aspecten en is
bijzonder geschikt voor het geluid van propellers. Het dikte- en belastingsgeluiden
worden door afzonderlijke vergelijkingen in het tijdsdomein weergegeven, terwijl de
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quadripool-term van de originele FW-H vergelijking wordt verwaarloosd. Het blad-
oppervlak wordt als integratieoppervlak gebruikt en een nieuwe aftoppingstechniek
wordt op punt gesteld om de wiskundige singulariteit te omzeilen, die ontstaat wan-
neer er delen van het blad in sonische toestand verkeren in termen van kinematica
ten opzichte de waarnemer.

Daarbij gebruikt de CSM-code een eindige elementen solver om de totale massa
en de spanningen die ontstaan door de aerodynamische en centrifugale krachten, te
berekenen. Gezien er tal van mogelijkheden bestaan om de structuur van het blad
aan te passen, zodat het de spanningen beter opneemt, wordt slechts een vereenvou-
digd model geïmplementeerd. Het is een monocoque design. De schaal bestaat uit
meerdere lagen van gebreide composieten met een kern uit schuim. Bovendien, wordt
het aero-elastisch probleem ontkoppeld van het aerodynamisch probleem gezien en-
kel het niet-vervormde blad wordt beschouwd. Om die redenen levert de CSM-code
een handige, doch rudimentaire, controle van de structurele integriteit. Desalniette-
min, probeert de optimalisatie de massa en de spanningen te verminderen, wat ook
voordelig zou moeten zijn voor een verfijnde structuur, gemodelleerd met volledige
koppeling.

Een eerste optimalisatie wordt uitgevoerd met CFD- en CHA-codes. Men besch-
ouwt een uitgebreide set van ontwerpvariabelen die de radiale verdeling controleert van
koorde, dikte, pijlhoek en draaiing, alsook de vorm van de vleugelprofielen. De propel-
lers worden beoordeeld in kruis (M∞ = 0.75) en bij het opstijgen/landen (M∞ = 0.2),
telkens bij meerdere omwentelingsnelheden zodat off-design prestaties ook in rekening
worden gebracht. De doelstelling is de efficiëntie te verhogen terwijl het geluid in en
uit het propellervlak gereduceerd wordt. Deze optimalisatie levert een klein aan-
tal geoptimaliseerde schoepen (28) die allemaal een veelomvattende set operationele
beperkingen naleven. Tevens laat deze toe de zwakheden en deficiënties van de ma-
nier waarop de optimalisatiemethode en hoge nauwkeurigheid codes geïmplementeerd
werden, te identificeren. Enkele bijzondere designs worden meer in detail onderzocht
om het potentieel van de gekozen variabelen beter te vatten. Deze designs hebben
bijzondere geometrische kenmerken en bieden maar een kleine verbetering van het
rendement, maar een substantiële verbetering voor het geluid.

Een tweede optimalisatie met volledige integratie van de CFD-, CHA- en CSM-
codes wordt uitgevoerd. De designvariabelen laten alweer een totale controle toe
van de vorm van de schoep. De propellers worden nogmaals bij beide vluchtomstan-
digheden beoordeeld, doch deze keer in kruis bij M∞ = 0.7. Een objectief wordt
gedefinieerd om de aerodynamische efficiëntie te verhogen, een ander om het geluid
te minimaliseren en een laatste om de massa en de spanningen te verminderen. De
optimalisatie resulteert in 61 ontwerpen die aan alle operationele en structurele eisen
voldoen. Enkele designs worden grondig onderzocht. Deze hebben ook innoverende
geometrische kenmerken en bieden een aanzienlijke toename van het rendement met
een gematigde afname van het geluid. Deze geometrische kenmerken veroorzaken
geen onaanvaardbare spanningen.

Beide optimalisaties illustreren de haalbaarheid en de mogelijkheden van de me-
thode. Ze is uitermate geschikt voor de verkenning van het zoekdomein en voor het
leveren van designs met kenmerken die verder onderzoek verdienen. Een ervan zijn
de bulten door een zachte, lokale verbreding van de koorde. Tot slot worden besluiten
en voorstellen tot verbetering geformuleerd.
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Chapter 1

Introduction

1.1 Interest of propellers

1.1.1 The past
On December the 17th 1903 history changed. What started as the ancestral fasci-
nation for joining birds in their freedom to exploit the vertical dimension and latter
evolved into the quest of having man actually making a sustained and self-controlled
flight, became reality when the Wright brothers took off at Kitty Hawk with their
propeller-driven aircraft for a 12 seconds flight. Their aircraft was propelled by a
wooden propeller with an astonishing peak efficiency of just over 70%. Wilbur Wright
was then the first person to recognize that a propeller is nothing more than a rotating
twisted wing [19] whose primary function is to convert shaft power into propulsive
thrust at the highest possible efficiency.

Since this major event, propellers were first the only propulsion system for aircraft
but became merely an alternative when the turbojet and latter the turbofan appeared.
It is only in the late 1970′s and early 1980′s, under the pressure of high fuel prices, that
new concepts such as the single- or counter-rotation propfan were developed. These
concept promised interesting efficiencies though they required additional development
to keep vibration and noise levels within reasonable limits. The low and reasonably
stable fuel prices at the end of the 1980′s led to the end of these programs before they
reached the necessary level of maturity to convince a rather conservative industry.

Despite this demise, turboprops were still flourishing in the regional aircraft mar-
ket and so it seemed logical to increase the flight speed of turboprops to deliver
interesting economics on longer routes. But the introduction of the regional jet broke
that line of effort. Strong barriers in operator and passenger perception appeared as
is wonderfully illustrated by news articles such as [209] which is just one manifestation
of the ’prop avoidance factor’ [148].

1.1.2 The present and the future
Nowadays, the economical pressure is augmented with the environmental one so that
a new deal is set up. Under this deal, propellers seem to offer at least part of the
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answer and the perception barriers might be overcome. High-speed turboprops or
other advanced open-rotor concepts are in for a resurgence. This supports the view
of D. Edgerton [87] that old ideas are worth being periodically investigated instead of
just being dismissed. Innovation is not always disruptive, sometimes new problems
require ’old’ answers. At present, propellers represent a growing market share in
civil aviation, a significant one in military aviation and enjoy an undiscussed leap in
general aviation.

Military use of propellers is driven by some breaching advantages, these include:

• their robustness for badly prepared terrain,

• their short take-off and landing performance,

• their good low speed performance,

• they are relatively easy to fly,

• and they have a high to very high efficiency.

This insures that propellers will still be widely used for those specific applications
that correspond to these advantages, e.g.: training and advanced training of pilots,
tactical transport, surveillance and counter-insurgency among others. For the train-
ing purpose, the trend is to higher flight speeds in order to match the performance
of fighter-jets as closely as possible with a reasonable cost when compared to jet-
trainers [38, 238]. Tactical transport applications have traditionally seen extremely
successful use of turboprops. The recent development of the Lockheed-Martin C-130J
or the impressive Airbus A-400M are interesting examples of the drive for higher flight
Mach numbers whilst delivering better efficiency. Future contracts such as the Future
Cargo Aircraft (FCA) for the US Air Force and US Army, rely solely on turboprops.
For surveillance purposes, turboprops are considered for the Aerial Common Sensor
(ACS) program [11]. Use of propellers for Unmanned Aerial Vehicles (UAV ’s) is also
quite frequent these days and advanced propellers should bring improvements with
regard to both endurance and noise generation. Recent developments even include a
fast, stealthy, turboprop equipped UAV [300], the solar-electric-powered Solar Eagle
or the hydrogen-powered Phantom Eye, both from Boeing. For counter-insurgency
purposes, the advantages of turboprop aircraft such as those extensively used in the
Vietnam war, are sought after in future requirements [12].

In civil aviation, propeller aircraft are used in impressive numbers for sub-regional
and regional transport (both for freight and passengers). For these markets, the
high subsonic speed domain is quite interesting but the noise generation is still a
major item of concern. The high fuel efficiency of propellers is the main factor for
companies to select propeller driven aircraft for this particular market. Moreover,
their ability to accelerate a large amount of air at low speeds, which translates in
shorter take-off length and climbing time, makes them attractive for airliners that
operate on small airports with shorter runways or with stringent noise abatement
procedures. Advanced propellers have brought new potentials as their reduced noise
emissions allow for less cabin insulation, their high performance allow to compete with
turbofan aircraft while flying at higher speeds and their modern manufacture concepts
together with high fuel efficiency have helped reducing the operating costs. Turboprop
equipped aircraft face a brilliant perspective if judged by the considerable amount of
statements made in this direction [148,169,198,58,227,3,73,161,170,2,146,195]. Part
of this move is sustained by the ’greener’ perception of turboprops [184,6,4] and led to
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an increase from 15% to 40% of the anticipated total demand in the regional aircraft
market [31].

For general aviation, most aircraft are equipped with a piston-engine and pro-
peller. In this case, propellers represent the low cost solution by excellence, both for
investment and in-service cost.

Recent works have underlined the potential advantage of turboprops in civil avia-
tion. Whereas turboprops were typically confined to routes shorter than 550km, [252]
and [269] show the potential benefits of advanced propellers for routes up to 2750km.
Taking into account that close to 95% of the flights in the European airspace have
a direct distance less than 1000km [155], one should indeed give propellers a second
chance and relieve them of their status of anathema.

Recent development of high speed propellers has extended the flight domain to
high subsonic speeds (thereby increasing the need for ideally optimized blades) along
with an increased efficiency. As of today, concern is rising fast on environmental
issues; the desperate search for reduced pollutant emissions is dramatically requiring
enhanced performance. Also, the scarcity of fuel resources requires a parsimonious
use of it. These two reasons along with the fact that propellers achieve better fuel
efficiency when compared to a technologically equivalent turbofan, are a solid moti-
vation to continue research for advanced propellers. As a matter of fact, the recent
release of the four reports in the framework of NASA’s study for a 2030-era aircraft,
gives a strong boost for advanced open-rotor concepts. Indeed, the recurring themes
of those reports are [26,114]:

• Slower cruising at about Mach 0.7 and at higher altitudes, to save fuel.

• Engines requiring less power during take-off, for quieter flight.

• Shorter runways to increase operating capacity and efficiency.

• Smaller aircraft flying shorter and more direct routes, for cost-efficiency.

• Reliance on future advancements in Air Traffic Management for merging and
spacing enroute, during climbs and during descents.

These conclusions led two of the four teams to favour aircraft equipped with pro-
pellers. Hence turboprops or, more generally, innovative single- and counter-rotation
open-rotor concepts, associated with advanced engine concepts, should have a bright
future. The main features of these modern-age propellers include:

• they are multi-bladed,

• they are potentially used in dual-rotation,

• they have high loading,

• they have high twist and sweep,

• they have thin airfoil sections at the tip,

• they have wide chord airfoils,

• they have advanced planform shapes,

• and they are tailored to the use of progressive materials.
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1.2 Literature survey
Though the purpose of this section is not to deliver a complete literature survey, this
is done more appropriately in the subsequent chapters, it is necessary to locate the
present dissertation among the works on multidisciplinary optimization applied on
aircraft propeller blades. The path to a true multidisciplinary approach of propeller
design, with the disciplines acting in a concurrent way rather than the traditional
approach where disciplines were pursued in an independent or serial way, has probably
been laid by the end of the 1990′s by the work of M. Dunn and F. Farassat [81].
They presented an integrated procedure to retrieve the aerodynamic, aeroacoustic
and aeroelastic performance of a given blade geometry. The work is rather focused
on the precise assessment of the aeroacoustics with inclusion of the effects of blade
deformations and so it lacks the coupling to a search engine capable of generating
new geometries based on the acquired knowledge. Later on, multidisciplinary design
procedures were proposed such as in [59] though it relies on rather simple models
such as 2D approximations, or as in [61] but with a limited set of design parameters.

At present, multidisciplinary design has become the standard and this is reflected
in the amount of works published. In [61], an optimization of propeller blades for
low-speed applications is proposed. In [134, 133], O. Gur and A. Rosen proposed a
fairly complete optimization procedure for propellers aiming at the UAV segment;
hence their work is limited to low speed aircraft. They use deterministic optimization
methods where the amount of individuals (i.e. blade designs), thus also of computa-
tions, is limited. A. Pagano, in [219], presents a multi-objective optimization applied
for a pusher propeller installed on medium-speed aircraft. It uses genetic optimization
methods involving more individuals but with a limited set of design parameters.

To the author’s knowledge, noise generation from propellers for high-speed trans-
port aircraft is rarely blended into multi-disciplinary design based on Evolutionary
Algorithms. The high computational cost of aerodynamic and aeroacoustic compu-
tations in the transonic domain on top of the cost of structural computations are the
main reasons for this. Moreover, the rare multidisciplinary optimizations that have
been performed over the last decades are proprietary information of a few industrial
concerns and have not been cleared for public release to this date.

1.3 Thesis objective
Current propellers have been selected on a wide spectrum of characteristics: low fuel
consumption, high trust generation under different conditions, long lifetime, low cost,
high mechanical integrity, high environmental friendliness (including cabin and out-
bound noise) and other potential requirements that are specific to the intended use.
Modern propellers explore new fields by increasing the number of blades, increasing
the tip speed and introducing new planform shapes and section profiles; all of that
to optimize one or more of the selection criteria. The latest advances in computing
capabilities made a large range of reliable tools available to the scientific community.
Until recently, many of the benefits of computational methods (applied to aerody-
namics, aeroacoustics, stress, vibrations and many other fields) could only be yielded
with limited extent because of the large computational cost involved. But nowadays
computers and software improvements allow for far more reaching applications. Time
has come for multidisciplinary optimization.
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1.4 Preliminary remarks

Optimization according to one design criterion may lead to a blade design that is
not optimal in terms of other disciplines or violates constraints. So, multidisciplinary
optimization is needed. It consists of finding a geometry that is optimal/acceptable
according to the different disciplines. In this work, the fields of aerodynamics and
aeroacoustics are considered to some extent, along with the issue of aeroelasticity.
The objective is to propose an integrated, multidisciplinary and multi-objective design
procedure that autonomously searches for optimal blade shapes that satisfy specific
constraints. The procedure should be applied with innovative design parameters in
order to explore new possibilities.

The core of the proposed optimization tool consists of a robust and inexpensive
algorithm to find one or several candidates close to optimality. Wrapped around the
optimizer are the following discipline related prediction tools that help in the correct
assessment of the value of a given blade design:

• a tool for aerodynamic performance prediction,

• a tool for the prediction of the noise emitted by a blade design in specific
conditions,

• and a tool for the prediction of the structural status of the blade,

These tools need to be developed for the present purpose and given the possibilities
of the institutions involved. They also require validation to make sure they work
properly. As they are still quite expensive in computational terms, their use should be
reduced by means of a fast optimization based on approximation tools and embedded
within the global optimization. However, the accuracy of the overall method should
be safeguarded by a recurrent but limited use of the aforementioned prediction tools.
This assures that inaccuracies in the approximations do not lead to false optima.
The different tools should run in parallel in order to save time. Such a two level
optimization process should be less expensive (finding the optimum with a minimum
of computational effort) and highly effective(finding solutions near the true optimum).

In a nutshell, one might say the ultimate objective is about shortening and improv-
ing the design cycle of propeller blades with increased efficiency, and reduced noise
emissions while complying with mechanical characteristics and potentially proposing
innovative shapes. This should be done with maximum use of already available design
expertise in a modular and automatic system at a minimum cost.

1.4 Preliminary remarks

A first point that immediately arises, is the integrated nature of the work. It trans-
lates more into a ’network’ structure rather than a serial account of the path that is
followed. So this dissertation is written in this sense and tries to respect that nature
though it still pretends to deliver a scientific explanation of the tools, their results
and how they interact.

The focus of this dissertation is on ’improvement’ rather than finding a true,
possibly non-existing, global optimum. And this quest is deliberately done without
strong restrictions on the blade geometry. The net result is a very wide search-space
out of which the author hopes to retrieve interesting features that are worth blending
into future designs. It should be clear that these designs will for sure need refinements
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and should be subject to analysis with much more details before maturity. So the
present dissertation is purposely placed at the earliest design stage.

As often as possible, the analysis tools used in the present work, have been assessed
by comparison to published results on known propeller configurations. Unfortunately,
propellers have long fallen in the industrial realm so that exploitable data (and that
implies mainly the precise knowledge of the blade shape) are scarce. One is either
restricted to the NACA-era or the 1980′s propfans studied under a NASA-effort.
This is even more crucial when structural data are sought after as only ’old’ propeller
structures are available.

1.5 Thesis outline
This dissertation is articulated around three parts. In the next chapter, basic propeller
principles are discussed in order to sketch the problem of optimizing a propeller blade
in a multidisciplinary environment. In part I, composed of chapters 3 to 7, the
optimizer is described along with the various analysis tools around it. In each case,
a perspective is given and the chosen approach is described into all necessary details.
Part II (chapters 8 to 10) is dedicated to an aerodynamic and aeroelastic optimization
that served as a first test case. The specific details of the optimization, resting upon
the tools of part I, are first discussed before analyzing and commenting the results.
The conclusions of that part serve as springboard for the next optimization. This
second optimization is dealt with in part III (chapters 11 to 13). It includes all three
disciplines. Here again, the optimization set-up is first described before jumping
to the analysis and synthesis of the results. Finally, general conclusions are drawn
together with possible points for improvement. The dissertation ends with the list of
figures, tables and references.
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Chapter 2

Basic propeller theory

Prior to the detailed discussion of the elements assembled in the present optimizations,
this chapter provides some basic insight into the forces and loads active on a propeller
blade as well as the origins of the sound emitted by a running propeller.

2.1 Aerodynamic forces, flow and efficiency
The purpose of a propeller is to generate thrust which is the force in the flight di-
rection. But when decomposing the overall aerodynamic force produced by a single
blade, one obtains two components: thrust T and a Propeller Torque Force (PTF)
PTF . The last is responsible for the torque Tq that is usually overcome by an air-
breathing engine, a turboshaft or an electric drive. The forces and the torque are
illustrated in Fig. 2.1. Basically, a propeller blade may be seen as a series of radial
elements having an airfoil shape and subject to a velocity depending on the radial
position. Such an element is illustrated in Fig. 2.2 together with the traditional
decomposition of the aerodynamic force in elemental lift Lel and drag Del or in ele-
mental thrust T el and PTF PTF el. In Fig. 2.2, u∞ is the free-stream velocity, ui the
induced velocity, ωr the local tangential velocity resulting from rotation and ub the
velocity relative to the blade section. The angle β is the local blade angle and αb is
the angle of attack for that particular section. The angles εb and εi are the advance
and induced angles respectively.

Depending on the radial location of the section A − A′, the angles vary and so
do the forces too. In general, the inner part of the blade, close to the root, does
not contribute significantly to the generation of thrust [213,32,29] whereas the outer
part, from 50% radius on, is responsible for most of it. Hence the pressure loads are
significantly different.

The flow around a blade is essentially 3D because of the presence of the spinner
that induces radial displacement of the incoming fluid, but also because of the local
pressure distributions along the radius. In transonic flow, a shock on the suction
side of the outer part of the blade is a common feature. Possibly, in harsher con-
ditions, this shock spans the whole blade passage but this corresponds to a rather
inefficient situation. Sometimes, a shock is present at the root part of the blade due
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Figure 2.1: Aerodynamic forces applied on a blade at its center of pressure.
The propeller is placed in uniform inflow at zero angle of attack.
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Figure 2.2: Elemental forces and velocities on section A−A′ of Fig. 2.1. Forces
are applied at the local center of pressure.
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ω

Figure 2.3: Main flow features around a propeller blade.

to blockage effects but again this situation should be avoided [274]. Concerning vor-
tical structures, there are essentially three regions of intense vorticity: the tip vortex,
the horse-shoe vortex at the root and a sheet of trailing vorticity. These structures
are illustrated in Fig. 2.3. The tip vortex follows the helical path of the tip and has
a strong intensity. Its core extension, measured to the point of maximum circum-
ferential velocity, is typically of the order of 5 to 10% of the blade chord [159] and
tends to increase with decreasing blade tip thickness [292]. The horse-shoe vortex in
comparison has a much smaller spatial extent [190]. The wake of the blade contains a
sheet of trailing vorticity that usually vanishes within one chord length. Additionaly,
a leading-edge vortex as well as shock-induced vorticity due to baroclinic effects are
often encountered [190].

Typical installed efficiencies for propellers are given in Fig. 2.4 from [158, 275].
The figure is related to the installed efficiency:

ηinstalled =
u∞Tinstalled
Pinstalled

(2.1)

with Tinstalled and Pinstalled referring respectively to the thrust and power of the
installed propeller. This efficiency is, for tractor configurations at least, somewhat
higher than the net efficiency of the propeller (η) because the wings usually act as
swirl recovery vanes. The installed efficiency of conventional propellers drops for
free-stream Mach numbers (M∞) higher than 0.6, and this is the reason why most
turboprop equipped aircraft do not fly at higher speeds. But modern blade and airfoil
shapes allow for better efficiencies at Mach numbers of the order of 0.7 − 0.75 as is
proven by recent developments in military transport aircraft. High efficiencies at
high free-stream Mach numbers are obtained with high-speed propellers whose tip
travels at Mach numbers well above unity. For these open-rotors, counter-rotation
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POTENTIAL IMPROVEMENTS
 - COUNTER-ROTATION
 - SWIRL RECOVERY VANES

SINGLE-ROTATION

 ADVANCED
 HIGH-SPEED
OPEN-ROTOR

CONVENTIONAL
 TURBOPROP

  ADVANCED
 HIGH-SPEED
OPEN-ROTOR

 ADVANCED
LOW-SPEED
PROPELLER

CONVENTIONAL
    LOW-SPEED
    PROPELLER

Figure 2.4: Typical installed efficiency of open-rotors in general ( [158,275]).

and swirl recovery vanes could offer substantial improvement and are currently being
investigated by different research teams. The drawback are the aeroacoustic issues
related to such high tip speeds as will appear in chapter 6.

2.2 Structural loads

A single blade is essentially a rotating cantilever beam subjected to both steady and
vibratory loads. The steady loads, in unaccelerated rectilinear flight, are composed
of (see also Fig. 2.5):

• the centrifugal load due to rotation,
• the torque and thrust loads resulting from the aerodynamic forces (pressure

and viscous),

The centrifugal load results in tension on the blade but also in a powerful twisting
moment. This Centrifugal Twisting Moment (CTM) results from the twist in the
blade and the resulting presence of blade material away from the pitch change axis.
This is illustrated in Fig. 2.6. The torque and thrust loads are responsible not only for
local shear, because of their radial distribution, but also for considerable bending mo-
ments and the Aerodynamic Twisting Moment (ATM) which is a similar mechanism
as the CTM though the cause is the local distribution of pressure around the sec-
tion. The ATM, which mostly tends to increase the blade angle, is usually negligible
with respect to the CTM that tends to decrease the blade angle. For most operat-
ing conditions, the centrifugal loads are dominant with respect to the aerodynamic
loads [213,81].

In the present early-design optimization, vibratory loads are not considered.
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Figure 2.5: Main steady loads.

2.3 Origins of noise
Sound is related to density fluctuations and is thus associated with compressibility.
The motion induced by an acoustic source (like the motion of a blade for example) is
locally balanced by reciprocal motion of the fluid particles around it. However, inertial
effects prevent this local motion from entirely compensating the motion induced by
the source; hence local compressibility perturbations arise and are transmitted to
adjacent particles. The local motion and the local compressibility perturbations have
different properties and only the latter propagate at large distances from the source
and are called sound. The pressure fluctuations associated with the local motion are
called pseudo-sound and decay very rapidly with the distance from the source.

Several distinct noise mechanisms contribute to the emission of propeller noise. A
typical spectrum is given in Fig. 2.7 and reveals the main classification into discrete-
frequency (or tonal) noise and broadband noise. Both classes are further subdivided
depending on the physical origin of noise:

• Tonal noise:

– Steady aerodynamic noise, also called rotor-locked noise: is related to the
aerodynamics and kinematics of the blade in uniform flow. It usually
increases with the rotational velocity and is further divided into:

∗ Thickness noise: is due to the displacement of the fluid by the blade
and is related to the linear aerodynamic theory. Thickness noise has
a monopole-type directivity pattern as illustrated in Fig. 2.8(a).

∗ Loading noise: is caused by the accelerating force applied on the fluid
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(a) Centrifugal loads of a blade element A − A′ considered as two
concentrated masses.
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(b) In-plane components of the centrifugal loads and
resulting twisting moment.

Figure 2.6: Centrifugal Twisting Moment (CTM).
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Figure 2.7: Typical envelope of a propeller noise spectrum.

by the motion of the blade surface and is also a direct consequence
of the linear aerodynamic theory. Its directivity is of the dipole-type
as shown in Fig. 2.8(b).

∗ Quadrupole noise: has various origins and is essentially accounting
for non-linearities (see section 6.2.1.1).

– Noise from stationary distortion of inflow: This phenomenon induces pe-
riodic variations of the flow-field around the blade. These periodic vari-
ations distort the previous contributions and generally feed the nearest
harmonics of the Blade Passing Frequency (BPF).

– Noise from ingestion of stretched turbulence: The chopping of large stretched
eddies by the blades produces nearly tonal components due to the periodic
interaction of the blades with those eddies.

• Broadband noise:

– Leading Edge (LE) noise: is due to the ingestion of upstream turbulence
and the consequent modification of vortices passing the LE. In general,
this noise becomes dominant for highly turbulent flows but it is partly
decreased by increasing the LE radius.

– Trailing Edge (TE) and wake noise: is generated as the inertia of vortical
structures is modified at the TE or in the wake. This noise is highly
correlated with the boundary-layer or wake thicknesses.

– Blade-tip vortex and laminar vortex shedding are other possible contrib-
utors as any change of inertia of these structures would radiate noise.

– Self-noise sources: are related to phenomena occurring on the blade itself
like turbulence for example, or unsteady loading.

A more complete explanation of these phenomena can be found in [43, 182, 183, 256,
257].
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(a) Rotating monopole-type directivity typical of thick-
ness noise.

(b) Rotating dipole-type directivity typical of loading
noise.

Figure 2.8: Thickness and loading noise directivities.
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Chapter 3

Optimization method

The term ”optimization” refers to finding one or more solutions satisfying one or
more constraints and corresponding to extreme values of one or more objectives. At
its simplest, a design team could carry out an analysis of a single design to assess its
performance. At the next level, it may wish to analyze a small number of competitive
designs to determine which best suits the requirements. The next step would be to
carry out a local optimization with a few variables against a single objective and
a few constraints. At the end of the scale are wide-ranging searches with multiple
constraints and competing objectives. Beyond this, multiple operating conditions
could be considered so as to correspond as closely as possible to the in-service life
and it could be required to address various disciplines simultaneously so that the
whole scope of requirements (such as cost, weight, performance, manufacturability,
supportability, environmental impact and ultimate disposal) is included early in the
design stage.

Nowadays, the advent of parallelized computing power combined with more ro-
bust, reliable and faster codes offer the design team the possibility to conduct wide-
ranging searches in a multi-point and multidisciplinary environment. This challenge
has a strong potential for improvements and even innovation while respecting the
demand for products with a better performance versus cost ratio and with increased
quality, in a ceaselessly decreasing design-cycle time. The work-load of the design
team is then shifted from making design changes to a true search for better and
more-balanced designs, within a global trade-off of desirable characteristics.

Optimization algorithms have been developed to help the design team in this
quest. They drive the optimization by making autonomous modifications of the vari-
ables. As such, they assist the team in conducting the search as efficiently as possible,
over the multi-dimensional domain delimited by acceptable values of all design vari-
ables. For that purpose, one requirement of such algorithms is to be highly automated
in order to reduce the high costs associated with manpower but also to reduce the
design-cycle time. Another requirement is to provide those algorithms with infor-
mation about the relationships between the design-parameters and their effect on
constraints and objectives. Specific computational tools intend to provide those rela-
tionships at a relatively low computational cost in order to alleviate part of the ”curse
of dimensionality” [28] (i.e. the exponential increase in volume associated by adding
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dimensions to a search space).
This chapter will give an overview of optimization algorithms and metamodeling

techniques. Its purpose is not to give a detailed account of each of the existing
methods but rather to locate the ones that are used in the present work, within their
respective landscape. More details are also given for the tools used in the present
arrangement which is an improved version of the procedure used and developed by S.
Pierret [229] and T. Verstraete [297] at the von Karman Institute.

3.1 Optimization methods

3.1.1 Formulation of the problem
Consider a set of N design variables such as blade thickness, chord length, blade
diameter, constitutive material, etc. A particular design, i.e. a particular blade
shape, is represented by its vector of design variables:

x̄ =


x1

x2

x3

...
xN

 (3.1)

Throughout this dissertation, the terms solution and individual will be interchange-
ably used to refer to a vector of design variables x̄. The multi-objective optimization
problem involving L objectives is mathematically formulated as:

Minimize/Maximize: Ωi(x̄, ...) i = 1..L (3.2)
Subject to: Γj(x̄, ...) ≤ 0 j = 1..M (3.3)

Φk(x̄, ...) = 0 k = 1..P (3.4)
xlp ≤ xp ≤ xup p = 1..N (3.5)

where the functions Ωi(x̄, ...) are the objective functions, Γj(x̄, ...) the inequality
constraint functions and Φk(x̄, ...) the equality constraint functions. Each objective
function depends on the design variables x̄ but also on external parameters defining,
for example, a particular operating condition of the propeller (rpm, flight velocity,
...) or a particular material of the blade (yield strength, Youngs’ modulus,...). The
objective functions correspond to some engineering performance such as efficiency,
blade mass, strength, emitted noise, etc, or even a combination of them. Henceforth
they require the use of dedicated analysis tools such as Computational Fluid Dynamics
(CFD) or Computational Structural Mechanics (CSM). Owing to the duality principle
[71], a maximization problem can be converted into a minimization problem and
reversely. This enables the treatment of mixed types of objectives as minimization
problems as done in the present work. In the development of multi-objective methods,
one key requirement is that at least two, but preferably all, objectives are competing
against each other.
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Inequalities such as Eqn. 3.3 correspond to constraints that must be satisfied, in
this category fall a minimum strength that needs to be guaranteed or a minimum
thrust that needs to be achieved, etc. Eqn. 3.4 refers to equality constraints that give
a relationship, often in explicit manner, between design variables (e.g. a relationship
between variables to obtain a prescribed value for the volume of the blade). This
kind of constraints are extremely difficult to satisfy and can generally be eliminated
by careful selection of a reduced set of design variables owing to the information from
Φk(x̄) or transformed into relaxed inequality constraints with some loss of accuracy.
Both equality and inequality constraints might require dedicated analysis so they
generally depend on external parameters also. For the sake of clarity, this dependence
is dropped from the shorthand notations Ωi(x̄), Γj(x̄) and Φk(x̄) though it is formally
an important aspect of these functions.

The last set of constraints stands for the bounds of the design variables, restricting
each design variable xp to take a value within the interval defined by the lower xlp
and upper xup bounds. These bounds define a search space of N dimensions (DN ).
Within this space, a solution is called infeasible if it has properties that prohibit its
realization or its representation with a computer model. A blade with a negative
thickness or a chord of zero length would fall into that category. One that is feasible
and satisfies the M+P constraints is called a compliant solution.

By applying the functions Ωi(x̄) to all individuals of the feasible regions of the
search space DN , one in fact realizes a unique mapping of the N -dimensional search
space onto the L-dimensional objective space OL, i.e. for each solution x̄, a point
Ω̄(x̄) = [Ω1(x̄),Ω2(x̄), ...,ΩL(x̄)]T exists in the objective space as illustrated on Fig.
3.1. This mapping is often non-linear and the properties of these two spaces are not
likely similar. For example, proximity of two solutions in the search space might
result in considerable distance in the objective space. These two spaces and their
relationship are of considerable importance for the optimization problem as the search
among elements of DN is based on decisions relying on the corresponding elements of
OL.

3.1.2 Objectives and constraints

3.1.2.1 Pareto-front

The essence of multidisciplinary optimization is to find a set of compliant solutions
that offers the best potential in terms of more than one objective and to make that set
as diverse as possible. The first goal is common to all optimizations but the second
is specific to multi-objective optimization as it requires a good set of trade-offs. To
sort individuals with respect to competing objectives, the concept of domination is
defined in OL as:

Definition 1 Given two compliant individuals xa and xb from D, xa is said to dom-
inate xb if and only if:

1. Ωi(xa) ≤ Ωi(xb) ∀i ∈ [1, L],
and

2. ∃i′ : Ωi′(xa) < Ωi′(xb).

This relation can be shown to be not reflexive, not symmetric, not antisymmetric but
well transitive. As it is at least transitive, it qualifies as an ordering relation [71].
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Figure 3.1: Feasible regions of a 3-dimensional search space D3 mapped to the
corresponding 2-dimensional objective space O2.

Fig. 3.2 illustrates the concept of dominance; point X corresponds to a solution that
dominates the one corresponding to point Y as at least one objective value of point X
is strictly smaller than the one of point Y . On this figure, points X and Y correspond
to solutions that dominate strongly the solution behind point Z as they have lower
objective values for all objectives simultaneously.

Given a finite set of individuals, often referred to as population, one could identify
a subset of individuals which have the property of dominating all other solutions
which do not belong to this subset. This subset is defined as the non-dominated set:

Definition 2 Among a set of compliant solutions P, the non-dominated set of
solutions P ′ are those that are not dominated by any member of the set P.

From there, the globally Pareto-optimal set is defined by

Definition 3 The non-dominated set of the entire compliant search space is the glob-
ally Pareto-optimal set.

This definition is illustrated in Fig. 3.2 by the so called Pareto-front which is the
locus of the globally Pareto-optimal set in the objective space (points A to F ). By
extension, the concept of global Pareto-optimality can be applied in the neighborhood
of a solution to define a local Pareto-optimal set. At this point, it is important to
note that if the objectives are not competing, the cardinality of the Pareto-optimal set
becomes one. This means that the minimum solution corresponding to any objective
is the same.

In the past, and at times in the present, single objective optimization is used
despite most real-world engineering problems being multi-objective in essence. In
this case, L=1 and most single-objective optimizations have the single goal of finding
one, preferably global, optimum. Hence the goal of having a diverse set as is the
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Figure 3.2: Concepts of dominance and Pareto-front in a 2-dimensional objec-
tive space O2 (Ω1 and Ω2).

case with multi-objective optimization, vanishes. Moreover, only the search space
is considered in single-objective optimization and solutions are assessed directly on
their objective value, hence there is no need for the concept of dominance. The last
difference for such methods is that they require artificial fix-ups to blend different
disciplines and/or different performance for a discipline, into one single objective.
Many methods exist, such as the weighted sum and ε-constraint approaches [71],
to create a composite objective but the major drawback is that optimization results
depend on the chosen weights or constraint limits. This is also the reason for choosing
a multi-objective approach in this work.

3.1.2.2 Constraints handling

Various methods exist to handle the inequalities of Eqn. 3.3 [251,204,160,68,226,71].
An approach that immediately comes to mind is to ignore non-compliant solutions.
Any solution that violates at least one constraint is irremediably ignored. This ap-
proach is simple to implement but real-world problems require the precious infor-
mation obtained by evaluating the values of the constraint functions Γj(x̄) for non-
compliant solutions to drive the search toward the compliant region.

Among indirect methods to handle constraints, the use of penalty functions is very
popular. It is known that penalty functions based on the distance from feasibility
outperform those based on the number of violated constraints [251,160]. So generally,
they consist in replacing the objective functions Ωi(x̄) by a pseudo-objective functions
Ω̃i(x̄) that needs to be minimized:

Ω̃i(x̄) = Ωi(x̄) +

M∑
j=1

Rijδj |Γj(x̄)| (3.6)

where
{
δj = 0 if Γj(x̄) ≤ 0
δj = 1 if Γj(x̄) > 0
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Hence for compliant solutions, the pseudo-objective function is equal to the objective
function. In Eqn. 3.6, the penalty parameter Rij is zero if one does not want the
jth-constraint to influence the ith-objective and otherwise chosen such that both
terms of the right-hand side have the same order of magnitude. Different strategies
coexist to determine Rij either in a static way by a choice made before starting
the optimization, which is the most common, or a dynamic approach where Rij is
continuously updated along the optimization process. In some cases, Rij is made
dependent of each constraint, resulting in a Rij-term within the summation. In any
case, Rij does not influence the Pareto-optimal set (as δj=0 for that set) but it does
influence strongly how the optimization algorithm reaches the compliant region of
the search space in case feasible solutions exist. High values of the penalty parameter
might result in the pseudo-penalty functions to become ill-conditioned. Consequently,
Rij should be chosen with great care to balance the preservation of the algorithm
against the pressure for compliance. In any way, the usage of penalty functions results
in noisy pseudo-objective functions that might be detrimental to some optimization
algorithms.

A common direct approach, especially in multi-objective problems, is to treat the
constraints as objectives to be minimized though this transforms slightly the problem
as true constraints should be just satisfied and not minimized. From this perspective,
various schemes exist to stop the ”constraints-optimization procedure” once compliant
solutions are found.

Finally, other direct approaches exist in which the inequalities of Eqn. 3.3 are
treated simultaneously with the objectives stated in Eqn. 3.2. These techniques rely
on specific logic and definitions to compare individuals among a set by considering
objectives and constraints. The details of such a technique are given in section 3.2.

3.1.3 Overview of optimization methods

Many of the analysis tools used to estimate or to compute Ωi(x̄) and Γj(x̄), are time
consuming to run. Therefore, it is important to speed-up the search method. A com-
mon, yet not always applicable, way to do this is to work with population based meth-
ods. In contrary to their single-point counterpart, population based methods consider
multiple design points in the search space, in parallel. Despite being computation-
ally more intensive, they have become extremely popular thanks to the availability of
clustered computing facilities and because they reduce considerably the design-cycle
time. It goes without saying that such methods must be developed so that they can
deploy their activities over the available computing facilities in an appropriate fashion
thereby preventing analysis issues to form a bottleneck.

A detailed overview of common optimization methods for problems involving mul-
tiple design variables, can be found in [294, 164] or [229, 297]. Nevertheless, a brief
recap is given here in order to situate the method used in this work in the global
framework. This recap is by no means a complete account of all existing methods
nor a thorough description of the ones presented. Additionally, most of the methods
hereunder where developed for single-objective problems so that their implementa-
tion for population-based searches is impractical. Optimization algorithms differ in
the way they update the Q design vectors x̄qt of a population (q ∈ [1, Q]) at the t-th
iteration, into the Q design vectors at iteration t + 1: x̄qt+1. In general, the update

22



3.1 Optimization methods

can be represented by:
x̄q
t+1 = x̄q

t + αts̄q
t (3.7)

where s̄qt is the vector defining the search direction and αt is a scalar relaxation
factor. Optimization methods are classically grouped depending upon the order of
the derivatives of Ω̄(x̄) they require to determine s̄tq and αt.

3.1.3.1 0th-order methods

Only the function values are used in these search methods; hence they do not require
any higher-level information than Ωi(x̄) and the constraint values. Among these meth-
ods, a distinction is made between stochastic methods (purely random) and heuristic
methods (that obey a rule). In most cases, these methods are non-deterministic in
that successive searches, starting from identical sets of individuals, will not follow the
same path toward the optimum.

• Random search
This very simple search algorithm works by selecting randomly candidate vec-
tors x̄qt at each iteration and evaluating Ω̄(x̄q

t). This inefficient search requires
extremely large population sizes to be successful and avoid being trapped into
local extrema. Constraints can be dealt with in direct or indirect ways.

• Walk search or Random walk
This kind of search starts from a population x̄qt and perturbs those vectors by
s̄q
t in a specific direction. The direction can be fixed (walk search) or obtained

randomly (random walk). The relaxation factor is usually fixed. In this case, a
new vector x̄qt+1 will replace the current one x̄qt if it is a better design. Direct
constraint handling is very familiar with this type of search.

• Simulated Annealing (SA)
SA is inspired by the process whereby crystalline structures take up minimum
energy configurations if cooled sufficiently slowly from some high temperature.
It relies usually on a random scheme to perturb design vectors x̄qt by the quan-
tity s̄qt. A new design x̄qt+1 replaces x̄qt at once if it is better. If it is worse,
it will replace x̄qt with a given probability. This probability obeys a so-called
Boltzmann probability distribution and is based on the difference in perfor-
mance between both designs (virtual energy) and an ever decreasing number
(virtual temperature). Constraints are often enforced by indirect methods in
this case.

• Particle Swarm Optimization (PSO)
PSO is inspired by the dynamics of bird flocks. For the Q individuals (particles)
of a population (swarm), the direction s̄qt is determined for each individual by
its best previous position in the search space as well as the relative position be-
tween the individual and the entire swarm’s best known individuals. Doing so,
the swarm is expected to move globally toward better solutions. This method
is relatively new [165,266] and is becoming increasingly popular.

• Evolutionary algorithms (EA)
EA’s mimic Darwinian evolutionary principles. This means that a population
of design vectors x̄qt ”evolves to” iteration t + 1 by survival of the fittest af-
ter selection, crossover and mutation among the members of the population.
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Selection is always performed in the objective space while new solutions are
created in the search space by exchange of partial information among solutions
from the selected pool and by perturbing them in their neighbourhood. The
introduction of those principles in optimization algorithms has been done by J.
Holland [149] and I. Rechenberg [243]. The obvious advantage of such methods
is that they are intrinsically population-based.

– Genetic Algorithm (GA): This particular class of EA is also the one that
is the closest to the human-evolution process. The most well known work
about GAs is that by D. Goldberg [126]. As GAs are the most convenient
place to explain the basic principles of EAs, a more detailed description
is given.
First, each of the Q individuals x̄qt of the population at the tth-iteration
are coded in a string as illustrated on Fig. 3.3. For convenience, binary
coding was used first in analogy with the coding of our chromosomes, but
real-coded variants exist to circumvent the limitations in accuracy related
to the number of bits. The obtained code is the genotype of the individ-
uals.
Then the population evolves when two different individuals (two parents)
from tth-population mate and generate two offspring. Doing so, the pop-
ulation size is kept constant but variants exist.
Selection of the parents is based on the idea that matting two individ-
uals with desirable characteristics will result in an offspring having also
favourable characteristics and preferably better ones. Selection is clas-
sically performed by either the tournament or roulette-wheel rules. In
either cases, selection is performed on the phenotype of the individuals
which are its observable characteristics such as Ω̄(x̄q

t). In a tournament
selection, s individuals are chosen randomly from the population and only
the best is kept as parent. The second parent is selected the same way.
The tournament size s enables a switch between elitist selection (high
values of s) and diversity-preserving selection (low values of s). Usually,
strong elitism (down to s = 2) is very effective. In a roulette-wheel selec-
tion, the probability for an individual to be selected is proportional to its
share in the total fitness of the population (i.e. the sum of the fitness of all
individuals). D. Goldberg and K. Deb [127] have shown that tournament
selection, though less elaborate, has better or equivalent convergence and
complexity than any other selection operator.
Consequently after selection, reproduction can now occur. The cross-over
operator used for that purpose is schematically shown in Fig. 3.4 where
the cross-over location is chosen randomly. To preserve diversity, a prob-
ability between 70% to 90% is assigned to the cross-over operation so that
parents have a chance to pass directly in the next generation without re-
production. Additionally, mutation could occur. This operator changes
one or more random bits of the offspring (see Fig. 3.5) with a probability
of occurrence of the order of 0.1 to 0.8%. The purpose of mutation is to
create new individuals and avoid too high similarity between genotypes
of successive generations. This way, the algorithm avoids being cornered
into local optima. After these operations, the offspring replace the par-
ents in the new generation.
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x̄q
t = [xtq,1, x

t
q,2, x

t
q,3, ..., x

t
q,N ]T

⇓

xtq,1︷ ︸︸ ︷
10110100

xtq,2︷ ︸︸ ︷
11010101 ...

xtq,N︷ ︸︸ ︷
00110101

Figure 3.3: Coding of a solution into a binary string.
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Figure 3.4: Cross-over operator applied to two parents to create two offspring.

Given their long existence, GAs exist with many variants in how the oper-
ators work. Commonly encountered features include augmentation of the
elitism strategy by unaltered passing of the best individual of a generation
to the next one so that the loss of valuable information is prevented.
GAs were originally developed for single-objective problems. For this
reason, pseudo-objective functions have often been used to deal with con-
straints [126, 251, 160, 71] but other techniques were also used like the
”death penalty”1. In the choice of penalty functions, care should be given
to the preservation of information which is the counterpart of diversity.
Despite their single-objective origins, GAs have successfully evolved in the
multi-objective environment first by the weighted sum of objectives, then
through Pareto-optimality. The various Pareto-optimality approaches [71]
are more complex to implement but do not suffer from the sensitivity and
bias introduced by the values of the weights [63,71].
A golden rule in the development and use of GAs is to maintain a proper
balance between the extent of exploration, obtained by the cross-over and
mutation operators, and the extent of exploitation by the selection oper-
ator. This is achieved by parameters such as the population size Q, the
tournament size s, the degree of elitism, and various probabilities.

– Differential Evolution (DE): DE has been developed by K. Price and

1Rejection of non-compliant individuals.
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1011010 011010101...0 0 011111

⇓

1011010 111010101...0 1 011111

Figure 3.5: Mutation operator applied to one offspring of Fig. 3.4 on randomly
chosen bits.

R. Storn [277] and use selection, mutation and cross-over operators like
GAs. The difference lies in the fact that cross-over is done by exchange
of complete design variables rather than parts of the string representing
a variable. DE will be fully described in section 3.2.

– Evolution Strategies (ES): ESs were developed at the same time as GAs
but differ by the absence of a cross-over like operator and the manipulation
of real (uncoded) parameter values. Hence ESs rely solely on the selection
and mutation operators applied to each x̄q

t to form x̄q
t+1. The main

parameters are the strength and distribution of mutations.

– Evolutionary Programming (EP): EP is a mutation-based algorithm. It
uses a stochastic selection process to decide the next parents from the
combined set of parents and children at the tth-iteration. Mutation is
related to the value of the objective function so that successful ideas are
mutated less.

The previous algorithms are built with very simple operators such as selection,
cross-over and mutation, and provide numerous variants depending on how these
operations are combined and on what kind of information they act. EAs get their
power from the structured, yet randomized, exchange of information between individ-
uals from one generation to create the next one. They result from the formal analogy
with the striking, albeit undeniable and inescapable, conclusions of biology and an-
thropology. Further development of EAs continue to be inspired by these sciences and
see the apparition of distributed EAs which subdivide the population into ”islands”.
The sub-populations evolve in isolation and exchange some individuals on regular ba-
sis. The net result of such an algorithm is to reduce the number of objective-function
evaluations needed to reach the optimum [122].

EAs have as common threads that:

1. they evolve from one population into another and usually start with a random
set,

2. they include some finite probability for mutation,
3. they include mechanisms to avoid loss or deterioration of the best individuals,
4. they use operators based on stochastic principles and do not involve derivatives

of any kind.

These features give them the following abilities by nature:
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1. they can capture multiple optima of multi-modal problems in one single run
but require large amounts of function evaluations,

2. they explore all parts of the search space, even if it is composed of disjoint
regions, and are keen not to be trapped in local optima,

3. they exploit promising ideas but do not guarantee ultimate convergence and
are slow at resolving precise optima,

4. they do not assume any particular property, like continuity or smoothness, of
the problem to be solved since they do not use deterministic rules; hence they
deal seamlessly with noisy objective functions.

3.1.3.2 1st-order methods

1st-order methods require evaluation of the first order derivatives of Ωi(x̄). The
gradient ∇Ω(x̄q

t) in single-objective problems or the Jacobian matrix JΩ̄ (L × N)
for multi-objective problems is used to determine the search direction s̄q

t. These
methods involve a high computational cost to compute the gradient possibly for
all individuals of a population. On top of this, strict assumptions are needed with
respect to continuity of the objective function and they perform poorly in presence
of discontinuities of the first derivative and noise.

Once the gradient is known, the first method that comes to mind is the steepest
descent due to A. Cauchy. For a single-objective problem, the search direction is
opposed to the strongest gradient:

s̄q
t = −∇Ω(x̄q

t) (3.8)

and the relaxation factor αt (see Eqn. 3.7) is chosen with care to avoid overshooting
the minimum. Extensions to multi-objective problems are based on combinations of
the gradient vectors contained in the Jacobian matrix.

Other methods use the information from one or more previous iterations to in-
crease convergence. This is because the local steepest descent rarely points toward
the desired optimum [164]. These methods fall within:

s̄q
t = −∇Ω(x̄q

t) + βt
∑
i

s̄q
t−i (3.9)

Evaluating JΩ̄ is a computationally demanding task. Among the available meth-
ods one finds:
• Finite-difference method:

Truncating the Taylor series expansion of each Ωi(x̄q
t) (i = 1, ...L) to the

first order terms corresponds to evaluating Ωi(x
t
q,n) (n = 1, ...N) with a small

perturbation of the design variable xn:

∂Ωi(x̄q
t)

∂xn
≈ Ωi(x̄q

t + εnûn)− Ωi(x̄q
t)

εn
+O(εn) (3.10)

Hence this method is a first order approximate and requires (N + 1) computa-
tions.

• Algorithmic Differentiation or Automatic Differentiation:
This method requires the constraint- and objective-functions to be preferably
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written in a high-level programming language such as C or C++. The com-
plete source code (including all libraries) is decomposed into a long sequence
of a limited set of elementary arithmetic operations (+,−,.,...) and intrinsic
functions (sin,exp,...). The chain rule of differential calculus is then applied
to the original source code to create a new code capable of exactly computing
the derivatives of the objective- and constraint-functions with respect to the
design variables. The implementation is thus at the programming level, and
might prove to be cumbersome. Nevertheless, it results in high accuracy yet
the computation speed is dependent on N .

• Adjoint methods:
For problems were the number of design variables N is greater than the number
of outputs L+M + P , the adjoint formulation has the advantage of a reduced
computational cost when compared to the previous methods. Its first applica-
tion within the framework of design is the work of O. Pironneau [230]. The idea
is to use the Lagrange multipliers to transform key differential equations of the
analysis (used to compute the objectives and constraints) into their respective
adjoint equation. The cost of solving the adjoint and original equations next to
each other is twice the cost of solving the original equation solely. The adjoint
solutions are then used to compute the gradient.
In the continuous version of the adjoint method, the adjoint equations are found
analytically from the governing equation, and are then discretized whereas in
the discrete version, the governing equation is first discretized and the discrete
adjoint equations immediately follow.
Because of their low computational cost, adjoint formulations are very pop-
ular in design [230, 153, 245, 154, 220, 207]. However, the main drawback is
the difficulty to formulate the differential equations relevant for the problem
and translate them into the adjoint problem; a step that might end up taking
some man-months. This implies that changes to the objective functions (due to
changes in the analysis tools or reflecting changes in strategy from the design
team thanks to information gained along the design process) are difficult to
implement.

3.1.3.3 2nd-order methods

The first known second order method is I. Newton’s method [294]. It requires knowl-
edge of the Hessian matrices HΩi containing all second order derivatives everywhere.
The elements hijk of HΩ̄ for particular objective Ωi are given by:

hijk =
∂2Ωi(x

t
q,n)

∂xj∂xk
(3.11)

These matrices are used to compute the search direction s̄qt and the factor αt. The
move is done at each step in the direction of the minimum of the approximating
quadratic form. For a quadratic function, the first step completes the search but
for non-quadratic functions (like most real-world problems), additional iterations are
needed but convergence is faster than any first order method.

The disadvantage of 2nd-order methods is that they rely on the availability of
the Hessian. In most practical applications, the Hessian is not directly available,
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expensive to compute and prone to difficulties due to its sensitivity to noise. To
circumvent this, methods have been developed relying on higher order truncation
of Ωi(x̄q

t). These terms are included in Eqn. 3.9 to form quasi-quadratic search
directions. These methods are usually qualified as ”quasi-Newton’s” method.

3.2 Multi-Objective Differential Evolution

As previously mentioned, DE is a particular class of EA. The extension of DE into
Multi-Objective Differential Evolution (MODE) is the result of various works [16,25].
MODE has proven to offer an acceptable trade-off between convergence rate (number
of iteration needed to locate optima) and robustness (ability not to miss the global
optima). It even proved to perform better than advanced GAs by rendering a Pareto-
front with better diversity [25]. MODE uses real-coding of the design variables. The
process starts with a random population comprising Q individuals x0. At the t-th
generation, an individual q of the population (q ∈ [1, Q]) is represented by

xtq = [xtq,1, x
t
q,2, ..., x

t
q,N ]T (3.12)

To evolve xtq toward the next generation, three other vectors a, b and c are randomly
picked within the population such that xtq 6= a 6= b 6= c. Then, a trial vector yt is
defined with

yti = ai + F.(bi − ci) for i = 1...N (3.13)

in which F (F ∈]0, 1.2[), the weighting factor, is arbitrarily chosen by the user . K.
Price and R. Storn determined the upper limit empirically [236] and advise to use
values in the range [0.4, 1.0]. A value of 0.8 is recommended [8]. Next, recombination
is performed to form the candidate vector zt by

zti =

{
yti if ri ≤ C
xtq,i if ri > C

for i = 1...N (3.14)

In this step, C, the cross-over constant, is an arbitrary evolutionary constant chosen
by the user (C ∈]0, 1[) and ri is a uniformly distributed variable chosen randomly
such that ri ∈ [0, 1[. DE is much more sensitive to the choice of F than it is to C
which is more like a fine-tuning constant [8].

The previous steps coalesce the mutation and recombination operators; the last
relates to the cross-over operator discussed in section 3.1.3.1 and is responsible for
the exchange of information between individuals among the parent population. The
random mutation is induced by Eqn. 3.14.

Now 2Q individuals coexist and prior to the next iteration, the population size is
restored to Q by a set of selection rules. There exists various sets of selection rules
for single- and multi-objective problems [16,185,239,24].

In the present approach, multi-objective selection is performed by a method sim-
ilar to the elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) proposed by
Deb et al.. [72]. For the population consisting of the parents and offspring that entirely
satisfy all constraints (i.e. Γj(x

t
q) ≤ 0 ∀j ∈ [1,M ]), the ranking relies on the concept

of domination (see definition 1). The sorting first selects all the non-dominated indi-
viduals, assigns them the rank 0 and removes them temporarily from the population.
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Figure 3.6: Pareto-ranking of the population from Fig. 3.2 according to two
objectives Ω1 and Ω2.

Next, all non-dominated individuals of the remaining compliant population are as-
signed the rank 1 and this algorithm is repeated until the complete set is ranked as
shown in Fig. 3.6, where the rank 0 individuals form the so called Pareto front. Once
this population is ranked, the new parent-population (t+1) is filled by the individuals
from the rank 0 front, then the rank 1 ones and those of the consecutive fronts until
it comprises Q individuals. If a front cannot be accommodated entirely, the individ-
uals required to attain the Q individuals in the new population, are selected with
the intervention of a distance metric so that diversity is maintained. The distance
metric used here is the geometrical distance between the points in the objective space
O though other metrics such as the crowding distance [72, 239] exist but are more
complex to implement.

In case less than Q individuals of the 2Q population composed of parents and
offspring, comply with all constraints; then the remaining slots in the t + 1 parent-
population are filled with individuals that do not satisfy the constraints. That se-
lection of those individuals treats the constraints as objectives and applies a similar
ranking (i.e. the best ranked individuals are those that are the closest to satisfy the
constraints). The required number of best ranked individuals are passed and in case
two individuals have the same rank with respect to the constraints, the one with the
best rank in the objective space is selected.

3.3 Metamodelling

As discussed previously, evolutionary methods have the disadvantage of involving
large populations and numerous generations. Consequently, these methods tend to be
computationally expensive as real-world problems often involve numerical simulations
that may well be measured in hours or even days. Moreover, having all the individuals
of a population assessed in parallel would result in prohibitive costs for software
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licenses. This often results in some sequentiality in the computational process and
thus increases the computational time and cost.

One of the measures taken to reduce the number of expensive function evaluations
is the implementation of hierarchical EAs [264,122]. These algorithms use low fidelity
analysis tools as accelerators. This means that the objective functions of some indi-
viduals are computed by using tools that are computationally less expensive, but are
also less accurate. For example, this could be achieved by using larger discretization
steps in the spatial and/or temporal discretization of the characteristic equations of
the problem or by using a reduced set of characteristic equations (e.g. by using the
Euler equations instead of the Navier-Stokes equations for a fluid dynamics problem).
When hierarchical EAs are used, promising individuals evaluated by the low fidelity
analysis need to be reassessed by the high fidelity analysis. Many implementations of
hierarchical EAs are build upon distributed EAs.

The next step in reducing the computational burden of EAs is to work with a
metamodel assisted EA. The high or medium fidelity tools, based on the physical
model, are replaced by interpolators that are trained on a limited set of individuals
analyzed with the high fidelity tools. These interpolators are developed to be com-
putationally inexpensive and as accurate as possible though the accuracy drops in
general when evaluating points that lie far from the sample points or even out of
the sample domain (in the case of extrapolation). The interpolators are ”models for
the model”, literally metamodel but the terms surrogate model are also used. Only
those metamodelling techniques that are currently popular in the literature will be
discussed into more details but an overview can be found in [268,115].

Metamodels are defined mathematically by:

Definition 4 Suppose the analysis of a particular design x can be written as a func-
tion f :

p = f(x), f : RN 7→ RR

where p is a vector of R performance variables. A metamodel is a function f̃ :
RN 7→ RR with a much lower computational cost than f and such that

‖f̃(x)− f(x)‖ < ε

where ‖.‖ is an appropriate Lp norm and ε is sufficiently small when compared to
f(x) so that p is approximated by p̃ = f̃(x).

Due to their reduced accuracy, metamodels used in optimization are often, but not
always, accompanied by scarce calls to the high fidelity analysis. The purpose of these
calls is to somewhat maintain or increase the accuracy of the optimal solutions found.
One way is to use the metamodel only in the direct vicinity of known designs and
increase the probability to use the high fidelity analysis with the distance those designs
[122]. The obvious weakness of such approaches is that proximity in the search space
does not necessarily result in proximity in the objective space. A second technique
consists in using the metamodel systematically on all individuals and high fidelity
analysis on the most promising ones at each generation. On-line training is used to
refer to this implementation. A third procedure is to use the metamodel during several
generations, stop the evolutionary process temporarily and then recur to training of
the metamodel on a set composed of high fidelity analysis of the initial individuals
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augmented by those of the current generation before starting the evolutionary process
again. This is off-line training as used in [229,297].

Constructing a metamodel involves three steps: choosing an experimental design
to generate data (section 3.3.1), choosing a mathematical model to represent the data,
and finally fitting the model to the observed data. The last two steps differ strongly
depending upon the mathematical background of the model and some are described
in the subsequent sections. Once these steps are accomplished, the metamodel is
ready for use.

3.3.1 Design of Experiments (DoE)
Since metamodels require a set of solutions to be trained, care should be given on how
this set is chosen in the search space D so that the metamodel represents all possible
solutions with maximum fidelity yet at moderate computational cost. DoE is used
with a twofold set of conflicting objectives: to decide on a set of points (where high
fidelity analysis should be conducted) so as to maximize the predictive capability of
the metamodel, and to minimize the number of points so as to keep the computational
cost of evaluating them within reasonable limits. Given the ranges from Eqn. 3.5,
the search space D is often represented as an hypercube of N dimensions. Depending
on the problem to be modelled, on the class of surface to fit and on the number of
sampling points one can afford, one of the following tools may be best suited:

1. Monte Carlo technique: This pure random sampling technique is the only com-
pletely unbiased one. It fills the search space D with randomly chosen points,
as illustrated in Fig. 3.7(a) and requires usually large amounts of samples to be
safe. This technique could end up in regions of the search space left completely
unexplored and fails to exploit the fact that limited curvature of the response
surface is expected since physical problems are modelled [164].

2. Latin Hypercube sampling: For this technique, the range of each design variable
xp is divided into S bins of equal probability, hence a total of SN bins in D.
Subsequently, S samples are generated such that for each design variable, no
two values should be in the same bin. In other words, there is one single
sample in each bin as in Fig. 3.7(b). Various approaches exist to make sure
that the latin hypercube keeps good space-filling characteristics by avoiding
concatenation of samples in neighbouring bins. Latin hypercube sampling has
good coverage but require many samples to do so.

3. Full factorial design: Here, the range of each variable is divided into S levels.
Sampling of D is achieved by evaluating all the corners of the hypercube and
possibly some interior points. This means SN points so that this kind of sam-
pling is usually far too expensive. Moreover, it tends to focus on the exterior
points. Variants, illustrated in Fig. 3.7(c), involve restricted ranges such as
xlp + 0.15(xup − xlp) ≤ xp ≤ xup − 0.15(xup − xlp) instead of xlp ≤ xp ≤ xup . In case
only the minimum and maximum design variable values are used, one speaks
of a 2N factorial.

4. Fractional factorial design: This sampling only considers a fraction 1/2F of
the full factorial design. Thus it requires only 2N−F evaluations at the cost
of accuracy. These samplings are based on the assumption that the system is
dominated by main effects that must be sampled and low order interactions
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(a) Monte Carlo sampling with 5
samples.

(b) Latin hypercube sampling with 5
bins (S = 5).

(c) Full factorial design with 2 (∗,
S = 2) and 3 (◦, S = 3) levels.

(d) Partial factorial design with 2
samples.

Figure 3.7: Common DoE sampling technique applied on a 2D search space
(N=2).

that can be neglected during the sampling [268]. Fractional factorial sampling
is illustrated in Fig. 3.7(d).

3.3.2 Response Surface Model (RSM)

RSM uses polynomials of different orders to represent f̃ [211, 115]. For a vector
x = [x1, x2, ..., xN ]T , the quadratic approximate of the ith-component of f(x) is given
by

f̃i(x) = βi0 +
∑

1≤j≤N

βi,jxj +
∑

1≤j≤N

∑
j<k≤N

βi,(N−1)+j+kxjxk (3.15)

in which the β-coefficients are determined through least squares regression applied
on the set of sampling vectors x1, x2, ..., xS to minimize ‖f̃(x)− f(x)‖. This implies
that S should be larger than or equal to N to avoid under-determination of the
coefficients. This is problematic as the number of unknown coefficients for regression
of the Bth-order is given by (N + B)!/(N !.2B) so it is recommended to use RSM
for problems involving say 10 variables [164]. In some cases, splines assembled in
patchwork to cover the design space are also used but they require some form of
smoothness between patches and thus are cumbersome to implement.
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Figure 3.8: ANN network with a single hidden layer.

This interpolation technique has difficulties to cope with noisy, multi-modal or
even discontinuous data. Still it is popular because derivation of the approximate
function f̃(x) is easy. Therefore, RSM are often combined with Newtonian search
methods and off-line training.

3.3.3 Artificial Neural Network (ANN)
Neural networks are inspired by certain brain functions and have proven to be power-
ful interpolators [179,304,305,62] as well as extrapolators [268] which is a rare prop-
erty. They have seen numerous applications in fields such as signal processing, control
theory or even prediction of financial markets. For a vector x = [x1, x2, ..., xN ]T , the
approximate of the vector f(x) is constructed according to Fig. 3.8. This figure il-
lustrates how elementary processing units called neurons or nodes are arranged in
successive layers (one hidden layer containing H neurons in the present example but
more hidden layers are possible). These layers are connected by connection weights
wij with an input layer consisting of the N components of x and an output layer
containing the R components of the vector f̃(x). Additional hidden layers would
be interconnected with the neighbouring ones. A network architecture such as the
one illustrated on Fig. 3.8 results in a feed forward ANN as the output of a layer is
directed in one way to the next layer.

Any neuron j is performing two operations in the present case:

1. it sums up all weighted input values and a bias bj :

inj =

N∑
i=1

wi,jxi + bj (3.16)

2. it processes the resulting value inj through a transfer function TF (inj):

outj = TF (inj) (3.17)
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Figure 3.9: Sigmoid function.

Though a variety of transfer functions exists, the sigmoid function (see Fig. 3.9) is
used in most cases, hence:

TF (inj) =
1

1 + e−inj
(3.18)

An important property of ANNs is their ability to match any continuous function
from RN to RR by a three layers feed-forward neural network with (2N + 1) neurons
in the hidden layer. This property is known as one of Kolmogorov’s theorems [305]
and holds without any assumption on the relation between inputs and outputs. It is
a pure consequence of the topology of the network combined with the implicit use of
power series by the non-linear transfer function.

Once the step of choosing a topology is made, one is left with the determination
of the connection weights wi,j and the biases bh so that the Lp-norm of definition
4 is minimized. With the topology of Fig. 3.8, the number of network parameters
amounts to Nparam = H.(N+1)+R.(H+1). In the case of a DoE sampling involving
Nsample, R.Nsample equations are available. If one wants the system to be at least
determined, the number of neurons in the hidden layer should obey [304]:

H ≤ Hcrit =
(Nsample − 1)R

N +R+ 1
(3.19)

In most cases, where low values of Nsample due to cost considerations would result
in extremely low values of H, the number of neurons H is chosen greater than the
critical number Hcrit. The system is thus under-determined and connection weights
are not uniquely defined. This multiplicity is taken as an advantage by splitting the
set of samples into a training set used to compute the parameters and a validation
set used to select that set of parameters that minimizes the error on the validation
set.

Training of the network, also called ”learning” by analogy to human brains, is
itself an optimization problem. There exists numerous techniques in the literature
[143,304,62,233,268,239]. These techniques range from gradient based methods to the
use of EAs. However, the most common method is the error back-propagation [143]
that consists in an iterative modification of the parameters to minimize the error
‖f̃(x)−f(x)‖ for each sample. Modification of the parameters (wi,j and bh) is based on
the difference between f̃(x) and f(x) hence the crucial requirement for infinitesimally
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Figure 3.10: RBF network.

small step sizes in the iterative procedure to guarantee convergence [233]. Sometimes,
early stopping is used. This requires to split the samples set into a training set (used
to determine the parameters), a testing set (used to test the ability of the ANN to
predict points different from the training set) and a validation set (used for eventual
disambiguation). Early stopping refers to a premature interruption of the learning
procedure when the error on the testing set is minimum instead of waiting for absolute
convergence of the error on the training set. The purpose of early stopping is to avoid
the ANN to become too complex so that it overfits the data by fitting the noise as
well. If this would occur, the training error falls but the metamodel becomes less
general as it fails to predict safely for points that are not in the training set.

3.3.4 Radial Basis Function (RBF)
RBF networks [85,187,164,115] belong to the same class of generalized linear models
as ANNs but differ in the composition of neurons. As for ANNs, suitable RBF
networks can approximate any function to an arbitrary degree of accuracy. Evidence
exists that RBF networks are effective extrapolators [164], though some care should
be taken as is usual with extrapolating data. They are sometimes preferred to ANNs
because they are easier to understand and interpret. The major differences lie in the
fact that the input of the neurons in the hidden layer (see Fig. 3.10) is the vector x
itself and that neuron j of the hidden layer applies a non-linear function g : RN 7→ R
with radial basis (x− cj). So the one-dimensional output of those neurons is given by

gj(‖x− cj‖)

Typical choices for the RBF include but are not limited to linear splines, cu-
bic splines, multiquadrics and Gaussian functions [164] as is the case in the present
implementation. The Gaussian function is given by

G(‖x− cj‖) = exp

(
−‖x− cj‖

2

σ2
j

)
(3.20)
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Figure 3.11: Gaussian function with c = 5.

where σj is a shape parameter used to control the domain of influence of G, centered
around cj as illustrated in Fig. 3.11. Following this, the output of the hidden layer
depends directly on the nearest centers as is illustrated in Fig. 3.12. The output of
the network is then computed by the weighted sum of all responses from the hidden
layer though in some cases as illustrated in Fig. 3.10, an additional transfer function
is applied:

f̃i = TF

(
H∑
h=1

wouti,h exp

(
−‖x− ch‖

2

σ2
h

)
+ bouti

)
(3.21)

Determination of the network parameters like the centers, the shape parameters,
the biases and the weights is done with the same techniques as for the ANN described
in section 3.3.3.

3.3.5 Kriging

Kriging refers to a statistically rigorous approach to compose a metamodel for the
deterministic results of computer analyses. Kriging is based on Gaussian stochastic
process models and its origins are traced back to D.G. Krige [173, 260], a South
African mining engineer who used statistical techniques to predict gold grades at the
Witwatersrand complex. One of the key ideas behind Kriging is that the function
values at the training points are purely deterministic and not prone to errors; hence
the uncertainty derived from residuals in the least-squares sense, have no obvious
reason to be. It is in fact desirable that the observed data (i.e. the training set) are
matched perfectly (i.e. f̃(x) = f(x)). For this reason, some statisticians [260, 172]
have proposed to approximate a relationship of the type p = fi(x) of one component
of f(x) by a combination of a polynomial model, Ri(x) in Eqn. 3.22 plus departures,
Zi(x):

f̃i(x) = Ri(x) + Zi(x) (i ∈ [1, ...R]) (3.22)

where Ri(x) is a known polynomial function and Zi(x) is the realization of a Gaussian
stochastic process with zero mean. The purpose of Ri(x) is to ”globally” approximate
the main trend of fi(x). This polynomial could be the result of an RSM approach
but many authors [268,164,157] use a simple constant. So Zi(x) is supposed to create
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Figure 3.12: Interpretation of a 2D RBF interpolation showing the correspon-
dence between the network layout (above) and the domain of activation of the
neurons (below) determined by their center cj and shape parameter σj .

”localized” deviations to allow the model to fit the sampled data points. The main
assumptions are made on the covariance of Zi(x) that is written as

Cov(Zi(x), Zi(x
′)) = σ2

ZS(Zi(x), Zi(x
′)) (3.23)

where σ2
Z is the so-called process variance and S(Zi(x), Zi(x

′)) is a parameterized
correlation function. This function is specified by the user while considering some
specific assumptions [164]. Sacks, et al.. [260] and Koehler and Owen [172] give
several possible correlation functions though a Gaussian function is often used. In
this case, the covariance of Zi(x) is depending on a set of hyperparameters θk:

S(Zi(x), Zi(x
′)) =

Q∏
k=1

exp
(
−θk

∣∣xk − x′k∣∣2) (3.24)

where Q is the number of samples in the training set.
The hyperparameters θk are determined from the training set and control the

non-linearity of the model. They are usually determined by minimizing the mean
square error

E

[(
f̃(x)− f(x)

)2
]

with a strong unbiasedness constraint stating that the mean error of the approxima-
tion should be zero:

E
[
f̃(x)− f(x)

]
= 0

The implementation of a kriging metamodel is delicate, complex and compu-
tationally expensive (though usually less than the original model) [164]. The core

38



3.4 VKI Optimization code

Figure 3.13: Illustration of 1D kriging interpolation. Observed samples are
reproduced without bias contrary to ANN or RBF interpolation. Additionally,
confidence intervals are directly available.

assumption that observations are the result of a Gaussian process is often not valid
for results obtained by computer models [192]. This explains why many authors re-
port computational problems and workarounds [276, 164, 193]. Another drawback of
kriging is that it is has seldom been applied to problems involving many dimensions
of the search space (say > 20) though recent works involved as many as 40 design
variables. On the other hand, a kriging model, like ANN- or RBF-models but unlike
RSM-models, becomes more accurate the more sample points are added and always
reproduces the observed data exactly [164].

Despite these disadvantages, kriging offers two exceptional advantages. First,
there is no error on the prediction of sample points. Second, the model provides an
estimate for the error of the prediction in addition to the prediction itself. This is
illustrated in Fig. 3.13. This valuable information could be used in the optimization
process as discussed in [297]. A new individual located in a region of high uncertainty
of the metamodel would trigger a high fidelity evaluation even if it would otherwise
be rejected.

3.4 VKI Optimization code
The optimization code developed at the von Karman Institute has its roots in the
work of S. Pierret [229] who implemented a GA-based search algorithm combined
with a metamodel for 2D and hybrid 2D/3D optimization of axial turbomachinery
blades. At that time, 20 design variables were used. This code was later extended
and refined for use with full 3D multi-point applications for radial compressors and
turbines. T. Verstraete evolved the code to a true multidisciplinary environment by
adding structural integrity requirements and heat transfer considerations [297]. On
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top of this, he refined the code even further by various enhancements with respect to
workflow, metamodelling capabilities and parameterization. Later, he implemented a
modular version of the code offering not only MODE (see section 3.2) but also single
objective DE, both in a two-level (with the combined use of metamodelling and high
fidelity analysis) or single-level approach (high fidelity analysis or metamodelling
only). Moreover, various possibilities exist for the metamodel such as ANN (see
section 3.3.3) trained either by backward propagation or EA, RBF (see section 3.3.4)
or even kriging (see section 3.3.5). The decision to use an evolutionary approach
for this code is the direct consequence of the advantages listed in section 3.1.3.1 and
in particular for the robustness of such methods with respect to the shape of the
objective functions.

The layout of the code as used in the present work is given in Fig. 3.14. The
two-level approach has been chosen since this results in a direct reduction of the
computational cost, hopefully at a not too big expense of accuracy. The use of a
metamodel requires the analysis of a database at the start of the process and it is
obtained by conducting a DoE based on partial factorial sampling augmented with
random interior samples as this seems to be a good compromise between computa-
tional burden and coverage of the search space. Once this process is completed, the
generation loop is initiated with a random population. The evolutionary process is
then driven by the metamodel estimates of the performance for typically 1000 gen-
erations with a population size of 50. At this point, part of the last population is
submitted to the high-fidelity analysis tools and the accurate performance is then
fed back to the database. This off-line training safeguards the accuracy of the meta-
model as it is regularly trained with individuals from the newest regions of the search
space. The augmented database is used to update the metamodel for the next it-
eration before starting the generation loop again. The number of iterations should
best be based on some convergence criteria but could also result from pure time- or
cost-related concerns.

The VKI optimization code has interesting peculiarities that come at hand in
the current optimization. First, it allows building one metamodel for each respective
performance parameter (such as efficiency at a given working condition for example)
instead of modelling directly the objectives (such as, e.g., the weighted sum of effi-
ciencies at different working conditions) and constraints. Doing so, the metamodel
has to stick more to the physics of the phenomena to be modelled and the interpre-
tation of the outcome is eased. Second, the off-line training of the metamodel is a
good compromise between accuracy and computational cost. The computational cost
of conducting only high-fidelity analyses over the amount of individuals necessary to
have an comprehensive search, would quickly prove to be prohibitive even by current
standards. Last, it can be easily coupled to any standard solver as it does not require
any kind of derivation.
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Figure 3.14: Layout of the VKI optimization code.
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Chapter 4

Blade parameterization and
mesh generation

The key role in transforming the engineering problem of optimizing a propeller blade
in a mathematical problem lies within the mathematical representation of the blade
shape. Hence one requirement of a successful optimization is to provide the opti-
mization algorithm with an adequate set of design variables. This choice should not
be made light handedly and must take many considerations into account. Is this set
practical to implement? Is it feasible to generate a computerized 3D model of the
blade from this set? Is this set suited for metamodelling? Is this set likely to generate
shapes that are both consistent and relevant? Is this set likely to include the yet
unknown optima? Is this set prone to interactions between design variables? Etc...
Bearing in mind that the set should have the lowest possible cardinality!

At one extreme, one could foresee the direct use of the coordinate points on the
blade surface as design variables, for example those points that lie at the nodes of
the geometrical discretization of the blade. This is applied by A. Jameson [151, 152]
and R. Campbell [51] for airfoils but results in extremely large sets of design variables
and requires additional techniques to ensure the smoothness of the shape. It is often
used in combination with adjoint- or gradient-based optimization algorithms. This
very compact model spans virtually all possible blade shapes as the feasible region of
the search space is not staked out by the capabilities of the blade model but would
result in an unacceptable number of dimensions for the search space. It is also less
suited than other parameterizations to take feasibility and manufacturability1 into
account. Next on the scale would be to use a polynomial representation of the blade
surface but this would result in tremendous mathematical complexity to accurately
represent this kind of closed surface. This is why most optimizations rely on some
form of interpolation so that the 3D model of the blade is build from a limited set of
design variables.

This chapter describes how the 3D model of the blade is constructed from the
design variables and how this model is discretized in space to allow its use with

1A design is said to be manufacturable if its geometrical features are such that it can
effectively be manufactured given the limitations of nowadays manufacturing equipment.
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high-fidelity numerical analysis software.

4.1 Airfoil parameterization

As for many objects in aerodynamic design, propeller blades consist of a 3D assembly
of airfoil sections. So the first thing to parameterize is the airfoil itself. The math-
ematical representation of an airfoil should have adequate flexibility in order not to
limit the search space but should be robust in order to inherently generate relevant
airfoil shapes. Moreover, it should have a low number of parameters and these param-
eters should control those important features of the design that are relevant for the
considered optimization problem. The low number of parameters is here specifically
important as a considerable amount of parameters is reserved for the modelling of the
3D blade. Another nice feature of a particular parameterization is its predictability
i.e. the relationship between the parameters and the shape should be as obvious as
possible. For the airfoil purpose, numerous techniques have been developed:

• Zhukovsky and extended Zhukovsky tranformations: consist the mathematical
transform of a circle in the complex plane, into an airfoil shape. These trans-
formations are limited in the shapes they can represent and must be seen in an
historical perspective as the potential flow around such airfoils can be solved
analytically.

• Polynomials: are used to model directly the shape of either the upper and
lower sides of the airfoil, or the camberline and thickness distributions. This is
the way traditional NACA airfoils are described [17]. These polynomials suffer
from the relatively large amount of parameters (i.e. the coefficient and possibly
the degree of the terms) and the unpredictable behaviour they could have which
might result in non-smooth shapes.

• PARSEC [270]: is aimed at effectively controlling important features relative
to the aerodynamics but mainly relative to manufacturability as well. The up-
per and lower airfoil surfaces are represented by polynomials whose coefficients
are determined from basic geometric parameters such as leading-edge radius,
crest location, maximum thickness and trailing-edge ordinate, thickness, di-
rection and wedge angle. The PARSEC method is very tentative for airfoil
parameterization as it allows representation of a wide range of shapes with
direct inclusion of geometrical constraints while the design parameters control
directly the aerodynamic properties. But this method suffers from the large
number of parameters needed.

• Orthogonal shape functions: are an extension of polynomials. They rely on
the linear combination of a basis function and a set of perturbation func-
tions defined either analytically [144, 57] or numerically [253]. In the case
of Hicks-Henne shape functions, the functions consist of ’bumps’ of the type
Y = sin3(Xβ) with β used to control the chord-wise position of the bump.
These methods have great flexibility but usually lack robustness and require
extended sets of parameters to be efficient.

• Bézier or b-spline curves: use a limited set of control points to define the shape
of a curve by interpolation. The parameters are the coordinates of a set of n+1
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control points X0, X1,...,Xn and the expression of the curve C(u) is given in
both cases by:

C(u) =

n∑
i=0

Fi,q(u)Xi (4.1)

over the interval u ∈ [0, 1] with q computed from the required degree of the
curve in order to achieve the desired continuity properties. Bézier and b-spline
curves differ by the basis functions used to compute the Fi,q(u) coefficients.
Bézier curves with n + 1 control points are of degree q = n whereas b-spline
curves require a more complex theory with more information (i.e. the degree of
the curve q must be chosen and a knot vector comprising n+q+1 elements must
be defined over the same interval). The curve C(u) can represent either the
suction and pressure sides directly or a camberline and a thickness distribution.
The last one is more often used as it is more robust [271,189] and is closer to the
basic phenomena in the flow (i.e. curvature versus loading and thickness versus
blockage). In some cases, the parameters are not directly the coordinates of the
control points but some distances and directions between them [297]. These
types of curves are very popular because of their robustness and flexibility as
well as their strong relation to computerized models. They also offer great
modularity as they can be build with few or many parameters.

Most works involving airfoil optimization, from pure aerodynamic airfoil design
to multidisciplinary optimization for turbomachinery applications or wings, rely on
spline parameterization [80, 150, 175, 242, 176, 214, 163, 208] or Bézier parameteriza-
tion [206, 232, 285, 224, 225, 89, 181] with typically 10 to 50 parameters. For Bézier
parameterization, the curve of order q = n is defined by

C(u)=

n∑
i=0

Bn,i(u)Xi (4.2)

where the coefficients Bn,i(u) are determined by Bernstein polynomials

Bn,i(u) =
n!

i!(n− i)!u
i(1− u)n−i (4.3)

B-spline parameterization uses n + 1 control points and the knot vector U=[u0,
u1, ..., um]T defined over [0, 1] with the order q = m − n − 1. The q + 1 first and
last knots are defined with multiplicity to ensure the curve is clamped [265]. The
curve is given by

C(u)=

n∑
i=0

Ni,q(u)Xi (4.4)

where the Ni,q(u) coefficients are computed recursively using the Cox-de Boor recur-
sion formula:

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise (4.5)

Ni,q(u) = u−ui
ui+q−ui

Ni,q−1(u) +
ui+q+1−u

ui+q+1−ui+1
Ni+1,q−1(u) (4.6)
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(a) Bï¿ 1
2
zier parameterization. (b) B-spline parameterization.

Figure 4.1: Local modification property of b-splines, illustrated with two sets
of control points (� and −− or ◦ and −−) differing only in the ordinate of the
3rd control point.

As apparent from Eqn. 4.4, the recursive formulation of the basis function requires
additional computational effort through implementation of de Casteljeau’s algorithm.
This disadvantage for the b-spline curves is compensated by the fact that b-splines
have the local modification property together with all important properties of Bézier
curves. These include the convex hull property (i.e. the curve is enclosed within the
convex perimeter set by the control points) and at least G2-continuity if the number
of control points n+ 1 is chosen accordingly. The local modification property implies
that changing a control point does not globally change the shape of the curve but
allows a more localized shape control. It stems from the influence of the knot vector
U in the definition of the basis functions Ni,q(u) in Eqs.4.5 and 4.6. This interesting
property [271] is illustrated on Fig. 4.1 where curves for both representations are
drawn for two sets of control points differing only in the Y -coordinate of a single
point. Irrespectively of the difference in shape due to the particular formulation, the
local character of the modification for the b-spline is clearly illustrated by the negli-
gible impact of the change of a single parameter on the trailing part of the curve.

Woefully, few papers compare the parameterization techniques [217,261,311,271],
in particular b-spline versus Bézier curves and whether these curves should describe
directly the upper and lower sides or the camberline and thickness distribution. Gen-
erally speaking, the parameterization of a camberline and thickness distribution, as
illustrated in Fig. 4.2, has more ability to deliver airfoil-like shapes and has demon-
strated its efficiency [217, 164]. In particular, the investigations done in [189] show
that b-spline interpolation of a camberline and a thickness distribution with a scarce
set of parameters, is more likely to lead to a successful optimization. It makes the
parameter set prone to have less interactions because of the more direct relationship
underlying input (the parameters) and output (the shape); and allows it to represent
those important features of the design problem that are relevant to the forces on
the airfoil. In this way, the design space is searched more efficiently, hence a better
convergence, at some expense of the freedom to generate radically new shapes [271].

As is often the case for propellers, the blades consist of two airfoils. Airfoil I is used
from the blade root to 35% radius and airfoil II from 45% radius to the tip. Between
these two intermediate radii, both airfoils are blended into one by interpolation so
that no abrupt geometry variation is encountered. Each airfoil is obtained by b-
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(a) Thickness and camberline distribu-
tions with control points and their respec-
tive degrees of freedom.

(b) Airfoil shape and camberline.

Figure 4.2: Airfoil parameterization and degrees of freedom for the control
points.

spline interpolation between 6 control points for the thickness distribution and 4 for
the camberline. The coordinates of the end-points are fixed at this stage because the
adequate chord length and airfoil thickness are governed by separate design variables.
For the thickness, the abscissa of the 2nd and 5th control points are kept at 0 and
1 respectively to enforce at least G2-continuity at the leading- and trailing-edges.
The ordinate of the 2nd point is effectively controlling the leading-edge radius. The
trailing-edge radius is fixed to save design variables. For the camberline, only the
ordinate of the two central points are allowed to fluctuate. For airfoil I, only one
central point is used.

4.2 Blade parameterization
Since the appearance of propellers, different ways have been used to describe their
planform. One method is to work with projected views but this is rather cumbersome
for interpretation and manufacturing. Another method in particular is widely used
since the early 1930′s [124, 250, 213, 32]. This is the method chosen by the former
NACA to describe planform shapes [246, 90, 247, 167]. NASA opted for the same
method in the 1980′s for its propfan designs [132]. The planform description is based
on the radial distributions of chord length b, blade thickness t, twist angle Tw and
finally sweep angle Sw. An example of such distributions is given in Fig. 4.3 with the
chord and thickness distributions non-dimensionalized by the diameter D and chord
b respectively. When given airfoil families are used, as is the case for NACA and
NASA blades, the radial distribution of the design lift coefficient for the airfoils, is
also given. The advantage of radial distributions is to present the major geometrical
characteristics of the blade decoupled from each other.

Because the radial distributions have such widespread usage and because they
allow easy interpretation of the major factors determining aerodynamic, aeroacoustic
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(a) Chord (b/D) and thickness (t/b) distri-
butions.

(b) Geometrical sweep (Sw) and twist (Tw)
distributions.

Figure 4.3: Planform definition of an hypothetical blade with the corresponding
control points for b-spline interpolation (◦,�).

and to some extent aeroelastic performance; it is this method that has been retained
in the present work. Parameterization of the curves is done by using b-spline inter-
polation between sets of control points, as illustrated in Fig. 4.3. This way, localized
variations of the distributions are allowed by moving a single control point.

Once the airfoils and radial distributions are known, shape can be given to the
blade by following the same procedure as in [30]. The first step is to scale the airfoil
sections according to the chord and thickness definitions given in Fig. 4.3(a). The
consequent stacked view is given in Fig. 4.4(a) where sections are stacked along the
locus of their respective center of gravity. Next, sections are oriented to the proper
twist, specified in Fig. 4.3(b)) as in Fig. 4.4(b). At this point, in compliance with
Fig. 4.3(b), the only section aligned with the rotational axis is the 75%-radius section.
Hence its blade angle βref is for now equal to 0◦. Then the sections are swept back
along their extended chord line resulting in Fig. 4.4(c). Therefore, the word ’sweep’
refers here to geometrical sweep2. The final step is to rotate the blade around the pitch
change axis to the desired blade angle βref at 75%-radius, as is shown in Fig. 4.4(d).

4.3 Spatial discretization
Gambit version v2.4.6 [5] is used as an integrated geometry/meshing package to per-
form the spatial discretization of the blade for the high-fidelity solvers. Gambit relies
on a hierarchical geometry definition and meshing sequence. The geometry relies on
an ACIS kernel. The structured/unstructured mesher allows for different meshing
schemes ranging from quadrilaterals or triangles for surface meshing, to hexahedrons,
tetrahedrons, pyramids or wedges for volume meshing, with size-functions that allow
local control of the mesh properties.

2Geometrical sweep is defined as the angle between the pitch axis of the blade and the
locus of the 1/4-chord of its sections. In contrast, leading-edge sweep is defined as the angle
between the pitch axis and the leading-edge line.
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(a) Chord and thickness scaling. (b) Twisting. Note at this point that βref =
0◦

(c) Sweeping of the quarter-chord line. (d) Blade rotation to the desired βref .

Figure 4.4: Stacked views of a blade at various stages of the shape-giving
procedure and definition of βref (blade angle at 75%-radius).
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Figure 4.5: Spinner contour with indication of the pitch change axis (−.).

Once the vertices are imported, edges are created by b-spline interpolation to
create a skeleton corresponding to Fig. 4.4(d). Surfaces are then made using the skin
technique. Each blade segment between two stations is consecutively transformed
into a volume by surfaces stitching. The tip consists of the last airfoil section so it is
flat and parallel to the axis, no round off is applied. At this stage, the computerized
representation of the active part of the blade is completed.

4.3.1 Mesh for aerodynamic and aeroacoustic solvers

Mesh details

For the aerodynamic and aeroacoustic analysis, a scaled model of the blade is sub-
sequently mounted onto a spinner. The scale is chosen such that the compactness
criterion (cfr infra) is satisfied with a reasonable number of mesh elements. Ap-
propriate scaling laws are then used to compute the aerodynamic and aeroacoustic
results of the full-scale propeller from the scaled model. Figure 4.5 gives the non-
dimensionalized spinner contour along the rotational axis (X-axis) and the spinner
volume is obtained by axial revolution. It is a 27.5◦ half-angle cone that blends
into a nacelle with a maximum diameter equal to 26.72% of the propeller diameter.
The blade is placed with its pitch change axis aligned with the position marked on
Fig. 4.5 and this part of the spinner features area-ruling to help alleviate transonic
effects particularly in the inboard blade passages. The extent of area-ruling is based
on the area of a mean blade. The shape of the spinner is not subject to optimization
in the subsequent chapters as this would increase the number of design variables.
Moreover, the present blade-spinner model does not represent with high-fidelity the
mechanisms present at the blade root for a real propeller.

Blade and spinner are subtracted from a pie-shaped domain to create the flow
domain as is shown in Fig. 4.6. The angular extent of the domain is only π/4 as
a single blade passage of the 8-bladed propellers, is considered with special periodic
conditions valid because the propeller is considered isolated from any other aircraft
part and at zero angle of attack with respect to the flow. This simplification is
important as the different designs cannot be truly tested for robustness in yawed
flow or installed conditions. The axial and radial extent of the domain are 2.5D
in length and 2D in radius. These values are the result of a parametric study to
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Figure 4.6: Flow channel, spinner and blade.

maintain accuracy of the aerodynamic analysis while driving down the numerical
cost by reducing the spatial extent of the domain [188].

The next step is to realize the surface mesh on all boundaries. The scheme starts
with a quadrangular mesh applied to the blade surface consisting of approximatively
40000 elements. This mesh is locally adapted to both the leading edge curvature
and the expected pressure gradient along the pressure and suction sides. The typical
chordwise dimension of the elements ranges from 0.0005D to 0.002D by 0.002D in
the radial direction, with D the diameter of the scale model. Doing so, this mesh
verifies the compactness criterion for aeroacoustic purposes (see section 6.2.1.3):

L << λm(1−Mr) (4.7)

where L is the cell elongation (the maximum cell dimension), λm is the wave length
associated with the highest sound frequency to be resolved (here, 4000Hz) and Mr

is the local Mach number of a point on the blade surface, projected on the radiation
direction (i.e. the direction to the receiver). Note that Mr depends purely upon the
kinematics of the helical movement of the blade with respect to the receiver’s position
and that, strictly speaking, whenMr = 1, there is no mesh that would satisfy Eqn. 4.7.
The mesh size is kept within reasonable limits by scaling the blade by a factor 2/9.

All remaining surfaces are meshed with triangles. As Gambit can not handle
suitable meshes for boundary layers on arbitrarily curved surfaces, it has been neces-
sary to restrict the use of Gambit to the 2D meshing of all surfaces which are then
exported to TGrid v5.0.6 [7]. In TGrid, the quadrilateral surface mesh is extruded
perpendicularly to the blade surface to generate an O-type boundary-layer mesh as
illustrated in Fig. 4.7. 12-layers are built with the cell height satisfying wall treatment
requirements. Indeed, y+-values range typically from 50 to 200. After this operation,
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Figure 4.7: Cut made at 50%-radius revealing the section of the O-type
boundary-layer mesh and the projection of the faces of the flow channel mesh.

the remaining of the domain is meshed with tetrahedrons starting from a conformal
interface obtained by splitting the quadrangular elements from the last layer of the
boundary-layer mesh. As pointed out by Boyle [35], fine and accurate propeller blade
meshing is a tricky task. Difficulties for good blade meshes are due mainly to three
factors:

• the strong variation of the leading edge curvature radius (in each blade section
plane) between the hub and the tip due to large variations of the radial thickness
distribution,

• the variation of the blade leading edge curvature along the radial direction
related to the radial distribution of chord length, the introduction of sweep and
the selected stacking procedure,

• and the strong blade twist that distorts the blade leading edge around the blade
axis.

The combination of these three elements required the development of a specific au-
tomatic meshing scheme in order to capture correctly complex geometries with a
minimum risk for degenerated cells and without loss of fidelity due to strong geomet-
ric approximations.

During the previous operations, Gambit and TGrid attribute to each newly cre-
ated entity (vertex, edge, surface, nodes,...) a label and a number. The label can be
controlled by the user by modifying the default settings for labels. But the number
is attributed sequentially in the family of the considered entity. At this stage, the
position of the entity also plays a role. This could give rise to major difficulties when
applying the same geometry/meshing procedure to different propellers as one entity
name might not refer to the same entity for another propeller. To circumvent these
difficulties and be able to apply the same journal file to different propellers, a rigorous
series of labelling operations based on entity location, had to be developed in order
to automate completely the meshing process with the highest chances of successful
meshing.
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4.3 Spatial discretization

Grid convergence analysis

Though the results of the CFD- and CHA-solvers will be validated against experi-
mental results in sections 5.4 and 6.3 respectively, a grid independence analysis has
been conducted a posteriori on selected designs from part II. The purpose is to check
whether significant departures from traditional blade geometries, combined with rel-
atively coarse meshes so that the computational time is kept to a minimum, result
in difficulties related to the correct computation of aerodynamic and aeroacoustic
performance. Table 4.1 gives an overview of this analysis. The reader is referred to
chapters 5 and 6 for the explanation of the computed quantities. The method used
for the convergence analysis, is the one prescribed by the Journal of Fluids Engineer-
ing [56]. Four propellers have been analyzed in the design cruise and take-off/landing
conditions (JCR,2 and JTO,2) for CT , CP and the SPL in the propeller plane. In all
cases, the Grid Convergence Index (GCI) between the finest and the regular mesh
is below 2.7% which is a satisfactory result. The maximum approximate relative er-
ror ea between the finest and the regular mesh is usually far below 3.3% while the
extrapolated relative error eext is kept under 2.2%. This analysis proves that the com-
puted performance values are not depending onto spatial discretization issues when
evaluated on the ”regular” mesh as it is the case in the subsequent chapters.

4.3.2 Mesh for aeroelastic solver

Mesh details

For the aeroelastic analysis, a full-scale model of the blade is used to avoid the dif-
ficulty of correct scaling with respect to material specific volume and aeroelastic
properties. It includes part of the shank assembly connecting the blade to the hub as
illustrated in Fig. 4.8. The necessity to avoid kinks in the placement of the composite
material composing the blade surface, makes a transition zone necessary. This zone
is designed to ensure a progressive shape conversion from airfoil shaped sections to
a circular shank. In the current model, this zone has a 10.67% radial extent and
the shank diameter is 8.89% of the propeller tip radius R. The transition zone is
obtained by b-spline interpolation of 4 curves between the airfoil at 30.67%-radius
and the shank at 20%-radius. These curves define the frame of the transition region.
Throughout this process, G2-continuity is maintained between the transition zone,
the shank and the outboard part of the blade. The spaces between the aerodynamic
shape and the composite structure are supposedly filled with foam cuffs that are not
modeled in the present approach.

The structural model shown in Fig. 4.8 is first surface meshed with triangles having
a typical side length of 0.0044D. Proper grading is applied down to side lengths of
0.0018D to guarantee the geometrical fidelity of the mesh in regions of high curvature
as well as correct estimation of the stresses in regions of high gradients. This surface
mesh is exported to Samcef v13.1-02 [10]. In Samcef, the GHS3D mesher [121] is
used to mesh the inner volume of the blade without alteration of the surface mesh so
that the nodes remain collocated. The last requirement is crucial since the surface
mesh, used to model the composite shell, will be used in conjunction with the volume
mesh used to model the foam core (see chapter 7). Both the volume and surface mesh
consist of linear elements to keep the computational time within acceptable limits in
the framework of multidisciplinary optimization. Quadratic elements have not been
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spinner
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aerodynamic
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Figure 4.8: Detail of the blade root showing the difference between the aero-
dynamic shape and the blade structure.

used because of specific restrictions pertaining to the solver and hypotheses in Samcef
v13.1-02.

Grid convergence analysis

Unfortunately, no comparison to experiments could be made due to the lack of avail-
able experimental data about the aeroelastic properties and performance of modern
blades. Nevertheless, a grid independence analysis has been conducted a posteriori
on the same designs as in section 4.3.1. The reader is referred to chapter 7 for the
explanation of the computed quantities. The fine and coarse mesh differ from the
regular one by a factor 1.3 in terms of typical mesh dimension h. The relative er-
ror between the different meshes on those values that are significant in the present
framework, are given in table 4.2 and suggest that satisfactory grid convergence is
obtained on the regular mesh.
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4.3 Spatial discretization

Figure 4.9: Surface mesh of the blade structure.
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Chapter 5

Aerodynamic solver

Among the high-fidelity analysis tools used in the optimization procedure, the aero-
dynamic solver plays an important role. It provides an accurate estimate (as opposed
to the metamodel approximate) of the propeller performance, and it feeds the aeroa-
coustic solver with the necessary flow details or the aeroelastic solver with the pressure
distribution on the blade surface.

This chapter gives an overview of the available methods for the Computational
Fluid Dynamics tool (CFD), and argues the choices made for the present optimization.
A more detailed account is given of the chosen solver together with the set of boundary
conditions and the performance parameters computed at the end of the numerical
simulation. Finally, comparisons are made between computations and experiments
for some performance values in order to assess the validity of the current approach.

5.1 Available numerical methods

5.1.1 Legacy methods
Legacy methods have their origins in the need to predict the performance of propellers
for marine applications. The first and most simple method is the axial momentum
theory developed by W. Rankine [241]. This theory considers a propeller disk con-
sisting of an infinite number of blades (actuator disk) in incompressible inviscid flow
and neglects the rotation induced in the slipstream by the rotating disk (also called
swirl). Basically, it computes propellers performance from the difference in pressure
and velocity up- and down-stream of the propeller by application of the conserva-
tion laws. The first improvement to this method was made by R. Froude [119] who
introduced the general momentum theory which takes the effects of slipstream rota-
tion into account. Over the years, improvements included the introduction of friction
losses and compressibility corrections [298].

Even though the momentum theory has quite recently been extended to account
for non-uniform radial distribution of the load [64] as well as heavy loading of the
disk [65], it suffers from the negligence of real-world phenomena such as the finite
number of blades or viscous flow. Hence these methods are usually good at predicting
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overall performance parameters such as thrust (CT ) and power coefficients (CP ) or
efficiency (η) but they fail at predicting accurate details of the flow up- and down-
stream of the propeller disk let alone in the disk itself.

As an alternative to the momentum theory, the blade element theory was devel-
oped in parallel by R. Froude [118]. This theory recognizes that the airfoil section
at each station along the span, meets the flow at different angle and speed. A blade
is decomposed into elements of finite span for which 2D airfoil coefficients are used
to compute the forces and if necessary the pressure distribution from the local chord
and velocities. Hence the blade element method gives more details about the flow on
the finite number of blades. This first implementation falls short of taking the influ-
ence of the wake into account and this triggered the combination of the momentum
and blade element theory by H. Glauert [123]. But both theories are only valid for
lightly loaded propellers (thus small slipstream contractions) and ignore the radial
components of the flow as well as tip losses. Because these methods do not predict
detailed flow features, they would not be appropriate for the present work.

5.1.2 Lifting-line, lifting-surface and panel methods

For incompressible inviscid flows, the lifting-line theory was onset by F. Lanchester
and published by L. Prandtl [234] working with A. Betz and M. Munk. It models the
blade by a single bound vortex line of strength Γ located at the quarter chord position
and having vorticity shed downstream at both extremities to satisfy the Helmholtz
theorem. The unknown circulation Γ is obtained by using the Biot-Savart law with
the boundary condition u.n = 0 at a given control point on the blade surface with
n the vector normal to the surface (tangency condition stating that there is no flow
normal to the wall surface). Once Γ is known, the induced velocity can be obtained
together with the lift from the Kutta-Zhukovsky theorem.

In a more elaborate approach, the vortex strength reduces spanwise by shedding
a vortex-sheet from the trailing edge, rather than just at the tips. In this case, the
coefficients of the radial distribution of Γ(r) are determined by using the appropriate
number of control points. Some extensions of this method have been developed to
incorporate curvature of the lifting-line [33].

To take more intricate geometries than a straight blade into account, the lifting-
line theory has been extended to the lifting-surface theory by placing a series of
lifting-line at different chordwise positions. Doing so, vortex strength dependency is
gained in the radial and chordwise directions. Applying the Biot-Savart law and the
tangency condition on a convenient set of control points allow for the determination
of the individual vortex strengths. This is the major difficulty of such methods as the
individual circulations are mutually dependent. The most common numerical method
to solve the system of bound horseshoe vortices is the Vortex Lattice Method [92].

Several improvements exist to consider compressibility, viscous losses, the effect
of thickness of the blades (better accounted for in panel methods by using sources
and doublets for example) [33, 263] or the presence of the spinner [263]. Most lifting
surface methods suffer from the ignorance of thickness effects hence are limited to
thin blades of arbitrary shape up to mild transonic conditions [274, 33, 263]. These
methods are also extremely popular for low speed cases with low loading such as
in [49].
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Panel methods, use sources, sinks and doublets distributed over a surface to model
the flow over the blade. These potential flow methods are limited, in their uncorrected
form, to inviscid incompressible flow and are therefore rejected for the present opti-
mization despite their extremely low computational cost. This low cost is the reason
why such methods are still used for optimization purposes [49] or for industrial as-
sessment by propeller manufacturers.

5.1.3 Lattice Boltzmann Methods (LBM)

LBM is a simulation technique developed from the late 1980′s and is increasingly
attracting researchers in computational physics. Traditional CFD methods solve
the conservation equations of macroscopic properties (i.e. mass, momentum, and en-
ergy) numerically. Unlike these methods, LBM models the fluid by fictive particles
that consecutively propagate and collide over a discrete lattice mesh. LBM methods
evolved from the first Lattice Gas Automata (LGA) with proven Navier-Stokes dy-
namics [116, 309]. In LGA, at a particular step, either 1 or 0 particle is present at
each node of the lattice moving in the direction of one neighbouring node. After a
time interval, each particle moves to the neighbouring node according to its direction
(propagation). At the next step, if more than one particle arrives at a particular node
from different directions, they collide and change direction (collision). The governing
equations for the collision and propagation are beyond the scope of this section but
are such that mass, momentum and energy are conserved locally. Henceforth some
kind of localized continuity is obeyed unlike the Navier-Stokes equations which are
continuous forms of the conservation equations. The drawback of LGA was its rather
noisy nature and this is removed by replacing the propagation operator by its en-
semble average (leading to a lattice Boltzmann equation) and the discrete collision
rule by a continuous collision operator celebrating the molecular chaos assumption of
Boltzmann. The last replacements are the spine of the LBM method.

Owing to its particulate nature and local dynamics, LBM has several advantages
over conventional CFD methods [180]:

• they have intrinsic parallelism,
• they can handle complex boundaries without compromising the computational

speed,
• they allow easy incorporation of microscopic interactions.

These are the reason for the recent successes obtained with LBMs in various flow
applications of external and internal dynamics of turbulent flows even if difficulties
are encountered for high Mach number flows. As such, LBMs are a reliable candidate
for the current application [48] but have been discarded in favor of a RANS approach.

5.1.4 Euler and RANS methods

These methods tend to solve numerically the continuous conservation equations for
mass, momentum and energy:

∂ρ

∂t
+
∂ (ρuj)

∂xj
= 0 (5.1)
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∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
=

∂

∂xj
[−pδij + τij ] + fi, i = 1, 2, 3 (5.2)

∂ (ρe0)

∂t
+
∂ (ρuje0)

∂xj
=

∂

∂xj
[−ujp+ uiτij + qj ]− fiui + q̇ (5.3)

in which δij is the Kronecker symbol, τji is the deviatoric stress tensor, fi is the
ith-component of the body forces, e0 is the total energy (e0 = e+ 1/2.ρ.u2), qj is the
jth-component of the heat transfer by conduction and q̇ is the time rate of volumetric
heat addition per unit mass. In propeller applications, the heat terms and body forces
terms (in an absolute frame of reference) are often left aside.

Euler methods consider Eqs. 5.1 and 5.2 but without the influence of the devia-
toric stress tensor for the last equation. So, they model inviscid adiabatic flow. Such
methods became popular with the advent of computers and remove the hypothesis of
small perturbation usually associated with the methods of sections 5.1.1 and 5.1.2.
Euler methods are able to compute non-linear phenomena, such as shocks occurring
in the blade passage, quite accurately but at the price of a considerable increase in
computational cost when compared to legacy, lifting-surface and panel methods. In
the time where numerical solutions of the Navier-Stokes equations were still not af-
fordable, numerous papers used a numerical solution of the Euler equations in the case
of propellers [274,33,307,212,273,37,36,34,125]. In some cases as in [307,273,34], re-
markable agreement with experimental results was obtained but this probably comes
from the weakness of viscous effects when compared to pressure loads at such high
Reynolds numbers, and hides the mutual influence of some effects not accounted for
in the computations such as the deformation of the blade during the experiments [34].

Navier-Stokes methods solve the complete system of Eqs. 5.1, 5.2 and 5.3 with
some additional hypotheses for turbulence closure that will be discussed in the next
section. These methods became extremely popular at the beginning of the 1990′s and
are widely applied for the computation of propeller flow [194,34,295,35,279,302,313].

5.2 RANS-solver

Fluent v12.0.16 [9] is used for the high-fidelity aerodynamic analysis with periodicity
allowing to limit the domain to the channel described in section 4.3.1. The RANS-
solver used in Fluent will here be briefly described along with the main theory. This
way the choices made for the application to propellers are given adequate light even
though the contribution of the authors is limited to these choices. Note that, for
now, a RANS-approach is the most detailed way to compute the flow field around a
propeller as the requirements for Large Eddy Simulation or Direct Numerical Simu-
lation would make it prohibitive, if not just impossible, to run on current generation
computers; let al.one for optimization in the foreseeable future.

5.2.1 Governing equations

The governing equations for the fluid dynamics problem are Eqs. 5.1, 5.2 and 5.3. In
the presence of turbulent flows, as is the case for propellers, small scale flow structures
exist and evolve with time. A computationally inexpensive and popular option is to
average the governing equations statistically before solving them (hence the RANS
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term standing for Reynolds Averaged Navier-Stokes) though this comes with some
limitations with respect to the accuracy of the description of the flow.

Two averaging approaches are combined to form the set of RANS equations:
Reynolds and Favre averaging. Reynolds averaging consists in splitting a scalar
quantity ρ(x, t) in the sum of its mean part ρ̄(x, t) and a fluctuating part ρ′(x, t)
so that:

ρ(x, t) = ρ̄(x, t) + ρ′(x, t)

with

ρ̄(x, t) =
1

T

∫ t+T

t

ρ(x, t)dt

where T is an arbitrary, yet sufficiently long time interval. Similarly, Favre averaging
splits the instantaneous velocity component ui(x, t), for example, by

ui(x, t) = ũi(x, t) + u′′i (x, t)

with

ũi(x, t) =
1

ρ̄T

∫ t+T

t

ρ(x, t)ui(x, t)dt

The average form of the NS equations is then obtained by using Reynolds averaging
for ρ and p, Favre averaging for all other quantities and the fact that the mean of
fluctuating parts is zero. This leads to a new set of equations:

∂ρ̄

∂t
+
∂ (ρ̄ũj)

∂xj
= 0 (5.4)

∂ (ρ̄ũi)

∂t
+
∂ (ρ̄ũiũj)

∂xj
= −

∂
(
ρu′′i u

′′
j

)
∂xj

− ∂p̄

∂xi
+
∂τij
∂xj

, i = 1, 2, 3 (5.5)

∂ (ρ̄ẽ0)

∂t
+
∂ (ρ̄ũj ẽ0)

∂xj
=

∂

∂xj

[
−ũj p̄− ρu′′j h′′ + τ ′′iju

′′
i − 1/2ρu′′j u

′′
i u
′′
i

]
+

∂

∂xj

[
ũi(τ̄ij − ρu′′i u′′j )

]
(5.6)

where h is the enthalpy. These equations define the transport of mean quantities.
Although the continuity equation (Eqn. 5.4) does not contain any additional term,
the momentum equation (Eqn. 5.5) has the additional Reynolds-stresses term −ρu′′i u′′j
and the energy equation has been augmented with the turbulent heat flux vector
ρu′′j h

′′ − τ ′′iju′′i + 1/2ρu′′j u
′′
i u
′′
i . These terms lie at the origin of the closure problem as

additional equations are needed for the six components of the Reynolds-stress tensor
and the three components of the turbulent heat flux vector in order to solve the RANS
system.

5.2.2 Closure of the RANS-equations and wall behaviour

5.2.2.1 Exact Reynolds-stress transport equation

The exact transport equation for the Reynolds-stresses can be obtained by subtracting
Eqs. 5.4-5.6 from the original Navier-Stokes equations expressed in terms of ũ + u′′

and multiplying the difference by a fluctuating quantity. The resulting equation yields
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∂ρu′′i u
′′
j

∂t
+
∂ρu′′i u

′′
j ũk

∂xk
= Pij − ρ̄εij −

∂Jijk
∂xk

+ Πij − u′′j
∂p̄

∂xi
− u′′i

∂p̄

∂xj
(5.7)

where the terms in the right hand-side are:

• Pij : this accounts for the production of turbulent stresses by deformation at
the expense of the mean flow energy. This term does not require closure.

• Jij : the transport term accounting for turbulent diffusion (transport through
velocity fluctuations), pressure transport and molecular diffusion. The first two
parts require closure.

• Πij : the pressure-strain term accounting for the redistribution of turbulent
stresses among components to make turbulence more isotropic. This term
needs closure.

• εij : the stress dissipation term occurring at the smallest scales.

5.2.2.2 Eddy viscosity assumption

This assumption results from Boussinesq’s hypothesis which relies on a turbulent
viscosity µt, depending on flow features, to connect the Reynolds-stress components
to the strain rate. This hypothesis is quite similar to Newton’s law for molecular
viscosity. It can be written as

τReynoldsij = −ρu′′i u′′j = 2µt(S̃ij − 1/3δijS̃kk)− 2/3ρkδij (5.8)

where Sij − 1/3δijSkk is the shear tensor so that the deviatoric stress tensor is τij =
2µ (Sij − 1/3δijSkk). In Eqn. 5.8, k is the Turbulent Kinetic Energy (TKE) defined
as

k =
1

2

−ρu′′i u′′i
ρ̄

(5.9)

5.2.2.3 Turbulent kinetic energy equation

Starting from the Reynolds-stress equations, an exact form for the TKE equation can
be derived:

1

2

∂
(
ρu′′i u

′′
i

)
∂t

+
∂

∂xk

[
1/2ρu′′i u

′′
i ũk

]
= ρ̄Pk − ρ̄ε−

∂Jk
∂xk

+ Π− u′′i
∂p̄

∂xi
(5.10)

with Pk a production term for TKE and ρ̄ε a dissipation term. The pressure strain
term (Π) is often neglected and the remaining diffusion terms are modelled with a
gradient hypothesis consistent with the Boussinesq assumption, so that

∂ρ̄k

∂t
+
∂ρ̄kũk
∂xk

= ρ̄Pk − ρ̄ε+
∂

∂xi

[
(µ+

µt
σk

)
∂k

∂xi

]
(5.11)

where σk is a Prandtl number. At this stage, the production term does not need
further modelling as it is Pk = 2µtS̃ijS̃ij/ρ̄.
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5.2.2.4 Energy cascade

Turbulent motion is the result of the instability of large vortical structures that break
down into smaller and smaller scales. These large structures have a size characteristic
of the shear flow that creates them and the break-up process transfers kinetic energy
from those large structures to smaller ones. The large structures have a length scale
L0, a velocity fluctuation u0 and as their Reynolds number Re0 = u0L0/ν is large
(and is a significant portion of Reflow), they are not affected by molecular viscosity.
This means that they transfer kinetic energy to smaller scales without significant
dissipation and account for the production term Pk. At the smaller scales Lη, kinetic
energy is dissipated into heat by the effects of molecular viscosity. For those scales,
Reη ≈ 1 and they account for the dissipation term ε. The scales between L0 and Lη
account for the transfer of TKE only and are called the inertial range of the energy
cascade shown on Fig. 5.1. This cascade gives the energy spectrum E(κ) as a function
of the wave number κ = 2π/L corresponding to scale L. In ideal flows, Pk = ε.

From Richardson’s concept, one can build a relation between a length scale L,
the corresponding velocity fluctuation scale uL and ε in the inertial range:

u2
L

τL
∼ ε with τL =

L

uL
so

u3
L

L
∼ ε (5.12)

Supposing that equilibrium occurs at the inertial range, one has ε = T with T the
energy transfer rate. And if Kolmogorov’s hypothesis is accepted, i.e. within the
inertial range, the statistics of the motions at scale L have a universal form uniquely
determined by ε and independent of ν, then

k
3/2
L

τL
∼ ε (5.13)

where kL is the TKE in the range from small to L. So the energy spectrum can only
be:

E(κ) = CKε
2/3κ−5/3 (5.14)

CK is the Kolmogorov constant. From this point, it is even possible to determine the
scale at which dissipation occurs:

Lη =
ν3/4

ε1/4
with τη =

ν1/2

ε1/2
and uη = ν1/4ε1/4 (5.15)

5.2.2.5 Eddy viscosity expression

With the eddy viscosity assumption of section 5.2.2.2, some scales are filtered away
and the effect of these scales on the remaining motion is replaced by an increased
viscosity. On Fig. 5.1, if scales smaller than a cut-off length Lc corresponding to
some κc are filtered away, the spectrum that is filtered away is characterized by ε and
Lc so that the length Lc can be replaced with the kinetic energy in the spectrum that
is filtered: kc. One can derive then

νt ∼ ε1/3L4/3
c and kc ∼ ε2/3L2/3

c (5.16)
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Figure 5.1: Energy cascade.

For this hypothesis to hold, Lc must be far away from Lη so that molecular viscosity
has no influence at that scale. This implies that Reflow must be sufficiently big. This
further leads to

νt = cµ
k2

ε
(5.17)

with cµ a constant yet to be determined and k the TKE of the whole spectrum.

5.2.2.6 Scale-determining equation

In Eqn. 5.17, k is required and can be obtained from Eqn. 5.11. The next ingredient
is the dissipation rate ε that will determine the overall length scale of the turbulent
motion. From k and ε, a time scale τ = ε/k can be formed and the TKE-equation
(Eqn. 5.11) can be transformed into

∂ρ̄ε

∂t
+
∂ρ̄εũk
∂xk

= cε1ρ̄
ε

k
Pk − cε2ρ̄

ε

k
ε+

∂

∂xi

[
(µ+

µt
σε

)
∂ε

∂xi

]
(5.18)

where the constants cε1 and cε2 have been introduced together with the Prandtl
number σε.

This intuitive approach is further confirmed by the ReNormalization Group theory
(RNG) consisting in a spectral methodology over the scale range. This theory also
delivers estimates for the constants cµ, σk, σε, cε1 and cε2.

5.2.2.7 The law of the wall

Models based on the eddy viscosity concept are constructed to be consistent with
the law of the wall i.e. the expression of the velocity profile in the logarithmic part
of the boundary layer (see Fig. 5.2). One defines the friction velocity uτ =

√
τw/ρ,

u+ = u/uτ and the non-dimensional wall coordinate y+ = yuτ/ν with the Y -axis
normal to the wall. Derivation of the NS equations in the boundary layer close to the
wall, where the viscous stresses are dominant, leads to

u+ = y+ (5.19)
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Figure 5.2: Schematic velocity profile near the wall in a turbulent boundary
layer.

In this viscous sub-layer, one can show that the dissipation at the wall is non-zero
and a limiting value for ε can be computed: ε = 2νk/y2 for y → 0.

Furthermore, if one admits that close to the wall but not extremely close, there
is a region where the velocity profile is determined by the turbulent shear stress but
not by the shear stress due to molecular viscosity, one can show

u+ =
1

κ
ln y+ +B (5.20)

where κ is the von Karman constant and B another constant. This law is valid in the
logarithmic layer and expresses that in this layer, the Reynolds stresses are dominant
on viscous stresses. Different experimental results tend to confirm this hypothesis
and the validity of the law of the wall (logarithmic profile). Generally, the law of the
wall applies from y+ = 30 to y/δ ≈ 0.1 with δ the boundary layer thickness.

5.2.3 Turbulence modelling

Many models exist to close the RANS equations given certain assumptions. In this
section, the chosen model is discussed in more details so that the reasons for this
choice but also its the limitations it implies, come to light.
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5.2.3.1 Standard k − ε model

Developed by Jones and Launder in 1972 [162], this model uses the RANS-equations
together with the TKE-equation (Eqn.5.11), the ε-equation (Eqn. 5.18), and the
eddy-viscosity (Eqn. 5.17). Standard values for the constants cµ, σk, σε, cε1 and cε2
have been obtained from simple flows. The constant cµ comes from the observation
of thin shear flows with an approximate balance between production and dissipation,
the constant cε2 from the decay of homogeneous turbulence and the constant cε1 from
homogeneous shear flow experiments. The Prandtl number σk is a priori taken as
unity since it governs the turbulent diffusion of the TKE by the turbulent motion
itself. The Prandtl number σε comes from consideration of the diffusion of ε in the
logarithmic layer. For that Prandtl number, it is imperative to satisfy

σε =
κ2

(cε2 − cε1)
√
cµ

so that the law of the wall can be predicted correctly. The set of equations for this
model is:


∂k

∂t
+
∂kui
∂xi

= Pk − β∗ωk +
∂

∂xi

[
(ν + σ∗νt)

∂k

∂xi

]
∂ρ̄ε

∂t
+
∂ρ̄εui
∂xi

= cε1ρ̄
ε

k
Pk − cε2ρ̄

ε

k
ε+

∂

∂xi

[
(µ+

µt
σε

)
∂ε

∂xi

] (5.21)

This model is the simplest of two-equations models and is known to be very robust.

5.2.3.2 Wall functions

When low-Reynolds modelling is used (i.e. when the k − ε model is used up to the
wall), the near-wall behaviour of turbulent quantities must be carefully modelled.
Indeed, close to the wall, turbulence is damped and the turbulent Reynolds number
Ret = k2/(νε) becomes small. To achieve this, damping functions are introduced into
Eqn. 5.21.

As with low Reynolds modelling the first grid point should be at y+ ≈ 1, the nu-
merical cost is elevated because around 50 grid points are necessary in the boundary-
layer. However, in many applications, the precise description near the walls is not
needed and high Reynolds modelling can be used. In high Reynolds modelling, the
first grid point A is typically so that y+ ∈ [30, 100]. At this point, special boundary
conditions are imposed:

τA = τw kA =
u2
τ√
cµ

εA =
u3
τ

κy
(5.22)

where uτ is determined from

u

uτ
=

1

κ
ln

(
B2yuτ
ν

)
with u from the previous iteration, κ = 0.41 and B2 = 7.768. The drawback of this
method is that it corresponds to impose a constant value of k at the first grid point in

68



5.2 RANS-solver

the logarithmic-layer although in reality, the TKE has a pronounced maximum in the
buffer-layer so there is no zone of constant TKE between the first grid point and the
wall. The TKE-equation (Eqn. 5.11) can be solved at the first grid point by imposing
Pk = τA∂u/∂y with ∂u/∂y = uτ/(κy). Then ε can be determined as uτ = k1/2c

1/4
µ

so ε = c
3/4
µ /(κy). In the end, uτ or τw are determined, with the assumption µ = µt

made so that molecular viscosity is set to zero, from:

u

uτ

uτ
uτ

=
1

κ
ln

(
B2yuτ
ν

)
⇒ u
√
kc

1/4
µ

u2
τ

=
1

κ
ln

(
B2y

√
kc

1/4
µ

ν

)
⇒ u2

τ =
τw
ρ

=

√
kc

1/4
µ κ

ln(B2y
+
A)
u where y+

A =
c
1/4
µ

√
kyA

ν

(5.23)

The high Reynolds approach is not valid for flows with re-circulation as these
flows come with a sign-change for uτ . |uτ | is used in the determination of y+ but
the condition y+ ∈ [30, 100] cannot be satisfied in the recirculation region (generally
with lower velocities). Although the above algorithm does not cause problems for
regions of recirculation (because uτ is replaced by c

1/4
µ

√
k for the computation of

y+), blindly applying it corresponds to enforcing the log-law in a region where the
laws of the viscous sub-layer should be used. In such a case, standard wall functions
are inappropriate and are often replaced by a two-layer approach so that low Reynolds
modelling does not have to be implemented. This approach consists in having two
sets of equations and using one or the other depending on the local value of y+

P for
each grid point in the boundary layer:

y+
P =

c
1/4
µ

√
kyP

ν

y+
P > 11.3 → log-law y+

P ≤ 11.3 → linear-law
Standard Wall Treatment Enhanced Wall treatment

τw =
ρ
√
kP c

1/4
µ κ

ln(B2y
+
P

)
uP τw = µ

yP
uP

uτ =
√
|τw|
ρ

(
τw
|τw|

)
uτ =

√
|τw|
ρ

(
τw
|τw|

)
uy = uτ

κy
uy = τw

µ

Pk = τwuy Pk = τwuy

ε =
c
3/4
µ k3/2

κy
ε = 2νkP

y2
P

5.2.3.3 Limiters and realizability

On top of correct near-wall behaviour, realizability is a physical and mathematical
principle that should fundamentally be ensured by any turbulence model. It is defined
as the non-negativity of the turbulent normal stresses together with the Schwarz-
inequality between any fluctuation:{

u′2i > 0(
u′iu
′
j

)2

< u′2i u
′2
j

(5.24)

As standard k − ε and k − ω models are not realizable, realizability is enforced
by replacing cµ by a limited value. This corresponds to limiting the Reynolds stress
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components for large values of the straining. More directly, the limiting can be done
by writing the eddy viscosity as

νt = cµ
k2

ε
= cµkT with T =

k

ε

in which T is the time-scale of turbulence. Limiting the Reynolds stresses can then
be introduced by a limiter of the form:

T = Min

(
k

ε
,

α√
6cµS

)
or T = Min

(
k

cµω
,

α√
6cµS

)
with

{
S =

√
2SijSij

α = 0.6

α is chosen to avoid the overprediction of TKE at the leading edge that occurs with
standard models. Limiters such as those are universally accepted; although they do
not ensure realizability in all flows at least they limit the overprediction in stagnation
flows.

5.2.3.4 k-ε realizable model with wall treatment

For the high-fidelity aerodynamic analysis, the realizable k-ε model [267] has been
chosen for its robustness and ability to resolve boundary layers under strong adverse
pressure gradients or in the presence of separation and recirculation. These phe-
nomena are indeed likely to occur with sub-optimal highly-loaded candidate blades.
Additionally, this model behaves adequately in the presence of rotation. These rea-
sons justify why this model has been chosen above:

• the Spalart-Allmaras one-equation model [272], which is per se cheaper and has
also been developed for wall-bounded flows but has difficulties in dealing with
separation and possibly recirculation;

• the standard k−ω two-equation model mainly developed by Wilcox from 1988
onward [308], which has a more natural treatment of the near-wall region but
usually performs better for low-Re flows;

• the k−ω SST model [200] that combines the k−ω model in wall vicinity with
the k− ε model in the free stream by the means of blending-functions; hence it
is reliable for a wide class of flows including in the presence of adverse pressure
gradients or shocks but at the price of the additional computational cost of
solving the closure equations with additional terms (blending functions).

For transonic flows, compressibility affects turbulence through so-called ”dilata-
tion dissipation”, which is neglected in section 5.2.3.1. Doing so, the observed decrease
in spreading rate with increasing Mach number for free shear layers, would not be
predicted. For this reason the dilatation dissipation term is included in Eqn. 5.11
according to [262].

As resolving the viscous and buffer sublayers does not yield, for the considered
application characterized by a high Re, significant improvement on the overall per-
formance values, the first cell centroid of the boundary layer mesh is placed within
the log-layer (y+ ∈ [30, 300]). Wall treatment is applied through non-equilibrium wall
functions that account for the effect of a pressure gradient along the wall [168].
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5.2.4 Discretization

The conservation equations (Eqs. 5.4-5.6), the closure equations (Eqn. 5.21) and
all other complementary differential equations such as those for wall treatment, are
discretized using the finite volumes scheme on the mesh described in section 4.3.1. For
transport of a scalar quantity φ, the conservation equation over an arbitrary control
volume V can be written as∫

V

∂ρφ

∂t
dV +

∮
ρφU.dA =

∮
Γφ∇φ.dA+

∫
V

SφdV (5.25)

with A the surface area vector, Γφ the appropriate diffusion coefficient, ∇φ the gra-
dient and Sφ the source of φ per unit volume. For a cell, this equation is discretized
in space as

∂ρφ

∂t
V +

Nfaces∑
f

ρfufφf .Af =

Nfaces∑
f

Γφ∇φf .Af + SφV (5.26)

where Nfaces is the number of faces enclosing the cell and the subscript .f refers to
the variables evaluated at the face f . Eqn. 5.26 contains the unknown scalar variable
φ at the cell center as well as the unknown values φf on the surrounding faces. To
compute the convection terms, these values are obtained by second-order upwinding
though numerous other options exist. Hence φf is computed by a truncated Taylor
series expansion about the cell centroid:

φf = φ+∇φ.r (5.27)

in which φ and ∇φ are the cell-centered values and r is the distance vector from the
upstream cell centroid (relative to the velocity normal to the face) to the center of
the considered face. The gradient ∇φ is evaluated with the Green-Gauss cell-based
technique with limiters to prevent divergence when needed.

Temporal discretization is achieved by implicit time integration so that:

∂φ

∂t
=
φn+1 − φn

∆t
= F (φn+1) (5.28)

which implies that the solution in a cell at time step n+ 1 is related to the value at
time n and the values in neighbouring cells at time n+ 1.

Fluent v12.0.16 solves the governing integral equations for the conservation of
mass, momentum and energy and other scalars such as turbulent quantities by inte-
gration of the governing equations on the cells to obtain algebraic equations for the
discrete dependent variables such as ui (i = 1, 2, 3), p, T and other conserved scalars.
The discretized equations are then linearized and the solution of the resultant linear
system yields updated values of the dependent variables. Two solvers are available al-
beit in both methods the velocity field is obtained from the momentum equations. On
one hand, the continuity equation is used to obtain the density field while the pressure
field is determined from the equation of state. This is the density-based solver. On
the other hand, in the pressure-based solver, the pressure field is extracted by solving
a pressure-velocity coupling equation.
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5.2.4.1 Pressure-based solver

The pressure-based solver solves first the momentum equations, then the continu-
ity equation before addressing the others and updating the fluid properties to start
the loop again until convergence is reached. It is a co-located scheme whereby pres-
sure and velocity are both stored at cell centers. To compute velocities at a face,
momentum-weighted averaging [249] is used instead of linear averaging between cell
centers as this would result in unphysical checker-boarding of pressure. Second-order
upwinding is applied for density. The pressure-velocity coupling is realized with a
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) scheme. Because
the equations are solved in a segregated way (the momentum equation is solved in-
dependently of the continuity equation), the computed fluxes would not satisfy the
continuity equation. The necessary fluxes and pressure correction terms are obtained
by substituting the flux correction equations into the discrete continuity equation
to obtain a discrete equation for the pressure correction. Doing so, the corrected
face flux satisfies the discrete continuity equation during each iteration. For stability
purposes, under-relaxation is applied onto variables and equations.

5.2.4.2 Density-based solver

The density-based solver solves the continuity, momentum and energy equations si-
multaneously as a vector of equations. Then the other equations (turbulence,...) are
solved sequentially and the fluid properties updated before starting the loop again
until convergence is reached. To solve the very stiff system resulting from the matrix
representation of the NS-equations with the vectorized conserved variables, precon-
ditioning is applied for steady computations [296]. It modifies the vector form of
time-derivative terms in the NS-equations by pre-multiplying it with a precondition-
ing matrix to re-scale the acoustic speed, which is an eigenvalue of the system, with
respect to the fluid velocity. Roe’s flux splitting method is applied to the inviscid
flux vector [254] and in its formulation, it boils down to 2nd order central differencing
with added matrix dissipation. The added matrix dissipation produces upwinding of
the convected variables, as well as the pressure-velocity coupling required for stability
and efficient convergence at low to moderate Mach numbers. Time discretization is
realized with an implicit Euler scheme conjugated with Newton-type linearization of
the fluxes. For steady flows time-marching is applied until a steady state is reached.
The system of equations is solved with a symmetric point Gauss-Seidel method in
conjunction with an algebraic multigrid method to accelerate the convergence of the
solver by computing corrections on a series of coarse grid levels.

5.3 Implementation

In the present work, the time-dependency disappears if the equations are expressed in
a non-inertial reference frame that rotates with the blades. This simplification comes
at hand because the blades are placed periodically around the spinner but it implies
that no non-moving part (such as the wing behind the propeller or an air intake)
can be modelled. In the rotating reference frame, the flow may be considered as
steady and the momentum equation contains two additional terms: the Coriolis and
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Figure 5.3: Boundary nomenclature.

centripetal accelerations. The steady hypothesis implies also that for what turbulence
matters, only statistical averages are available.

The rotational velocity of the reference frame (ω or n) is calculated from the
advance ratio J according to

J =
u∞
nD

=
u∞
ω
2π
D

(5.29)

5.3.1 Boundary conditions and initialization
With the steady flow assumption, another simplification may be introduced. Indeed,
because of periodicity considerations, it suffices to solve the flow in a single blade
passage (as illustrated in Fig. 5.3) with appropriate boundary conditions on the flanks
of the passage. These conditions are available in Fluent v12.0.16 in the form of
periodic conditions that enforce strict equality for all flow variables between the two
flanks.

The boundaries of the computational domain are named after Fig. 5.3; to these
entities, the following boundary conditions are applied:

1. INLET: pressure-inlet with prescribed total pressure p0 and total temperature
T0. The velocity obtained by the difference between the total pressure at the
inlet and static pressure at the outlet is normal to the inlet and augmented at
each radius r with the tangential component resulting from rotation ωr. The
total pressure and temperature are computed from:

p0 = p∞(1 +
γ − 1

2
M∞

2)
( γ
γ−1 )

+ plosses (5.30)

T0 = T∞(1 +
γ − 1

2
M∞

2) (5.31)
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in which plosses is a correction for the total pressure losses due to the propeller.
In order to get the expected Mach number M∞ at the inlet within a margin
of 2.75%, fixed values of plosses are applied for each advance ratio in disregard
of the propeller geometry. Doing so, the computations are relaxed of having
to iterate on plosses to match perfectly M∞ but are compared within a narrow
range of M∞. The influence of rotation is automatically accounted for by the
Single Reference Frame model of Fluent v12.0.16. For turbulent computations,
a turbulence intensity Tu of 1% and a turbulent length scale Tl of 0, 05m are
given. The turbulence parameters Tu and Tl are taken as safe approximates
in order to be able to compare with wind-tunnel results despite the fact that
those turbulent quantities for the wind-tunnels are not reported with the ex-
perimental results. However, these inputs do not significantly affect the overall
performance estimates.

2. OUTLET: pressure-outlet with given static pressure p∞ and static temperature
T∞ for any possible occurrence of reverse flow. The static conditions are given
by those corresponding to the international standard atmosphere at flight level
FL350 (10668m, 35000ft) for the cruise condition or FL000 (0m, 0ft) for the
simulated take-off/landing condition.

3. FLANKS: periodic condition with no pressure jump. This particular boundary
condition requires the grids on both flanks to be periodic.

4. SPINNER: adiabatic no-slip wall.

5. BLADE: adiabatic no-slip wall.

6. RADIAL BOUNDARY: pressure-far-field condition using the Riemann invari-
ants theory to assign either no condition (on characteristics leaving the domain)
or the irrotational free-stream total conditions of the axial free flow1 (on char-
acteristics entering the domain). This boundary condition emulates the effect
of a free far-field at a prescribed pressure as would be the case in real flight.

Before the first iteration, the solution is initialized by applying the freestream
quantities in all cells.

5.3.2 Solution strategy
A dedicated solution strategy had to be developed in order to achieve satisfactory
convergence despite the delicate interaction between the rotating reference frame and
the pressure-far-field condition or the early occurrence of massive flow separation on
some blade designs. The strategy consists in starting the computations with a few
iterations (typically 50) using the pressure-based solver with a laminar flow hypothesis
at a lower Mach number and higher advance ratio (lower rpm than the expected one)
before jumping to the density-based solver with laminar flow while increasing the
Mach number and decreasing the advance ratio, this takes typically another 1000
iterations. Finally, the correct Mach number and rpm are set with the turbulent
flow hypothesis. In this state, computations are ran for a fixed number of iterations
yielding convergence within engineering accuracy (at least 2nd-order reduction of the
continuity residual and 3rd-order reduction for velocity residuals). This is illustrated
in Fig. 5.4 where the jumps at 2500 iterations pertain to the change in advance ratio.

1See Eqs. 5.30 and 5.31.
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Figure 5.4: Typical convergence plot.

5.3.3 Post-processing
In the post-processing phase, the pressure and shear force distributions around the
blade are integrated to compute the net thrust Tblade and the net power required to
drive the blade Pblade. These quantities are multiplied by the number of blades before
computing the non-dimensional thrust- and power-coefficients CT and CP :

CT =
T

ρ∞n2D4
(5.32)

CP =
P

ρ∞n3D5
(5.33)

These coefficients are used to compute the thrust and power of the unscaled propeller.
Additional results are:

• the tip Mach number Mtip =
√
M2
∞ + (ωR/c∞)2,

• the moment coefficient around the pitch change axis for a single blade,

CTq,z =
Tqz

ρ∞n2D5
(5.34)

• and of course the net efficiency

η =
Tu∞
P

=
JCT
CP

(5.35)
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5.4 Validation

Although Fluent v.12.0.16 and earlier versions have already been extensively vali-
dated on commonly accepted test cases, a broad campaign has been conducted to
validate the chosen approach for the specific purpose of computing propeller flow.
This campaign is reported in [188] and covers the NACA 4-(5)(05)-041 [246] and 4-
(0)(03)-059 [90] straight propellers as well as the NASA SR-1 [30] and SR-3 [259] single
rotation propfans whose blades feature 30◦ and 45◦ sweep respectively. More details
about these propellers can be found in appendix A.Comparisons were made between
computed thrust and power coefficients versus those obtained during wind-tunnel ex-
periments for a simulated take-off/landing condition or transonic cruise conditions
under various advance ratios so that moderate to high loadings are covered.

5.4.1 Take-off/Landing condition

Figures 5.5 and 5.6 compare the present results with experiments for both the thrust
and power coefficients in the case of the NACA 4-(5)(05)-041 and NASA SR-1 pro-
pellers. The agreement is good in general though some punctual discrepancies exist.
For the NACA 4-(5)(05)-041, a lower value of the power coefficient is predicted at
the highest advance ratio despite accurate prediction of the thrust coefficient. For-
tunately, this condition is not likely to occur with optimized blades as this propeller
operates close to the brake state. In the case of the NASA SR-1, the discrepancy at
lower advance ratio is related to strong blade deformations occurring at high rpm.
These deformations are not accounted for in the present work. The overall agree-
ment is slightly worse for this case but this could be related to a small error in blade
setting angle or to blade untwist due to centrifugal and aerodynamic forces. In this
condition, the propfan operates already at high rpm and is submitted to very strong
loads while delivering the kind of thrust required for acceleration. On top of this,
measuring the blade angle rigorously during experiments is a difficult task. A small
change in blade angle (of less than 0, 5◦) would make the computed and the experi-
mental results match perfectly for this advance ratio. Nevertheless, the shape of the
curves is accurately captured over normal operating conditions.

5.4.2 Cruise condition

Figures 5.7 to 5.11 show how the predicted performance values for propellers of di-
versified shapes, fall close of the measured values for Mach numbers ranging from
0.59 to 0.8. As apparent from Figs. 5.7 to 5.9, the highest discrepancies usually occur
at low advance ratio. Once again, the most likely reasons for these differences are
related to the blade angle βref as well as blade deflection due to high centrifugal and
pressure loads during the experiments. These results also denote that satisfactory
agreement is obtained from light to heavy loading (CP ranging from −0.5 to 2.5)
with flow fields exhibiting phenomena such as root blockage, transonic shocks or even
flow separation [188].

Fig. 5.10 demonstrates that good agreement is maintained through various oper-
ating conditions. At high advance ratio, the propeller is windmilling; this condition
is very well predicted over a wide range of advance ratios corresponding to emergency
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(a) (b)

Figure 5.5: NACA 4-(5)(05)-041 propeller at M∞ = 0.2 with Reref = 5.2e05
and βref = 20◦. Experimental data taken from [248].

(a) (b)

Figure 5.6: NASA SR-1 propeller at M∞ = 0.2 with Reref = 8.2e05 and
βref = 43◦. Experimental data taken from [30].
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(a) (b)

Figure 5.7: NACA 4-(5)(05)-041 propeller at M∞ = 0.59 with Reref = 5.3e05
and βref = 60◦. Experimental data taken from [246].

(a) (b)

Figure 5.8: NASA SR-3 propeller at M∞ = 0.6 with Reref = 4.3e05 and
βref = 58◦. Experimental data taken from [259].
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(a) (b)

Figure 5.9: NASA SR-1 propeller at M∞ = 0.75 with Reref = 3.8e05 and
βref = 59◦. Experimental data taken from [30].

situations in real flight. The brake condition at moderate advance ratio is also pre-
dicted with a very good accuracy both for the thrust and power coefficients. As the
rpm is increased, the computed results follow the experimental ones. Experimental
data for J < 2, 9 are not available due to rpm-limitations on the driving engine used
for the wind-tunnel tests. Nevertheless, the computations were run with much lower
advance ratios until 2, 1. At this advance ratio (and even at a slightly higher one),
the shock spans over the entire blade passage from one blade to another and remains
strong from blade root to tip. Each of the previous behaviours has its own streamlines
pattern (see [124]). Having captured these different states without difficulties during
the computations is highly valuable as it suggests that the high fidelity aerodynamic
analysis tool can capture those different states without additional trimming during
the computational process.

A comparison with predictions from other codes is shown in Fig. 5.11(b). Whit-
field, et al. [307] obtained theirs with an Euler solution whereas Matsuo, et al. [194]
obtained them with a Navier-Stokes computation. Srivastava, et al. [273] used an
Euler computation with a ’hot-shape’ (i.e. the blade is first deflected due to the
centrifugal loading). As the blade is deflected during the experiments (due to both
centrifugal and aerodynamic loading), it is common practice to apply a solid body
rotation on the blade to match some coefficient (usually the power coefficient). This
explains the excellent agreement for the results from [307] and [273] at J = 3.7 and
J = 3.51 respectively. The agreement of the present results in terms of power coeffi-
cient CP is good if compared both to experiments and other published results. This
is especially true since the power coefficient is very sensitive to the blade angle and
no correction of any kind is applied on the ’cold’, undeflected, blade shape.
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(a) (b)

Figure 5.10: NACA 4-(0)(03)-059 propeller at M∞ = 0.8 with Reref = 7.4e05
and βref = 60◦. Experimental data taken from [167].

(a) (b)

Figure 5.11: NASA SR-3 propeller at M∞ = 0.8 with Reref = 5.7e05 and
βref = 58◦. Experimental data taken from [259].
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Chapter 6

Aeroacoustic solver

Knowledge of the pressure around the blade surface together with its kinematics,
opens the path to computing the noise emitted by the propeller in operation. This is
achieved by the Computational Hybrid Aeroacoustics solver that is available in the
post-processing phase of the CFD-solver. This chapter begins with the fundamentals
of the acoustic analogy before a short review of possible methods to compute the
sound emitted by a propeller. As will be explained, only specific and dominant
sources will be modelled out of all the sound sources enumerated in section 2.3. Then
the fundamental assumptions of the present method will be discussed together with
the associated mathematical formulation. Finally, the predictions are compared to
published results for validation purposes.

Before going into the details of this high fidelity analysis tool, it is important to
recall that the isolated propeller is considered completely free of installation effects
and at zero angle of attack (i.e. the propeller plane is perpendicular to the forward
velocity u∞). The first assumption is quite important since it implies that no account
is given for the scattering and refraction due to the presence of a fuselage and the
boundary layer around it [81, 82, 177, 231] or for the additional noise that would be
generated by the interaction of the highly turbulent and swirling slipstream with
fixed surfaces such as the wing [286]. The zero angle of attack assumption implies
that the cyclic or nearly cyclic effects due to inclination of the inflow with respect
to the propeller disk, are neglected. This purely steady-state assumption is taken
as it corresponds to the only intrinsic feature of a propeller design whereas cyclic
variations depend on variable conditions. Indeed, these effects usually occur because
of inflow distortions due to the upwash of a trailing wing or because of particular flight
circumstances or installation features that deliberately put the propeller plane at an
angle. For those particular cases, where the steady periodic assumption of section
5.3 breaks down, unsteady approaches are required and imply modelling of the full
propeller disk such as in [52,117,231,218,313].
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6.1 Overview of sound computing methods
From the 1919’s on, attempts have been made to develop a method for noise prediction
applied to propellers [202]. Yet the first successful attempt is usually attributed to L.
Gutin [135] who focused on the level of harmonics due to rotating blade loads by a
strip theory. The search for improved models continued until the publication of Ffowcs
Williams - Hawkings’ analogy [113] (FW-H) and counted numerous other works that
are brilliantly put into perspective in [202] and [43]. Most current methods with a
theoretical background, to distinguish them from the pleiad of empirical methods
reported in [202], are derived from the acoustic analogy and are thus called hybrid
because they essentially decouple the propagation of sound from its generation by the
main flow. The sources are modeled from a CFD-solution whereas the propagation
is modeled by a particular wave equation which is solved separately. As will be
discussed in the next section, the main assumption is that this propagation does not
bear any influence on the CFD-solution. Nevertheless, note that in some simple cases,
the power of current computers allows for direct computation of both the sound and
the flow, provided that the mesh satisfies specific criteria which make this approach
prohibitive for a propeller in transonic flow.

6.1.1 The acoustic analogy

Sir James Lighthill [178] based his theory of jet noise, known as the acoustic analogy,
on the separation of sound, regarded as weak propagating waves in a compressible
fluid, from the aerodynamic flow responsible for convection. The propagation of weak
sound waves is treated linearly by a wave equation that regards the global aerody-
namic flow as a source term [40]. Hence the aeroacoustic problem (i.e. the sound
field) is somehow conveniently decoupled from the aerodynamic problem (i.e. the cal-
culation of acoustic sources). Within the framework of the analogy, the fundamental
equation of aeroacoustics governs the propagation of small perturbations of the flow
quantities in a quiescent medium away from the source region, with the assumption of
complete knowledge of the flow field in this region [101]. This wave equation concerns
the product of the perturbation density ρ′ with the speed of sound squared c2∞ and is
obtained by manipulation of the momentum conservation and continuity equations.
The active flow region, responsible for the emission of sound by various mechanisms,
is included in the propagation equation as a source term whose strength is given by
a second order tensor known as Lighthill’s stress tensor. This tensor is equivalent to
quadrupole sources and vanishes outside the source region.

In 1969, Ffowcs Williams and Hawkings extended Lighthill’s idea to the sound
generated from surfaces in arbitrary motion [113]. They manipulated the Navier-
Stokes equations by introducing the Dirac delta1 (δ) and Heaviside2 (H) generalized
functions taking a function f as argument. The function f is essential in this devel-
opment as it is exactly zero on the body of interest (see Fig. 6.1), positive in the fluid
region and negative inside the body. Doing so, the modified fluid dynamics equations,
that are originally applicable in the fluid region, are now valid everywhere and yielded

1The Dirac delta generalized function has the following properties: δ(f) = 1 if and only
if f = 0, δ(f) = 0 if f 6= 0.

2The Heaviside generalized function is such that H(f) = 0 if f < 0 and H(f) = 1 if f > 0.
Its generalized derivative is the Dirac delta generalized function.
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Figure 6.1: Body in arbitrary motion.

an inhomogeneous wave equation featuring quadrupole sources in the volume around
the body of interest as well as dipole and monopole sources on its surface:

1

c2∞

∂2

∂t2
p′(x, t)−∇2p′(x, t) =

∂

∂t

(
(ρ∞vn)δ(f)

)
− ∂

∂xi

(
liδ(f)

)
+

∂2

∂xi∂xj

(
TijH(f)

)
(6.1)

where p′ is the acoustic pressure equal to c2∞ρ
′ with ρ′ the perturbation density,

ρ∞ and c∞ are the density and speed of sound in the undisturbed medium, vn is the
normal velocity of the body surface given by the equation f = 0 , li are the components
of the force acting on the fluid and Tij is Lighthill’s stress tensor [129, 111, 43]. The
first term of the right hand side of Eqn. 6.1 is the monopole or thickness source term,
related to the kinematics of the body or the blade in the present case. The second
term, also known as dipole or loading source term, is purely related to the distributed
force acting on the fluid, such as the forces applied by the blade surface in the present
case. The last term is known as the quadrupole source term and accounts for various
non-linearities [44] such as non-linear wave propagation, variations in the local sound
speed and noise emitted by shocks or other flow inhomogeneities.

The FW-H analogy is particularly convenient because the solution of Eqn. 6.1
can be written in such a way that the intrinsic features of the flow are expressed in a
reference frame that is attached to the moving body and the Doppler effects (convec-
tive amplification and frequency shift) are entirely determined by the kinematics of
the sources in the reference frame attached to the observer. These are also the rea-
sons why the FW-H analogy is particularly suited for the noise generated by rotating
bodies.

6.1.2 Tonal noise predictions

It is not realistic to sketch up here a reasonable overview of the 30 methods or so,
reported in [202]; albeit the great majority of them is derived from one or another form
of the Ffowcs Williams - Hawkings analogy. On top of analytical approaches ordinarily
based on some form of strip-theory and linearized thin-airfoil theory, most authors
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propose a method based on the knowledge of the local pressure and kinematics of
small surface elements resulting from the spatial discretization of the blade (also called
panels) and its immediate surroundings. Two authors stand out for the amount of
publications they contributed to as well as for the general acceptance and applicability
of their highly evolved models: F. Farassat and D.B. Hanson.

F. Farassat publishes his works since 1975 [93]. He uses a time-domain approach
to solve Eqn. 6.1 with the use of a convolution of free-space Green’s functions and a
source distribution (see [255,100] for the explanation of Green’s functions applied to
the wave equation) so that

4πp′(x, t) =
∂2

∂xi∂xj

∫
V

[
Tij

r|1−Mr|

]
τe

dy

− ∂

∂xi

∫
f =0

[
li

r|1−Mr|

]
τe

dS

+
∂

∂t

∫
f =0

[
ρ∞vn

r|1−Mr|

]
τe

dS

(6.2)

where the quadrupole source term contribution is integrated over a finite volume V
surrounding the blade whereas the monopole and dipole terms are integrated over
the blade surface f = 0 as is illustrated on Fig. 6.2. Note that the free-space Green’s
function introduces in Eqn. 6.2 a Doppler factor depending on Mr the local Mach
number of the blade surface, projected in the radiation direction r = x− y between
the observer in x and the source in y. This Mach number depends purely on the
kinematics of the helical movement of the blade. Also note that the integrands are
evaluated at the retarded time τe. It is the time when the sound received by an
observer in position x at time t was actually emitted by the source in position y and
it is computed from the knowledge of x, thus also r the distance between source and
observer3, and t by solving

g(x,y, t) = τ − t+ r/c = 0 (6.3)

for τe.
His work relies generally on generalized functions and their generalized derivatives

[98,109]. The methodical derivation of all solutions is beyond the scope of this review;
so the reader is referred to the individual papers or review papers such as [43, 100].
Farassat’s work and the contributions of his collaborators, is so extensive that it is
difficult to give a detailed account. It resulted in a series of formulations that are
conveniently named:

• Formulation 1 [93, 94, 100]: is a subsonic formulation from the point of view
of a stationary observer though the sources are described in a reference frame
that is attached to the blade. If the quadrupole term of Eqn. 6.1 is dropped4,
the formulation yields

3r = |r|
4See section 6.2.1.1 for the implications of this drop.
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4πp′(x, t) =
1

c

∂

∂t

∫
f =0

[
ρ∞cvn + lr
r |1−Mr|

]
τe

dS

+

∫
f =0

[
lr

r2 |1−Mr|

]
τe

dS

(6.4)

where the surface f = 0 is the actual blade surface and lr are the components
of the forces acting on the fluid, projected in the radiation direction.
This formulation holds for subsonic cases, in terms of the Mach number pro-
jected in the radiation direction Mr, so that the trouble arising with the sin-
gularity of the Doppler shift |1−Mr| is avoided. This formulation implies the
numerical computation of the observer time derivative so it still is computa-
tionally quite demanding.

• Formulation 1A [111,39]: is stated for a moving observer (i.e. the observer is
assumed to translate forward at the same speed as the propeller). It is again a
subsonic formulation though strictly speaking it is valid also for purely super-
sonic panels. Ignoring the volume integration of quadrupole sources, standard
derivation then leads to

p′(x, t) = p′T (x, t) + p′L(x, t) (6.5)

4πp′T (x, t) =

c∞ρ∞

∫
f=0

[
Mn

(
rṀir̂i + c∞Mr − c∞M2

)
r |1−Mr|3

+
Ṁn

r (1−Mr)
2

]
τe

dS
(6.6)

4πp′L(x, t) =
1

c∞

∫
f=0

[
ṗ cos θ

r (1−Mr)
2

]
τe

dS +

∫
f=0

[
p (cos θ −Mn)

r2 (1−Mr)
2

]
τe

dS

+
1

c∞

∫
f=0

[
p cos θ

(
rṀir̂i + c∞Mr − c∞M2

)
r2 |1−Mr|3

]
τe

dS

(6.7)

which is formulation 1A expressed in a medium-fixed coordinate system [100,
117]. These equations involve θ, the angle between the radiation vector and the
normal to the surface, projections of the kinematic Mach number of the blade
surface in the normal and radiation directions, as well as time derivatives of
it and of the local pressure. Equations 6.6 and 6.7 are for the thickness noise
(subscript T ) and loading noise (subscript L) respectively.
This formulation offers the advantage of being relatively easy to implement in
computer codes because it does not require numerical differentiation of a time
integral and is recommended by F. Farassat himself.
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Figure 6.2: Reference frames and moving surface definition for formulation 1A.
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6.1 Overview of sound computing methods

• Formulation 3 [95,96]: is a formulation for a moving observer, valid for both
supersonic and sonic panels but requires considerably more computational ef-
forts than formulation 1A. This is why its use is often combined with formu-
lation 1A by an adequate switching when Mr reaches unity [110, 84]. The
equations are beyond the scope of this review but one possible implementation
involves a collapsing sphere as illustrated in Fig. 6.3 and boils down to integrals
over the open surface of the blade included in the sphere and the boundaries
of that open surface [102,96,83,84]. This sphere is the locus of all points satis-
fying g = 0 for a particular observer position x and a particular observer time
t; thus it contains all the points that could potentially emit a signal at source
time τ that could be received by the observer at time t. As τ approaches t,
the radius of this sphere collapses. To compute the acoustic pressure p′, the
following steps should be followed [102,43]:

1. Determine the initial observer time ti for which the sphere intersects the
source surface.

2. Choose the value of τj .
3. Determine the intersection of the collapsing sphere g = 0 with the blade

surface f = 0 (Γ-curve) and approximate the curve by straight segments.
4. Compute the integrands at the ends of the segments and evaluate the line

integral over Γ by the trapezoidal rule.
5. Advance the source time τj and repeat steps 3 and 4 until no intersection

is found between the sphere and the blade.
6. Repeat these steps for each observer time required.

But these steps, despite some helpful approximations, require typically two
orders of magnitude more computer time than methods such as formulation 1A
and are very challenging to code up because it involves the many determinations
of the Γ-curve among other terms. Besides the collapsing sphere algorithms,
alternative emission surface algorithms consider the integration over the locus
of all points of the blade that do emit a sound that is received at time t by the
observer (Σ-surface). The main difficulty with this approach is the construction
of the Σ-surface which may be composed of several disjoint pieces in supersonic
cases. The Σ-surface is constructed either from the location of source points
at the retarded-time, or from the intersection of the collapsing sphere with the
blade surface. Both the collapsing sphere and the emission surface algorithms
are free of the Doppler singularity but mathematical singularities occur for some
observer positions and under particular kinematic and geometric conditions.
However, Farassat and Myers have shown in [108] that they vanish when specific
contributions of the quadrupole source term are taken into account. This is an
interesting point as the usual application of the FW-H analogy considers the
monopole, dipole and quadrupole source terms as separate entities. But they
are actually intricate, fully coupled parts of the same process. Discarding the
quadrupoles is only justified when dimensional-analysis arguments state that
dipoles are much more efficient; though the real-world case may be such that
some physical phenomena decline themselves in both the dipole and quadrupole
source terms.
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Figure 6.3: Collapsing sphere intersecting a blade.

D.B. Hanson developed theories in which the FW-H analogy is solved by integrals
and summations in the frequency domain [138]. The rotating source distribution
is replaced by a stationary set of radiation modes (i.e. components of the Fourier
series). His methods are compiled in [139] but suffer from their limited validity either
in the near- or in the far-field5 and the difficulty to determine precise source location
though they have the advantage that singularities associated with the sonic condition
are not present [18]. This is a formal advantage of the frequency domain even though
compactness5 issues are still unresolved. Moreover, the peaks and abrupt slopes
that are associated with singular behaviour require a huge set of frequency terms if
comparable resolution with a time-domain approach is to be maintained [18].

Many other methods were proposed over the years. Among these, the author
wishes to mention a few worth citing. First, the integration surface needs not nec-
essarily be the blade surface. Indeed, the FW-H analogy may be written for the
particular case of what is called a permeable data surface [74, 42, 104]. This surface
encloses the sources and must be within the high-resolution CFD region. The problem
with this formulation is the determination of the best location for the data surface;
nevertheless, it is the preferred formulation nowadays if high-resolution CFD is avail-
able and it delivers interesting results [313]. Another theory using a permeable data
surface is based on Kirchhoff’s technique extended for moving surfaces [105,99]. The
common point between these approaches is that they require no volume integration
provided the sources are enclosed within the surface and are accurately caught by
the CFD solution, hence an additional computing cost. For Kirchhoff’s approach,
sensitivity to the location of the permeable surface is also reported [42]. It requires
accurate knowledge of spatial gradients of pressure and does not have the convenient
decomposition of noise based on physical grounds (thickness and loading). Finally, it
should be noted that the use of Kirchhoff’s formulation is strongly discouraged in [43]
were it is shown that the input data obtained on the surface from the CFD is not
suitable; it is not a solution to the wave equation so that non-wave fluctuations result

5See section 6.2.1.3.
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in spurious and inaccurate sound predictions.
For supersonic problems, there exist asymptotic theories based either on asymp-

totic number of blades or harmonics [142, 284, 223]. These theories have limited
industrial applicability though they bring insight into the supersonic source problem.
Specific integration schemes, applied to FW-H or Kirchhoff formulations and which do
not require the evaluation of the emission time, are also proposed by J. Prieur [237].

Finally, let us mention the advanced-time approach recently used by D. Casalino
[55,54] which is very close to the binning technique implemented in other codes [312,
174]. This approach does not require to solve the retarded time equation (Eqn. 6.3)
since noise is computed in the source time-domain along with the time required to
reach the observer (referred to as advanced-time). This travel-time is used to compute
the observer’s relative position; finally the signal is built up in the observer time-
domain. Although such a formulation looks promising, the singularity problem is not
yet assessed and the gain of not having to solve the retarded-time equation is limited
by the necessity to store additional data for each cell on the blade surface and to
order them properly when computing the signal at a given observer’s time.

6.1.3 Broadband noise predictions

Broadband noise prediction methods are more scarce than tonal noise prediction
methods. References [41] and [202] put these methods into historical perspective.
Generally, one distinguishes four kinds of methods: empirical methods, analytical
and semi-analytical methods, Computational AeroAcoustics (CAA) and those based
on one or another analogy. Analytical and semi-analytical methods such as [258], are
usually based on assumptions such as few lightly loaded blades composed of airfoils
with small camber, thickness and angle of attack and subject to small fluctuations
of the pressure field. For those reasons, they cannot be applied to highly loaded
propellers modeled with a steady-state hypothesis. They usually come at hand in late
design stages when more effort can be dedicated to specific geometries as in [315,218].
CAA aims at the direct numerical simulation of the acoustic phenomena on the body
of interest and would require prohibitive computational times. So the methods based
on analogies such as the FW-H one are particularly popular for those situations where
detailed surface pressure fluctuations are available. Farassat and Casper developed
a time-domain approach based on the FW-H analogy and applied it on a permeable
data surface for the computation of broadband noise with good accuracy [103].

6.2 CHA solver
Because the tonal noise of propellers usually falls within the range where the human
ear is most sensitive, most metrics used for certification purposes include some form
of penalty for tonal noise [314]. For this reason but also from computational cost con-
siderations, tonal noise sources are assessed in this optimization whereas broadband
noise sources are discarded.

This section will describe the time-domain formulation that is used in this work to-
gether with all the necessary assumptions. A time-domain approach has been chosen
because it gives more insight into the physico-temporal relation between the physical
noise sources (kinematics of a solid body, distribution of forces, shocks and other

89



CHAPTER 6. AEROACOUSTIC SOLVER

non-linear phenomena) and the propagation to a receiver at some distance. This
decomposition is less easily found with frequency-domain methods. Furthermore, it
is easier to think about physical processes happening over time rather than in the
somewhat more abstract frequency-domain. On top of this, time-based methods may
be handily extended to account for non-moving surfaces or turbulence.

Because of its robustness and accuracy, as well as because of the availability of a
large amount of publications about it, the foundations of the present CHA solver rely
on formulation 1A of Farassat (Eqs. 6.6-6.7). The assumptions behind the chosen
formulation will be discussed in the next section, with special attention to the issue
of quadrupole sources, to the singularity appearing when Mr reaches unity and to
compactness issues.

6.2.1 Assumptions

When dealing with the solution of the FW-H analogy by use of free-space Green’s
functions, fundamental assumptions are needed. These assumptions are commonly
accepted in the community of propeller acoustics. First, the Reynolds number should
be high and fluctuations small relative to the mean flow features. Second, the acoustic
field is decoupled from the aerodynamic one and is not supposed to have back-coupling
with it. So pressure fluctuations associated with sound should not influence the
aerodynamic pressure distribution. Hence the acoustic contribution is removed from
the li terms of Eqn. 6.2. This also implies that diffraction effects from one blade to
the others are taken into account only if these are captured by the compressible CFD
solution. Because the blade spacing to chord length ratio is large, capturing diffraction
effects would imply a prohibitive computational cost. Moreover, no vibrations of the
blades are taken into account and they behave as perfectly rigid bodies. Finally, no
account is given for the reflection of sound by the spinner. The blades are considered
as pure sound sources in a free space.

6.2.1.1 Quadrupole noise

Quadrupole sources account for non-linearities due to local variations of the speed of
sound and the finite fluid velocity in the near vicinity of the blade. They essentially
produce distortion of the acoustic waveform produced by the other sources [107,
44]. This term is usually decomposed in a pure quadrupole term requiring volume
integration, blade and shock surface terms requiring surface integration and a trailing
edge term requiring line integration [97,106]. Except for the boundary layer and the
wake, the pure quadrupole term is an inefficient noise generator because velocity
gradients are small. The blade surface sources are in direct competition to loading
noise but radiate in the disk plane. The shock surface term is believed to be the
main contributor to the total quadrupole noise with a directivity which is equivalent
to that of thickness noise. The line term contribution could be substantial and of
monopole type. Farassat and Myers suggest that the contributions of the volume,
blade surface and line terms are likely to be strongly reduced by destructive mutual
interference [106, 107]. They also established that these contributions are well below
the thickness and loading noise levels. So the wake term and the shock surface terms
are proposed as the most potent noise generators.
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As stated by Brentner and Holland [44], Taghaddosi and Argawal [283], and Peake
and Crighton [223], the quadrupole term becomes significant only at blade tip Mach
numbers well into the transonic regime. Choosing the design objective with a heli-
cal tip Mach number below 0.97, ensures that no portion of the blade reaches the
sonic condition so that the major contribution to quadrupole sound, coming from
the region of the blade close to the Mach radius [223], can be neglected at first or-
der. Furthermore, Hanson [140] suggested and Brooks [45] showed that, provided the
blades are thin and swept, the overall quadrupole noise is well below the thickness
and loading terms taken together. Thus, the wake and shock terms are essential
when dealing with thick airfoils at transonic speeds but may be neglected, at first,
in the computation of noise for advanced propellers. Should the quadrupole term be
accounted for in the present computations, it would come with an increased burden
in numerical and computational treatment, involving complex and time consuming
procedures, for only a marginal gain in accuracy for the estimation of the difference
between two distinct blade designs. Furthermore, it may be reasonably assumed
that the strength of the quadrupole sources will be similar for two distinct designs
featuring resembling transonic flows, so that other terms indirectly accounted for in
the objective function can effectively promote individuals which are potentially low
producers of quadrupole noise. Hence reduction of the impact of quadrupole sources
could be somehow achieved by emphasizing blade sweep to limit the transonic effects
at the tip, by penalizing individuals with strong shocks along the blade, by favouring
thin blades [202] and by keeping the helical tip Mach number of the optimized blade
below 0.97.

Additionally, neglecting the quadrupole term, hence the volume integration around
the blade surface, implies that if the blade surface is chosen as integration surface no
account is given for refraction effects.

6.2.1.2 Sonic panels

Equation (6.2) is also revealing the main issue in the computation of propeller noise:
the mathematical singularity for Mach numbers in the radiation direction close to
unity (Mr ≈ 1). It is essentially the occurrence of a Doppler singularity in the appli-
cation of free-space Green’s functions. This condition is discussed by C. Tam [284]
or Myers and Farassat [210] who observed that the sum of the singular terms is less
singular than the actual terms themselves. So they are either integrable or the finite
part of the divergent integrals must be taken [101]. The consequent breakdown of the
linear theory is discussed by H. Ardavan [20] who identifies it as a result of the mixed
nature of the governing equations. Physically, this condition consists in the emission
of a focused wave occurring at two coalescent emission times so it becomes a caustic
in the solution. The main feature of this wave is a cylindrical decay like 1/

√
r instead

of the 1/r decay of spherical waves [210, 21]. A common way around it, is to use
Farassat’s formulation 3. But even if for those parts of the blade which approach the
sonic regime, the choice of the formulation is switched from 1A to 3; the increased
computational cost might reveal himself to be prohibitory in the present optimization
set-up. Fortunately, as only small parts of the blade are possibly affected by singu-
lar conditions, the present optimization method accommodates with approximations
made only for those conditions close to singularity. These approximations must de-
liver acceptable values for the sound emitted around the singularity without resorting

91



CHAPTER 6. AEROACOUSTIC SOLVER

to a time-consuming, yet more accurate, mathematical statement for the change of
radiation properties. This approach is justified because the optimum is sought for
propellers operating at subsonic tip speed.

Finally, it must be born in mind that individuals for which significant parts of the
blade operate in the high transonic and/or low supersonic regimes, are created only
as members of ’diversion’ domains that must be left available for the EA to search
in so that it has the potential to deliver better designs in the objective domain. The
occurrence of supersonic tip speeds for some blade designs is thus accidental but
the knowledge collected by assessing individuals in those unfavourable domains, is
supposed to drive the search back into more favourable directions, essentially in the
subsonic range, thanks to the prediction of poor performance.

6.2.1.3 Compactness criterion

The compactness criterion has briefly been introduced in section 4.3.1 for its implica-
tion on the size of mesh elements (sources) around the blade (source region). In the
aeroacoustic theory, a source is said to be acoustically compact when a characteristic
period of the source in the moving frame of reference is large with respect to retarded
time variations over the source region. This translates in Eqn. 4.7:

L << λm(1−Mr) (4.7)

which states that the typical length scale of the source (here, its elongation L) should
remain small with respect to the minimum acoustic wave-length to be resolved λm,
modulated by the Doppler factor (1 −Mr). These terms are illustrated in Fig. 6.4.
Given the influence of the Doppler factor (1 −Mr), a source is more compact when
leaving the observer than when approaching. The largest dimension of mesh-elements
on the blade surface is chosen such that the compactness criterion is verified typically
up to the 7th or 8th harmonic of the BPF for nearly sonic Mach numbers in the
radiation direction, yet with exclusion of the occurrence of the Doppler singularity.

Figure 6.4 is also useful to understand the concepts of near- and far-field. Indeed,
the observer is in the acoustic far-field if r >> λm so that wave-fronts are nearly
planar at the observer’s position.

6.2.2 Formulation

Recall Eqs. 6.5-6.7:

4πp′(x, t) = 4πp′T (x, t) + 4πp′L(x, t) (6.5)

4πp′T (x, t) =

c∞ρ∞

∫
f=0

[
Mn

(
rṀir̂i + c∞Mr − c∞M2

)
r |1−Mr|3

+
Ṁn

r (1−Mr)
2

]
τe

dS
(6.6)
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Figure 6.4: Characteristic dimensions and compactness.

4πp′L(x, t) =
1

c∞

∫
f=0

[
ṗ cos θ

r (1−Mr)
2

]
τe

dS +

∫
f=0

[
p (cos θ −Mn)

r2 (1−Mr)
2

]
τe

dS

+
1

c∞

∫
f=0

[
p cos θ

(
rṀir̂i + c∞Mr − c∞M2

)
r2 |1−Mr|3

]
τe

dS

(6.7)

where the first term of the right-hand side of Eqn. 6.7 vanishes when working with
steady computations of the pressure field around the blades, as is the case in the
present study. This set of equations is particularly suited because the aerodynamic
mesh can be used directly for the aeroacoustic calculations provided the compactness
criterion is satisfied (Eqn. 4.7). A straightforward mid-panel quadrature is used to
express the integrals of Eqs. 6.6 and 6.7 as

4πφ′(x, t) ≈
N∑
j=1

∑
m,k

[
Qm(yj , t− rj/c∞)

rkj |1−Mr|(m+1)
j

]
τe

∆Sj (6.8)

where φ′ stands either for p′T or p′L and Q stands for the numerator representative of
the far- (k = 1) or near-field (k = 2) terms of Eqs. 6.6 and 6.76. Summation is done
over the N cells forming the blade surface. As recently proposed by Farassat [100],
the shorthand notation Qm(yj , t− rj/c) has been introduced for:[

Qm(yj , t− rj/c∞)

rkj |1−Mr|(m+1)
j

]
τe

≡ Q̃m(η, τe)

rkj |τe .
∣∣∣1−Mr|τe

∣∣∣(m+1)

j

(6.9)

6In this shorthand notation, k is appropriately chosen together with m to match the
respective terms of Eqs. 6.6 and 6.7.
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in which Q̃m(η, τe) stands for Q̃m(y(η, τe), τe) expressed in local blade coordinates.
To effectively compute Eqn. 6.8 for all cells, the retarded-time equation

|r| ≡ |x(t)− y(τe)| = c∞(t− τe) (6.10)

is solved for τe at each observer time t in the history of p′(x, t). It can be shown that
this equation admits exactly one solution for subsonic motion between the source and
the observer and up to three solutions in the case of supersonic motion. The retarded-
time equation boils down to a transcendental implicit equation in ψ = ω(τ − t) [84]
of the type:

Aψ2 +Bψ + C − cos(ψ +D) + Eψ sin(ψ + F ) = 0 (6.11)

where the constants A-F depend on known parameters such as the coordinates in
the medium fixed and aircraft fixed reference frames, the speed of sound c∞, the
flight velocity u∞ and the rotational velocity ω. Eqn. 6.11, given its type, cannot be
solved analytically and classical root finding algorithms risk to fail in the presence of
multiple roots. Fortunately, two additional conditions can be developed [84]:

1. A signal must be emitted before it can be observed. This causality condition
applied on a solution ψ∗ of Eqn. 6.11 translates into:

sign(ω)ψ∗ ≤ 0 (6.12)

so that τ must be less or equal to t. This allows to reject spurious roots that
would be found by solving Eqn. 6.11.

2. It can be shown that the roots of Eqn. 6.11, are bounded by the roots of

(Aψ2 +Bψ + C)2 = E2
1ψ

2 + (1 + E2ψ)2 (6.13)

So if ψ∗max and ψ∗min are respectively the maximum and minimum roots of
Eqn. 6.13 that satisfy Eqn. 6.12, then the roots ψ∗ of Eqn. 6.11 should be
searched in [ψ∗min, ψ

∗
max].

So the Van Wijngaarden-Dekker-Brent method [235] is applied on the interval
[ψ∗min, ψ

∗
max]. For a cell moving at subsonic speeds in the radiation direction, the

search is stopped after one single root is found. In the case of cells moving at sonic
or supersonic speeds, Eqn. 6.11 admits up to three roots. These are found by the
recursive use of Van Wijngaarden-Dekker-Brent method triggered by a conditional
logic switch based on the magnitude of the absolute helical Mach number of the
considered cell.

As already discussed in the previous section, when the source Mach number pro-
jected in the radiation direction Mr approaches unity, the integrands of Eqs. 6.6 and
6.7 become singular. The truncation operator is then switched on over an interval 2κ
centered around unity and it constrains the singularity through a truncated first order
Taylor expansion of all terms of Eqs. 6.6 and 6.7 considered as functions of Mr solely.
The lower and upper thresholds for the development are chosen as a high transonic
value (Mr,0L = 1 − κ = 0.96) and a low supersonic value (Mr,0U = 1 + κ = 1.04)
respectively. Then the integrands of Eqs. 6.6 and 6.7 are developed:

• For those cells with a Mach number in the radiation direction greater than
that threshold (Mr,0L < Mr ≤ 1), the corresponding terms of Eqn. 6.8 are
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arbitrarily replaced by:

Q̌m(Mr)

rkj (1−Mr)
(m+1)
j

≈ Q̌m(Mr,0L)

rkj (1−Mr,0L)(m+1)
j

+ ε


∂Q̌m(Mr)
∂Mr

∣∣∣
Mr,0L

rkj (1−Mr,0L)(m+1)
j

+
Q̌m(Mr,0L)(m+ 1)

rkj (1−Mr,0L)m+2

 (Mr −Mr,0L)

+O2(Mr −Mr,0L)

(6.14)

where the generic notation introduced for Eqn. 6.8 is used.
• Similarly, for cells having a Mach number in the radiation direction lower than

the threshold (1 < Mr < Mr,0U ), the corresponding terms of Eqn. 6.8 are
replaced by:

Q̌m(Mr)

rkj (Mr − 1)(m+1)
j

≈ Q̌m(Mr,0U )

rkj (Mr,0U − 1)(m+1)
j

+ ε


∂Q̌m(Mr)
∂Mr

∣∣∣
Mr,0U

rkj (Mr,0U − 1)(m+1)
j

− Q̌m(Mr,0U )(m+ 1)

rkj (Mr,0U − 1)m+2

 (Mr −Mr,0U )

+O2(Mr −Mr,0U )

(6.15)

In Eqs. 6.14 and 6.15, Q̌m(Mr) again refers to Qm(yj , t− rj/c) considered solely
as a function of Mr (see Eqs. 6.6 and 6.7) whereas ε is a positive number between
0 and 1, chosen such that the left-hand side of Eqs. 6.14 and 6.15 remains bounded.
Note that all terms of these equations are now regular in Mr and the second order
terms in (Mr −Mr,0.) are dropped. In these equations, ε is a relaxation coefficient
that controls how much of the first derivative is taken into account in the evaluation
of the left-hand side. Interestingly, good results are obtained at an even lower cost
by using the zero-th order development of Q̌m(Mr) (with ε = 0). The computational
time is then reduced by dropping terms in the summations for Eqs. 6.14 and 6.15. All
results in the present implementation are obtained with this particular value (ε = 0)
because the gain in accuracy is only marginal when ε differs from zero. But before
generalizing this result, it should be assessed in the light of other experimental data
sets. The process of truncation is schematically shown in Fig. 6.5 for ε = 0 together
with the generic behaviour of the non-truncated terms.

As discussed in section 6.3, the choice of the truncation interval 2κ in Eqs. 6.14
and 6.15 has a significant influence on the results, but does not depend strongly on
propeller shape nor operating conditions. A too narrow truncation interval (κ ≤ 0.35)
yields overpredictions or even failure of the computation. On the other hand, an
abusively wide truncation interval (κ ≥ 0.45) yields results that are systematically
underpredicted.

A typical example of the spatial extent on the blade surface of the truncation
operator is shown in Fig. 6.6. The pressure contribution from cells marked in blue, at
an arbitrary observer time t, is computed through Eqs. 6.14 and 6.15, whereas all other
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Figure 6.5: Singular behaviour and 0th-order truncation (ε = 0) for the de-
nominators of the terms of Eqn. 6.9. The validity domain of formulation 1A is
represented and compared to the optimizer search domain. The oval highlights
the target range within the search domain.

cells are computed through the accurate formulation 1A. This figure clearly shows the
limited extent of cells that have a Mach number in the radiation direction that falls
within the nearly singular domain. This region is known to be dominant for supersonic
rotors both in the near and far fields [66,222,53] so the validity of the present method
lies in its ability to deliver safe estimates at a low computational cost. For subsonic
rotors, the near and far field noise is dominated by the tip region [221, 222, 53] and
the truncation operator is active on a very restricted set of blade elements (i.e. those
that have Mr > 0.96). In this case it affects a locally high, but globally not too
substantial contribution to the total noise.

The method described above is implemented as a post-processing tool (User De-
fined Function) within Fluent v12.0.16. The thickness noise (Eqn. 6.6) and loading
noise (Eqn. 6.7) are computed separately. As already explained, a single blade is pro-
cessed through the CFD and the signal of the complete propeller is computed by a
proper shifting in the observer-time domain of the signals emitted by different blades
before summing them up. The tool then generates the time history of p′(x, t) for a
sampling rate chosen high enough to satisfy the Nyquist criterion. This time history
is further processed through a Fourier spectral analysis to retrieve the SPL associated
with the BPF and its lower harmonics.
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Figure 6.6: Spatial extent of the truncation operator (κ = 0.04). For a receiver
located in the propeller plane at 2.64Rtip from the axis, the pressure contribu-
tion from cells marked in blue has been truncated. - NASA SR-3 at M∞ = 0.8
and J = 3.06 (Mtip = 1.14). -

6.3 Validation

The validity of the high-fidelity CHA analysis, and in particular that of the truncated
approximates, is rated by comparisons with experimental results and numerical re-
sults available in the literature. Diverse propeller geometries operating under various
conditions, including the transonic and supersonic regimes where truncation becomes
effective, are considered. More details about the reference propellers can be found in
appendix A.

6.3.1 Take-off/Landing conditions

M∞ = 0.2

Figure 6.7 compares the measured and predicted SPL for a NASA SR-7 propfan
operating at M∞ = 0.2 and J = 0.89 with βref = 37.8◦ [310]. This corresponds to
a loading typical of the take-off/landing condition (CP = 0.85). Good agreement is
obtained at most receiver positions which are located according to [310]. The slight
tilting of the main lobe in the downstream direction is nicely predicted.

Unfortunately, exploitable data under these conditions are scarce.
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� FLOW

Figure 6.7: Comparison of measured and computed SPL at BPF for various
receiver positions. NASA SR-7 propfan operating at M∞ = 0.2 and J = 0.89
with βref = 37.8◦ (CP = 0.85) [310]. Experimental tones corrected to 1.68m
sideline distance.

Very low speed comparison

An interesting comparison has been made with the work of S. Remmler [244] who
used both a self-implemented Gutin-type single force model and the FW-H module of
Fluent v6.3.26. The model is that of a car fan developed by Valeo. His computations
account only for loading noise which is more important than the thickness one for this
type of flow. The FW-H module of Fluent v6.3.26 accounts for the steady part of the
pressure distribution as is the case of the present code. The unsteady part, which is a
major contributor for these low speed applications is discarded in both approaches. So
the purpose of Fig. 6.8, is not the accurate prediction of the SPL but the comparison
between similar implementations of the same analogy and their assessment in the light
of a less refined model. The agreement between both implementations is excellent for
all observer’s locations.

6.3.2 Cruise conditions

Although designing a propfan is not the purpose of this effort, the NASA SR-X
series offers the advantage of being extensively documented. This is why the results
obtained with the method described in section 6.2.2 are compared to experimental
results collected by J. Dittmar and R. Joracki [78, 76, 77] on the SR-1 and SR-3
propfan blades. The present predictions are corrected to account for identified effects
occurring during the experiments but not taken into account in the CHA-prediction.
These corrections include:

• a correction for pressure losses in the wind tunnel according to [306] so that
experiments and predictions are compared at the same free-stream static pres-
sure,

• and a correction for the effect of pseudo-noise on the receivers during the ex-
periments [281,306].
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� FLOW

Figure 6.8: Comparison of directivity at BPF to S. Remmler’s results for a
Valeo car fan operating at M∞ = 0.12 and J = 1.63. Solely the loading noise
is considered.

As was shown by J. Dittmar and P. Lasagna [79], the wind tunnel data correlate well
to in-flight measurements. Comparisons are made for each blade at three tip Mach
numbers: one where the tip operates in purely transonic conditions, one where the
tip reaches sonic conditions and one where the tip is in early supersonic conditions.

Figures 6.9(a) and 6.10(a) show a comparison of the computed and measured SPL
for both propfans running at subsonic tip Mach numbers and under different loadings.
The experimental data are collected by transducers that are flush mounted on the
tunnel wall. They suffer from both refraction in the thick boundary layer along the
wall and multiple reflections on the walls and the propeller rig, particularly aft of
the propeller plane [131]. Additionally, this set-up is known to yield measurements
lower than the free-field values for transducers placed upstream of the propeller plane
and eventually higher for transducers downstream [91]. Transducers are located on a
sideline at 3.92R distance to the propeller axis and the axial distance x is normalized
by the tip radius and pointing downstream. For each transducer, the SPL for the
Blade Passing Frequency (BPF) and, when available, the first harmonic (1st Blade
Passing Harmonic - 1st BPH) are shown. The experimental data have also been
corrected for the difference in operating conditions according to Dittmar and Lasagna
[79].

A good agreement is found in the propeller plane where discrepancies are below
1dB. In the case of the SR-3 computations, the accuracy of the computed SPL is
more similar to the one obtained by Brooks and Mackall [46] with a non-singular
formulation in the frequency domain accounting for quadrupole noise. The overall
agreement up- and downstream of the propeller plane is within 3dB for x/R in the
range [−1, 1] and at least a part of it is related to the quadrupole noise that is
neglected. This agreement is well within the discrepancy level of 3 to 15dB obtained
in the same x/R range for similar conditions and blades by Dunn and Farassat [82],
Carley [52], Frota et al. [117] and more recently by Polacsek et al. [231] or Gur and
Rosen [133]. The same remark is true for higher harmonics.
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If the tip Mach number is increased to reach sonic conditions close to the tip,
the correctness of formulation 1A is relaxed and the truncation operator becomes
effective. Results for different observers are shown on Figs. 6.9(b) and 6.10(b) where
the agreement in the propeller plane is within 3dB both for the fundamental and the
first harmonic. Upstream of the propeller plane at a distance x/R close to 1.0, the
SPL is overpredicted by up to 6.5dB for highly loaded conditions (CP > 2) whereas
the agreement is good in the other cases. Downstream of the plane, the overprediction
amounts up to 9dB at a similar distance and under very high loading (CP ≈ 2, 35) but
the agreement is good when moderate loadings, representative of modern propellers,
are considered. Again, the results of the present code have an acceptable accuracy if
compared to other works.

At supersonic tip speeds, the truncation operator becomes fully effective on more
significant parts of the blades, located around the Mach radius, but this does not affect
significantly the predictions, as shown in Figs. 6.9(c) and 6.10(c), despite the fact that
the truncation affects the region believed to be dominant for this regime [53]. The
agreement in and aft of the propeller plane is well within 4dB under realistic loading
conditions with a clear trend to overprediction. This result compares well to the 2dB
to 6dB accuracy obtained by Brooks and Mackall [46] or Farassat et al. [110], at this
condition with non-singular formulations. The present result is also satisfactory when
compared to [70] where a 1dB accuracy is obtained in similar conditions but with the
use of a fixed 3dB correction, according to [186], to account for the quadrupoles that
were neglected. Upstream of the propeller, the SPL is overpredicted to an even larger
extent than in the rotational plane. But this discrepancy should be mitigated as the
measurements in this part of the domain are known to significantly underestimate
the real value.

Predicted tone spectra are shown on Figs. 6.11(a) and 6.12(a) for identical con-
ditions to Fig. 6.9(a) and 6.10(a) respectively. Note that the harmonic content could
not be measured at the first set of operating conditions as it fell below the tunnel
background noise [78]. A good agreement is found up to the 4th harmonic for both
blades. From the 5th harmonic, the agreement is excellent for the SR-1 whereas some
discrepancies appear for the SR-3. But these are kept within 6.5dB and are probably
related to the greater extent of local supersonic flow at this somewhat higher loading
(the associated non-linear effects are not accounted for in the present method due
to the neglect of quadrupole contribution). The spectral envelopes at the sonic con-
dition exhibit similar features (Figs. 6.11(b) and 6.12(b)), except for the very high
loading case on the SR-3 where the SPL is overpredicted for higher harmonics. Con-
sidering that this does not occur for lower loads, it can be concluded that extreme
blade loading is mainly responsible for the discrepancies. The spectral content shown
on Figs. 6.11(c) and 6.12(c), indicates the onset of the breakdown of the truncation
method.

In principle, the loading-noise term includes the acoustic pressure associated with
all sound scattering processes, typically the reflection or diffraction of the sound
from one blade by adjacent blades. This effect is ignored in the present analysis
and in similar previously published works found in the literature. It could partly
explain some of the discrepancies found between predictions and measurements, at
least at some radiation angles and for the higher frequencies. Additionally, Dunn
and Farassat [82] showed that discrepancies of up to 5dB occur due to the neglect
of blade deformation under centrifugal and aerodynamic loads as is the case in the
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(a) SR-1 at subsonic tip speed.
left - M∞ = 0.6, βref = 60.0◦, J = 3.08, CP = 1.73, Mtip = 0.86

right - M∞ = 0.7, βref = 58.5◦, J = 3.26, CP = 1.46, Mtip = 0.97
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(b) SR-1 at sonic tip speed.
left - M∞ = 0.7, βref = 58.5◦, J = 3.04, CP = 1.77, Mtip = 1.01

right - M∞ = 0.7, βref = 59.5◦, J = 2.86, CP = 2.12, Mtip = 1.04
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(c) SR-1 at supersonic tip speed.
left - M∞ = 0.8, βref = 58.5◦, J = 3.25, CP = 1.29, Mtip = 1.11

right - M∞ = 0.8, βref = 58.5◦, J = 3.06, CP = 1.58, Mtip = 1.14

Figure 6.9: Comparison of measured and computed SPL of the NASA SR-1 at
various tip speeds for receivers on a sideline at 3.92R.
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(a) SR-3 at subsonic tip speed.
left - M∞ = 0.6, βref = 60.0◦, J = 3.00, CP = 1.92, Mtip = 0.87

right - M∞ = 0.7, βref = 59.5◦, J = 3.26, CP = 1.77, Mtip = 0.97
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(b) SR-3 at sonic tip speed.
left - M∞ = 0.7, βref = 59.5◦, J = 3.06, CP = 2.02, Mtip = 1.00

right - M∞ = 0.7, βref = 59.5◦, J = 2.85, CP = 2.35, Mtip = 1.04
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(c) SR-3 at supersonic tip speed.
left - M∞ = 0.8, βref = 58.5◦, J = 3.26, CP = 1.57, Mtip = 1.11

right - M∞ = 0.8, βref = 58.5◦, J = 3.08, CP = 1.84, Mtip = 1.14

Figure 6.10: Comparison of measured and computed SPL of the NASA SR-3
at various tip speeds for receivers on a sideline at 3.92R.
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(a) SR-1 at subsonic tip speed.
M∞ = 0.7, βref = 58.5◦, J = 3.26, CP = 1.46, Mtip = 0.97
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(b) SR-1 at sonic tip speed.
left - M∞ = 0.7, βref = 58.5◦, J = 3.04, CP = 1.77, Mtip = 1.01

right - M∞ = 0.7, βref = 59.5◦, J = 2.86, CP = 2.12, Mtip = 1.04
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(c) SR-1 at supersonic tip speed.
left - M∞ = 0.8, βref = 58.5◦, J = 3.25, CP = 1.29, Mtip = 1.11

right - M∞ = 0.8, βref = 58.5◦, J = 3.06, CP = 1.58, Mtip = 1.14

Figure 6.11: Envelope of the BPF-harmonics in the propeller plane for the
NASA SR-1 at various tip speeds for a receiver at 3.92R.
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(a) SR-3 at subsonic tip speed.
M∞ = 0.7, βref = 59.5◦, J = 3.26, CP = 1.77, Mtip = 0.97
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(b) SR-3 at sonic tip speed.
left - M∞ = 0.7, βref = 59.5◦, J = 3.06, CP = 2.02, Mtip = 1.00

right - M∞ = 0.7, βref = 59.5◦, J = 2.85, CP = 2.35, Mtip = 1.04
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(c) SR-3 at supersonic tip speed.
left - M∞ = 0.8, βref = 58.5◦, J = 3.26, CP = 1.57, Mtip = 1.11

right - M∞ = 0.8, βref = 58.5◦, J = 3.08, CP = 1.84, Mtip = 1.14

Figure 6.12: Envelope of the BPF-harmonics in the propeller plane for the
NASA SR-3 at various tip speeds for a receiver at 3.92R.
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present method, especially for higher harmonics.

6.3.2.1 Time-signal and truncation interval

To further investigate the effect of the truncation, the signal in the time domain is
compared with the code written by Farassat, Padula and Dunn [110], later named
DFP. This code switches, when needed, between Farassat’s formulations 1A and 3, so
that it ensures better accuracy. Note that the comparisons are made for a receiver at
2.64R from the axis and at a distance of 0.81R behind the propeller disk. Both codes
do not include the quadrupole contribution. The effect of the truncation interval
is shown in Figs. 6.13 and 6.14. For a narrow truncation interval, the thickness
noise peak is slightly overpredicted, but the approximate solution fails completely for
higher frequencies; resulting in a noisy time-signal. For a wider truncation interval,
the thickness noise peak is completely underpredicted. As expected, thickness noise
is dominant and is more significantly affected by the truncation than loading noise.
Both for the time-signal and the discrete frequency spectrum (see Fig. 6.14), a κ-
value of 0.4 proves to be the best compromise and yields acceptable results over a
wide range of operating conditions, provided the helical tip Mach number is kept
below 1.1 (see Figs. 6.11(b)-6.12(c)).

The truncated method is expected to deliver a reasonable approximate up- and
downstream of the propeller plane in conditions considered to be on the far edge
of the search domain for a viable modern propeller design (M∞ ≈ 0.7 − 0.75 and
Mtip ≤ 1.0).

6.3.2.2 Relative performance between geometries

Within the framework of an optimization routine, the ability of the code to correctly
assess the variation of aeroacoustic performance between two blade designs is even
more important than the prediction of absolute levels. Although in principle, the
relative gap between individuals could be made questionable by the errors made on
each prediction; this does not seem to occur with the present code. At low speeds,
for a given condition and in complete disregard of the geometry, errors are systematic
with the same trend toward underprediction of the SPL in and close to the propeller
plane. So the correct assessment of aeroacoustic fitness is ensured in the subsonic
domain by the accuracy of the results since formulation 1A is strictly applied without
approximation.

In the high-transonic and low supersonic domains, where the truncation operator
becomes effective, the present code performs with satisfaction in terms of relative
fitness estimates. This is shown on Figs. 6.15 and 6.16 where the computed and
experimental fitness of the NASA SR-1 and SR-3 blade designs are compared over the
entire extent of the search domain. At M∞ = 0.8 (Fig. 6.15), the relative difference
between both individuals is nicely captured throughout different loading conditions
even though non-linear effects are believed to affect the experimental results at high
loading. Furthermore at constant advance ratio, over free stream Mach numbers
ranging from 0.6 to 0.8 with the loading changing accordingly, the truncated method
again captures the relative difference between both designs.

Note that the accuracy of the present sub-, trans- or supersonic results is not
significantly improved when using a finer mesh whereas substantial degradation is
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(a) Standard interval κ = 0.04.

(b) Interval sensitivity.

Figure 6.13: Comparison of the time-signal obtained with the present code
and DFP-code. NASA SR-3 propeller operating at M∞ = 0.8 and J = 3.06
with CP = 1.83 (results taken from [110] and corrected to match the operating
conditions).
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Figure 6.14: Frequency-domain comparison of the present code with the DFP-
code under the same conditions as Fig. 6.13 for the NASA SR-3.
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Figure 6.15: Comparison between fit-
ness (SPL) as found experimentally
and as computed by the present code
at M∞ = 0.8.
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Figure 6.16: Comparison between fit-
ness (SPL) as found experimentally
and as computed by the present code
at fixed advance ratio J = 3.06.
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obtained if the mesh size is increased; hence, if the compactness requirement is not
fulfilled.

6.3.2.3 Conclusion

In view of the present application for which the occurrence of the sonic or supersonic
regimes are only the result of transient steps; a satisfying overall accuracy is obtained
at both subsonic and high transonic tip speeds. For sonic and low supersonic cases,
the SPL is satisfactorily predicted in and downstream of the propeller plane. Despite
a shortcoming with respect to the high-frequency content at tip Mach numbers well
above unity, the truncated method gives a reasonable approximate for the SPL with
the exception of receivers located far upstream of the propeller plane; this is also
reported elsewhere with other methods. In all cases, the discrepancies in and close to
the propeller plane are typically below 5dB, which is well within the margins observed
with other codes. The approach is considered reliable for helical tip Mach numbers
not exceeding 1.1. It keeps the computational effort within acceptable margins so
that the search domain is not constrained by the occurrence of the singularity.
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Chapter 7

Aeroelastic solver

A key point in the development of a propeller is to insure the structural integrity of
the system. Though the integrity of the hub retention and of the other components
associated with the pitch change mechanism are out of the scope of the present study,
the integrity of the blade is included at this early stage because significant departures
from conventional blade shapes are allowed.

Traditionally, the aerodynamic and aeroacoustic analyses are relying on the run-
ning position of the blade, also called the ’hot’ position. It is common practice to
leave it to the structural design team to define a posteriori the static, unloaded ’cold’
shape to be manufactured such that at running conditions, the required hot shape is
obtained. This step involves the iterative solution of the inverse aeroelastic problem.
Unfortunately, the blade deformation at only one single operating condition can be
closely matched [282]. Hence solving for the true coupling between aerodynamics and
aeroelastics makes the design process computationally expensive and time consuming.

A way around the complexity of solving the inverse problem is to consider the
shape determining distributions of chapter 4 as defining the cold rather than the hot
shape. This is done for example in [47] but involves an iterative procedure between
the aerodynamic and aeroelastic solver to converge step by step to the hot shape.
On that account, this would be a computationally prohibitive approach for early
design. Moreover, this approach would result in higher order interactions that would
render accurate metamodelling of the aerodynamic, aeroacoustic and even aeroelastic
responses extremely difficult.

For these reasons, it has been decided to account only for a partial coupling
between the aerodynamics and the aeroelastics. The blade is defined in its hot shape
and submitted to the aerodynamic solver. Later, a first estimate of the stress-state
of the hot blade is obtained by computing the stresses resulting from the steady
centrifugal and aerodynamic loadings. As the amplitude of local deformations is
supposed to be negligible with respect to the overall blade dimensions, the computed
stress state is supposed to be in the neighbourhood of the real state. In all likelihood,
the reduction of stresses during the optimization process is anyway favourable for
the real state. Dynamic effects due to periodic excitations are not considered at this
stage. These effects range from vibrations of the blades themselves (blade flutter)
[88, 199, 240] to vibration of the propeller disk and engine mount known as whirl
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flutter [215,216]. These effects are important for successful propeller design but should
be included in a later stage of the design phase by applying the proper analysis tools
on the potential designs obtained with the present optimization.

In the current chapter, the aeroelastic solver, also referred to as Computational
Structure Mechanics tool (CSM), will be briefly discussed together with the structural
model of the blade and the imposed boundary conditions. Finally, the chosen criteria
for the evaluation of complex stress states will be introduced. Along this chapter, the
implications of specific choices will be mentioned.

7.1 A short review of blade stress computations

In the early ages of wooden propellers, structural blade design was mostly an art and
relied greatly on practice and common sense. As reported in [213], new materials such
as aluminium, steel and magnesium were quickly introduced together with empirical
techniques to evaluate the stresses. It is worthwhile to mention that attempts to in-
corporate composite materials (micarta made of fabric impregnated with a synthetic
resin) were made as early as 1922 by the Westinghouse Electric and Manufacturing
Company but resulted in unsatisfactory characteristics [213]. Immediately, analytical
techniques relying on strip analysis were developed and yielded more accurate predic-
tions of the stress state. In these techniques, the blades are divided into segments at
select radial stations while mass and stiffness are lumped at these stations [213,136].

As long as blades were unswept, beam-models were used either in their analyti-
cal form or as finite elements [29]. But the advent of sweep made the beam-model
obsolete and 3D methods based on finite elements were required. The efforts for
the development of propfans in the 1980’s coincide with the last bulk of useful pub-
lications on that topic. At first, the structural mesh consisted of a single layer of
elements to which adequate properties were given to account for various materials in
the composition of the blade [88, 147, 47]. Later, multiple layers were considered so
that more accurate modelling of the blade structure could be realized [29,282].

Today, 3D finite element models have become the standard. They use high-fidelity
3D meshes so that the properties of all elements composing the blade can be embraced.

7.2 Finite elements solver

7.2.1 Constitutive laws and hypotheses

7.2.1.1 Homogeneous, isotropic, linear elastic materials

Consider a solid body of volume V enclosed by a surface A and subject to surface
forces t and body forces b as illustrated in Fig. 7.1. For static linear analysis, the
governing differential equations are the static equilibrium equation (Eqn. 7.1), Hooke’s
law for elasticity (Eqn. 7.2) and the cinematic law (Eqn. 7.3) applied at a particular
point P belonging to the volume V (i.e. ∀x ∈ V ):
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Figure 7.1: General elasticity problem for a solid body of volume V enclosed
by a surface A and subject to surface forces t and body forces b.

σij,i = −bj (7.1)
σij = Dijklεkl (7.2)

εij =
1

2
(ui,j + uj,i) (7.3)

where

Dijkl = G
2ν

1− 2ν
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk) (7.4)

In these equations, ui refers to the displacement in the ith-direction, σij refers to
the stress tensor, εkl refers to the strains and partial derivatives with respect to the
jth-direction are denoted ui,j for example. G is the shear modulus of the material
and E is its Young’s modulus. On top of these equations, adequate boundary con-
ditions are applied so that displacements are compatible with supports (essential or
Dirichlet boundary conditions) and so that stresses, derived from the displacement
field, be compatible with the applied surface forces (natural or Neumann boundary
conditions).

The strong form of Eqn. 7.1 is first multiplied by appropriate weighting functions
ωj (j = 1, 2, 3) (Galerkin’s method) before being integrated by parts over the domain
V . After introduction of the natural boundary conditions, application of the Gauss
divergence theorem and imposing ωj = 0 on the surface A where t is not known, one
obtains the weak form of the problem:∫

V

ωj,iσijdV =

∫
V

ωjbjdV +

∫
At

ωjtjdA (7.5)

where At is the part of the surface A where surface loads t are applied. If the tensor
ωj,i is split in a symmetric part ωSj,i and an anti-symmetric part ωAj,i, the last equation
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can be written, by introduction of Hooke’s law:∫
V

ωSj,iDijklu
S
k,ldV =

∫
V

ωjbjdV +

∫
At

ωjtjdA (7.6)

If matrix notations are used, with

• εT ≡ [ε11 ε22 ε33 2ε12 2ε23 2ε31]

• σT ≡ [σ11 σ22 σ33 σ12 σ23 σ31]

• σ = Dε

• uT ≡ [u1 u2 u3]

• bT ≡ [b1 b2 b3]

• tT ≡ [t1 t2 t3]

• ωT ≡ (ω1 ω2 ω3)

and writing S the partial differentiation operator such that ε = Su and ωSi,j = Sω;
the weak form becomes∫

V

ωTSTDSudV =

∫
V

ωT bdV +

∫
At

ωT tdA (7.7)

On this form, the finite elements theory is applied. It introduces shape functions
Ne defined non-zero within each element e (i.e. they vanish at all nodes not belonging
to element e as illustrated in Fig. 7.2). With these functions, here of the linear
type because the nodes coincide with the intersections of the mesh, the continuous
variables are expressed as continuous functions of the discrete nodal values so that
x = Nxe, u = Nue and ω = Nωe, where xe, for example, refers to the vector formed
by assembling the three components of x for all ne nodes of an element in a single
vector: xeT ≡ [x1

1 x
1
2 x

1
3 x

2
1 x

2
2 ... x

ne
1 xne2 xne3 ]. Introducing B = SN, Eqn. 7.7 becomes:

∑
e

Keue =
∑
e

fe with

{
Ke =

∫
Ve

BTDBdV

fe =
∫
Ve

NT bdV +
∫
Ate

NT tdA
(7.8)

where Ve is the volume of element e and Ate the surface it shares with the exterior
surface At. This is the algebraic elemental form of the problem with Ke the ele-
mentary rigidity matrix1 and fe the elementary force vector. Eqn. 7.8 exists over all
elements so the next step is to globalize the system by taking continuity of certain
unknowns between two adjacent elements into account and assembling all unknowns
into one single vector ug with Ndof components also called degree of freedom. This
yields the global form of Eqn. 7.8 that needs to be solved:

Kgug = fg (7.9)

7.2.1.2 Inhomogenous, anisotropic, bielastic materials

Composite materials are composed of high strength fibers continuous or not, embed-
ded in a low density matrix resin. Thanks to their excellent specific properties and

1Also called stiffness matrix.
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Figure 7.2: Global linear shape functions Nj for nodes j−1, j and j+1 defining
the shape function for elements A and B in the case of 1D linear elements.

fatigue resistance, composite materials allow for substantial weight saving without
altering the mechanical properties of the blade [197]. Their utmost advantage is the
possibility to tailor them to the specific application by tuning the number of layers,
their composition and their orientation so the principal-effort directions are suited.

These materials are well differentiated from homogeneous, isotropic, elastic ma-
terials such as metals. By nature, they are highly anisotropic because of the fibers
orientation, highly non-homogeneous because of the presence of fibers and matrix
resin, and they often have elastic properties depending upon the stress state (tensile
or compressive). This makes the procedure to derive the global form of the consti-
tutive equations (the equivalent of Eqn. 7.9) quite intricate. The detailed process is
beyond the scope of the present work; it includes:

• homogenization to determine average macroscopic elastic properties of a peri-
odic material from the individual properties at microscopic scale,

• lamination to possibly determine the average properties of a superimposition
of a series of elementary layers depending upon the number of layers, their
orientation, thickness, material characteristics and their stacking sequence,

• generalization of Hooke’s law to provide appropriate constitutive equations.

For woven materials, preferential directions exist and orthotropic hypotheses can be
applied to simplify the equations. Nevertheless, the process is even more complicated
by the bi-elastic nature of the composites used for blade manufacture. Figure 7.3
illustrates this behaviour for one specific principal direction (ith-direction).

7.2.1.3 Linear static analysis

The system behind Eqn. 7.9 is linear only under certain hypotheses. First, axial
deformations εii and angular deformations εij (with i 6= j) should remain small
with respect to unity; while displacements ui should remain small with respect to
the blade’s size. Second, the material should stay within the linear elastic range
where stresses σij vary linearly with deformations εij . In other words, the moduli of
elasticity should be constants. This is the assumption taken for the present analysis
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Figure 7.3: Bi-elastic behaviour in the ith of the principal directions.

given the choice of deforming the hot shape. But when a structure is subjected to a
tensile or compressive load, the resulting stress field modifies the bending behaviour.
When needed, these effects can only be rigorously included by nonlinear analysis.
Fortunately, some stiffness modifications due to loading can be allowed for, while still
remaining within the linear range. Indeed, with the small displacement hypothesis, a
linearized form of the nonlinear stiffness matrix can nevertheless be used.

For rotating structures such as blades, centrifugal forces act in the solid as is
shown on Fig. 2.5 and are at any point proportional to the distance from the point
to the axis of rotation. When a node moves away or moves closer to the axis, the
centrifugal force varies. An allowance can be made for displacement-dependent forces
by modifying the stiffness matrix. The global matrix Kg is then the sum of the linear
stiffness matrix Kg,0 and the centrifugal matrix Kg,ω.

7.2.2 Solution of the algebraic system

Samcef v-13.1-02 [10] is used as an integrated package for high-fidelity aeroelastic
analysis. It is convenient for its ability to run in script mode so that it is easily
integrated in an automatic procedure. Samcef v13.1-02 takes care of the spatial
discretization in the BACON-module (see section 4.3.2), globalization and solution of
the algebraic system in the ASEF-module and finally post-processing in the BACON-
module again.

Eqn. 7.9 needs to be solved for the Ndof unknowns in ug. This huge algebraic
system of linear equations is solved with Boeing’s multi-frontal sparse matrix solver
BCSLIB [22, 23, 228] which is recommended for medium to large problem size and
provides very good performance. The solution is obtained by Cholesky decomposition
of the rigidity matrix and simultaneous solution of multiple subsets of it. This solver
offers a good balance between in- and out-of-core memory requirements. Other solvers
available in Samcef v13.1-02 include the frontal solver (it requires more CPU-time to
solve the system as only a single subset of the rigidity matrix is used), the conjugate
gradient iterative solver which requires more out-of-core memory than the BCSLIB
solver and the MUltifrontal Massively Parallel sparse direct Solver (MUMPS) which
is fully parallelized but does not offer significant gains for the considered system size.
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Figure 7.4: Modern braided blade construction [196].

7.3 Blade model and boundary conditions

7.3.1 Blade structure, materials and elements types

In opposition to traditional metal or wooden blades [213], modern blades for high
speed aircraft are usually assembled from diverse forms of composite materials and
possibly metal spars in some specific applications like propfans. A detailed account
of possible blade structures with their pros and cons is given in [29] though some ad-
vanced techniques were not yet available at that time. Most of the available structural
data, either from experiments or from CSM, are thence collected either from solid
metal or from composite shell, foam core and metal spar blade assemblies [27, 282].
An interesting structure that is in use among the propeller industry and incorporates
advanced use of composite materials, is that described by R. McCarthy in [196,197].
This architecture relies on two carbon fiber spars running along the blade to carry
the main loads (see Fig. 7.4). These spars are enclosed between a foam fill core and a
glass fiber shell. The leading edge is reinforced by additional layers and the trailing
edge is made of a preform so that the trailing part of the shell has sufficient radius
to apply the braiding technique. This technique, illustrated in Fig. 7.5, is simple and
versatile and results in structures with high conformability, torsional stability and
damage resistance [171]. It feeds a mandrel at constant rate through the center of
the machine and braids tows (yarns) from several moving carriers by intertwining
them directly about the mandrel at controlled angle. Braiding differs from woven or
knitted fabrics in how the yarns are interlaced [171]. The obvious advantage of this
technique is to exclude junctions as those that would occur by wrapping of cross-ply
laminates and to allow the designer to tailor the shear modulus G, essential for blade
stiffness, by using hybrid braids of several materials (carbon and glass for example)
and/or by adjusting the braid angle. Resin transfer molding is then used to bond the
fibers while maintaining high fiber volume fractions.

Unfortunately, a blade structure such as the one of Fig. 7.4, testifies of a con-
siderable amount of tailoring and would be extremely difficult to implement in an
automated procedure where blades of highly changing geometry are assessed. This
is especially true if one wants to preserve a lot of freedom at the level of the design
variables. For this reason, only a simplified blade model is implemented such that it
can reasonably be applied to any blade geometry. The simplified blade is a mono-
coque design as shown in Fig. 7.6. The shell is composed of stepped layers of braided
composite (carbon/epoxy and E-glass/epoxy) that are directly braided on the foam
core. The outer shell is composed of E-glass fiber because of its lower cost but also
because a certain amount of glass fiber is desirable for the impact properties of the
blade [196]. It runs from the edge of the shank assembly at 19.5% radius (see Fig. 7.9)
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(a) (b) (c)

Figure 7.5: 3D braiding process of a propeller blade directly on the foam core
mandrel (Fig. 7.5(a) and 7.5(c) from [15], Fig. 7.5(b) from [14]).
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       SHELL

Figure 7.6: Monocoque blade construction.

to the tip. The inner most carbon fiber braid of Fig. 7.7, runs from the root to the
tip whereas the other two braids are stepped and run from the root to 30.7% and
36.5% radius respectively. This stepping ensures the blade is properly supported in
the transition region (see Fig. 7.8) where the outer shell blends from airfoil shape to
cylinder and where critical stresses are likely to occur.

After the spatial discretization (see section 4.3.2), adequate hypotheses must be
assigned to the mesh elements to model as accurately as possible the structure de-
scribed in the previous paragraphs. The outer shell is modelled by draping of layers
of composite laminate whose strength properties match those of the corresponding
braids, into composite triangular shell elements (type 57 in Samcef v13.1-02) with
a thickness. The principal direction for draping is the longitudinal direction. For
the foam core, tetrahedral volume elements have been chosen (type 47). The junc-
tion between the core and the shell is done by perfect coupling of their respective
degrees of freedom so that a perfect bonding is modelled. The strength properties
of bi-elastic braids given in table 7.1, are taken from [120,288] for the carbon/epoxy
braid and from [288, 50] for E-glass/epoxy. The braider yarn angles are close to 50◦

with respect to the longitudinal direction in both cases. The foam core is made of
rigid polyurethane foam of aeronautical quality [13] and its properties are given in
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Figure 7.7: Braid layer arrangement. The E-Glass/Epoxy layer runs from
19.55% radius (see Fig. 7.9).
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Figure 7.8: Transition of the blade structure from aerodynamic shape to root
assembly..
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Carbon/Epoxy E-Glass/Epoxy
Braid Braid

Young’s modulus ET GPa 106.26 9.66 35.2 8
EC GPa 93.15 9.0 23.1 6

Shear modulus G GPa 12.7 10 8 7

Poisson’s ratio NT 0.81 0.04 0.31 0.06
NC

Tensile strength XT ,YT ,ZT MPa 750.03 22.77 502 15
Compressive strength XC ,YC ,ZC MPa 473.34 22.77 418 12
Shear strength R,S,T MPa 70 70 71 60
Volumic mass ρ kg/m3 1.870E+03 2.100E+03

Table 7.1: Material properties of the braided layers in the longitudinal (X,R)
and transverse directions (Y ,Z,S,T ) with respect to the fibers.

Polyurethane
Foam

Young’s modulus E GPa 0.94
Shear modulus G GPa 0.19

Poisson’s ratio NT 0.35
NC 0.45

Tensile strength XT ,YT ,ZT MPa 16
Compressive strength XC ,YC ,ZC MPa 37
Shear strength R,S,T MPa 14.0
Volumic mass ρ kg/m3 0.600E+03

Table 7.2: Material properties of the polyurethane foam core.

table 7.2.

7.3.2 Blade retention

At its root, the blade needs to be connected to the rotating hub in which the pitch
change mechanism is enclosed. This connection is generally realized either by having
the composite material to form a flange that is clipped or trapped by windings between
two metal pieces [60,130], or by insertion of annular wedges to open out the material
so that it stays clamped between two metal sleeves [69,293,196]. This kind of assembly
is illustrated in Fig. 7.9 and has been chosen in the present case. As the focus lies
in the analysis of the stress levels in the blade itself, especially if non-orthodox blade
shapes are generated, only the composite portion of this assembly is modelled and
subject to a clamping condition in all directions.
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Figure 7.9: Blade root assembly.

7.3.3 Blade loads and pressure interpolation

7.3.3.1 Loads

Of the various loads applied on the blade in service, only the static loads are accounted
for at this early design stage. The centrifugal loads are accounted for by modification
of the stiffness matrix (see section 7.2.1.3). On top of these loads, the surface elements
of the blade are subject to the pressure distribution resulting from the flow around the
blade. These pressures are computed by the aerodynamic solver and are translated
into loads normal to each element of the outer shell. This procedure is repeated
for every operating condition so that the fundamental differences in pressure loading
between the cruise and the take-off/landing conditions are taken into account.

7.3.3.2 Interpolation between aerodynamic and aeroelastic meshes

The disparity in the size and shape of the mesh elements between the aerodynamic and
aeroelastic solvers (see sections 4.3.1 and 4.3.2), results not only in the nodes of the
mesh being not collocated in regions of low curvature but also to local departures of
both meshes in regions of high curvature. These situations are illustrated in Fig. 7.10.
One solution to these departures would be to refine the mesh for the CSM-solver in
those regions but this would increase CPU-usage significantly for marginal gains in
accuracy.

The interpolation of pressure between both meshes is done with the interpolator
developed at the VKI by F. Pinna in Matlab v7.4.0.287 [1]. Given a set of N data
sites2, this interpolator uses first the kd-tree method implemented by M. Kennel [166]
to organize the data and find neighbouring data sites in an efficient way. Kennel’s
C++-implementation is wrapped in the Matlab code. The kd-tree method is a gen-
eralization of binary search trees to a k-dimensional space. It is very efficient since it
requires O(logN) time instead of the O(N) time required by brute-force [112]. Once

2A data site is a vector containing the coordinates of a point and other data at that point
such as pressure, temperature, etc...

119



CHAPTER 7. AEROELASTIC SOLVER

  CSM
NODES

CFD/CHA
  NODES

p
CFD, j

p
CSM, i

Figure 7.10: Disparities in node location between CFD/CHA meshes and CSM
meshes. pCFD,j is the aerodynamic pressure at node j of the CFD/CHA mesh
whereas pCSM,i is the interpolated pressure for element i of the CSM mesh.

the data are organized, the space is split in a relatively small number of subsets con-
taining roughly the same number of data sites. This is done to avoid ill conditioning
of the interpolation problem due to the presence of data sites at large distances of
the point where the data needs to be interpolated. For that purpose, the partition of
unity method is used [112]. It is a simple way to decompose the global interpolation
problem over the domain into local interpolation problems over subsets while ensuring
that the accuracy of the local fits is carried over to the global fit. In the present case,
the aerodynamic domain is first split into non-overlapping 3D boxes containing each
no more than 300 data sites. Then, the boxes are extended into each direction by 10%
of their size in that particular dimension. This provides for the necessary overlap so
that the accuracy of the global interpolation is preserved. Inside each box, an RBF
interpolator is trained from the data sites (see section 3.3.4) with H. Wendland’s C2-
function [301] instead of the Gaussian function. This function is illustrated for a 1D
case in Fig. 7.11. Finally, the global interpolation at a particular point is the weighted
sum of the local interpolations. The weighting is done according to [287]. For a point
belonging to a single box, the weighting ensures the contributions of all other boxes
are exactly zero so that the global interpolation is equal to the local interpolation
within that box. For a point belonging to two or more boxes, the weighting is based
on the distance to the boundaries of the boxes and ensures a fair contribution to the
global interpolation from all local interpolations that are implied.

Appendix B gives comparisons of the initial and interpolated pressure fields for
different geometries and conditions. These comparisons show the excellent accuracy
that is preserved through the interpolation so that no spurious pressure loads are
effected onto the blades.

7.4 Stress criteria
As commonly accepted for composite materials, global criteria are used instead of
investigating the intricate situation of stresses in particular locations. These criteria
have the advantage of being relatively easy to interpret and provide a direct answer
to the question ”Are the stresses within structurally acceptable limits?” The scalar
values used in these criteria are computed straight from the stress tensor in each node.
This step is performed in the post-processing phase of the CSM solver.
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Figure 7.11: 1D Wendland’s C2 function.

7.4.1 Criteria for isotropic materials

For the foam core, assumed to be nearly isotropic, the von Mises equivalent stress
criterion is used [299]. The equivalent tensile stress σVM is computed from the stress
tensor by

σVM =

√
1

2
((σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2) (7.10)

where σi (i = 1, 2, 3) refers to the components of the stresses in the structural axes3.
This equivalent stress is then compared to the tensile yield strength to build the
criterion value ζVM that should, strictly speaking, be inferior to 1:

ζVM =
σVM
XT

< 1 (7.11)

The tensile strength is used as this is the most stringent form of the criteria. The
criteria states that yielding begins when the elastic energy of distortion reaches a
certain critical value. Of course, in real-world applications, values close to 1 are
unsafe hence safety margins are applied. The particulars of the safety margin will be
given in part III.

This criterion has been chosen for its acceptance and wide use for isotropic ma-
terials though other criteria exist such as the also widely used Tresca criterion [289]
that is more related to the maximum shear stress but is usually more conservative
than the von Mises criterion.

7.4.2 Criteria for orthotropic materials

Many different theories have been proposed to predict the load-carrying capacity of
composite structures and provide safety margins while, whenever possible, taking
the effects of geometrical non-linearity into account. These effects result into sig-
nificant interactions between deformations in the longitudinal, transverse and shear
directions. Four criteria are commonly used: the maximum strain, the maximum

3Principal axes are local orthogonal reference frame defined such that the three compo-
nents of the stresses are aligned with the directions of the axes.
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stress, the Tsai-Hill and the Tsai-Wu criteria. Whereas the first two criteria predict
independent failure modes, the last two predict the onset of failure but not its mode
and depend on more than one stress component. The Tsai-Hill criterion [145, 290] is
a generalization of the maximum distortional energy criterion accounting for plane
stress but involves either compressive or tensile strengths independently. The Tsai-Wu
criterion [291], chosen in this work, is a simplification of Gol’denblat and Kapnov’s
generalized failure theory for anisotropic materials [128]. It requires both compres-
sive and tensile strength data as inputs and leads to a polynomial form involving the
components of the stress tensor in quadratic and interaction terms:
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and where σi (i = 1, 2, 3) are the components of the stresses in the element axes4.
Eqn. 7.12 should strictly speaking deliver a value for ζTW below 1. With some stress
tensors, negative values are obtained though this does not allow to conclude on the
type of stresses (tensile or compressive). Given its origins, this criterion is a good
matching for the von Mises criterion used for the foam core and is applied to advanced
propellers in [47] for example. Again, the particulars of the safety margin will be
discussed in part III.

More evolved criteria exist, such as the Hashin criteria [141] where distinct fiber
and matrix failure modes are modelled, or the Grant-Sanders method [86] that also
predicts the location of failure; but these involve additional complexity that is not
required at this design stage.

4The element axes have the 3rd-component normal to the shell and pointing outward, and
the 1st- and 2nd-direction are defined in the plane of the element [10].
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Chapter 8

Optimization set-up

A coupled aerodynamic and aeroacoustic optimization without structural analysis,
is presented in this part. This limited optimization mainly results from the need to
integrate together as many tools as possible, in the present case two of the three high-
fidelity analysis tools, as early as possible in the overall development of the method.
Albeit limited to aerodynamics and aeroacoustics, it is not only helpful in the fine-
tuning of the tools as well as of the design-variables; but also proves the potential of
the method. Additionally, such an optimization could deliver some useful insight in
the possible results of the true multidisciplinary optimization by the direction taken
during the optimization process.

First, the detailed assembly of the optimization tools described in part I is de-
scribed in the present chapter along with the parameters, the objectives and the
constraints. Next, chapter 9 is dedicated to the analysis of the optimization process
itself, from the composition of the DoE-database to the last population. In that chap-
ter, the accuracy of the metamodel is assessed. Finally, a circumstantial analysis of
the aerodynamic and aeroacoustic characteristics of some promising designs is given
in chapter 10 before drawing the necessary conclusions and recommendations about
this optimization run.

8.1 Design variables
Geometry parameters are summarized in table 8.1 together with the number of op-
timization variables dedicated to each of them. The value of a geometry parameter
x(r) at any radius r is determined through 3rd order b-spline interpolation using the
control points corresponding to that particular parameter. The ordinates xi of those
control points, effectively determining the shape of the geometry distribution x(r),
are used as variables and are allowed to fluctuate over specific intervals as shown in
Fig. 8.1 for the blade geometry and in Fig. 8.2 for the airfoils. The width of the al-
lowable intervals is chosen such that the optimization process bears a lot of freedom.
This is especially true for the chord distribution which has 7 control points so that
multiple inflexions are allowed. The drawback of the parameterization is that a radial
distribution of a geometry parameter or a particular airfoil shape are not defined in
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Variable Number of Number of
Control Points Design Variables

Chord length b(r)/D 7 7
Thickness ratio t(r)/b(r) 4 3
Sweep Sw(r) 4 4
Twist Tw(r) 4 3
Airfoil I thickness tA 6 5 a

Airfoil I camberline yA 4 2
Airfoil II thickness tB 6 5 b

Airfoil II camberline yB 4 1
Total 30
a from blade root to 35% radius
b from 45% radius to blade tip

Table 8.1: Geometry parameters and design variables.

a unique way. Distinct sets of variables could result in the same distribution because
of the non-uniqueness of b-spline parameterization. For the optimization itself, this
is not a problem as such, but it confuses the metamodel and that could be poten-
tially detrimental to the reliability of its approximations. Fortunately, given the low
cardinality of the sets controlling the individual design variables, the probability of
confusion is almost non-existing in the present work.

The diameter D of the scale-model propeller and the number of blades are fixed
at 1.0m and 8 respectively while the blade angle (βref ) is fixed at 63◦ for the cruise
condition and 37◦ for the take-off/landing condition.

8.2 Optimizer architecture and set-up
The general lay-out of the optimization code is almost identical to the architecture
described in section 3.4 though the CSM tool has been left aside as is apparent from
Fig. 8.3. The DoE-database comprised 64 individuals chosen by fractional factorial
sampling and augmented by the central individual (i.e. the individual having all design
variables set at their respective mid-range positions). Moreover, a set of 16 random
designs completes the database. The fractional sampling is based on full factorial
sampling of six particular variables chosen because of their major influence both in
aerodynamics and aeroacoustics. These are the last two variables controlling the
geometrical sweep toward the tip, two controlling the thickness (at 30%- and 75%-
radius) and two controlling the chord, one at the root and the other at 75%-radius.

For this optimization, one off-line trained ANN-metamodel (see section 3.3.3) is
used for each performance parameter. It is trained with early stopping. The weighting
factor F and the cross-over constant C of the MODE-optimizer (see section 3.2) are
chosen as 0.6 and 0.8 respectively. This choice is a good compromise for convergence
while maintaining high cross-over probability. The evolutionary process is spread
over 1000 generations between two successive iterations. The population size is 50 of
which between 10 and 5 individuals are submitted to the high-fidelity analysis at the
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(a) Chord (b(r)/D - �) and thickness
(t(r)/b(r) - ◦).

(b) Geometrical sweep (Sw(r) - �) and twist
(Tw(r) - ◦).

Figure 8.1: Minimum and maximum ordinates of the control points for the
blade distributions together with the corresponding distributions.
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(a) Airfoil I.
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(b) Airfoil II.

Figure 8.2: Minimum and maximum ordinates of the control points for the
airfoils together with the corresponding thickness-line and camberline.
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Figure 8.3: Layout of the optimization code used for the present optimization.

end of each iteration. These individuals are chosen for their excellent performance
based on the metamodel approximation.

8.3 Operating conditions, objectives and con-
straints

The multi-objective and multipoint optimization is based on 2 operating conditions,
comprising each 3 advance ratios. One set is representative of the cruise condition
with three advance ratios JCR,i (i = 1, 2, 3). JCR,2 is adapted to match the constraint
on minimum cruise thrust TCR,2(1) while JCR,1 and JCR,3 are at a fixed distance
from JCR,2 so that a glimpse of the performance curve is obtained (−0.5 and +0.3
respectively). The other set is representative of take-off and landing conditions at
low Mach number and comprises also three advance ratios JTO,i. JTO,2 is adapted
to match the constraint on minimum take-off thrust TTO,2(1) while JTO,1 and JTO,3
are again at a fixed distance from JTO,2 (−0.2 and +0.4 respectively). The external
operating conditions corresponding to cruise and take-off/landing are summarized in
table 8.2.

In a multidisciplinary optimization, the objectives, together with the constraints,
are the driving factors for the evolutionary process. The obvious advantage of a
multi-objective approach with a Pareto-front and not a pseudo-objective, is that each

1See infra.
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Take-off/Landing Cruise
ISA altitude (m) 0 10665
ρ∞ (kg/m3) 1.225 0.380
T∞ (K) 288.15 218.81
M∞ 0.2 0.75
Reb,ref 1.44e06 1.14e06

Table 8.2: Operating conditions. The Reynolds number Reb,ref is based on
mean conditions at 75% radius.

discipline can be treated on its own, without the difficult necessity to assign weights
between performance values stemming from different disciplines. On top of being a
difficult task, the optimization outcome is often very sensitive to the choice of the
weights [71]. In the current approach, both disciplines have their own objectives, but
instead of having one objective for each operating point, some performance factors
are aggregated in one single objective consisting of elements from either aeroacoustics
or aerodynamics solely. For the aeroacoustic objectives, the receivers are located
according to Fig. 8.4. The aggregated objectives consist of:

1. an aggregate of the propeller power at the three advance ratios both in the
cruise and take-off/landing conditions (Ω1),

2. an aggregate of the Sound Pressure Level (SPL) in the propeller plane (at
receiver 3) both in the cruise and take-off/landing conditions (Ω2),

3. and an aggregate of the SPL at three receiver locations (receivers 2, 3 and 4)
both in the cruise and take-off/landing conditions (Ω3).

This yields the system

Ω1 = wCR

(
3∑
i=1

waiPCR,i

)
+ wTO

(
3∑
i=1

waiPTO,i

)
(8.1)

Ω2 = wCR

(
3∑
i=1

waiSPL
rec 3
CR,i

)
+ wTO

(
3∑
i=1

waiSPL
rec 3
TO,i

)
(8.2)

Ω3 = wCR

(
4∑
j=2

wbSPL
rec j
CR,2

)
+ wTO

(
4∑
j=2

wbSPL
rec j
TO,2

)
(8.3)

in which the weights wCR and wTO are chosen arbitrarily as 0.75 and 0.25 respec-
tively, to correspond to the relative time spent in these conditions during a standard
flight. The weights wai are chosen to yield adequate off-design performance without
endangering the design one (wa2 = 0.7 and wai = 0.15 for i = 1, 3) and the weights
wb are equal to 1/3 so that no receiver is favoured in this objective.

To elaborate a proper basis for comparisons, constraints are formulated in terms
of propeller net thrust and advance ratio at cruise condition. The values for thrust
and power are obtained for a 4.5m equivalent propeller from the non-dimensional
thrust and power coefficients. The advance ratio JCR,2 is constrained to more than
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4R

φ

rec 1

rec 2

rec 3

rec 4

rec 5

Figure 8.4: Location of the receivers (ϕ = 45◦, 67.5◦, 90◦, 112.5◦ and 135◦).

Take-off/Landing Cruise
(kN) (kN)

T target.,1 49.0 20.0
T target.,2 35.0 11.0
T target.,3 6.0 5.0

Table 8.3: Target thrusts T target.,j .

3.57 in order to limit the associated tip helical Mach numberM tip
CR,2 below 1.0 (ΓJCR,2-

constraint):
ΓJCR,2 = 3.57− JCR,2 (8.4)

Additionally, a thrust constraint is associated with each operating condition J.,i for
both the cruise and take-off/landing sets with a tolerance ∆T of 0.5kN for the cruise
condition and of 1.5kN for the take-off/landing one. These constraints are formulated
as

ΓT.,j = T target.,j − T.,j −∆T (8.5)

so that negative values correspond to constraint satisfaction. The values T target.,j are
chosen so that a benchmark 4.5m-propeller (see Fig. 8.5) is at least matched for any
operating condition; these values are given in table 8.3. This benchmark propeller
has no sweep, a semi-constant chord (b/D = 0.15 up to 75% radius) and is build with
thin NACA 16 and 65 airfoil sections. It delivers 11kN thrust in cruise condition
at JCR,2 = 3.37 (Mtip = 1.03) with an efficiency ηCR,2 of 0.68 and 35kN in take-
off/landing condition at JTO,2 = 0.95 with an efficiency of 0.54. These thrusts and
the corresponding power values are realistic for a medium-sized aircraft equipped with
two or four propellers.
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8.4 High-fidelity analysis workflow

Figure 8.5: Benchmark propeller.

8.4 High-fidelity analysis workflow
Because the blade angles βref are fixed but different for the cruise and the take-
off/landing conditions, and because the advance ratio J.,2 is adapted separately as
well, the high-fidelity analyses may be conducted concomitantly. The workflow for
these analyses is illustrated in Fig. 8.6. At the end of each iteration, the 5 to 10 best
individuals are submitted to the high-fidelity analysis; the number varies depending
upon the distance between individuals and their location with respect to known indi-
viduals. For both conditions, the process starts by building the blade model from the
design vector (see chapter 4) before generating a mesh. If the mesh does not satisfy
basic quality measures (equi-size skew < 0.97, wrap 6= 1 and no left-handed faces),
the mesh parameters are automatically adjusted. 18 adjusting sequences have been
programmed. If no correct mesh is obtained despite those efforts, the process stops
and the individual is considered as failed and is not registered to the database. If
an acceptable mesh is obtained, the individual is passed to the CFD-solver. In the
first run, JCR,2 is chosen arbitrarily as the corresponding mean value of the DoE-
database. To have a safe interval of the performance curve, which is necessary for
precise adaption, JCR,3 is taken as JCR,2 + 0.3 and JCR,1 as JCR,2 − 0.5. At the end
of the CFD-analysis, the non-dimensional performance values are computed. From
these values, the thrust of an equivalent 4.5m propeller is calculated. If the thrust
TCR,2 does not match the target within the allowable interval ±∆T , a new advance
ratio JCR,2 is interpolated from the known performance. The CFD-analysis is then
ran again with these new values though some computational time is saved by starting
from the previous JCR,3-solution. Once the CFD-solution is known for all advance
ratios, the CHA-solver computes the SPL at all five receiver locations. A dedicated
post-processor reads the data files written by both solvers and computes the desired
non-dimensional performance values that are then written to a single performance
file and registered in the database.
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Figure 8.6: High-fidelity analysis workflow.
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Chapter 9

Survey of the optimization
process

9.1 DoE-database

As already described in section 8.2, the DoE-database comprised 81 individuals. The
failure rate (i.e. the percentage of individuals for which no correct mesh could be
generated or for which the CFD-analysis failed, either for the cruise or take-off/landing
cases) is about 8.6%. Fig. 9.1 shows the radial distributions defining the geometry of
the blades contained in the database. The non-dimensionalized objective values (Ω̂) of
the individuals in the database, are shown in Fig. 9.2. The non-dimensionalization is
achieved with respect to the respective maximum Ω-value among the DoE-database
and the benchmark. As apparent from Figs. 9.1, 9.2(a) and 9.2(c), the database
contains very diverse individuals in terms of geometry and Ω-values. The unswept
benchmark, operating at a fairly low advance ratio JCR,2 (Mtip = 1.03), is the most
potent noise producer in the propeller plane. Interestingly, the ’band’ distribution of
Fig. 9.2(b) reveals some coupling between these two objectives.

Unfortunately, no individual from the database does satisfy all constraints simul-
taneously. The Γ-values for the database are shown in Fig. 9.3. For all constraints to
be satisfied, an individual should have all its marks located in the lower left quadrant.
From Fig. 9.3, it appears that the most stringent constraints are the first and second
thrust constraints in the take-off/landing condition together with the constraint on
the cruise advance ratio ΓJCR,2 (Eqn. 8.4).

9.2 Metamodel accuracy

The ANN-metamodels use non-dimensional values of each performance parameter.
The performance values are non-dimensionalized and normalized with respect to a
−10% offset from the lowest and a 10% offset from the highest values present among
the database. For a performance parameter q, the normalized non-dimensional value
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(a) Chord (b(r)/D) and thickness
(t(r)/b(r)).

(b) Geometrical sweep (Sw(r)) and twist
(Tw(r)).

Figure 9.1: Planform definition of the individuals contained in the DoE-
database.

(a) (b) (c)

Figure 9.2: Normalized objective values in the DoE-database. (’+’ for individ-
uals - ’�’ for the central individual - ’◦’ for the benchmark)
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9.2 Metamodel accuracy

Figure 9.3: Constraint values in the DoE-database. (’+’ for individuals - ’�’ for
the central individual - ’◦’ for the benchmark)
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is written q̂ if it is obtained by high-fidelity analysis and q̃ if it is the metamodel esti-
mate. Figs. 9.4 and 9.5 present on the left-hand plots some normalized performance
values versus their respective metamodel estimate. Ideally, all points should lie on
the diagonal.

Interestingly, it is clear that the predictions of the cruise thrust TCR,2 and SPL
in the propeller plane SPLrec3CR,2 are more prone to errors. Though it should be born
in mind that the scatter on TCR,2 is on a narrow interval in terms of absolute values
(10.5kN to 11.3kN). In the take-off/landing condition, the power PTO,2 and the
SPL in the propeller plane SPLrec3TO,2 are the most difficult performance parameters
to estimate. For each parameter, the error on the metamodel prediction q̃ − q̂ obeys
a normal distribution as is confirmed by the central normality plots1 of Figs. 9.4 and
9.5. Superimposed on those plots is a line joining the first and third quartiles, it
is extrapolated out to the ends of the sample to evaluate the linearity of the data
because normally distributed data should lie on that line. Owing to the normality
of the data, it is safe to compute the mean bias µ(q̃ − q̂) and the standard deviation
σ(q̃− q̂) that are given in table 9.1 and shown on the left-hand plots of Figs. 9.4 and
9.5. The mean error is of the order of 3.5% to 9% except for the SPL. The standard
deviation varies between 8 to 18% with the exception of the SPL. For the SPL, both
the mean error and the standard deviation sky-rocket. Thence these values should
be considered with greater care.

Given the 30 design variables and the strong interactions that exist between them
when evaluating their influence on a performance parameter, most error values are
satisfying. The ANNs clearly provide approximations that are safe to use to build an
approximate image of the objective space, in which the search for optima occurs, but
it is necessary to use the high-fidelity analysis tools to make major decisions. The
disappointing values concerning the SPL corroborate an even higher level of interac-
tion between distinct design variables. This is also confirmed by detailed analysis of
the tonal sound [191].

Take-off/Landing Cruise
µ(q̃ − q̂) σ(q̃ − q̂) µ(q̃ − q̂) σ(q̃ − q̂)

J.,2 0.063 0.082 0.060 0.138
T.,2 0.046 0.168 −0.035 0.092
P.,2 −0.080 0.102 −0.091 0.176
SPLrec3.,2 −0.258 0.247 −0.134 0.266

Table 9.1: Mean bias µ and standard deviation σ of the error on normalized
metamodel estimates.

1A normality plot displays the cumulative distribution function of the ordered values of
q̃ − q̂ (’+’) and that of a fitted normal distribution (straight line). Departures from the
straight line indicate departures from normality.
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9.2 Metamodel accuracy

Figure 9.4: Metamodel accuracy, normality test and histogram with density
for ĴCR,2, T̂CR,2, P̂CR,2 and SP̂Lrec3CR,2. For the metamodel accuracy, the mean
error is shown by ’. . .’ and the standard deviation around the mean error by
’- - -’.
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Figure 9.5: Metamodel accuracy, normality test and histogram with density
for ĴTO,2, T̂TO,2, P̂TO,2 and SP̂Lrec3TO,2. For the metamodel accuracy, the mean
error is shown by ’. . .’ and the standard deviation around the mean error by
’- - -’.
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9.3 Optimization results
The optimization process is spread over 36 iteration loops that resulted in a total of
1800 designs proposed at the end of the iterative loops. Of these, 252 were fed to
the high-fidelity analysis. The limit on the number of iterations pertains mainly from
cost and time constraints.

As is shown on Fig. 9.6, the optimization process effectively proceeded toward
lower objective values in the three dimensions of the objective space built upon ap-
proximated values, in opposition to the real objective space resting upon the values
obtained by high-fidelity analysis2. Of the 252 designs that were submitted to the
high-fidelity analysis, only 119 were successfully processed through both the cruise
and take-off/landing conditions. Their respective planform distributions are given in
Fig. 9.7. The high failure rate (53%) is mostly the direct consequence of failures in
the meshing step even though Fig. 9.7 suggests that the search space is not artifi-
cially restrained as the mesher is able to mesh very dissimilar geometries. This is
nevertheless a serious limitation imposed by the mesher.

The fronts appearing on Fig. 9.6, correspond to the convergence within the gen-
eration loops toward the Pareto-front in the approximate objective space. A front is
formed at each iteration because the training of the metamodels is done before each
iteration loop, hence, each time, the optimum is sought after in a slightly different
approximate objective space.

Despite the disappointing failure rate, the optimization resulted in 28 individuals
that concomitantly satisfy all constraints; all of them were obtained in the last 10
iterations and are indicated on Fig. 9.6 to highlight the restrictions induced by the
set of constraints. These individuals are located in the 3rd-quadrant of the constraint
values plots in Fig. 9.10. This figure clearly shows that the evolution proceeded
from the DoE-individuals toward greater satisfaction of the constraints (negative Γ-
values) along with higher advance ratios JCR,2. The normalized objective values3 of
the 119 individuals are shown in Figs. 9.8 and 9.9 together with the original DoE-
values. From both figures, the evolution toward lower Ω-values is apparent as well
as the diversity present in the objective space. Regretfully, this rather limited set is
probably not fully representative of the Pareto-front. But augmenting the cardinality
of successfully analyzed individuals both by achieving a higher success rate and by
conducting more iterations, would help in relieving this weakness. The comparison
of Figs. 9.6 and 9.8 reveals also the influence of the metamodelling errors discussed
in section 9.2. Indeed, the systematic underprediction of the power terms (P.,i) and
SPL terms (SPLrecj.,i ) leads to the corresponding objectives Ω̃ being lower than Ω̂ so
that the points in Fig. 9.8 are shifted in the positive direction along the three axes.

From Fig. 9.9(b), the Ω2- and Ω3-values appear to be strongly coupled. This is
partly explained by the presence of the SPLrec3.,2 terms in Ω3 though these account for
only 1/3 of each summation (see Eqn. 8.3). Hence reducing the SPL in the propeller
plane usually involves some reduction out of the plane as well.

The minimization of objective values led to a substantial improvement in cruise
efficiency at JCR,2 as is shown in Fig. 9.11(a). The 28 individuals satisfying all
constraints are remarkably located in the upper-right region of the plot and are clearly

2If not mentioned, objectives and constraints are considered in their respective high-
fidelity space.

3The same normalization factors as in section 9.1 are used.
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Figure 9.6: Pareto-front in the objective space built upon approximates. (’©’
for individuals proposed by the optimizer after each iteration - ’∗’ for the DoE-
individuals - ’5’ for the individuals successfully evaluated by high-fidelity anal-
ysis and that satisfy all constraints concomitantly.)

at distance from the DoE-data. This is not the case for the take-off/landing condition
which is not the driving factor behind the improvement in the Ω1-value because of the
relative weighting between the terms. This is the reason for the outlier of Fig. 9.11(b)
(with ηTO,2 = 0.65) to vanish among others in Fig. 9.9 as its cruise efficiency ηCR,2 is
of the order of 0.7.

The planform definition of the 28 compliant individuals are given in Fig. 9.12.
This figure shows that the diversity obtained in the objective space is stemming from
the one present in the search space. This is certainly true for the chord and sweep
distributions that exhibit varying and innovative features. As is visible in Fig. 9.12(b),
a considerable subset of these individuals are relatively straight blades (i.e. they have
no geometrical sweep at the tip). Remarkably, most blades are build upon thin airfoils
and have strong twist toward the root while featuring minimal twist toward the tip.
This is one of the numerous examples were the optimization procedure mimics the
experience of designers. A detailed analysis of some of the best performing individuals
will be given in the next chapter.
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9.3 Optimization results

(a) Chord (b(r)/D) and thickness
(t(r)/b(r)).

(b) Geometrical sweep (Sw(r)) and twist
(Tw(r)).

Figure 9.7: Planform definition of the 119 individuals processed through high-
fidelity analysis (CFD and CHA solvers).

Figure 9.8: Pareto-front in the objective space built upon high-fidelity analysis.
(’©’ for individuals successfully evaluated by high-fidelity analysis - ’5’ for
the individuals that satisfy all constraints concomitantly - ’∗’ for the DoE-
individuals.)
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(a) (b) (c)

Figure 9.9: Normalized objective values of the individuals submitted to high-
fidelity analysis. (’◦’ for individuals satisfying all constraints concomitantly - ’+’
for individuals that violate at least one constraint - ’�’ for the DoE-individuals
- ’�’ for the central individual - ’◦’ for the benchmark)
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Figure 9.10: Constraint values of the individuals submitted to high-fidelity
analysis. (’◦’ for individuals satisfying all constraints concomitantly - ’+’ for
individuals that violate at least one constraint - ’�’ for the DoE-individuals -
’�’ for the central individual - ’◦’ for the benchmark)
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(a) Cruise efficiency ηCR,2. (b) Take-off/landing efficiency ηTO,2.

Figure 9.11: Efficiency of the individuals submitted to high-fidelity analysis.
(’◦’ for individuals satisfying all constraints concomitantly - ’+’ for individuals
that violate at least one constraint - ’�’ for the DoE-individuals - ’�’ for the
central individual - ’◦’ for the benchmark)

(a) Chord (b(r)/D) and thickness
(t(r)/b(r)).

(b) Geometrical sweep (Sw(r)) and twist
(Tw(r)).

Figure 9.12: Planform definition of the 28 individuals that concomitantly sat-
isfy all constraints.
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Chapter 10

Analysis of specific
individuals

The previous chapter was dedicated to the analysis of the optimization process itself
and that of its gross results. In the present chapter, some promising blade designs
will be analyzed in more details in order to assess the potential of the method and
identify its likely downsides. In the end, conclusions about the present optimization
are drawn.

10.1 Objective-values, constraint-values and ge-
ometries

Out of the individuals shown on Fig. 9.9 that satisfy all constraints , four are ear-
marked on Fig. 10.1 because of their low Ω-values:

1. individual A because it has the lowest Ω̂1-value,

2. individual B because it has the lowest Ω̂2-value,

3. individual C because it has the lowest Ω̂3-value,

4. and individual D because it has also a low value for the Ω̂3-objective.

Individuals A, B and C are of rank 0 whereas individual D is of rank 1. Their re-
spective Γ-values are shown in Fig. 10.2 whereas their chord, thickness, twist and
geometrical sweep distributions are given in Fig. 10.3. Individuals A and B have ex-
tremely low geometrical sweep combined with one or more humps consisting of strong
spanwise variations of the chord. On the opposite, individuals C and D have high
geometrical sweep combined with two distinct humps as clearly visible on Fig. 10.3.
Noticeably, all four have thin airfoils and the highest possible twist distribution. The
planform shape of those blades are visualized in Fig. 10.4.

It appears from table 10.1 that chord-variations toward the tip do not result in
significant differences between leading-edge and geometrical sweep. Hence the tip of
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Figure 10.1: Normalized objective values of individuals A, B, C and D. (’◦’
for individuals satisfying all constraints concomitantly - ’�’ for the central in-
dividual - ’◦’ for the benchmark)
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Figure 10.2: Constraint values of individuals A, B, C andD. (’◦’ for individuals
satisfying all constraints concomitantly - ’�’ for the central individual - ’◦’ for
the benchmark)
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10.1 Objective-values, constraint-values and geometries

(a) Chord (b(r)/D) and thickness
(t(r)/b(r)).

(b) Geometrical sweep (Sw(r)) and twist
(Tw(r)).

Figure 10.3: Planform definition of individuals A, B, C and D.

(a) A. (b) B. (c) C. (d) D. (e) Bench-
mark.

(f) Central.

LE TE

Figure 10.4: Blade geometry of individuals A, B, C and D with the benchmark
and central individual.

Individual A B C D Benchmark Central
SwLE 13.8◦ 11.4◦ 45.6◦ 46.8◦ 17.0◦ 45.0◦

Table 10.1: Leading-edge sweep (SwLE).
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to blade tip.
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Figure 10.5: Optimized airfoils. Note that airfoil I for the benchmark is a
NACA 65-010CA and airfoil II is a NACA 16-009.

blades A and B is almost straight whereas blades C and D have a pronounced ’scim-
itar’ shape which is mostly the consequence of their geometrical sweep distribution.

A comparison of the airfoils used for individuals A to D with the airfoils used
for the central individual and the benchmark, is given in Fig. 10.5. The NACA
65-010CA and NACA 16-009 used respectively as airfoil I and airfoil II for the
benchmark, have served in aircraft propellers for a long time. Indeed, these airfoils
have sought after characteristics such as high lift-to-drag ratios over a wide range of
lift coefficients, high critical Mach numbers and high maximum lift coefficients [67]
on top of a considerable cross-sectional area near the trailing edge. The last feature is
desirable for swept blades as it helps reducing the stresses in that critical region [303].
All optimized airfoils do have a nearly equal, for the inboard airfoil, or a smaller, for
the outboard airfoil, cross-sectional area than these NACA-airfoils. As structural
considerations are not considered in the present optimization, these airfoils might
come with unacceptable stress-levels. Hence this is an argument to embed structural
constraints in the optimization. Airfoils I tend to have thicknesses of the order of
10% to 12% against 10% for the NACA 65-010CA. The front part is usually thinner
and the maximum thickness is moved aft. Except for individual D, there is almost no
camber. Airfoils II have a maximum thickness of the order of 9%, like the NACA 16-
009, and it is slightly moved aft. They have a noticeably flatter and more narrow front
on the pressure side; a feature that is also reported in [189] for 2D airfoil optimization
applied to propellers or in [175] for transonic airfoil optimization. It is a consequence
of the increased camber with respect to the NACA 16-009.
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10.2 Aerodynamic characteristics

ηCR,1 Gain (%) ηCR,2 Gain (%) ηCR,3 Gain (%)
Benchmark 0.608 − 0.682 − 0.679 −
Central individual 0.607 0.0 0.667 −1.5 0.619 −6.0
Individual A 0.641 +3.7 0.715 +3.3 0.659 −2.0
Individual B 0.643 +3.9 0.714 +3.2 0.638 −4.1
Individual C 0.639 +3.1 0.702 +2.0 0.688 +0.9
Individual D 0.640 +3.2 0.704 +2.2 0.695 +1.6

Table 10.2: Propulsive efficiency η in cruise condition.

Individual A B C D Benchmark Central
PCR,2 (kW ) 3286 3287 3433 3415 3558 3674
Gain (%) −7.6 −7.6 −3.5 −4.0 − +3.3

Table 10.3: Power PCR,2.

10.2 Aerodynamic characteristics

10.2.1 Overall performance

As is apparent from Fig. 9.11, the propulsive efficiency has globally increased in cruise
and is maintained at take-off/landing. Gains of 2% to 3% (see table 10.2) are achieved
at high Mach number for the optimized individuals. These are moderate gains and
the obtained efficiencies are relatively low with respect to the achievable ones which
are of the order of 0.75 for advanced conventional propellers operating at M∞ = 0.75
(see Fig. 2.4). 1950’s conventional propellers would deliver efficiencies just below
0.7 [247] in similar conditions. Advanced propfan concepts would achieve efficiencies
of the order of 0.8 to 0.85, but they would operate at tip Mach numbers well above
unity. The main reasons believed to be responsible for those moderate efficiencies are
the limited number of iterations that were performed, the vast as well as raw search
space and the high free stream Mach number. Fine tuning of the designs, essentially
in terms of airfoil shape and twist distribution, might result into more significant
gains.

The gains obtained at cruise are not matched at the design take-off/landing con-
dition were they are much lower (table 10.4). Part of this can be explained by the
weighting between both contributions in the Ω1-objective. For off-design conditions,
sweep is favourable when the rotational velocity is decreased (the advance ratio in-
creased) at cruise but less in the take-off/landing case. On the other hand, no sig-
nificant difference exists between swept and unswept individuals when the rotational
velocity is increased in any condition. The central individual of the DoE-database is
also given for reference purposes, despite the fact that it does not satisfy the ΓJCR,2-
and both ΓT.,3-constraints.

Table 10.3 gives the power required at the design cruise condition (PCR,2) for all
individuals. Blades A and B offer the highest gains in terms of power. Nevertheless,
the 3.5− 4.0% power decrease associated with blades C and D are quite significant.

The relative position of the optimized individuals with respect to the Ω1-objective
stems from the thrust and power coefficients (CT and CP ) given in Fig. 10.6. The
central individual has a higher CP for nearly the same advance ratio as the benchmark
both in the cruise and the take-off/landing conditions. This is the reason for its
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ηTO,1 Gain (%) ηT0,2 Gain (%) ηTO,3 Gain (%)
Benchmark 0.500 − 0.545 − 0.501 −
Central individual 0.511 +1.1 0.556 +1.1 0.406 −9.5
Individual A 0.503 +0.3 0.552 +0.7 0.616 +11.5
Individual B 0.509 +0.9 0.548 +0.3 0.622 +12.1
Individual C 0.510 +1.0 0.556 +1.1 0.597 +9.6
Individual D 0.500 +0.0 0.547 +0.2 0.600 +9.9

Table 10.4: Aerodynamic efficiency η in take-off/landing condition.

higher Ω1-value resulting from a sub-optimal twist distribution with thicker airfoils.
The optimized blades do not have significant differences at the design cruise condition
(JCR,2) in terms of CT and CP though they operate at different advance ratios than
the benchmark. Globally, optimized blades operate at higher power coefficients as
well as higher advance ratios hence higher efficiency. Swept blades (C & D) offer
flatter efficiency curves resulting in better performance at off-design conditions. This
is also the reason for their higher Ω1 value. At take-off/landing, unswept blades (A
& B) have lower CP -values which explains their better Ω1-value with the current
weighting, albeit no substantial differences exist in terms of efficiency at JTO,1 and
JTO,2.

10.2.2 Local features

The optimized airfoil shapes are presented in Fig. 10.5. The spanwise distributions of
thrust and PTF are presented in Figs. 10.7 and 10.8. The elemental force coefficients
in these figures are obtained by integrating the pressure and viscous forces acting on
a spanwise blade element. The elemental thrust and the elemental PTF coefficients
(CTel and CPTFel) are defined as:

CTel(r) =
Tel(r)

1/2ρ∞u(r)2bref
(10.1)

CPTFel(r) =
PTFel(r)

1/2ρ∞u(r)2bref
(10.2)

where u(r) refers to the local velocity (i.e. u(r) =
√
u2
∞ + (ωr)2) and bref is an arbi-

trarily chosen, constant, reference chord. Figures 10.9 and 10.10 give the respective
pressure distributions at the cruise and take-off/landing design points (JCR,2 and
JTO,2). The pressure coefficient Cp is computed as:

Cp =
2

γM(r)2
(p/p∞ − 1) (10.3)

where M(r) refers to the local Mach number based on u(r) and c∞. These figures
provide an explanation for some features found on the spanwise force distributions.
Indeed, the poor pressure distributions for all individuals near the root explain the
extremely low contribution from the root part of the blade (up to 50% radius) to the
total thrust and suggest that additional efforts could be undertaken in this region.

Individuals A and B have similar traits, their respective airfoil II has a thinner
front that leads, in cruise, to a moderate shock on the front part at 75% radius.
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Then the flow accelerates before a second mild shock near the trailing edge. This is a
different situation from the NACA 16-009 where a single shock is located on the aft
part. At 99% radius, the shock is located close to the trailing edge and the flow gently
accelerates upstream of it, leading to a favourable suction on the rear part. When
comparing to the benchmark in cruise, the 99%-station has similar performance in
therms of Cp and the 75%-station offers small improvement. At 25% (airfoil I) and
50% (airfoil II), very little thrust is generated. In take-off/landing conditions, the
distribution of pressure at 25% radius results in virtually no thrust whereas thrust
generation becomes effective at 50% radius. At 75% and 99% radius, the wavy char-
acter of the pressure distribution or the strong recompression for individual B, are
related to the complex system of vortices as illustrated in Figs. 10.11(a) and 10.11(b).
On these figures, the vortex system is visualized by the λ2-criterion1. In particular,
the spanwise vortex that is onset by the leading edge taper (which is due to the local
change in chord b(r)), is responsible for strong spanwise currents that are character-
ized by locally high radial velocities. At 99%, the leading edge vortex connects to the
blade tip vortex and that results in localized low pressures. The vortex system is also
responsible for the perturbations in the spanwise thrust distributions of Fig. 10.8(a).

Individuals C and D have in contrast a pressure distribution at 50% radius both
in cruise and at take-off/landing that results in a little more thrust for this portion.
Most of the load is located near the leading-edge. Their somewhat poorer pressure
distributions at 75% radius, is due to the presence of a rather strong shock on the for-
ward section of the suction side in the cruise condition and an acute recompression in
the take-off/landing condition. This results in poor thrust generation and is probably
detrimental to efficiency. But the smooth pressure distributions at 99% radius in both
conditions, translate into high local thrust. When comparing to the benchmark in
cruise condition, the 75%-station has a worse pressure distribution whereas improve-
ment is obtained at 99%-radius. In the take-off/landing condition, the recompression
at 75% radius is obtained along a rather strong leading edge vortex that originates
from the negative sweep obtained from the local changes in chord. This vortex, il-
lustrated for both individuals in Figs. 10.11(c) and 10.11(d), remains attached to the
leading edge unlike individuals A and B. In this condition, the section at 99% radius
is fully immersed in the tip vortex flow so that a smooth pressure distribution is ob-
tained in opposition to individuals A and B where the vortex system is responsible for
recompressions. These results suggest that in all cases, additional efforts are required
to yield better performance out of the root portion (airfoil I) whereas airfoil II is
clearly a trade-off.

1The λ2-method has been proposed by J. Jeong and F. Hussain [156]. Let ∇u be the
velocity gradient tensor of an incompressible fluid with its components ui,j (i.e. the ith-
velocity component differentiated with respect to the jth-direction). The symmetric and
antisymmetric parts of ∇u may be written respectively as:

Sij =
1

2
(ui,j + uj,i) and Ωij =

1

2
(ui,j − uj,i)

By neglecting viscous and unsteady effects, it can be shown that the tensor S2
ij + Ω2

ij is
proportional, with a negative factor, to the Hessian of the pressure p containing all second
order spatial derivatives of p. Vortex cores are characterized by a local minimum in pressure
so that its Hessian must be locally positive definite. Hence vortex cores are equivalent to a
locally negative definite matrix S2

ij+Ω2
ij . This last condition is met if two negative eigenvalues

of S2
ij + Ω2

ij occur thus if the second ordered eigenvalue (λ2) is negative.
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Figure 10.7: Spanwise elemental force coefficient distributions in cruise at
JCR,2.
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Figure 10.8: Spanwise elemental force coefficient distributions in take-
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(a) Individual A. (b) Individual B.
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Figure 10.11: Vortex core visualization at JTO,2 using iso-surfaces of λ2

(λ2 < 0).
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10.3 Aeroacoustic characteristics

In terms of aeroacoustics, Fig. 10.12 shows the directivity plots at the Blade Passing
Frequency (BPF) for all individuals at the design advance ratio of the cruise and
take-off/landing design conditions (JCR,2 and JTO,2). As apparent from table 10.5
and Fig. 10.12, significant gains are achieved. Part of the gains of all individuals in
the cruise condition are explained by higher advance ratios (hence lower helical tip
Mach numbers)(from JCR,2 = 3.37 for the benchmark to values higher than 3.57 for
the optimized individuals). This is the net result of the constraint on JCR,2. This
also implies that the truncation operator is only active for regions near the tip where
Mr is likely to fall within the truncation range. It should be noted, however, that the
results for the take-off/landing condition consider steady tonal sources only whereas
unsteady sources might be significant contributors because of the low Mach number.

Fig. 10.12(a) also reveals major differences in terms of directivity in cruise con-
dition: swept individuals (C and D) have a lower SPL in the propeller plane but
radiate more effectively along the rotation axis. Additionally, they radiate more in
the downstream direction than in the upstream one. These two features are also
confirmed by the directivity pattern of the central individual (with 22.5◦ sweep).

Individuals A and B achieve important noise reduction too, although this result
should be considered with some care as neglecting quadrupole noise for unswept blades
operating in transonic flow could result in overprediction of the actual noise reductions
[137, 106]. These individuals have a less loaded tip region (see Fig. 10.7) whilst the
load is transferred to the 75% span where sound is less effectively radiated [137].
Similar beneficial effects of moving the load inboard have been found in [280,75,205].
Comparing to the benchmark and the central individual, the use of thinner airfoils
also plays in favour of noise reduction.

The comparatively higher noise reduction obtained in the propeller plane for in-
dividuals C and D is the direct consequence of tip sweep which causes spanwise inter-
ferences known to be much more effective at high Mach numbers and close to the ro-
tational plane [137]. Moreover, the more uniform pressure distribution at 99% radius,
where sound is radiated more effectively, contributes to the reduction as well [137].
The negative sweep of individual D close to the blade root is believed to be the
main reason for the difference in noise performance when compared to individual C.
Indeed, except for the sweep at the root, the differences in geometry are minimal;
nor do the spanwise loadings (see Fig. 10.7), airfoil shapes and pressure distributions
exhibit significant dissimilarities. This sweep difference causes more noise at BPF in
the upstream direction but less in the propeller plane for blade D.

Considering the take-off/landing condition, differences between individuals are
much smaller (see table 10.5) and no substantial change in advance ratio is observed.
Both swept propellers offer similar noise reductions in the rotational plane as do both
unswept propellers. This agrees well with Hanson’s conclusion that shape variations
have less influence at low Mach numbers [137]. Moreover for this case, sweep does not
lead to a significant advantage. Individuals C and D emit more noise because they are
more heavily loaded near the tip (see Fig. 10.8). Despite the auspicious distribution
with low tip loading, the benchmark emits more noise than the optimized individuals
mainly because of the lower advance ratios, but also because of thicker airfoils and
wider chord. The advance ratio is known as the most potent factor, together with
the number of blades, influencing propeller noise [201]. Individuals A and B have
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Take-off/Landing Cruise
SPL Gain (dB) SPL Gain (dB) Mtip

Benchmark 104.1 − 131.0 − 1.0253
Central individual 106.3 +2.2 120.7 −10.3 1.0225
Individual A 100.3 −3.8 120.3 −10.7 0.9930
Individual B 99.7 −4.4 119.2 −11.8 0.9930
Individual C 102.7 −1.4 117.3 −13.7 0.9990
Individual D 102.4 −1.7 114.3 −16.7 0.9990

Table 10.5: SPL at BPF for receiver 3 in the design condition (J.,2) and helical
tip Mach number in the design cruise condition (JCR,2).

very low noise emissions at the take-off/landing condition, where quadrupole noise
is likely negligible. As the chord distribution is the major difference (except for the
airfoil shapes) between individuals A, B and the benchmark; the ’humpy’ shape of
individuals A and B explains at least partly their surprising performance in this
condition. It is the author’s belief that destructive interferences occur for the sound
emitted at different spanwise locations thanks to the hump.

Analysis of Fig. 10.13 discloses another aspect of the sound emitted in the pro-
peller plane. These results do not indicate any better noise reduction at higher har-
monics neither by sweep nor by humps in cruise condition. In contrary, the reduction
of SPL at the BPF and in some cases at the first BPH, comes with an increase at
higher harmonics. At low Mach number, all optimized individuals exhibit a strong
SPL at the BPF and the first harmonic. But they offer significant decrease for higher
harmonics. As for this condition, no significant change in advance ratio is observed,
the sweep and/or humps are most probably responsible for the differences with the
benchmark.

The time signals for thickness, loading and total noise perceived at receiver 3 in
the cruise condition at the design advance ratio JCR,2 are given in Fig. 10.14. From
that figure, it appears that loading noise is the dominant source in all cases. For the
swept individuals, the characteristic leading edge spike in the thickness noise is faded;
a feature known to be related to sweep [45,18]. Additionally, strong interaction with
loading noise results in efficient total noise reduction. This is the opposite situation to
individual B for which thickness noise has constructive interference with the loading
noise signal. As can be observed for the benchmark and the central individual, a
higher tip Mach number essentially results in more amplitude for the thickness noise
pulse.
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10.4 Conclusions
At this point, it is important to draw general conclusions about the bi-disciplinary
optimization presented in the present part. The search resulted in successful designs
that satisfy all constraints and offer some increase in efficiency as well as a considerable
decrease in tonal noise. The obtained efficiencies are within the expected values for
propellers operating at M∞ = 0.75 were propeller efficiency traditionally drops (see
Fig. 2.4). Through the optimization, innovative designs, in particular in terms of
chord distribution, were trialled. It should be reminded that the optimization has
been prematurely stopped mainly for time and cost considerations, and not because
it was fully converged (i.e. if no additional improvement had been obtained for some
iterations). So it is rather a proof of concept and served as preparatory work for
building up experience before starting the true multidisciplinary optimization that
will be presented in the next part.

In the end, the promising designs are shown on a comparative radar chart such as
Fig. 10.15. This kind of chart represents the pros and cons of each design in a synthetic
way, thereby allowing the design team to take the appropriate decisions. Figure 10.15
reveals how unswept designs came out of the evolutionary process thanks to better
cruise efficiency, low out-of-plane SPL at cruise and low SPL in take-off/landing
conditions. Swept individuals offer mainly the advantage of a low in-plane SPL at
cruise.

• As far as the optimization process itself is concerned, the results validate the
two-level approach discussed in section 3.4. The use of a metamodel, in this
case an ANN, helps in driving the evolutionary process toward designs worth of
interest, at a much lower cost than would have been the case if the performance
was estimated for each individual of any population by a high-fidelity analysis
solely. The recurrent use of an updated database is an efficient way to keep
the error between a performance estimate by the metamodel and its value
obtained by high-fidelity analysis, within acceptable margins. This recursive
training is essential to augment the chances that an optimal design in the space
of the approximate objectives is at least nearly optimal in the space of the real
objectives. Unexpectedly, a high failure rate of the high-fidelity analysis was
observed and is mostly related to meshing issues. So, additional logic has to be
developed to cope with this situation.

• Given the 119 designs that were successively evaluated with the high-fidelity
analysis tools, the fact that only 28 (23.5%) are compliant is the unpleasant
consequence of the use of a metamodel. Its inability to deliver approximations
that are extremely close to the real value means that a large amount of de-
signs are either wrongly assessed (for 76.5% of the 119 individuals) or wrongly
discarded during the evolutionary process.

• The examination of the objectives (defined in Eqns. 8.1-8.3), suggest that the
Ω3-objective is highly linked to its Ω2-counterpart. Hence diminishing the noise
in the propeller plane is an efficient way to diminish the sound out of that plane
at the same time. Though the directivity of highly swept designs suggests that
some consideration should best be given to out-of-plane points as well. For
these reasons, both objectives could be blended into a single one without loss
of information. It is also clear from the analysis that having a multi-point
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optimization is essential as it guarantees the preservation of correct off-design
performance and allows for a true matching of the desired thrust. This should
be paramount over the increase in computational cost.

• The Ω1-objective was formulated in terms of power P . A lower power P at
fixed thrust T and free-stream velocity u∞ implies a higher net efficiency η.
The optimized designs all have a lower power requirement than the benchmark
though the efficiencies are somewhat disappointing. Unfortunately, it has been
found that the tolerance ∆T on the target thrust plays an important role in this
phenomenon. Indeed, all individuals have a lower power P but some generate
a lower thrust T too (i.e. T ∈

[
T target −∆T , T

target
[
). Hence the efficiency is

not always substantially increased.

• One drawback of the workflow described in section 8.4 is that the design cruise
and take-off/landing conditions do not correspond to the same RPM. This is
because of the adaption on JCR,2 and JTO,2 under fixed blade angle βref to
match the respective thrust T target.,2 . In real-world applications, the RPM would
be prescribed by cruise conditions and the blade angle βref,TO adjusted, not
the RPM, during the take-off/landing phase. The choice of a fixed βref at
take-off was made for two reasons. First, changing the blade angle would imply
the elaboration of a fresh mesh for that new case. This is a computationally
more intensive process than just changing some simulation parameters in the
CFD-solver. Moreover, this process might reveal to be tedious as a very high
sensitivity to the blade angle was experienced during the development of the
automated meshing scheme. Second, as an approximation of the performance
curve is known, thanks to the three advance ratios, it is rather easy to estimate
which advance ratio would deliver the proper thrust.

• Given the poor performance of the inboard portion of the blades, even though
this is a traditional feature of propellers, the allowable margins for the twist
and thickness distributions should be adjusted in accordance. Hence further
optimizations should allow for thicker airfoils and more blade twist near the
root.

• Four individuals were earmarked because of their attractive performance. In-
terestingly, two of them have high sweep toward the tip while the other two are
straight blades. All of them feature rather abrupt changes in chord width that
result in observable humps in the planform shape. These humps are associated
with local leading edge sweep.
From the aerodynamic point of view, these four individuals have better per-
formance at the design cruise condition while delivering the required thrust at
the off-design working points. Furthermore, the efficiency is increased at most
operating conditions and the power is decreased. Straight-bladed individuals
have lower power requirements than swept ones.
From the aeroacoustic point of view, all four individuals achieve an overall noise
reduction. This reduction stems from an increase in advance ratio combined
with the beneficial effects of sweep for the swept designs or with an inboard
shift of the load distribution for the straight designs. The unswept individuals
also gained some advantage out of their radiation pattern that have lower lobes
along the flight direction. Nevertheless, these individuals would be penalized
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were quadrupole noise taken into account, because their straight tip does not
help in relieving the transonic compressibility effects arising there.

It is somehow reassuring, to notice that the recipes that came out of the automated
optimization procedure to decrease the total noise are all in perfect agreement with
the parametric studies published in the literature. This is a striking observation and
gives significant confidence in the possibilities of the present optimization method.
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Aerodynamic, Aeroacoustic
and Aeroelastic Optimization
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Chapter 11

Optimization set-up

In this part, a multidisciplinary optimization is presented. As will be discussed later
in this chapter, it includes objectives related to the aerodynamic, aeroacoustic as
well as aeroelastic performance. This optimization takes into account the conclusions
drawn from the bi-disciplinary optimization presented in the previous part.

For the purpose of clarity, this part shares the same organization as the previous
one and the differences are highlighted. The optimization tools described in part I
are again first assembled together. This is presented in the present chapter along
with newly defined parameters, objectives and constraints. Next, chapter 12 focuses
on the analysis of the optimization process itself, from the composition of the DoE-
database to the last population. In that chapter, the accuracy of the metamodel is
also discussed. In the end, a thorough analysis of the aerodynamic, aeroacoustic and
aeroelastic characteristics of some promising designs is given in chapter 13.

11.1 Design variables

Table 11.1 gives an overview of the geometry parameters together with the number
of design variables assigned to each of them. The set is identical with the one used in
part II and 3rd order b-spline interpolation is again used to compute x(r) from the
ordinates xi of the control points. These points may fluctuate over respective intervals
as shown in Fig. 11.1. In general, these intervals offer the same freedom as in the
previous part but the inboard portions of the chord (b/D) and twist (Tw) distributions
have been modified in accordance with the conclusion drawn in section 10.4. The
hope is to gain more thrust from the inboard portion of the blades. Additionally, the
allowance for zero sweep at the tip has been removed so that final designs have at
least some sweep near the tip. The ranges concerning the airfoil shapes are given in
Fig. 11.2. These ranges differ mainly from those of section 8.1 by:

• the reduced range for the 2nd control point for the thickness of airfoil I,

• the allowance for more camber and the restriction on the possibility for negative
camber for airfoil I,
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Variable Number of Number of
Control Points Design Variables

Chord length b(r)/D 7 7
Thickness ratio t(r)/b(r) 4 3
Sweep Sw(r) 4 4
Twist Tw(r) 4 3
Airfoil I thickness tA 6 5 a

Airfoil I camberline yA 4 2
Airfoil II thickness tB 6 5 b

Airfoil II camberline yB 4 1
Total 30
a from blade root to 35% radius
b from 45% radius to blade tip

Table 11.1: Geometry parameters and design variables.

• the allowance for more thickness at the leading edge and on the front part of
airfoil II,

• the possibility for zero camber and the maximum camber for front part of airfoil
II.

The eight-bladed, scaled propeller is 1m in diameter as well. The blade angle
(βref ) is kept at 63◦ for the cruise condition though this time, it is adapted for the
take-off/landing condition (see section 11.3) so that the desired thrust is obtained at
the same rotational velocity as in the cruise condition.

11.2 Optimizer architecture and set-up

The lay-out of the optimization code, shown in Fig. 11.3, is now completely identi-
cal to the architecture described in section 3.4 as all high-fidelity analysis tools are
included. The DoE-database comprised again 64 individuals chosen by fractional
factorial sampling augmented by the central individual and a set of 20 random de-
signs. For this optimization, an off-line trained kriging-metamodel (see section 3.3.5)
is used in the hope to reduce the metamodelling error. The weighting factor F and
the cross-over constant C of the MODE-optimizer (see section 3.2) are both chosen as
0.8. This is another choice that is compliant with the recommendations in [278]. The
evolutionary process is spread on 1000 generations between two successive iterations.
The population size is 50 of which between 10 and 7 individuals are submitted to the
high-fidelity analysis at the end of each iteration.
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11.3 Operating conditions, objectives and con-
straints

Here again, 2 operating conditions with 3 advance ratios each, are used for this multi-
objective and multi-point optimization. JCR,2 is adapted to match the constraint on
minimum cruise thrust TCR,2 with βref fixed, while JCR,1 and JCR,3 are at a fixed
distance from JCR,2 (JCR,1 = JCR,2− 0.4 and JCR,3 = JCR,2 + 0.3). This time for the
take-off and landing condition at low Mach number, JTO,2 is not adapted anymore to
match the constraint on minimum take-off thrust TTO,2 at fixed βref,TO. As proposed
in section 10.4, the operating RPM (fixed by the engine-gearbox arrangement) is kept
constant so that JTO,2 is now computed from JCR,2 by

JTO,2 = JCR,2
u∞,TO
u∞,CR

(11.1)

and the thrust TTO,2 is matched by adjusting the blade angle βref,TO (see section
11.4). JTO,1 and JTO,3 are again at a fixed distance from JTO,2 (−0.2 and +0.2 re-
spectively). These distances proved to be sufficient while avoiding the situation where
some blades are in brake or windmill operation at JTO,3 . The external operating con-
ditions corresponding to cruise are different from those used in part II in that the
free-stream Mach number M∞ has been reduced to 0.7 so that better efficiencies can
be obtained whilst operating in the subsonic tip-speed domain. These conditions and
the take-off/landing ones are summarized in table 11.2.
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Take-off/Landing Cruise
ISA altitude (m) 0 10665
ρ∞ (kg/m3) 1.225 0.380
T∞ (K) 288.15 218.81
M∞ 0.2 0.70
Reb,ref 1.44e06 1.06e06

Table 11.2: Operating conditions. The Reynolds number Reb,ref is based on
mean conditions at 75% radius.

Each discipline has its own objective in the present approach. It consists in a
weighted sum of specific performance under various operating conditions. This time,
the aerodynamic objective is built upon the efficiency instead of the power. This is
to circumvent the possible effect of slight changes in thrust due to the tolerance ∆T .
The two objectives of section 8.3, concerning the SPL, respectively in and out of the
rotational plane, are now blended into a single objective because they turned out to
be highly correlated. For this aeroacoustic objective, the receivers are located at the
same positions as in Fig. 8.4. Finally, an aeroelastic objective is incorporated. The
system of objectives is now:

1. an aggregate of the propeller net efficiency at the three advance ratios both in
the cruise and take-off/landing conditions (Ω1),

2. an aggregate of the Sound Pressure Level (SPL) in and out of the propeller plane
(at receivers 2, 3 and 4) both in the cruise and take-off/landing conditions (Ω2),

3. and an aggregate of the blade total mass, maximum Tsai-Wu criterion value for
the shell and maximum normalized von Mises equivalent stress value in the core,
respectively at the three advance ratios both in the cruise and take-off/landing
conditions (Ω3).

This yields the system

Ω1 = wCR

(
3∑
i=1

waiη
−1
CR,i

)
+ wTO

(
3∑
i=1

waiη
−1
TO,i

)
(11.2)

Ω2 = wCR

(
4∑
j=2

3∑
i=1

wbijSPL
rec j
CR,i

)

+wTO

(
4∑
j=2

3∑
i=1

wbijSPL
rec j
TO,i

)
(11.3)

Ω3 = wmm+

[
wCR

(
3∑
i=1

wciζ
TW
CR,i

)
+ wTO

(
3∑
i=1

wciζ
TW
TO,i

)]

+

[
wCR

(
3∑
i=1

wciζ
VM
CR,i

)
+ wTO

(
3∑
i=1

wciζ
VM
TO,i

)]
(11.4)

in which the weights wCR and wTO are chosen arbitrarily as 0.75 and 0.25 respec-
tively to correspond to the relative time spent in these conditions during a standard
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Take-off/Landing Cruise
(kN) (kN)

T target.,1 48.0 18.5
T target.,2 35.0 11.0
T target.,3 12.5 5.0

Table 11.3: Target thrusts T target.,j .

flight. The weights wai are chosen to yield adequate off-design performance without
endangering the design one (wa2 = 0.7 and wai = 0.15 for i = 1, 3). The weights
wbij are equal to 1/3 so that no receiver is favoured in this objective. The weights
wci are also set to 1/3 as the blade must be structurally sound at all conditions while
the purpose of wm, which is based on the mass of the central individual, is to scale
this term to values close to 1 so that its order of magnitude is similar to that of the
other two terms of this objective.

Besides, constraints are now formulated in terms of either propeller net thrust
and advance ratio at cruise condition or maximum acceptable stress criterion value in
the shell and the core. This results in a set of 19 constraints. The value for thrust and
power are obtained for a 4.5m equivalent propeller from the non-dimensional thrust
and power coefficients. The advance ratio JCR,2 is constrained to less than 3.08
in order to limit the associated tip helical Mach number M tip

CR,2 below 1.0 (ΓJCR,2-
constraint):

ΓJCR,2 = 3.08− JCR,2 (11.5)

For each operating condition J.,i in cruise or take-off/landing, a constraint is put on
thrust with a tolerance ∆T of 0.5kN for the cruise condition and of 2.5kN for the
take-off/landing one. These constraints are formulated in the same way as Eqn. 8.5.

The values T target.,j are chosen so that the same benchmark propeller as in section 8.3 is
at least matched for any operating condition; these values are given in table 11.3. The
benchmark delivers 11kN thrust in the cruise condition at J = 3.26 (Mtip = 0.973)
with an efficiency η of 0.68 and 35kN in the take-off/landing condition at J = 1.13,
thus the same RPM as the cruise condition, with an efficiency of 0.47 though this
time the blade angle is of 43.5◦. These thrust and the corresponding power values
are realistic for a medium-haul aircraft equipped with four propellers.

Moreover, the structural constraints are considered for all operating points J.,i.
They concern the maximum value of the Tsai-Wu criterion ζTW.,j (for the shell) and the
maximum value of the von Mises equivalent stress normalized by the yield strength
ζVM.,j (for the foam core). At present, given the rudimentary blade architecture de-
scribed in section 7.3, the values are arbitrarily constrained below 0.3 for the first
criterion and below 0.5 for the second.

ΓTW.,j = ζTW.,j − 0.3 ≤ 0 (11.6)

ΓVM.,j = ζVM.,j − 0.5 ≤ 0 (11.7)
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11.4 High-fidelity analysis workflow
Now the blade angle βref is fixed for the cruise condition but not for the take-
off/landing one, and because the advance ratio JTO,2 is now computed from Eqn. 11.1,
the high-fidelity analyses may not be conducted concomitantly anymore. Hence the
workflow for this optimization, presented in Fig. 11.4, is perceptibly different from
the one shown in Fig. 8.6 in that the take-off/landing condition is now evaluated
consecutively to the cruise one. The computational time for each individual is thus
dramatically increased. The second difference lies in the introduction of the CSM
solver at the end of each computational block. For practical reasons, it is kept in
sequence with the CFD and CHA analyses though strictly speaking the pressure
interpolation (see section 7.3.3.2) might start once the CFD solution is known.

Once again, the 10 to 7 best individuals are submitted to the high-fidelity analysis
at the end of each iteration. The process starts by building the blade model for the
cruise condition (with βref,CR = 63◦) from the design vector (see chapter 4) before
generating a mesh. If the mesh does not satisfy the quality measures listed in section
8.4, the mesh parameters are automatically adjusted. 18 adjusting sequences have
been programmed. If no correct mesh is obtained despite those efforts, the process
stops and no data is transfered to the training database. In case an acceptable mesh
is obtained, the individual is passed to the CFD-solver. In the first run, JCR,2 is
chosen arbitrarily as the corresponding mean value of the DoE-database. To have a
safe interval of the performance curve, which is necessary for precise adaption, JCR,3
is taken as JCR,2 + 0.3 and JCR,1 as JCR,2− 0.4. At the end of the CFD-analysis, the
non-dimensional performance values are computed. From these values, the thrust of
an equivalent 4.5m propeller is calculated. If the thrust TCR,2 does not match the
target within the allowable interval ±∆T , a new advance ratio JCR,2 is interpolated
from the known performance curve. Polynomial interpolation of degree 2 is used for
that purpose. The CFD-analysis is then run again with these new values though some
computational time is saved by starting from the previous JCR,3-solution. Once the
CFD-solution is known for all advance ratios, the CHA-solver computes the SPL at all
five receiver locations. The pressure interpolation is then performed concomitantly for
the three advance ratios before starting the CSM-solver. A dedicated post-processor
reads the data file written by the three solvers and computes the desired dimen-
sional and non-dimensional performance values which, in the end, are written to a
performance file.

The block for the evaluation of the performance at the take-off/landing condition
is built in the same manner as the one for cruise but it is started in a parallel way once
the CFD-solution is known and JCR,2 is adapted according to Eqn. 11.1. The first
blade model is built with a blade angle βref,TO of 45◦. If the mesh is not satisfactory,
the meshing parameters are adjusted in accordance with the experience gained from
part II. Up to 72 trials are done. A satisfactory mesh is immediately passed to the
CFD-solver which computes sequentially the three advance ratios. At this stage, the
obtained thrust TTO,2 is compared to the target one. If the target value is not matched
within the tolerance margins, the target thrust coefficient CtargetT is computed from
T targetTO,2 and JTO,2 before computing the new value of βnewref,TO by

βnewref,TO = α2C
target
T

2
+ α1C

target
T + α0 (11.8)

where the α2- and α1-coefficients are mean values computed from similar regressions

173



CHAPTER 11. OPTIMIZATION SET-UP

DESIGN VECTOR
x

BEST INDIVIDUALS
  OF POPULATION

BLADE MODEL
      & MESH

 MESH
QUALITY?

ADAPT
MESH

CFD ANALYSIS

JCR,1JCR,2JCR,3

ΓT
CR,2<0 ?

ADAPT
JCR,2

CHA ANALYSIS

JCR,1JCR,2JCR,3

PERFORMANCE

C
R

U
IS

E

once

18 tria
ls

BLADE MODEL
      & MESH

 MESH
QUALITY?

ADAPT
MESH

CFD ANALYSIS

JTO,1JTO,2JTO,3

ΓT
TO,2 <0 ?

ADAPT
βref,TO

CHA ANALYSIS

JTO,1JTO,2JTO,3

PERFORMANCE

T
A

K
E

-O
F

F
/L

A
N

D
IN

G
once

72 tria
ls

CONVERT
C

R
,2

J
T

O
,2

J

PRESSURE INTERPOLATION

JCR,1JCR,2JCR,3 JTO,1JTO,2JTO,3

CSM ANALYSIS

JCR,1JCR,2JCR,3

CSM ANALYSIS

JTO,1JTO,2JTO,3

PRESSURE INTERPOLATION

Figure 11.4: High-fidelity analysis workflow.

on a set of reference blades, and the α0 is a fine-tuning coefficient computed indi-
vidually for each blade from the thrust coefficient CT ;TO,2 obtained from TTO,2 and
JTO,2:

α0 = βref,TO −
(
α2CT ;TO,2

2 + α1CT ;TO,2

)
(11.9)

Once the new value βnewref,TO is known, a new blade model is made and the meshing
sequence initiated before launching the CFD-analysis. This adaption of the blade
angle is performed only once. The remaining steps of the workflow are identical to
those of the cruise condition.
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Chapter 12

Survey of the optimization
process

12.1 DoE-database

The DoE-database comprised 85 individuals (see section 11.2). The failure rate for
this set is of 27.1%; mainly because of breakdown in the meshing. The higher per-
centage than in section 9.1 is the direct consequence of the necessity to develop two
meshes for the take-off/landing condition because of the adaption on βref . The radial
distributions defining the geometry of those blades are given in Fig. 12.1. The non-
dimensionalized objective values (Ω̂) of the individuals in the database, are shown
in Fig. 12.2 where non-dimensionalization is achieved with respect to the respective
maximum Ω-value among the DoE-database or the benchmark. These two figures
show the diversity of the individuals contained in the database both in terms of ge-
ometry as well as objective values. Thanks to the lower free-stream Mach number,
the benchmark is now among the quietest designs despite its geometrical simplicity.
Figure 12.2 clearly reveals that the objectives are now fully competing unlike the
previous optimization.

In terms of constraints with respect to thrust, many individuals of the DoE-
database satisfy them simultaneously even though the constraint on the design take-
off/landing thrust (ΓTTO,2) appears to be the most difficult one to satisfy (see Fig. 12.3).
The regressions for the βref,TO-adaption discussed in section 11.4, are partly respon-
sible for this and the additional data gathered during the DoE-database development
is used to update the α-coefficients of Eqn. 11.8. This time, the constraint on the
cruise advance ratio JCR,2 is immediately satisfied in all cases. For what concerns the
structural constraints ΓTW and ΓVM , Figs. 12.4 and 12.5 show that many individuals
from the database are structurally sound for the considered operating conditions. It
is also evident from those figures that the increased centrifugal load at J.,1 is re-
sponsible for more individuals to fail on these constraints. The central individual
is characterized mainly by unacceptable solicitation of the foam core as is apparent
from Fig. 12.5.
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Figure 12.1: Planform definition of the individuals contained in the DoE-
database.
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12.2 Metamodel accuracy
The kriging-metamodels used in the present optimization, rest upon non-dimensional
values of each performance parameter. Non-dimensionalization and normalization
occur with respect to a −10% offset from the lowest and a 10% offset from the highest
values present among the database. Figure 12.6 shows the accuracy of the respective
metamodels for some normalized performance values in the cruise condition.

For JCR,2, TCR,2 and SPLrec3CR,2, the kriging metamodel is a much better estimator
than was the ANN-metamodel of the previous optimization. As is confirmed by
table 12.1, both the mean error and the standard deviation are much smaller than
previously. This is especially true for SPLrec3CR,2 which was the worst estimate in the
previous run. Unexpectedly, it is now PCR,2 that is badly estimated and in the present
case the metamodel is quasi systematically overestimating it. This translates in a high
mean error and standard deviation though these quantities should be treated with
care as the corresponding central plot from Fig. 12.6 suggests that these data are not
normally distributed.

Both ζ-values in cruise reveal the difficulty for the metamodel to correctly capture
all relationships between the design variables and the value of stress criteria. Indeed,
in both cases, some individuals were estimated in the low ζ-range whereas they had
in fact high ζ-values, hence the spreading of points close and along the abscissa in the
corresponding left-side plots. The mean error on ζTW is less than 10% and artificially
high because of a few ”accidents” with huge discrepancies between the estimate and
the actual value. The mean error on ζVM is much lower because less mis-estimations
happened.

Interestingly, the picture is globally better for the performance values estimated
in the take-off/landing condition (see Fig. 12.7). All mean errors are reduced and
the standard deviation is kept within reasonable limits (see table 12.1). This is
surprisingly true for PTO,2 which is estimated in a much more accurate way than in
cruise though in a similar manner as the optimization from the previous part.

The kriging-metamodels are globally much more proficient than the ANN-meta-
models used in part II. Despite their attractive accuracy and robustness, this short
analysis reveals the benefits of maintaining high-fidelity analysis tools embedded in
the optimization loop to safeguard the relevancy of the decisions. The safe estimates
concerning the SPL despite an even higher level of interaction, and the overall better
accuracy underline the capacity of kriging-models to predict very complex systems.

Take-off/Landing Cruise
µ(q̃ − q̂) σ(q̃ − q̂) µ(q̃ − q̂) σ(q̃ − q̂)

J.,2 − − −0.037 0.075
T.,2 0.000 0.101 0.018 0.061
P.,2 0.000 0.132 0.195 0.209
SPLrec3.,2 −0.006 0.061 0.006 0.053
ζTW.,2 −0.030 0.094 −0.096 0.165
ζVM.,2 −0.020 0.117 −0.026 0.105

Table 12.1: Mean bias µ and standard deviation σ of the error on normalized
metamodel estimates.
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Figure 12.6: Metamodel accuracy, normality test and histogram with density
for ĴCR,2, T̂CR,2, P̂CR,2, SP̂Lrec3CR,2, ζ
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.,2 and ζVM.,2 . For the metamodel accuracy,

the mean error is shown by ’. . .’ and the standard deviation around the mean
error by ’- - -’. 181
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Figure 12.7: Metamodel accuracy, normality test and histogram with density
for T̂TO,2, P̂TO,2, SP̂Lrec3TO,2, ζ

TW
.,2 and ζVM.,2 . For the metamodel accuracy, the

mean error is shown by ’. . .’ and the standard deviation around the mean error
by ’- - -’.
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12.3 Optimization results
The optimization process is spread over 42 iteration loops that resulted in total in
2100 designs proposed at the end of the iterative loops. 446 of them were fed through
the high-fidelity analysis. For the last 10 iterations, no improvement for any of the
objectives was witnessed notwithstanding the fact that new blade shapes were pro-
posed. This was the reason to stop the process and keep the cost within reasonable
margins.

In the approximate objective space (Ω̃i for i = 1, 2, 3) shown in Fig. 12.8, the
optimization evolved toward minimization of the objectives albeit apparently, in a
less striking manner as for Fig. 9.6. The individuals proposed by the optimizer are
much more clustered around those of the DoE-database than in the previous part.
Another feature is that no visible fronts are present on Fig. 12.8 whereas some were
on Fig 9.6. It is unclear whether this is a consequence from the fact that the Pareto-
front is now a true 3-D surface (the objectives are now fully competing unlike in the
previous run; hence fronts are less obvious) or because there is poorer convergence
within the generation loops toward the Pareto-front corresponding to each single
iteration.

Of the 446 designs that were submitted to the high-fidelity analysis, only 176
successfully processed through it. Their respective planform distributions are given in
Fig. 12.9. The high failure rate (60.5%) is mostly the direct consequence of difficulties
to obtain an acceptable mesh but Fig. 12.9 suggests that the search space is not
artificially restrained by these faults.
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Figure 12.8: Pareto-front in the objective space built upon approximates. (’©’
for individuals proposed by the optimizer at the end of each iteration - ’∗’ for the
DoE-individuals - ’5’ for the individuals successfully evaluated by high-fidelity
analysis and that satisfy all constraints concomitantly.)
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Figure 12.9: Planform definition of the 176 individuals processed through high-
fidelity analysis (CFD and CHA solvers).

Nevertheless, 61 individuals that concomitantly satisfy all constraints were ob-
tained. This is a substantial improvement with respect to the previous optimization.
These individuals are indicated on Fig. 12.8 and are located in the 3rd-quadrant of the
constraint values plots in Figs. 12.12-12.14. The evolution toward better satisfaction
of the constraints appears clearly from those figures, certainly in terms of structural
constraints but also in terms of thrust constraints at the take-off/landing condition.
The normalized objective values in the high-fidelity space of the 176 individuals are
shown in Figs. 12.10 and 12.11 together with the original DoE-values. From both
figures, the evolution toward minimal Ω-values is apparent; especially in terms of the
Ω2- and Ω3-values that show the biggest relative reduction from the DoE-database.
The band distribution on Fig. 12.10 suggests less decrease could be obtained in terms
of the Ω1-objective. The comparison of Figs. 12.8 and 12.10 is indicative of the better
quality of the metamodels as discussed in section 12.2.

Figure 12.15(a) shows the striking increase in cruise efficiency for the optimized
individuals eventhough the efficiency in take-off/landing condition does not benefit
from a similar development (Fig. 12.15(b)). Hence the other terms than ηCR,2 in
Eqn. 11.2 are essentially responsible for the stagnating Ω1-values.

The planform definition of the 61 individuals that comply with all constraints,
are given in Fig. 12.16. As is visible on Fig. 12.16(b), a considerable subset of these
individuals have small geometrical sweep toward the tip. Remarkably, most blades
feature one or more humps in the chord distribution and are built upon thin airfoils.
A detailed analysis of some of the best performing individuals will be given in the
next chapter.
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Figure 12.16: Planform definition of the 61 individuals that concomitantly
satisfy all constraints.

189





Chapter 13

Analysis of specific
individuals

In the present chapter, four peculiar blade designs from the 61 discussed in section
12.3, are presented with more details about their aerodynamic, aeroacoustic and
aeroelastic performance. Finally, conclusions pertaining to the present optimization
and its results, are drawn.

13.1 Objective-values, constraint-values and ge-
ometries

Out of the set of individuals that satisfy all constraints, 4 have been earmarked for
their performance (see Fig. 13.1):

1. individual A because it has the lowest Ω̂1-value,

2. individual B because it has the lowest Ω̂2-value,

3. individual C because it has the lowest Ω̂3-value,

4. and individual D because it has the highest cruise efficiency ηCR,2.

Individuals A, B and C are of rank 0 whereas individual D is of rank 2. Figures
13.2, 13.3 and 13.4 show the constraint satisfaction values for those four individuals.
All of them are within the compliant domain in terms of thrust and benefit from a
comfortable margin in terms of stress criteria. The central individual of the DOE-
database is also given for reference purposes despite the fact that it does not satisfy
the constraint on thrust at J.,2, the ΓTWTO,1-constraint and some ΓVM.,j -constraints.

The distributions defining the geometry of individuals A-D are given in Fig. 13.5
and the resulting planforms are shown in Fig. 13.6. All individuals exhibit a wavy
chord distribution that translates into noticeable humps in the planform shape, and
have rather thin sections. The hump is located between 60%- and 80%-radius. Indi-
vidual D has a twist distribution that is different from the others in that it has less
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Figure 13.1: Normalized objective values of individuals A, B, C and D. (’◦’
for individuals satisfying all constraints concomitantly - ’�’ for the central in-
dividual - ’◦’ for the benchmark)

Individual A B C D Benchmark Central
SwLE 36.8◦ 41.5◦ 33.0◦ 36.5◦ 17.0◦ 45.0◦

Table 13.1: Leading-edge sweep (SwLE).

twist near the root. In terms of geometrical sweep, the 4 blades feature low geomet-
rical tip sweep. As such, this is a surprising feature for high-speed blades but the
planforms reveal that leading-edge sweep is obtained anyway by the combined effect
of the geometrical sweep and the taper induced by the diminishing chord toward the
tip. The values of SwLE for individuals A-D, given in table 13.1, suggest that all of
them have moderate to high leading-edge sweep toward the tip.

The optimized airfoil shapes are shown in Fig. 13.7. The main characteristics of
the optimized airfoils are:

• the increased camber of airfoil I for all individuals,

• the more narrow and flatter front of airfoil II in all cases, with the crest on
the suction side located around 60%-chord and the thicker rear part. This is a
similar trend to the results of transonic airfoil optimization [175].

The first item was not present in the previous optimization as this possibility was very
limited by the allowable ranges. The position of the crest and the flatter front on the
suction side were already present in section 10.1 though the crest was less pronounced.
The shape of the front part of the pressure side of airfoil II is significantly different
with this optimization in that more thickness is present. This is mainly due to the
camber in the front part.

13.2 Aerodynamic performance

13.2.1 Overall performance

The aerodynamic performance of individuals A-D in terms of CT , CP and η are
given in Fig. 13.8. In cruise, at JCR,2, these blades deliver the required thrust within
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Figure 13.5: Planform definition individuals A, B, C and D.
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Figure 13.6: Blade geometry of individuals A, B, C, D, the benchmark and
the central individual.
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Figure 13.7: Optimized airfoils. Note that airfoil I for the benchmark is a
NACA 65-010CA and airfoil II is a NACA 16-009.

ηCR,1 Gain (%) ηCR,2 Gain (%) ηCR,3 Gain (%)
Benchmark 0.602 − 0.684 − 0.693 −
Central individual 0.500 −10.2.0 0.545 −13.9 0.501 −19.2
Individual A 0.674 +7.2 0.732 +4.8 0.728 +3.5
Individual B 0.649 +4.7 0.708 +2.4 0.707 +1.4
Individual C 0.662 +6.0 0.722 +3.8 0.735 +4.2
Individual D 0.678 +7.6 0.739 +5.5 0.749 +5.6

Table 13.2: Aerodynamic efficiency η in cruise condition.

a margin of 2.2%. They all operate at a much higher advance ratio, hence a lower
RPM, than the benchmark. In terms of thrust-coefficient, differences are small except
for the lowest advance ratio JCR,1 where individuals C and D deliver an additional
3kN -thrust when compared to the others. Differences are more pronounced in terms
of power-coefficient and result in significant differences in required power and effi-
ciency as is apparent from tables 13.2 and 13.3. Efficiency gains in the design cruise
condition range between +2.4% and +5.5% depending on the individual. The direct
consequence of these achievements are benefits in power at the design cruise condition
(see Fig. 13.8(a)) of the order of 8% to 13% (table 13.3). Improvements are achieved
in off-design conditions as well with acceptable performance.

In the take-off/landing conditions, individuals A and D, chosen for their aerody-
namic performance, come with an increase in efficiency (see table 13.4 and Fig. 13.8(b))
though only individual A offers a real decrease in required power (see Fig. 13.8(b)).
In this condition, the individuals operate at a slightly higher advance ratio than the
benchmark as well. The adaption process on βref described in section 11.4, results
in blade angles ranging from 45◦ to 47.5◦ depending on the individual.

13.2.2 Local features

Figure 13.9 shows the distribution of elemental thrust (Tel) and elemental PTF
(PTFel) in the design cruise condition. Comparing to the benchmark, this figure
reveals that all individuals benefit from an increased contribution from the inboard
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Figure 13.8: Thrust and power coefficients (CT and CP ) at design and off-
design conditions with the corresponding efficiency η. The lines for constant
thrust T.,2 (’−−’) and constant power P.,2 (’−·’) are based on the benchmark.

Individual A B C D Benchmark Central
PCR,2 (kW ) 3034 3112 3071 2947 3388 3391
Gain (%) −10.4 −8.1 −9.3 −13.0 − 0.0

Table 13.3: Power PCR,2.
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ηTO,1 Gain (%) ηT0,2 Gain (%) ηTO,3 Gain (%)
Benchmark 0.425 − 0.466 − 0.365 −
Central individual 0.417 −0.8 0.448 +1.8 0.506 +14.1
Individual A 0.435 +1.0 0.506 +4.0 0.585 +22.0
Individual B 0.395 −3.0 0.459 −0.7 0.563 +19.8
Individual C 0.385 −4.0 0.460 −0.6 0.527 +16.2
Individual D 0.401 −2.4 0.479 +1.3 0.547 +18.2

Table 13.4: Aerodynamic efficiency η in take-off/landing condition.

part of the blade in the total thrust. The corresponding load is taken from the out-
board part so that the tips are more lightly loaded. The PTF is more uniformly
distributed than the benchmark or the central individual. Both for the thrust and
the PTF, the major contribution comes from the blade region between 60%- and
90%-radius. These curves are relevantly different from those of Fig. 10.7 in that the
load is more effectively removed from the tip region and transferred to the inboard
part.

The corresponding local distributions of the pressure coefficient Cp are given in
Fig. 13.10 for different radii at the design cruise condition. At 25%-radius, all pressure
distributions are more favourable when compared to the benchmark or the central
individual. Individual B features a strong shock located immediately after the abrupt
change in curvature on the suction side at 20%-chord (see Fig. 13.7(a)). This shock
spans practically the whole blade in the radial direction and partly explains its lower
efficiency. In any case, the results at low radii are in contrast with those presented
in section 10.2.2 where thrust production from the inboard part was virtually non-
existent due to the inadequate pressure distribution. The driving factor behind this
improvement is the allowance for increased camber for airfoil I. At 50%-radius, both
individuals B and C feature a shock but of different strength. Overall, the pressure
distributions are again more favourable than the benchmark or the central individual,
and constitute a substantial improvement from section 10.2.2. The portion around
75%-radius contributes significantly to the thrust and PTF when compared to the
other parts of the blade. At this radius, individuals B-D feature a shock of similar
strength yet it is stronger than the one present on individual A. This station is more
lightly loaded than the corresponding one on the benchmark and the existing load is
clearly located toward the leading-edge because of the shock located on the forward
part of the airfoil. Near the tip, the load is also concentrated toward the leading-edge
but shocks tend to be rather weak. The pressure distributions at 75%- and 99%-
radius also confirm that less load is present in those regions when compared to the
benchmark. The last is true for the present blades to a larger extent than for those
of section 10.2.2.

For all individuals, the optimization of the airfoils resulted in shapes that cause
the load to be located on the forward part of the airfoil, especially at high radii.
Except for the tip region, the more narrow front part of airfoil II combined with
its thicker rear part, results in a shock location on the first half of the airfoil. This
location is known to produce less wave drag than aft locations but comes with less
loading when compared to the results of Li et al. [175].

The distributions of thrust and PTF in the design take-off/landing condition are
given in Fig. 13.11. When compared to individuals A and B, the higher contribution
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Figure 13.9: Spanwise elemental force coefficient distributions in cruise at
JCR,2.
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Figure 13.10: Pressure coefficients Cp at 25%, 50%, 75% and 99% radius for
the cruise condition at JCR,2 (’−−−’ optimized individual, ’−−’ benchmark and
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’−−’.
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Figure 13.11: Spanwise elemental force coefficient distributions in take-
off/landing at JTO,2.

from the inboard part of individuals C and D to thrust, is the consequence of the
airfoil shape and blade twist. They result in more favourable pressure distributions
with less suction on the pressure side (see Fig. 13.12). Unfortunately, this comes
with higher PTF for most stations; thence a higher required power (see table 13.4).
At 50%-radius, the pressure distributions of all individuals are more favourable than
the benchmark and part of the pressure-load is moved aft when compared to the
cruise condition. Both at 25% and 50%, the pressure distributions are better than
those obtained during the previous optimization. At 75%-radius, individuals A and
B are leading-edge loaded and feature a strong suction that is immediately followed
by a strong recompression which is associated with the leading-edge vortex system
(see Fig. 13.13). Individuals B and C have their pressure-load reparted over most
of the chord because the vortex system is significantly different at this station. This
station is located anyway in the part of the blade that contributes the most to the
overall forces and from there on to the tip, the load is rapidly decreasing. The tip
region, in contrast to the 75%-region, does not contribute as significantly and, for all
individuals, it is much less loaded than the corresponding one on the benchmark. For
individuals C and D, the last two stations have nice pressure distributions.

13.3 Aeroacoustic performance

Figure 13.14 shows the directivity plots at the BPF of all individuals for the design
advance ratio in the cruise (JCR,2) and take-off/landing conditions (JTO,2). It should
be once more reminded that the results in take-off/landing conditions do not take
the influence of unsteady tonal sources, though they might be significant contributors
because of the low Mach number. As apparent from that figure and table 13.5,
significant gains are achieved for individual B with respect to the benchmark. Gains
are moderate for individual D whereas individuals A and C come with a small SPL
decrease. Additionally, it appears that the gains obtained in the cruise condition
are of similar magnitude as those obtained in the take-off/landing condition, except
for blades A and C. Noticeably, all optimized blades emit more sound than the
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Figure 13.12: Pressure coefficients Cp at 25%, 50%, 75% and 99% radius for the
take-off/landing condition at JTO,2 (’−−−’ optimized individual, ’−−’ benchmark
and ’·····’ central individual).

benchmark at the back of the rotational plane but this is offset upstream of it. In
all cases, the tip operates well into the subsonic domain for the cruise condition as is
apparent from table 13.5. Interestingly, the optimization at a lower Mach number (0.7
versus 0.75 in part II) did result in lower tip speed also. Despite the possibility for
nearly sonic tip speeds (as JCR,2 is not fixed), it is left unused even though higher tip
speed are usually associated with higher efficiencies. On the other hand, this implies
that the truncation operator is totally inactive for blades A−D.

The results suggest that the optimization effectively processed toward lower SPL
values with all individuals emitting much less noise than the central individual which is
representative for the SPLs present in the DOE-database. They all have a directivity
pattern comparable to the ones obtained in section 10.3 for blades A and B. The
differences are mainly concerning the SPL upstream of the rotational plane in cruise
condition (around 100dB now against 110dB in section 10.3 for ϕ = 67.5◦) and a
higher SPL for receiver 3 in take-off/landing except for individual B.

Figure 13.15 shows the acoustic signals in the time domain at receiver 3 in the
design cruise condition (JCR,2). The loading noise is the dominant source in all cases.
The optimized shapes result in an effective suppression of the characteristic spike in
the thickness noise that is associated with the leading edge. From the comparison of
tables 10.5 and 13.5, it is worth noticing that despite the reduction in tip speed, no
decrease of the SPL is witnessed because the loading noise is dominant in all cases.

In terms of blade passing harmonics (see Fig. 13.16), the optimized shapes result
in a decrease of the SPL at the higher harmonics in the cruise condition even though
this was not an objective as such. The decrease is relatively independent of the
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Figure 13.13: Vortex core visualization at JTO,2 using iso-surfaces of λ2

(λ2 < 0).
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Figure 13.14: Directivity plots based on the SPL at BPF.

Take-off/Landing Cruise
SPL Gain (dB) SPL Gain (dB) Mtip

Benchmark 105.2 − 124.2 − 0.9728
Central individual 109.0 +3.8 130.8 +6.6 0.9384
Individual A 106.3 +1.1 123.9 −0.3 0.9302
Individual B 100.0 −5.2 114.5 −9.7 0.9396
Individual C 107.8 +2.6 124.1 −0.1 0.9349
Individual D 104.0 −1.2 119.6 −4.6 0.9364

Table 13.5: SPL at BPF for receiver 3 in the design condition (J.,2) and helical
tip Mach number in the design cruise condition (JCR,2).
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harmonic number. This is a very different situation than in section 10.3 where higher
tip speeds brought higher tones at high frequency. At low Mach number, all optimized
individuals exhibit a strong SPL at the BPF and a lower one for the higher harmonics.
All of them radiate more sound than the benchmark at higher frequencies for that
flight condition.

13.4 Aeroelastic performance

Table 13.6 gives an overview of the blade mass (m), the Tsai-Wu criterion value (ζTW )
in the shell and the von Mises equivalent stress value normalized by the yield strength
(ζTW ) in the core, for the design cruise condition. Given the inefficient use of the blade
material in a monocoque design, these results are promising. Despite the presence
of humps, all individuals come with relatively low ζ-values. The inclusion of the Ω3-
objective, taking structural considerations into account is primarily responsible for
this achievement. Such results would not have been achieved with ’go-no go’ criteria
solely, such as the ΓTW - and ΓVM -constraints. Such constraints are indeed only able
to fence the compliant domain within the search space and are not able to drive the
search to minima.

Figures 13.17 to 13.20, show ζTW and ζVM for individuals A to D respectively. In
all cases, the maximum stresses in the shell occur on the ridges of the transition region,
which is clearly the most critical part of those blades. This is a reassuring fact as a
better structural design with a tailored use of the materials will undoubtedly lead to a
reduction of the stresses in this region. On all blades, the hump causes higher, though
not significantly high, stresses in the shell along the leading- and trailing-edge region
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Figure 13.16: Envelope of the BPF-harmonics in the propeller plane (re-
ceiver 3).

Individual A B C D Benchmark Central
m (kg) 44.87 43.32 39.54 42.45 35.78 53.19
ζTWCR,2 0.104 0.110 0.086 0.087 0.069 0.0566
ζVMCR,2 0.224 0.176 0.142 0.185 0.266 0.499

Table 13.6: Stress criteria at JCR,2.
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(a) ζTWCR,2 on the pressure
side.

(b) ζTWCR,2 on the suction side. (c) ζVMCR,2 in the foam core.

Figure 13.17: Stress criteria for individual A in cruise (JCR,2).

located inboard of the hump. Except for individual B, the stressed region extends
far inboard for up to 3 or 4 maximum chord from the hump. These stresses result
from the lumped mass associated with the hump but, given their low values, they do
not constitute a structural challenge as such. In the core, the hump does not lead
to significant stresses either. The core is the most solicited at the root underneath
the trailing-edge. Again, this situation might improve greatly with a more refined
structural design. The lower ζTW - and ζVM -values for individual C are mainly the
consequence of the low blade mass thanks to thinner sections.

In the take-off/landing condition, the centrifugal load is similar to the one in
cruise because the RPM is equal between both conditions (see section 11.4). The only
change comes from the different blade angle βref that results in a slight difference in
centrifugal twisting moment. Hence it is essentially the change in pressure-load that
is responsible for a decrease of the stresses in the shell and an increase in the core
for individuals B, C and D when compared to the design cruise condition (see tables
13.6 and 13.7). Only individual A benefits from a decrease of the stresses in the core
as well. The analysis of Figs. 13.21 to 13.24 reveals that the maximum solicitation
of the shell has moved from the edge of the transition region with the root, to the
edge of the transition region with the aerodynamic shape. Individual B is the only
exception to this as the highest criterion values still occur on the ridges. Another
feature is that the shell on the pressure side of the outboard part (from the end of
the transition up to the tip) is less solicited than in the cruise condition whereas the
suction side is more solicited with the high stress region extending much more in the
chordwise and spanwise directions from the leading- and trailing-edge.

The core has the maximum solicitation kept within the root as was the case in
cruise. At other stations, the stresses in the core have the same order of magnitude
as in cruise though they have a slimly different pattern.
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(a) ζTWCR,2 on the pressure
side.

(b) ζTWCR,2 on the suction side. (c) ζVMCR,2 in the foam core.

Figure 13.18: Stress criteria for individual B in cruise (JCR,2).

(a) ζTWCR,2 on the pressure
side.

(b) ζTWCR,2 on the suction side. (c) ζVMCR,2 in the foam core.

Figure 13.19: Stress criteria for individual C in cruise (JCR,2).

Individual A B C D Benchmark Central
ζTWTO,2 0.081 0.050 0.068 0.080 0.090 0.165
ζVMTO,2 0.191 0.199 0.163 0.191 0.325 0.718

Table 13.7: Stress criteria at JTO,2.
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(a) ζTWCR,2 on the pressure
side.

(b) ζTWCR,2 on the suction side. (c) ζVMCR,2 in the foam core.

Figure 13.20: Stress criteria for individual D in cruise (JCR,2).

(a) ζTWTO,2 on the pressure
side.

(b) ζTWTO,2 on the suction side. (c) ζVMTO,2 in the foam core.

Figure 13.21: Stress criteria for individual A in take-off landing condition
(JTO,2).

209



CHAPTER 13. ANALYSIS OF SPECIFIC INDIVIDUALS

(a) ζTWTO,2 on the pressure
side.

(b) ζTWTO,2 on the suction side. (c) ζVMTO,2 in the foam core.

Figure 13.22: Stress criteria for individual B in take-off landing condition
(JTO,2).

(a) ζTWTO,2 on the pressure
side.

(b) ζTWTO,2 on the suction side. (c) ζVMTO,2 in the foam core.

Figure 13.23: Stress criteria for individual C in take-off landing condition
(JTO,2).
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(a) ζTWTO,2 on the pressure
side.

(b) ζTWTO,2 on the suction side. (c) ζVMTO,2 in the foam core.

Figure 13.24: Stress criteria for individual D in take-off landing condition
(JTO,2).

13.5 Conclusions
The multi-point and multidisciplinary optimization procedure presented in the current
part, includes aerodynamics coupled with aeroacoustics and basic aeroelasticity. It
led to a series of blade designs that are compliant with all constraints and offer
interesting efficiencies as well as acceptable tonal noise emissions. Here again, the
designs feature innovative chord distributions. Moreover, the final designs tend to
have low geometrical tip sweep but leading-edge sweep is obtained through the taper
induced by the decreasing chord toward the tip. Both peculiarities are the result
of the optimization process itself and not an artefact of the parameterization or a
limitation of the design space.

The comparative radar chart in Fig. 13.25 illustrates the complexity of the decision
to be taken at the end of the optimization process. The four designs that were
discussed in more details in this chapter have cruise efficiencies that are close to each
other and differ mainly in the tones emitted in the propeller plane as well as the
level of stresses during cruise or take-off/landing. The design team is indeed left with
a bunch of designs (in the end many of the designs obtained in section 12.3 could
be presented on such a chart) with their respective pros and cons but the author
purposely leaves this discussion to more appropriate instances.

• Once more, the two-level approach (see section 3.4) proves to be a convenient
way to perform optimization. It is efficient, safer than an optimization relying
solely on metamodelling, and cost-effective in terms of computational power.
The quality of the metamodel is of course crucial in safeguarding the process
from inappropriate decisions in the selection step of the evolutionary process.
In the present case, the kriging technique is used and offers reliable estimates
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for most performance parameters.

• Despite the efforts undertaken to avoid failure of the high-fidelity analysis due
to ill-structured meshes, a high failure rate is still experienced. This somehow
raises concerns as it implies that some regions of the search space have been
mistakenly deemed as inconvenient and are left unexplored. But this is the price
to pay for complete automation of the process with the current mesh-generation
software.

• The higher accuracy of the metamodels translates directly in a higher level
of compliant individuals (61 among 176 individuals successively analyzed with
high-fidelity, representing 34.7%).

• The fact that the objectives (Eqns. 11.2-11.4) respectively stem from a single
discipline is the right way to ensure that they truly compete with each other.
Their number has been deliberately kept to 3 in order to facilitate the inter-
pretation of the results without the need for complex visualization techniques.
The drawback of this choice is of course the necessity to introduce weights in
Eqns. 11.2-11.4 and the dependency that comes with them. Once again, the
multi-point character is essential not only to guarantee the off-design perfor-
mance but also in the adaption process so that all individuals are assessed in
the correct conditions.

• This time Ω1-objective was formulated directly in terms of propeller net effi-
ciency η. This efficiently removed the negative influence of the tolerance ∆T

that was found in section 10.4.

• The decision to let the take-off/landing design RPM be the same as the one
in the design cruise condition (see section 11.4), gives better correspondence
between the optimization process and real-world applications. The drawback of
this decision is the increased computational effort that is necessary to generate
a mesh once the blade angle βref has been adjusted to match the desired thrust.
This particular step is strongly correlated to the high-failure rate mentioned
here before.

• The modifications of the search space by changing the allowable intervals for
twist, chord and airfoils resulted in a significant increase of the contribution
from the inboard part of the blade to the net thrust. These changes were
initiated by the findings of section 10.4.

• Four of the optimized designs were presented with more detail because of their
performance in terms of aerodynamics, aeroacoustics or aeroelastics. The four
feature a distinct hump in the chord distribution that contributes to a shift of
the aerodynamic load from the tip to the inboard part. Interestingly, none of
them has high geometrical sweep near the tip even though leading-edge sweep
is present in substantial amounts. This sweep is obtained by tapering the chord
near the tip.
From the aerodynamic point of view, these four individuals have enhanced
efficiencies in the design and off-design cruise conditions while delivering the
required thrust at the all operating points. This leads to a substantial decrease
of the required power.
From the aeroacoustic point of view, all four individuals emit less noise than
the initial designs, especially at the higher harmonics in cruise. The thin airfoil
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sections and the leading-edge sweep make the loading noise dominant over the
thickness noise. As the load is kept constant, this explains why no decrease
of the SPL is witnessed between the present optimization and the previous
one despite the reduction of the tip speed. The radiation pattern is consistent
with blades that feature low geometrical sweep. The four designs have most
of the attributes listed at the end of section 6.2.1.1 as beneficial in terms of
quadrupole noise. The only exception for this is blade B that exhibits a strong
shock along the blade span in cruise. It is therefore suspicious that blade B
has also the lowest objective value with respect to the SPL (Ω2-objective).
This shortcoming illustrates the necessity of at least one of the three following
solutions:

– either the implementation of quadrupole noise sources and volume inte-
gration in the CHA-solver or the use of a permeable integration surface
surrounding the blade so that the contribution from quadrupoles is taken
into account by the integration on the permeable surface provided the
CFD is accurate enough in the domain enclosed by that surface (it is the
most accurate solution but with an increased computational cost in both
cases);

– either the inclusion of terms in one of the objectives to penalize those
individuals that have local flow features that are known to be potent
quadrupole noise producers such as shocks (this is a less accurate solution
but it comes with a low impact on the computational cost);

– or the use of engineering good sense in the post-processing of the opti-
mization results (this is the most arbitrary but also the least expensive
solution).

From an aeroelastic point of view, the four designs have stress-criteria levels
that are acceptable at this stage but require additional tailoring and trimming
of the whole structure to exploit the full potential of composite materials and
reduce blade weight, thence stresses consecutively, to a further extent. The
lumped mass associated with the hump does not result in dramatic stress sit-
uations.
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Conclusions

The present multidisciplinary optimization procedure, incorporating the VKI opti-
mization code, is particularly suited for early design stages. Its purpose is to generate,
analyze and compare as many blade designs as possible before proposing a limited
set of geometries with promising performance. Hence it carries out a comprehensive
and efficient search in the design space.

The optimizer based on MODE performs with satisfaction and is able to cope
with the discontinuities in the mapping between the search and objective space. Such
discontinuities occur because some geometries of a population could not be meshed
for example or from the occurrence of non-linear phenomena like shocks. The fact
that evolutionary algorithms are population based gives them their good behaviour in
this context: they do not rely on the analysis of a single blade design. It is also good
practice to combine such an optimizer with a two-level (or more) approach. This is
especially true when the computational effort of each single analysis is demanding in
time and resources. Metamodels are an interesting option for that purpose. They
provide fast estimates and require moderate efforts for their training. With them,
generations of individuals can be assessed in a few seconds so that the search toward
optima in the objective space is fast when based upon the estimates. Hence the search
is conducted in the approximate objective space which is supposed to be in close re-
semblance with the true objective space. But their accuracy is precisely the major
concern. The present results showed how different metamodels lead to different levels
of accuracy, depending on the performance parameter that is modelled. Kriging-based
models performed significantly better, with one exception, than ANN-metamodels.
This suggests the need for a priori investigations about the quality of the proposed
metamodel for the particular variable it is intended to predict. In this matter, objec-
tives do not necessarily suffer from moderate inaccuracies but constraints do. They
act as go - no go criteria and therefore a small inaccuracy might force a perfectly
sound and even promising individual to be withdrawn from the evolutionary process.
The second-level consists of more accurate, thus also more demanding, high-fidelity
analysis tools. The precious information they deliver is then used to recursively train
the metamodel. Doing so, the validity of the metamodel is maintained even in the
new regions of the design space that are being searched in. This helps to ensure the
overall accuracy, hence relevancy, of the optimization method. It is then evident that
final decisions concerning the optima, should rely on the high-fidelity values.

Concerning the elaboration of a computerized blade model, the use of radial dis-
tributions as a basis for the description of the blade geometry is effective because they
offer a direct translation between a design variable and the blade shape. Major trou-
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ble arises when it come to generating a mesh for CFD-analysis. Despite the efforts
that were undertaken to circumvent the observed deficiencies, this is still the major
cause of failure, at the high-fidelity level. Unfortunately, this implies that many blade
designs could not be passed through the CFD-analysis and have therefore been left
aside during the evolutionary process. Some of them could have had very interesting
performance while other just had an infeasible shape. Fortunately, all that informa-
tion is not completely lost for the search is conducted in the approximate objective
space. If the metamodel is sufficiently accurate in that region, interesting designs
should still provide information.

The CFD-tool uses a proven approach to compute the aerodynamic performance.
Its results are accurate. For relevant optimization, some output, such as propeller
thrust, should be kept constant. This also means that the CFD-tool has to incorporate
a mechanism to assure that proposed blade designs are analyzed under that condition.
This justifies the use of a multi-point approach where the performance of a design is
assessed at different working points. It implies a higher computational cost than a
single point solution but the glimpse of the performance curve that is obtained in this
way, is crucial in the correct adaptation of the working points so that the required
thrust is matched. Moreover, take-off or landing performance of propellers is also
quite important so that at least two operating conditions have to be modelled. The
cost of such analysis is effectively reduced by modelling an isolated propeller with
cyclic boundary conditions so that only a single blade is analyzed. This simplified
model delivers performance values that are in close agreement with the experimental
ones.

The CHA-tool that was developed and used, is also resting upon a well proven
theoretical basis. As long as the assumptions behind formulation 1A of Farassat
hold, the results delivered by the present implementation are within the margins set
by other codes. One should raise concern when the conditions for the logarithmic
singularity occur, i.e. when the projection of the velocity of a point of the blade
surface, along the radiation direction, is close to the speed of sound in the surrounding
air. But given the finite character of acoustic pressure and energy, the author proposed
a truncated approach in which only the first term of a Taylor’s series expansion of the
singular integrands is considered. This term is finite since it is evaluated at a nearly
sonic, but not exactly, condition. This approach is not far from the proposition of
R.K. Amiet [18] to obtain a first-hand calculation by just dropping singular terms from
the integration. Comparisons have shown that the approximates computed with the
present code for singular cases, are within acceptable margins from the more accurate
results obtained by more complete codes. The strong point of the present one is its
computational cheapness which is more than welcome given the large amounts of
blade designs that have to be evaluated under different conditions.

The CSM-tool rests upon a finite elements solver to compute the total mass of
the blade as well the stresses resulting from the centrifugal and aerodynamic forces.
Only a simplified blade model is implemented and the aeroelastic problem is decoupled
from the aerodynamic one. Hence the CSM computations provide a convenient, yet
rudimentary, sanity check from a structural point of view. This tool lacks validation
because experimental data are not documented on relevant materials.

The first optimization delivered a small amount of optimized blades (28) with
respect to aerodynamics and aeroacoustics. All of them satisfy an extensive set of
operational constraints. Moreover, this first optimization pointed out the weaknesses
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of the way the optimization method and high-fidelity tools were implemented, par-
ticularly in terms of ranges for the design variables and of mesh generation. The
formulation of the aerodynamic objective in terms of power coefficient also turned
out to be rather a weak way to improve the propulsive efficiency because of the nec-
essary tolerances on the required thrust. The detailed analysis of some designs with
particular performance revealed also interesting geometrical features. All blades fea-
ture some kind of hump, i.e. a rather abrupt change in chord, and a few have even low
geometrical sweep. Nevertheless, they offer small improvement in terms of efficiency
but a substantial one in terms of noise.

The second optimization is performed with complete integration of the CFD, CHA
and CSM tools. It provided a set of 61 optimized designs that are fully compliant
with operational as well as structural constraints. Designs with low geometrical sweep
and humps emerged and come with a substantial increase in efficiency this time, but
a moderate decrease of the emitted noise. Fortunately, the hump does not cause
unacceptable levels of stresses. Even though this optimization performed better than
the previous one, it still suffers from a high failure rate due to the difficulty to obtain
a correct mesh and the difficulty to predict the correct blade angle βref,TO for a blade
whose performance is yet completely unknown.

An efficient procedure for multidisciplinary optimization is developed and success-
fully tested. Both optimizations highlight the feasibility and the capabilities of multi-
disciplinary optimization when applied to propeller blades for high-speed aircraft. It
is proficient in exploring the search space for a moderate cost and in delivering designs
with features that are worth further consideration. Detailed analysis should investi-
gate first whether no additional improvement could be yielded with minor changes to
the design. The precious knowledge of an experienced design team should be used for
that purpose. Then, in a second phase, the design should be submitted to all anal-
yses required in the development of a new blade, with inclusion of coupling between
disciplines.

Recommendations for future work

In the perspective of optimization, other mesh generation packages on the market
seem to offer enhanced capabilities for propeller blade meshing because they where
developed with long, highly twisted, swept blades in mind. Provided it can work
autonomously, such a mesher could help increase the success rate of the high-fidelity
analysis. This would not only directly increase the number of optimized designs, it
would also increase the accuracy of the metamodel, thereby enhancing the search.

It is the author’s belief that there are probably too many high-level interactions
between the design variables. One such example is the one between the variables
affecting the airfoil shape and those controlling twist. The elemental lift, for example,
is mainly controlled by the shape of the front part of the airfoil, but also by its angle
of attack with respect to the local flow. Hence a excellent airfoil shape that would
be evaluated at a wrong angle, would lead to poor performance and the information
concerning that good shape would be lost. It is the author’s belief that airfoil shapes
should ideally be optimized in a separate procedure that is embedded in the global
optimization. The purpose of the sub-optimization should be to deliver the best
possible airfoil shape for each given blade design. This would circumvent and even
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overcome the interactions at the expense of the complexity of the procedure and its
global cost but would maintain the freedom of design because the airfoil shape would
still influence all disciplines. Another workaround would be to use a single set of airfoil
shapes resulting from a 2D or pseudo-3D optimization in transonic conditions similar
the those expected from the intended propeller. This option is much cheaper in terms
of computational cost but it decreases the potential of the design space because the
airfoil shape would not influence the aeroacoustic and aeroelastic results anymore. So
it is a difficult choice. Another such example is the spinner. It is known to have a
significant influence on the flow, with differences by up to 3 efficiency points [203].
So it is probably safer, in terms of optimization, to obtain first an optimized shape
and then gather additional efficiency points by refining the spinner shape.

The emergence of humps on all of the optimized shapes raises the question of
their true influence on both flow and noise, as a first step. These humps are a true
result of the optimization as shapes with a flatter chord distribution existed in the
populations but were outperformed. A comparative study should be carried out to
systematically investigate, with highly-detailed numerical simulations, the effect of
humps when combined with blades having low, moderate and high geometrical sweep
toward the tip. Such a study should of course consider these blades both at constant
thrust and constant RPM.
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Appendix A

Propellers used for validation

This appendix presents the propellers used for validation purposes and their main
geometrical features. The driving factor behind the choice of these propellers in
particular is the availability of geometrical and performance data as well as their
relevance in terms of advanced features such as sweep and planform shape. Among
the NASA SR-X series, the SR-1 and SR-3 profans were chosen because acoustic data
are available at various operating conditions.
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A.1 NACA 4-(5)(05)-041

Number of blades 4
Geometrical sweep at tip unswept
Blade sections NACA 16-series

at 75%-radius
Chord ratio b/D 0.087
Lift coefficient Cld 0.49
Thickness ratio t/b 0.045

Design conditions
M∞ 0.8
βref 60◦

J 3.2
CP 1.4
CT 0.245
η 0.56
Mtip 1.12

Table A.1: Main propeller characteristics (at design condition) from [246].

Figure A.1: NACA 4-(5)(05)-041 propeller.
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A.2 NACA 4-(0)(03)-059

A.2 NACA 4-(0)(03)-059

Number of blades 3
Geometrical sweep at tip unswept
Blade sections NACA 16-series

at 75%-radius
Chord ratio b/D 0.12
Lift coefficient Cld 0.0
Thickness ratio t/b 0.035

Design conditions
M∞ 0.95
βref NA
J 2.2
CP NA
CT NA
η NA
Mtip NA

Table A.2: Main propeller characteristics (at design condition) from [90].

Figure A.2: NACA 4-(0)(03)-059 propeller.
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A.3 NASA SR-1

Number of blades 8
Geometrical sweep at tip 27◦

Blade sections NACA 16- and 65-series
at 75%-radius

Chord ratio b/D 0.144
Lift coefficient Cld 0.125
Thickness ratio t/b 0.024

Design conditions
M∞ 0.8
βref 55◦

J 3.06
CP 1.7
CT 0.44
η 0.79
Mtip 1.17

Table A.3: Main propeller characteristics (at design condition) from [30].

Figure A.3: NASA SR-1 propfan.
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A.4 NASA SR-3

A.4 NASA SR-3

Number of blades 8
Geometrical sweep at tip 45◦

Blade sections NACA 16- and 65-series
at 75%-radius

Chord ratio b/D 0.182
Lift coefficient Cld 0.23
Thickness ratio t/b 0.024

Design conditions
M∞ 0.8
βref 60.5◦

J 3.06
CP 1.695
CT 0.43
η 0.782
Mtip 1.14

Table A.4: Main propeller characteristics (at design condition) from [259].

Figure A.4: NASA SR-3 propfan.
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Interpolation of pressure

The accuracy of the pressure interpolation described in section 7.3.3.2 is assessed by
comparison of the pressure coefficient (Cp) distributions obtained by the CFD-solver
with those obtained after interpolation. These are shown for various radii (from 35%
to 95% by increments of 10%). Note that in this chapter, the Mach number used to
compute Cp at a radius r is M(r) =

√
M2
∞ + (ωr/c∞)2. The benchmark as well as

the central individual and individuals A and D of part II, are considered at different
advance ratios in the take-off/landing and cruise conditions.

B.1 Take-off/Landing condition
Figs. B.1-B.4 show the Cp-contours in take-off/landing conditions atM∞ = 0.2. This
particular condition is responsible for the highest pressure loads on the blades. These
figures reveal the excellent agreement that is obtained whether the pressure gradient
is positive, negative or non-existing. The results are of particularly good quality even
in the region close to the leading edge where geometrical curvature is strong and
poor interpolation could have occurred because of data sites from the suction side
influencing the interpolation on the pressure side and vice-versa.

Isobars on the pressure and suction sides of the blade are plotted in Fig. B.1 for
individual D as a matter of example. The match is excellent despite some slight
differences on the pressure side in the region between 75% and 85% radius. These
small discrepancies should not result in significantly different stress states. Note that
the interpolated isobars stop at lower radius at the edge of the outer structural shell
of the blade as explained in section 7.3.1.
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(a) Pressure side. (b) Suction side.

Figure B.5: Isobars on propeller D at JTO,3. (−− for CFD isobars, −− for
interpolated isobars)
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B.2 Cruise condition
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B.2 Cruise condition
For the cruise condition at M∞ = 0.75, the same comparisons between Cp-contours
are given in Figs. B.6-B.9. For individuals A and D, the lowest advance ratio (JCR,1)
is used so that the accuracy of the interpolator is tested on pressure distributions
with the highest non-linearities. For individual A (Fig. B.8), the shock present at
55%, 65% and 85% is nicely preserved through the interpolation.

In example, the isobars on the suction and pressure sides of individual D are
shown in Fig. B.2. The correspondence is again excellent.
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(a) Pressure side. (b) Suction side.

Figure B.10: Isobars on propeller D at JCR,1. (−− for CFD isobars, −− for
interpolated isobars)
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