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1 Abstract

Numerical simulations of long-range infrasound propagation accelerated with commodity
graphics hardware are reported. The test case used in this work involves a realistic
atmosphere including temperature gradient effects. A low-dispersion and low-dissipation
finite-difference algorithm initially developed for aeroacoustics applications is used to solve
the full Navier-Stokes equations, and its performance is compared when run on a desktop
processor, and when run on a mainstream graphics card.

2 Introduction

The full two-dimensional Navier-Stokes equations are solved to model the propagation of
low-frequency sound waves through the atmosphere. The atmosphere is modeled from
ground level to a height of 150 km. Its mean structure is constructed from an experi-
mental temperature profile which has been fitted by a high-order polynomial function of
altitude[1, 2, 3]. Finite differences based on eleven-point stencils are used to compute the
derivatives involved in the Navier-Stokes equations. Time integration is performed with
a six-stage optimized Runge-Kutta scheme. Additionnally, a shock-capturing filtering
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technique is employed in order to handle the discontinuities that appear in the vicinity of
shock waves.

The effect of source amplitude on long-distance propagated time signals is examined.
Source strength appears to have very large effects on eigenrays that propagate through
the thermosphere, not only in terms of amplitude, but also in terms of arrival time.

The numerical algorithm has been implemented in a functionally equivalent manner
on a standard cpu with the FORTRAN language, and on a commodity graphics card
with the AMD-enhanced version of the BROOK stream language. The graphics card
computation is found to be approximately 18 times faster than one performed on the cpu.

3 Numerical algorithm

The full 2-D Navier-Stokes equations are solved on a regular Cartesian grid with an
optimized high-fidelity numerical procedure based on explicit spatial finite differences
and Runge-Kutta time integration.

Away from boundaries, spatial discretization is performed with explicit fourth-order
eleven-point centred finite differences optimized to minimize dispersion for wavenumbers
discretized by between 4 and 32 grid points[4]. Close to boundaries, be they solid walls
or radiation conditions, optimized explicit non-centred differencing schemes are used[5].
The non-centered differencing schemes are all based on eleven-point stencils, including
the one-sided stencil used for wall points. Time integration is performed with a six-step
second-order optimized low-storage Runge-Kutta algorithm[4]. Characteristics regarding
dispersion and dissipation for the spatial differencing schemes, filters, and the time inte-
gration scheme can be found in previous papers [4, 5]. This solver has been validated on
reference viscous flow configurations and on a demanding multi-body acoustic scattering
test-case, yielding results in good agreement with experimental and analytical data[6, 7].

The schemes’ properties mean that the behaviour of waves discretized by at least
four points per wavelength is accurately reproduced, with very low levels of dispersion
and dissipation, for frequencies such that ω∆t ≤ 1.25 × π. The determination of the
computational time step is based on a CFL criterion, CFL= cmax∆t/∆x = 0.75, where
cmax is the largest value of the speed of sound in the atmosphere modeled here. The
ground is modeled as a non-slip boundary condition based entirely on the use of the non-
centered schemes described previously. The wall-point density and pressure are updated
by resolving the governing equations in which all terms containing wall velocities are
eliminated, thanks to high-order non-centered differencing schemes.

Spatial filtering is carried to ensure stable computations. An explicit 11-point filtering
stencil is designed to remove fluctuations discretized by less than four grid points per
wavelength, while leaving all larger wavelengths effectively untouched[4]. As the differ-
encing schemes used near boundaries are asymmetric, their effective wavenumbers have
an imaginary part which leads to them being unstable for very high frequencies[8]. It is

2

202



therefore essential to use them in conjunction with appropriate highly selective filters, and
to this end, we use the filters described in Berland et al[5], which also selectively damp
fluctuations with fewer than four points per wavelength. Filters for grid points more than
two points away from a boundary are built on eleven-point stencils, while the last and
last but one point stencils up to two points away from a boundary are built respectively
on four and seven points. Thus at the wall, in the x direction, the centred eleven-point
filter is used, whereas in the y direction the family of non-centred filters is applied. At
the lateral radiation boundaries in the x and y directions, Tam and Dong’s 2D far-field
radiation condition [9] is used.

Examples of 2-D acoustic diffraction and aeroacoustic flows successfully simulated with
the solver described in this work can be found in Marsden et al[6].

4 Non-linear shock-capturing filtering

Non-linear effects can be important in long-range atmospheric propagation, due both to
the sizeable propagation distances and to large relative amplitudes which are reached in
the high atmosphere. In particular, it is surmized that shock fronts may be formed in
the thermosphere. This aspect poses potential problems for standard finite-differences
time-domain acoustic solvers, which are not designed to cope with steep wave fronts and
which can lead to Gibbs oscillations.

The CFD community has been dealing with shocked flows for a long time, and has
developed a variety of different techniques to avoid numerical problems associated with
the presence of shocks. Standard shock-capturing schemes developed for CFD (TVD,
ENO, WENO) are however ill-suited to time-dependent problems, because they exhibit
poor spectral accuracy, and tend to be excessively dissipative, particularly in the context
of long-distance propagation. Hence in this work we test a non-linear filtering method
designed with acoustics in mind[10].

The methodology consists in applying a second-order conservative filtering only where
necessary, i.e. only in zones where non-linear effects are high. Understandably, much of
the method’s properties come from the non-linear detection algorithm. Non-linear zones
are identified thanks to a Jameson-like detector based on pressure fluctuations. The first
step consists in extracting the high wavenumber components from pressure fluctuations.
This is done by applying a second order filtering, as described in the following equation
for grid point i, in the x direction:

Dpi = (−pi+1 + 2pi − pi−1)/4

and then defining the high-pass filtered squared pressure fluctuation as

D2

i =
1

2
[(Dpi −Dpi−1)

2 + (Dpi −Dpi+1)
2]

3

203



This squared pressure fluctation is used to compute define a sensor value as

ri =
D2

i

p2
i

+ ǫ

where ǫ is a small parameter, typically 10−16, whose role is to avoid numerical problems
when dividing by ri, as will be seen subsequently, and pi is the averaged pressure at point
i.

The self-adjusting filtering strength σi at grid point i is computed according to

σi =
1

2

(

1− rth

ri
+

∣

∣

∣

∣

1− rth

ri

∣

∣

∣

∣

)

where rth is a threshold parameter which adjusts the extent of the zone over which filtering
is applied, whose value is rth = 10−5. This filtering strength has the desired properties of
being equal to zero away from shocks, where ri < rth, and of increasing towards a value
of 1 for increasing shock intensities.

Conservative variables are filtered conservatively, i.e. the filtered term is computed as
a difference of two fluxes, as follows:

Uf
i = Ui −

(

σi+ 1

2

Fi+ 1

2

− σi− 1

2

Fi− 1

2

)

where σi+ 1

2

is simply the average of previously calculated filtering strengths σi and σi+1,

and Fi+ 1

2

=
n

∑

j=1−n

cjUi+j and Fi− 1

2

=
n

∑

j=1−n

cjUi+j−1 are the up-winded and down-

winded fluxes based on a dissipative second-order filter cj. A spectral analysis of the
shock-capturing treatment is in Bogey et al [10].

The effect of the non-linear filtering technique described above is examined on a simple
configuration of atmospheric acoustic propagation, designed to induce non-linear effects
which are expected to occur in long-range propagation phenomena.

The atmosphere is designed to resemble the Misty Picture configuration[1, 2]. A semi-
experimental temperature profile T based on measurements up to an altitude of 90 km
and on an empirical model above, is fitted by a tenth-order polynomial, and the resulting
polynomial is used to obtain the pressure profile from the hydrostatic equilibrium equation

ln(p/p0) = −gM

R

∫ z

0

1

T
dz

The experimentally obtained temperature profile is highly fluctuating, and exhibits neg-
ative values of the Väisälä-Brunt frequency N , defined by N = sign(N2)× |N2|1/2 where

N2 = −g

ρ

dρ

dz
− g2

c2
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Figure 1: Sound speed and Väisälä-Brunt frequency as a function of altitude:
- - - experimental/statistical data, — numerical profiles

as shown in Figure 1.
The use of a high-order polynomial allows the construction of a mean atmospheric

profile which is both realistic and stable, i.e. N ≥ 0. It also removes the short-wavelength
fluctuations in the sound speed profile, and the acoustic scattering which is associated
with them. While this removal is unphysical, it has the desirable effect of rendering
acoustic results less complicated to analyse.

An evaluation of the non-linear filtering methodology is carried out by studying the ver-
tical propagation of a low-frequency high-amplitude acoustic signal in the above-described
atmospheric model. The source is described by its amplitude as a function of time

S(t) =
1

2
A sin(ωst)

[

1− cos(
ωst

2
)
]

where fs = 0.1 Hz, and by a Gaussian spatial envelope of half-width 900m.It is intro-
duced as a forcing term on the energy equation. The source’s amplitude is fixed at
A = psource/30.

Three computations are performed: one loosely referred to as the reference compu-
tation, performed on a finer grid (∆y′ = ∆y/3) and non-linear filtering applied with a
coefficient of 0.01, one performed on the standard grid with no non-linear filtering and a
second one performed on the standard grid with the non-linear filtering fully applied.Their
results are compared at three different times in Figures 2 (a) (b) and (c).

These plots show vertical cuts of p′/
√

ρ as a function of altitude, at x = xsource. In
Figure (a), first signs of wavefront steepening can be observed, due to the high source
amplitude. There is no notable difference between the three sets of results, as the signal
is still properly resolved by the numerical scheme on the coarse grid.
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Figure 2: Computed signals at (a) t = 10s, (b) t = 30 s and (c) t = 70 s.
- - - reference computation on finer grid (∆y/3), — computation with non-linear filtering,
— computation without non-linear filtering

In Figure (b), the reference computation (in red) shows a small leading N-wave and
a well-defined higher-amplitude central N-wave. Gibbs-type oscillations can be seen in
the vicinity of the shocks, but their amplitude is sufficiently small so as not to destabilize
the computation. The coarse-grid solution obtained with the non-linear filtering (in blue)
is in very good overall agreement with the reference solution. Both the small leading
N-wave and the larger central N-wave are correctly placed, indicating that the filtering
procedure does not modify shock propagation velocity. Gibbs oscillations are effectively
removed. The peak amplitude of the shocks is slightly lower than that of the reference
peaks, but this an unavoidable consequence of any filtering procedure. The coarse-grid
unfiltered solution (in black) is similar to the reference solution in overall shape, but
exhibits strong oscillations around it. These oscillations can be interpreted as strong
Gibbs oscillations, which are not properly resolved by the numerical scheme and which
therefore are not propagated at the correct velocity. Strong numerical diffusion results
from this behaviour.

In the final Figure (c) two well defined N-waves can be seen. The first one is the result
of the fusing of the initial wave packet, while the second one results from the reflection
of the source on the ground, whose positive front has had the time to catch up with
the negative tail of the direct signal. The three computations show reasonable overall
agreement. However, the most noticeable point regarding the unfiltered signal is that
the first positive front is incorrectly placed. This can be explained by noting the strong
overshoots in Figure (b) which will travel faster than the reference shock front. In any case
this highly undesireable behaviour appears to be corrected by the use of the non-linear
filtering procedure.
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Figure 3: Pressure fluctuations p′ normalized by
√

ρ at t = 1320 s. Linear ray-traced
results have been superposed in gray, and eigenrays traced in black.

In summary, a self-adjusting non-linear filtering methodology has been briefly tested
for long-distance acoustic propagation computations with the Euler equations. The fil-
tering technique successfully removes Gibbs oscillations, which can be a numerical re-
quirement for computations dealing with strong shocks, and as such can be regarded as
shock-capturing. Moreover it enables the proper computation of shock-front velocities for
relatively poorly discretized waves. This last point is essential if Euler computations are
to be used to study arrival times of acoustic signals over long propagation distances.

5 Source amplitude effects on misty picture compu-

tation

The numerical algorithm described in the previous sections is used to perform a prelimi-
nary investigation of the effect of source amplitude on time signatures for a long-distance
propagation example. The Misty Picture configuration is again used for this study. The
previously described source is used with a central frequency of fs = 0.1Hz, and is arbi-
trarily placed at a height of 1.5 km above the ground. The computational domain spans
450 km in the x direction and 160 km in the vertical direction, and is discretized with
a spatial step of ∆x = ∆y = 300m. A CFL value of 0.55 is used, which yields a time
step of ∆t = 0.55∆x/ max(c0) = 0.3s based on the highest speed of sound, found in the
thermosphere. Time signals are recorded at a distance of 400 km from the source, and
compared as a function of source amplitude.

Figure 3 shows an example of a snapshot of the acoustic field normalized by the square
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root of density fluctuations, at t = 1320 s, which corresponds to the arrival time of the
shortest eigenray at the measurement location x = 400 km. The source amplitude in this
case was A = 1× 10−3psource where psource refers to the average atmospheric pressure at
the source location. Linear rays are superposed in grey, and eigenrays are represented as
black lines, and numbered according to their average arrival order. Strong caustics due
to local variations of sound speed are clearly visible at a height of 30 km and again at a
height of 110 km. An acoustic shadow zone can be observed roughly between 30 and 270
km away from the source. This view of the acoustic fluctuations illustrates well the fact
that a simple initial source in a smooth atmospheric profile can yield a complex acoustic
pattern downstream from the first shadow zone.

The aim of this study is to look at the effect of the source amplitude on the individual
elements of the time signature. To this end, a parametric series of computations is per-
formed for amplitudes ranging from A = 5× 10−8psource to 5× 10−2psource or in physical
terms approximately 0.005 to 5000 Pa. The lowest source amplitude in this work is just
above the threshold level of uncertainties introduced into the computation by aspects such
as radiation boundary conditions and the reflecting ground condition.

The time signatures obtained over the range of source amplitudes vary considerably.
This is illustrated in Figure 4 which shows the signals obtained from the highest source
amplitude A = 0.05psource as well as from A = 5 × 10−7psource. The different amplitude
scales (left and right) show that the ratio of source amplitude to measured signal strength
at 400 km is highly different. Indeed, for the strong source this ratio is worth around
0.01, whereas for the weak source the ratio attains a value of roughly 0.2. The difference
in shape between the two signals is also very noticeable. The maximum value for the
strong source signal corresponds to the initial eigenray (1) arrival, in contrast with the
weak source where the maximum is reached for the last (longest) eigenray (3) arrival.
This variation is the result of two different causes whose effects are compounded. Firstly,
the relative attenuation σ of the stratospheric eigenray (1), which is roughly constant
(σ = max(p′eig)/A ≃ 0.02 ∼ 2D geometric attenuation) for all source amplitudes lower
than about 50 Pa, diminishes for higher source amplitudes and reaches a value of σ = 0.01
for the strongest source, due presumably to a combination of dissipation in the shocked
propagation and to numerics. Secondly, for low source amplitudes, an amplification mech-
anism appears to occur for the highest-travelling eigenray, i.e. the thermospheric eigenray,
as will be seen subsequently. This amplification is large, as can be seen by observing the
weak signal in Figure 4. In fact for source amplitudes lower than 0.5 Pa, the recorded
signals have peaks that reach as much as 35% of the initial source strength.

The afore-mentioned variations are only notable for source amplitudes higher than
approximately A = 5× 10−5psource. Figure 5 illustrates this point, by representing p∗ for
lower source amplitudes A < 5×10−5psource. Here p∗ is defined as the pressure fluctuation
normalized by the amplitude of the first eigenray arrival. The signals collapse cleanly.
The recorded signal is subsequently divided into three parts to examine in greater detail
the effect of the source amplitude.
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The first part of the signal corresponds to the arrival of the main eigenray (1) that
results from refraction in the stratosphere. A linear ray-tracing algorithm applied to
the chosen atmospheric model yields an arrival time of t = 1320 s for this eigenray.
Numerically, these signals are observed to arrive between t = 1250 and t = 1350 s, as
shown in Figure 6. The different signals have a similar general shape, but for sources
stonger than A = 10−3psource the positive front is observed to advance in time by up to
12 s. There is also a notable artefact at t = 1250 s for the strongest source, whose cause
will be examined later.

The last part of the signal is due to the arrival of the low thermospheric eigenray,
referenced as (3) in Figure 3. Signals associated to this event are observed to arrive
between t = 1350 s and t = 1600 s. Two different views of this period, shown in Fig-
ures 7 (a) and (b), are used to examine this arrival. Representation (a) shows pressure
signals scaled by the first eigenray amplitude. The amplification factor mentioned previ-
ously is clearly visible for the weakest sources, and it can be seen to diminish progressively
with increasing source strength. For the lowest amplitudes, the signal shows no sign of
having been shocked, and it has kept its initial duration of 20 s. For higher amplitudes,
the amplification progressively disappears, rendering the representation (a) less useful for
examining the time signatures. Instead, the signals are scaled by the amplitude of the
eigenray (3) arrival, and plotted in Figure 7 (b). Here the effects of the source strength on
the waveforms is clearly visible. Significant steepening occurs for sources stronger than
A = 1× 10−5psource.The arrival also undergoes significant widening, with the highest am-
plitude arrival spanning around 110 s to be compared to the initial 20 s for the emitted
signal and for the weaker arrivals. For the strongest sources, clear shock fronts delimit the
overall arrival, and form a “U-wave” shape characteristic of N-waves having traversed a
caustic. It should be noted that of the three eigenrays, the low thermospheric (3) eigenray
is subjected to the strongest caustic, at an altitude of 120 km. This explains why the (3)
eigenray arrivals are significantly more distorted than the others.

Finally, we consider the signal due to the arrival of the high thermospheric eigenray,
referenced as (2) in Figure 3. Its behaviour is the most variable of the three eigenrays.
For low source amplitudes, a very clean wavepacket is observed to arrive around t = 1480
s, as shown by Figure 8. Interestingly, this wavepacket is twice as long as the source
signal, lasting 40 s instead of the source’s 20, and its shape is very well matched by
sin(ωst)

[

1− cos(ωst
4

)
]

. As the source amplitude is increased, the wavepacket is seen to
distort progressively towards N-waves, and the amplitude relative to the stratospheric
arrival is observed to decrease. This arrival is also stronger than that of the stratospheric
eigenray (1). The most spectacular effect of increasing source amplitude is seen on the
arrival time. For A > 5× 10−5psource, the arrival time progressively diminishes from 1480
to 1260 s, which corresponds to the intial oscillation visible on the strongest source signal
in Figure 6.

Figure 9 represents p′/
√

ρ over the whole computational domain for source amplitudes
between A = 5× 10−5psource to A = 5× 10−2psource, at t = 1320 s, which corresponds to

9

209



1200 1300 1400 1500 1600 1700 1800
−50

−25

0

25

50

time (s)

p
’ 

(P
a

)

1200 1300 1400 1500 1600 1700 1800
−0.01

−0.005

0

0.005

0.01

p
’ 

(P
a

)

Figure 4: Pressure fluctuations for source amplitudes A = 5× 10−8psource (left axis) and
A = 5× 10−2psource (right axis).
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Figure 5: Pressure fluctuations for source amplitudes A < 5× 10−5psource normalized by
amplitude of initial eigenray (1) arrival. Vertical line represents arrival time of eigenray
(1) obtained by linear ray tracing.

the arrival time of the initial eigenray (1). It gives a visual illustration of the movement
of some parts of the pressure field compared to others, as well as an indication of their
relative strength.

To conclude, time signatures recorded a long distance away from an acoustic source
appear to vary in a highly non-linear fashion as a function of source amplitude. As
expected, the highest travelling waves are subject to the strongest non-linear effects.
These effects include both relative variations of amplitude between early and late arrivals,
and also substantial changes in arrival times. In the equations used for this work, no
account is taken of atmospheric absorbtion due to molecular relaxation. Relaxation effects
are expected to be strongest in the high atmosphere, i.e. where non-linear propagation
effects are also maximal. Hence quantitative aspects described in this work are likely to
be different once relaxational effects are included.
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Figure 6: Normalized pressure fluctuations due to the stratospheric eigenray (1). Colour
scheme ranges from black for weakest source to orange for strongest source.

1500 1520 1540 1560 1580 1600
−20

−10

0

10

20

time (s)

p
*

1400 1450 1500 1550 1600
−2

−1

0

1

2

time (s)

p
*

Figure 7: Pressure fluctuations due to low thermospheric eigenray (3), normalized (a) by
stratospheric eigenray (1) amplitude and (b) by low thermospheric eigenray (3) ampli-
tude.Colour scheme ranges from black for weakest source to orange for strongest source.

11

211



1450 1475 1500
−5

0

5

time (s)

p
*

Figure 8: Pressure fluctuations due to high thermospheric eigenray (2), normalized by
stratospheric eigenray (1) amplitude. Colour scheme ranges from black for weakest source
to orange for strongest source.

Figure 9: Normalized pressure fluctuations represented at t = 1320 s, for source strengths
ranging from A = 5× 10−5psource (top left) to A = 5× 10−2psource (bottom right).
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6 Acceleration with graphics hardware

In the course of this work, the Navier-Stokes solver was implemented in a stream-processing
language in order to evaluate the potential both of the language and of graphics hardware
for this kind of algorithm. This has become possible since the advent of double-precision
floating point operations in graphics hardware in 2008.

Graphics cards (GPUs) has been capable of performing useful computations for the
past 6 years, since the introduction of programmable graphics pipelines. This reusing of
GPUs for purposes other than graphics is referred to as GPGPU, or General Purpose
computations on GPUs. The reader is referred to [11] for an overview of past and current
trends in GPGPU.

Over the last few years a number of open portable languages have been developped
for GPGPU programming. Unfortunately, none of them currently allows double precision
programming in a portable fashion, and a vendor-specific language must be used. This
limitation will probably disappear in the near future, possibly with the advent of OpenCL,
a computational counterpar to OpenGL which is currently in the process of being certified.

In this study ATI hardware was used, and accordingly programming was performed us-
ing the BROOK+ language which exposes ATI double-precision floating-point operations
to the programmer. As such, this work shows that graphics cards are highly amenable
to high-precision Navier-Stokes solvers, but makes no effort to compare hardware from
different vendors.

The BROOK+ programming language used in this is derived from the BROOK lan-
guage originally developed at Stanford university[12]. It is designed as an extension to
the C language, with specific constructs for describing data-parallel operations. The gen-
eral computational model is referred to as streaming, and is a form of SIMD or Single
Instruction Multiple Data programming. It is ideally suited to describing array problems
that require identical treatment everywhere, which is the case for Euler equations solvers
away from boundary conditions. However, near boundaries different conditions or equa-
tions are required and thus these zones do not equate well with the streaming model. An
illustration of this is given by the number of lines of code in our BROOK+ based solver:
only 500 lines are required for the central grid zone, while more than 3000 lines are needed
to describe the boundary conditions. The BROOK+ language is currently available in a
beta or testing version, and as such has a number of more or less frustrating quirks and
bugs. These bugs will presumably disappear in time as the compiler and development
environment matures.

For comparison, the Navier-Stokes solver has been implemented in an algorithmically
equivalent fashion both in BROOK+ and in Fortran90. The results obtained on the GPU
are not identical to those obtained with Fortran, due to slightly differerent conventions
in rounding modes or other hardware aspects such as fused floating point operations.
Fortunately, no systematic bias is induced by these differences. This last point was estab-
lished by comparing both Fortran and GPU results to analytical solutions of propagating
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acoustic pulses.
For the grid size used in this work, the optimized Fortran code ran at roughly 1.4

GFLOPs on a single core of a recent processor. The BROOK+ code running on an ATI
HD3870 GPU ran around 18 times faster, yielding an effective computational rate of
around 25 GFLOPs. This acceleration is both highly appreciable, since it was obtained
at relatively little cost, and also a little frustrating, since it seems to be substantially lower
than the maximum rated hardware speed of around 100 GFLOPs in double precision for
our GPU. A preliminary performance appraisal suggests that memory access is the main
bottleneck, but this point would need a more quantitative examination.

Our overall impression of the GPGPU experience was positive. It appears to be a
very promising technique for the future, particularly since GPUs are increasing in power
more rapidly than are CPUs. The hardware is capable of performing computations in
double precision, and its programmability is such that there is no particular limit in the
type of algorithms that can be programmed. However, both programming languages and
graphics hardware are changing very fast, and the field is far from being mature. This
point should be kept in mind before embarking in large-scale software development on
graphics cards.

7 Conclusions

A computational solver based on the resolution of the full Navier-Stokes equations with
high-order space and time methods is presented. A non-linear filtering technique suitable
for long-range acoustic propagation is tested, and shown to yield significantly improved
waveforms for a simple example of non-linear propagation.

The solver is used to examine the effect of source strength on long-distance prop-
agation. For low source amplitudes, time signatures collapse cleanly, and the longest
eigenray provides the strongest arrival. For higher source amplitudes, the relative level
of arrivals due to the different eigenrays is strongly modified, to the point where the
strongest arrival is due to the shortest eigenray for the most powerful sources. Arrival
times of high-atmosphere eigenrays are also strongly modified.

Finally, the algorithm used in this work has been implemented in a programming
language destined to run on graphics hardware. An acceleration factor of 18 was ob-
tained compared to optimized Fortran code running on a recent processor. Such graphics
hardware shows great potential for future large-scale computations requiring vast compu-
tational resources.
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