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A large eddy simulation of the flow around a NACA 0012 airfoil at zero incidence is performed at a chord-based

Reynolds number of 500,000 and aMach number of 0.22. The aim is to show that high-order numerical schemes can

successfully be used to perform direct acoustic computations of compressible transitional flow on curvilinear grids.

At a Reynolds number of 500,000, the boundary layers around the airfoil transition from an initially laminar state to

a turbulent state before reaching the trailing edge. Results obtained in the large eddy simulation show a well-placed

transition zone and turbulence levels in the boundary layers that are in agreement with experimental data.

Furthermore, the radiated acoustic field is determined directly by the large eddy simulation, without the use of an

acoustic analogy. Third-octave acoustic spectra are compared favorably with experimental data.

Nomenclature

Cf = skin-friction coefficient, �f=�0:5�U2
1�

Cp = mean-pressure coefficient, �p � p1�=�0:5�U2
1�

c = chord length of the airfoil
c0 = sound speed in the medium at rest
H = boundary-layer shape factor, ��=��
M = Mach number, U1=c0
Rec = Reynolds number based on the airfoil chord, U1c=�
Re� = Reynolds number based on the momentum

thickness
tc = convection time across the airfoil, c=U1
U1 = upstream flow velocity
u� = wall-friction velocity u� �

����������
�f=�

p
u0, v0, w0 = velocity fluctuations
�� = boundary-layer displacement thickness
�� = boundary-layer momentum thickness
��, z� = wall-unit curvilinear coordinates
� = molecular viscosity
� = dynamic viscosity, �=�
�� = wall-unit curvilinear coordinate, �u�=�
�f = wall shear, �@u=@�jy�0

I. Introduction

R ECENT rapid advances in computational aeroacoustics have
greatly increased the scope of problems that can be tackled by

numerical methods. This is particularly true of direct noise
computations, in which the sound waves generated by turbulent
flows are obtained directly from an unsteady compressible
simulation of the Navier–Stokes equations. Such simulations
require great attention to numerical detail, because propagative

acoustic fluctuations generally have energy levels that are several
orders of magnitude inferior to those of the aerodynamic flow
features, and they have wavelengths that are orders of magnitude
larger than those of the flow features. Moreover, acoustic
propagation distances are often large in comparison with the extent
of the source-containing unsteady flow region.

The simulation of high-Reynolds-number flows is now
increasingly feasible, due to the development of high-order large
eddy simulation (LES) approaches that manage to preserve the
small-amplitude acoustic perturbations alongside the larger-
amplitude aerodynamic fluctuations over a wide range of wave
numbers. Both explicit schemes such as Tam and Webb’s [1]
dispersion-relation-preserving scheme or those proposed by Bogey
and Bailly [2] and implicit schemes such as Padé-type schemes [3,4]
have been successfully applied to aeroacoustic simulations at high
Reynolds numbers. The field of jet aeroacoustics has been
particularly active in the advancement of these techniques, and a
number of high-Reynolds-number jet flow simulations can be found
in the literature [5–8].

More recently, work on high-accuracy computations around
curved geometries has shown that high-precision methods are not
restricted to simulations around Cartesian geometries [9–12].
Cylinders and airfoils have so far been the most-studied curved
geometries, due to the large amount of experimental data available
and the fundamental academic interest that they present. A number of
time-accurate numerical studies have been performed around
airfoils, often placed at a small angle of attack to the flow and
generally using an acoustic analogy to obtain far-field sound
characteristics [10,13–16].

Wang andMoin [13] studied the turbulent flow around the trailing
edge of a Blake airfoil at a chord-based Reynolds number of
Rec � 2:15 � 106. The incompressible flow data were used to
calculate far-field acoustic information using an integral formulation
of Lighthill’s equation [17], by approximating the airfoil’s Green
function by that of an infinitely thin flat plate. They found a
reasonable agreement between their computed acoustic field and
Blake’s [18] experimental results for high frequencies, but low-
frequency values were badly estimated, due to the insufficient
transversal extent of their computational domain. Manoha et al. [10]
performed an LES simulation around a NACA 0012 airfoil at a
chord-based Reynolds number of Rec � 2:86 � 106, placed at 5 deg
of incidence to the incoming flow.AKirchhoff formulationwas used
to calculate the acoustic far field. Oberai et al. [14] simulated the
incompressible flow around an Eppler 387 airfoil at a Reynolds
number of Rec � 1 � 105 and used the results as an input to a
variational form of Lighthill’s equation for the computation of the
acoustic far field. They then studied the acoustic directivity of the
scattered pressure as a function of frequency and observed, as
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expected, dipolelike radiation for large wavelengths and more
complex lobed diffraction patterns for wavelengths shorter than the
airfoil chord.

High-order Navier–Stokes finite difference simulations have
proved their value in the study of noise-generation mechanisms for
Cartesian geometries such as free jet flows and rectangular cavity
flows [19]. We are thus attempting to develop similar methods for
more complex curved geometries. Our aim is to show that it is
possible to generate accurate descriptions of the turbulent
compressible flow around complex geometries while simultaneously
obtaining realistic noise-level estimations without making use of
acoustic analogies or other split source–propagation techniques,
which incur problems of their own. The current work describes the
development and use of a parallel curvilinear solver based on high-
order methods to study the compressible flow around a 3-D NACA
0012 airfoil at a chord-based Reynolds number of 500,000, placed at
zero incidence to the upstream flow. It focuses on showing that
realistic compressible boundary-layer transition is captured without
needing to trigger the transition artificially, even when the airfoil is
placed at zero incidence to the upstream flow. Both mean flow
quantities and fluctuation statistics are compared with results
available in the literature. The acousticfield generated by the airfoil is
also examined, and spectra computed from the pressure field are
compared with experimental data.

II. Numerical Aspects

The full 3-D Navier–Stokes equations are solved on a structured
computational grid that is obtained from a body-fitted C-type grid by
applying a suitable coordinate transform. Details on the equations
themselves can be found in Appendix A. The transformed equations
are resolved on the computational grid with an optimized high-order
numerical procedure. Viscous terms in these equations are computed
by successive first derivatives. Away from boundaries, spatial
discretization is performed with explicit 11-point centered finite
differences optimized to minimize dispersion for wave numbers
discretized by between 4 and 32 grid points [2]. Close to boundaries,
be they solid walls or radiation conditions, optimized explicit
noncentered differencing schemes are used [20]. The noncentered
differencing schemes are all based on 11-point stencils, including the
one-sided stencil used for wall points. Time integration is performed
with a six-step second-order optimized low-storage Runge–Kutta
algorithm [2]. Characteristics regarding dispersion and dissipation
for the spatial differencing schemes, filters, and the time-integration
scheme can be found in previous papers [2,20]. This solver has been
validated on reference flow configurations and on a demanding
multibody acoustic scattering test case, yielding results in good
agreement with experimental and analytical data [12].

The schemes’ properties mean that the behavior of waves
discretized by at least four points per wavelength is accurately
reproduced, with very low levels of dispersion and dissipation for
frequencies such that !�t � 1:25 � 	. The determination of the
time step is based on a Courant–Friedrichs–Lewy (CFL) criterion,

CFL � �U1 � c0��t
�x

� 0:85

where�x is the smallest grid spacing in the computational grid. The
airfoil wall is modeled as an isothermal nonslip boundary, which is
based entirely on the use of the noncentered schemes described
previously. The wall-point density and pressure are updated by
resolving the governing equations in curvilinear form, in which all
terms containing wall velocities are eliminated using high-order
noncentered differencing schemes, as described in Appendix A.
This boundary condition formulation is inherently capable of
dealing with meshes that are not orthogonal to the wall boundary,
because the nonperpendicular nature of the grid is taken into account
via the Jacobian matrix. It thus reduces potential orthogonality
problems near the trailing edge and allows the use of a grid with
superposed points in the wake zone, as illustrated in Fig. 1. By the
use of such a grid, it is possible to maintain a continuous variation of
three of the four terms in the Jacobian matrix used in the transformed

Navier–Stokes equations. Only the term @�=@y as a function of x is
discontinuous by construction at the trailing edge. The superposed
grid points in the wake zone allow this area to be treated as an inner
grid zone. In particular, along the wake line (shown as the solid
horizontal line to the right of the trailing edge in Fig. 1), all terms of
the grid metrics are computed with the 11-point centered finite
differences.

Filtering is of crucial importance in this solver. Indeed, its role is
not only to remove spurious grid-to-grid oscillations that can arise
(for example, from meshing imperfections), but also to act as a
subgrid-scale model instead of the more commonly used eddy-
viscosity models. The action of the finest turbulent scales is assumed
to be limited to dissipation, and their effect is then modeled by
removing high-frequency energy in a highly controlled fashion. In
practice, this is done by applying a specific selective filtering
procedure to the flow variables at each time-step. The explicit 11-
point filtering stencil is designed to remove fluctuations discretized
by less than four grid points per wavelength, leaving all larger
wavelengths effectively untouched [2]. This LES approach has been
successfully used to examine isotropic turbulence [21], channel flow
[22], and jet noise [23,24]. Because the differencing schemes used
near boundaries are asymmetric, their effective wave numbers have
an imaginary part that leads to them being unstable for very high
frequencies [25]. It is therefore essential to use them in conjunction
with appropriate highly selective filters and, to this end, we use the
filters described in Berland et al. [20], which also selectively damp
fluctuations with fewer than four points per wavelength. Filters for
grid points more than two points away from a boundary are built on
11-point stencils, whereas the last- and second-last-point stencils up
to two points away from a boundary are built, respectively, on four
and seven points. Thus, at thewall, the centered 11-pointfilter is used
in the � and 
 directions, whereas the family of noncentered filters is
applied in the � direction. The boundary condition in the spanwise
direction is periodic and is implemented in such a way as to allow the
use of the 11-point differencing and filter stencils up to the lateral
boundaries. At the lateral radiation boundaries in the � and �
directions, a three-dimensional generalization of Tam and Dong’s
[26] 2-D far-field radiation condition is used. Details on the 3-D
formulation can be found in Bogey and Bailly [27]. Finally, the
incoming flow is imposed as uniform.

Examples of 2-D acoustic diffraction and aeroacoustic flows
successfully simulated with the solver described in this work can be
found in Marsden et al. [12]. Parallelization of the code is based on
theMPI interface. The computational domain is split along the radial
and circumferential directions, resulting in a number of structured
subdomains that communicate along their shared boundaries at each
subiteration of the Runge–Kutta time-integration procedure. No
dynamic load balancing is performed, but given the structure of the
code, an equal number of points in each zone leads to reasonably
similar computational costs for each zone. Communication is
performed such that the 11-point differencing scheme and filters can
be applied transparently and in a time-accurate manner [28] right up
to each boundary separating adjacent subdomains. An evaluation of
the communication overheads performed on a cluster of Alpha EV7

Fig. 1 Close-up view of the nonorthogonal grid around the trailing
edge of the NACA 0012 airfoil.
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processors with a high-speed InfinibandTM interconnect showed that
communication overheads remained under 5% of the total
computational time for the grid used in this work and for numbers
of processors ranging up to 126.

The computation presented here describes the flow around a 3-D
NACA 0012 airfoil placed at zero incidence to a flow at a Mach
number ofM � 0:22. The airfoil has a chord of c� 10 cm and the
resulting chord-based Reynolds number is Rec � 5 � 105. The
computation was performed on a 12.3-million point grid, composed
of 1193 points in the circumferential direction, 230 points in the
radial direction, and 45 points in the spanwise direction. The
computational domain is split into 13 subdomains, and the parallel
computation was run on a laboratory cluster of 13 AMD Opteron
processors linked by a standard gigabit Ethernet network. The
computation was run for a total of 106 iterations, of which the first
400,000 were discarded and the last 600,000 were used to compute
the statistics reported in this work. These 600,000 iterations
correspond to 15 airfoil flow-through times based on the upstream
velocity U1. The total computational wall time was approximately
4000 h. Grid resolution is important for such a simulation, if one is to
capture the detailed boundary-layer behavior without using wall
models. Indeed, various studies [29–31] performed in the European
project titled LESFOIL (large eddy simulation of the flow around an
airfoil) have concluded that low grid resolution leads to poor
computational results when transitional phenomena are present.
Furthermore, these studies showed that different subgrid-scale
models tend to show widely varying results on under-resolved
transitional zones, due perhaps to the subgrid-scale viscosity
adversely affecting laminar flow regions. Therefore, in this work,
care is taken to ensure that near-wall grid resolution is satisfactory.
Grid spacings in wall units close to the trailing edge are as follows:
�� ’ 20, �� ’ 2:5, and z� ’ 20 in the streamwise, radial, and
spanwise directions, respectively. The total computational domain
extends out approximately one chord length in the radial direction
and half a chord length beyond the trailing edge in the downstream
direction, and the spanwise extent of the grid corresponds to
approximately 5% of the airfoil’s chord length.

A sponge zone is used in the last 20 points of the wake zone to
minimize the force of vortical structures impinging on the
downstream radiation condition. The sponge zone is implemented by
the combination of strong grid stretching (on the order of 10%
between adjacent grid cells) and an additional Laplacian-type
dissipation term.

III. Results

A. Mean Flowfield

The pressure distribution around the airfoil is an important
parameter, both in terms of aerodynamic characteristics (because it
determines the lift and drag coefficients of the airfoil) and in terms of
boundary-layer behavior (because the pressure gradient is known to
affect the development of both laminar and turbulent boundary layers
[32,33]). This distribution is shown in Fig. 2 and is compared with
experimental values obtained by Lee and Kang [34] for a NACA
0012 airfoil at a chord-based Reynolds number of 600,000 and a
Mach number ofM � 0:09. A good agreement is found between the
computational and experimental results. Of importance is the fact
that from x=c� 0:15 down to the trailing edge, the boundary layer is
subject to an adverse pressure gradient.

Results concerning the boundary-layer transition froma laminar to a
turbulent state are now examined. It should be noted that transition is a
very sensitiveflowphenomenon and, as such, can be strongly affected
by experimental conditions (in particular, the level of freestream
turbulence [35,36]). Thus, experimental results regarding transition
show spread, and qualitative agreement between the computation and
experimental results is already a challenging goal. As an illustration of
this, experimental transition results from similar configurations at
relatively low Reynolds numbers are gathered in Table 1. A good
reference for higher Reynolds numbers can be found in [38].

In the present simulation, the position of what might be loosely
referred to as the instantaneous transition zone varies slightly with

time, at a very low rate (substantially lower than the frequencies
associated with most flow events in the boundary layer), because its
Strouhal number based on the airfoil thickness is on the order of
Stc � 0:016. Over the total physical simulation time during which
data were collected, only approximately two oscillations of the
transition location were observed, and so the regularity of this
phenomenon could not be ascertained. The beginning of the
transition zone appears to move roughly between x=c� 0:4 and
0.55, whereas the end of the zone oscillates between x=c� 0:7 and
0.8. These observed bounds are very approximate by nature: first,
because only two cycles of the oscillation have been observed, and
second, because it is hard to give a clean definition of an
instantaneous transition zone. It is believed that this oscillation is not
due to a lack of convergence of the computation, but its origin
remains unclear. It appears not to be imputable to a global oscillation
of the whole computational domain, because the velocity field near
the upstream and lateral boundary conditions shows no sign of
comparable fluctuations, and the pressure field oscillates by around
1 Pa, which should not sufficient to lead to the observed boundary-
layer behavior. It is also hard to know whether this oscillation is
physical or not, because experimental data sufficiently resolved at
very low frequencies have not been found. Unless otherwise
specified, boundary-layer data presented in this work are averaged
over the entire physical part of the run.

A first illustration of the boundary-layer behavior is shown in
Fig. 3. Mean velocity profiles at different points along the chord are
represented according to inner-region scalings [i.e., u� � f�y��].
Typical laminar boundary-layer behavior is observed up to
x=c� 0:52, where u� � y� (shown in dashes in Fig. 3) over the
viscous sublayer thickness. Downstream of the point x=c� 0:52,
velocity profiles deviate from the viscous u� � y� law at a distance
of roughly 10 wall units from the wall. The velocity profile around
the end of the transition region at x=c� 0:71 exhibits a viscous
sublayer until approximately y� � 10. From y� ’ 10 to around
y� ’ 80, the profile approximately follows the standard logarithmic
law u� � �1=�� ln y� � B established for a zero-pressure-gradient
boundary layer (dashed line in Fig. 3, with 1=� and B taking the
standard values of 2.44 and 5.2), albeit being slightly above, which is
consistent with the adverse pressure gradient faced by the boundary
layer and is also observed in the experimental data of Lee and Kang
[34]. It is in fact possible to derive a similar logarithmic law
governing the mean velocity in the overlap region when the pressure

0.0 0.2 0.4 0.6 0.8 1.0
−0.5

−0.25

0.0

0.25

0.5

x/c

C
p

Fig. 2 Mean-pressure coefficient Cp � �p � p1�=�0:5�u
2
1� around a

NACA 0012 airfoil: Lee and Kang [34] measurements at Rec � 600; 000
(○) and simulation results at Rec � 5 � 105 and M � 0:22 (solid line).

Table 1 Transition positions for various experimental works on the
flow around an airfoil at zero incidence

Gartenberg and Roberts [39] Rec � 3:7 � 105 x=c ’ 0:8
Lee and Kang [34] Rec � 6 � 105 0:62 � x=c � 0:78
Kerho and Bragg [37] Rec � 7:5 � 105 0:65 � x=c � 0:77

Rec � 1:25 � 106 0:57 � x=c � 0:67
Rec � 2:25 � 106 0:43 � x=c � 0:50
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gradient cannot be neglected. Following Afzal’s approach [40], the
effect of an adverse pressure gradient on u� in the overlap zone can
be taken into account by

u� � 1

�

�
ln y� � 2 ln

������������������
1� �y�

p
� 1

2
� 2�

������������������
1� �y�

p
� 1�

�
� B

(1)

where

��
�
up
u�

�
3

and up �
�
�

�

dP

dx

�
1=3

This expression is computed with the streamwise pressure gradient
obtained in the computation and is represented in Fig. 3with the solid
line. Amuch better fit is foundwith the velocity profile at x=c� 0:71
obtained from the computation. Inside the transition zone, velocity
profiles are neither laminar, because mean velocity increases less
than linearly with the distance from the wall, nor are they fully
turbulent. In fact, the velocity profiles appear to sweep the entire
domain between the linear law and the logarithmic law as transition
takes place, as also observed experimentally by Lee and Kang [34].

The shape factor at the trailing edge is found to beH � ��=�� ’ 2,
below typical values at which turbulent boundary-layer separation is
observed experimentally. The momentum-thickness-based Rey-
nolds number isRe� � 980, to be comparedwith the value of slightly
above 1000 found experimentally by Lee and Kang [34].

B. Flow Fluctuation Statistics

Figure 4 represents rms turbulent streamwise velocity fluctuations
measured at a height of y� � 16 along the upper boundary layer of
the airfoil, plotted as a percentage of the freestream velocity. The
level of fluctuations starts to increase notably around x=c� 0:45,
and it increases rapidly to reach a saturation level of approximately
15% of freestream velocity, at roughly x=c� 0:65. Their level then
diminishes slightly and flattens out between x=c ’ 0:8 and the
trailing edge. The transition region thus commences in the vicinity of
x=c� 0:45. It can be noted, however, that the level of fluctuations
before the transition zone is not zero. There are indeed velocity
fluctuations in the boundary layer in this region, as will be seen later,
but their level does not increase. The end of the transition zone is
presumably close to the location after which the level of fluctuations
is approximately constant, but the information given by this plot is
not sufficient to place the zone’s end with precision. However, these
preliminary values are in good agreement with experimental data.
For example, Lee and Kang [34] found the transition zones around a
NACA 0012 airfoil at a Reynolds number of 600,000 and zero angle
of attack to be located between x=c� 0:62 and 0.78 using

measurements performed by hot-wire anemometry. The transition
zones are shorter than those on a flat plate at an equivalent Reynolds
number because of the presence of an adverse pressure gradient in
this region created by the airfoil’s geometry.

Figure 5 shows a grayscale-map view of the rms streamwise
velocity fluctuations around the transition zone. The vertical scale in
this figure has been dilated by a factor of 10 to better show the region
of interest. It can be seen in this view that the maximum levels of
fluctuations are located between x=c� 0:6 and 0.75, which confirms
the previous estimation of the transition zone’s extent. It can also be
noted that the zone of maximum rms fluctuations is located quite
close to the airfoil’s surface, in the first third of the boundary-layer
thickness. This view of the rms fluctuations is in good qualitative
agreement with similar plots presented byKerho andBragg [37] for a
smoothNACA0012 airfoil at a Reynolds number ofRec � 750; 000
and a Mach number ofM� 0:062.

A better indication of the extent of the transition zone can be
obtained from the variation in the local skin-friction coefficient
Cf � �w=�0:5�U2

1�. Indeed, the skin-friction coefficient in the
laminar zone for a flat plate follows a different law from that in a
turbulent zone. Figure 6a shows the skin-friction coefficient obtained
in this computation for the central zone of the airfoil from 30 to 90%
of the chord.

The minimum skin friction is reached around x=c� 0:5, after
which point it rises rapidly to attain a maximum at about x=c� 0:72
before decreasing again toward the trailing edge. This places the
transition zone’s upstream and downstream bounds at x=c ’ 0:5 and
’ 0:72, respectively. The minimum value of Cf ’ 1:3 � 10�3

computed from the simulation results is higher than that of
approximately 7:5 � 10�4 observed by Lee and Kang [34], but this is

1 10 100 1000
0
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20

30

40

50

y+

u+

Fig. 3 Velocity profiles plotted in wall units u� � f �y�� in the upper

boundary layer around the NACA 0012 airfoil at Rec � 5 � 105 and

M � 0:22; x=c simulation results are 0.52 (□), 0.58 (◁), 0.63 (▷), and 0.75
(○), and u� theoretical curves are y� (dashed line), 2:44 log�y�� � 5:2
(dashed line), and f �y�; �� (solid line) [see Eq. (1)].
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Fig. 4 Velocity fluctuations u0rms=U1 in the upper boundary layer
around theNACA0012 airfoil atRec � 5 � 105 andM � 0:22, calculated
at y� ’ 16 and plotted as a function of x=c.

Fig. 5 View of the rms streamwise velocity fluctuations around the

transition zone on theNACA0012 airfoil atRec � 5 � 105 andM � 0:22;
gray to black is between 0 and 15% of the freestream velocity; vertical

scale is dilated by a factor of 10.
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due at least in part to the slowly varying position of the transition
zone, which has a tendency to flatten out the average skin-friction
curve. Similarly, the maximum computed value ofCf ’ 3:2 � 10�3

is lower than the experimentally observed value of almost 4 � 10�3.
The computed skin-friction coefficient is represented in Fig. 6b as a
function of the momentum-thickness-based Reynolds number and is
compared with that measured by Lee and Kang. Classical
expressions [41] forCf variation in laminar and turbulent regimes are
also represented by the dashed lines. The minimum skin-friction
value is obtained forRe� � 500 and themaximum is attained around
Re� � 800. These Reynolds numbers are similar to those of Re� �
500 and 860 observed by Lee and Kang [34]. The slopes observed in
both the laminar and turbulent zones also compare reasonably well;
however, the skin-friction coefficient is overestimated by around
40% in the laminar zone and underestimated by approximately 20%
in the turbulent region of the boundary layer. The reason for these
large discrepancies is not known.

The rms fluctuation profiles of streamwise velocity as a function of
distance from the wall are shown in Figs. 7a and 7b, computed at
different points from the laminar zone down to the turbulent region.
They are compared with those obtained experimentally by Lee and
Kang [34]. Computed profiles have not been plotted at exactly the
experimental streamwise locations, but the closest fit to each
experimental profile has been represented instead, along with its
corresponding location. Reasonable qualitative agreement in
turbulent fluctuation profiles is found between computational results

and those obtained by Lee and Kang, although the computational
values are all higher than the experimental data. The overestimation
is of approximately 40% in the early stages of transition and
approximately 15% once the transition is completed. The 15%
overshoot in velocity fluctuations in the turbulent region is roughly
consistent with the 20% deficit in the computed skin-friction
coefficient in the same region, on which the velocity scale is based

with the relation u� �
����������
�f=�

p
. The cause of the overestimation in the

early stages of transition might be due in part to the application of
periodic boundary conditions in the spanwise direction. Indeed, the
spanwise correlation length in the transitional zone, although not
given by Lee andKang, is undoubtedly larger than the computational
domain. The periodic boundary conditions will therefore have a
tendency to strengthen the two-dimensional aspect of the flow in this
area, which can lead to an increase in the fluctuation intensities. This
is no longer the case downstream of the transition zone, because
correlation lengths in the turbulent region are much smaller. As an
indication, the integral streamwise length scale in the turbulent
region is on the order of 7 � 10�4 m just upstream of the trailing
edge, to be compared with the 5-mm spanwise extent of the
computational domain.

It can be noticed that as the maximum fluctuation level rises in
the first part of the transition zone, the height of the maximum
also increases, which would tend to indicate that the vortical
structures in this region climb progressively through the boundary
layer, in keeping with traditional zero-pressure-gradient transition
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a) b)

Fig. 6 Skin friction a) Cf � �w=�0:5�U
2
1� around the transition zone of the NACA 0012 airfoil at Rec � 5 � 105 andM � 0:22 and b) as a function of

momentum-based Reynolds number Re� (solid line), experimental data from Lee and Kang [34] (□), and laminar variation Cf � 0:4409=Re� and

turbulent variation Cf � 0:0256=Re1=4� (dashed line).
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Fig. 7 □◁▷○△◇★Comparison of x=c velocity fluctuation profiles in the upper boundary layer around a NACA 0012 airfoil: a) computed values are
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scenarios [42]. The maximum value of u0�rms � 7 is reached at a
streamwise location of x=c ’ 0:63 (see Fig. 7a). The computed
u� profile at this location shows a good qualitative match with its
experimental counterpart and, in particular, exhibits a plateau in
the region 10 � y� � 30, albeit less marked than in the
experiment. Mislevy and Wang [43] showed that this plateau in
the early stages of transition is due to the presence of an adverse
pressure gradient by comparing fluctuation profiles in transition-
ing boundary layers subject to different adverse pressure
gradients. The height at which the maximum fluctuation levels are
reached is slightly lower in the computational results, at
approximately y� ’ 30, to be compared with the value of y� ’
40 obtained experimentally. The most noticeable discrepancy in
shape is observed for the profiles around x=c� 0:69 (see Fig. 7b).
At this location, the computed profile peaks well inside the
boundary layer at y� � 18 and closer to the wall than the
measured profile, which reaches its maximum at around y� � 65.
The fluctuation profiles obtained from the computation collapse
cleanly in the viscous sublayer, as should be the case with
properly computed friction velocity values.

The progressive transition to a turbulent state can be observed in
the time histories of the streamwise velocity signals shown in Fig. 8.
The velocity histories are represented as a function of nondimen-
sional time t=tc, where tc � c=U1 is the freestream convection time
over the airfoil. The first signal is measured at x=c� 0:5, the second
is from inside the transition zone at x=c� 0:63, and the last plot is
from the turbulent zone at x=c� 0:85. All three signals aremeasured
at a height of approximately 15 wall units from the airfoil. Note that
the vertical scale for the first and last signal is half that of the second
signal, to show signal shapes more clearly. Indeed, the second signal
is measured at the point at whichmaximum levels of rms fluctuations
are observed in the boundary layer, as can be seen in Fig. 5. It is
interesting to note that the signal measured in the laminar zone is
quite irregular. The oscillations are fairly sinusoidal, but their
amplitude varies strongly with time. Fluctuations are thus present
before transition takes place, these perturbations only being
amplified once the boundary layer becomes unstable.

A 2-D view of the !z vorticity field around the trailing edge of the
airfoil, presented in Fig. 9a, gives a visual representation of the
process of transition. The appearance of large-amplitude vortical
disturbances is seen to take place very quickly at approximately 60–
65% of the chord in this snapshot. The initially large spanwise
vortical structures break down rapidly to form much smaller

components, which can be seen in Figs. 9b and 9c. These views show
snapshots of the streamwise vorticity !x, taken from the top and the
side, respectively. Small vortical structures appear around
x=c ’ 0:63, farther downstream than the oscillations apparent in
Fig. 9a, because the boundary-layer instability is initially two-
dimensional and only progressively becomes three-dimensional
once the end of the linear growth region is reached.

Vorticity is arranged in streamwise ribbons of alternating sign, for
which the upstream ends are very close to the wall and the
downstream ends are higher up in the boundary layer. The average
observed length of the vortices varies from around x� � 200 at
x=c� 0:7 to approximately x� � 80 at x=c� 0:95. They are
commonly referred to as horseshoe vortices in the literature [42,44]
and are generally believed to be responsible for the majority of
turbulent energy creation in the boundary layer via their bursting
process. Most of the horseshoe vortices observed are incomplete or
one-sided, as also noted byRobinson [45] in his examination of DNS
data obtained by Spalart [46] for a turbulent boundary layer. The
average length of the horseshoe vortices observed in this work is
comparable with that of x� � 100 given by Panton [42]. The average
spanwise separation of these longitudinal structures in the
computation is around �z� � 110, which closely matches the
value of �z� � 80–100 found by Kline et al. [47].

C. Acoustic Results

The acoustic field generated by the airfoil is also captured in the
computation. It is, moreover, properly propagated to the
computational domain’s outer boundaries, due to the low dispersion
and low dissipation of the numerical technique used.

A preliminary examination of pressure-field snapshots shows
them to be free from gross artifacts such as those sometimes induced
by radiation conditions. This is promising, especially given the
geometrical proximity of the radiation conditions to the acoustic
source zone. Indeed, the radiation formulation used in this work is
valid in the far field for a uniform mean flow [27]. Despite the
distance from the trailing edge to the radiation conditions being of the
same order as the airfoil chord, the far-field assumption is ratherwell-
satisfied, because the acoustic source zone is concentrated at the
trailing edge and the wavelengths of the acoustic radiation are small
compared with the chord. However, the mean flow is clearly not
uniform, particularly in the wake zone. The effect of the sponge zone
can be noticed on the acoustic field shown in Fig. 10, in which
acoustic waves seem to disappear in the downstream direction after
x=c ’ 1:25. This is due to the increased numerical dissipation in the
sponge zone. Figure 10 also shows some slight reflections from the
boundary conditions, but on the whole, they are deemed to be
acceptable here in the context of the preliminary way in which
acoustic levels are computed.

It should be noted that the convergence of themeanflowfield in the
radiation zones during the initial transient phase of the computation
is delicate: the rate at which the mean fields are adjusted with
instantaneous information must approximately match the variation
rate of these fields during the transient period.

Figure 10 shows an instantaneous view of the fluctuating pressure
field around the airfoil. Sound waves can clearly be seen to radiate
away from the trailing edge, the nearly circular aspect of these waves
indicating that the emission zone is almost pointlike in the x–y plane.
On this particular view, low-amplitude soundwaves can also be seen
to be leaving the leading edge. The upstream flow has no incoming
artificial turbulence, and so it would appear that these waves are the
result of the leading-edge diffracting waves emitted at the trailing
edge. No particular frequency clearly dominates the sound field, as is
supported by the narrow-band spectrum shown in Fig. 11. The plot
represents the power spectral density, in decibels per Strouhal, of the
fluctuating pressure at the edge of the computational domain. The
coordinates of the measurement point are x� 0:1 and y� 0:095.
The Strouhal number used here is based on the chord of the airfoil and
the upstream flow velocity, Stc � fc=U1. At the observation point,
the Strouhal number resolution limit for acoustic waves is Stc � 80,
based on a criterion of at least five points per wavelength. The
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acoustic emission is strongly broadband, with a notable level for
Strouhal numbers lower than about 10. The maximum level is
observed at a Strouhal number of approximately St� 5. The
corresponding pressure signal, represented as a function of

nondimensional time t=tc, where tc is the freestream convection time
across the airfoil, is plotted in Fig. 12.

A quantitative comparison of acoustic results is made with
experimental work from Brooks et al. [48]. Figure 13 shows the
third-octave sound pressure level (SPL) as a function of frequency
for the 10-cm airfoil of this computation, as well as for a 10.16-cm
airfoil at a flow speed of 71:3 m=s. The experimental SPL was
measured at a distance of 1.22 m from the airfoil above the trailing
edge. The computational domain used in this work is obviously
smaller than that, and so the pressure signal from the edge of the

Fig. 9 Instantaneous views of the a) !z vorticity in the boundary layers around the trailing edge of a 3-D NACA 0012 airfoil at a Reynolds number of

Rec � 5 � 105 and M � 0:22 (grayscale is between �1 � 105 s�1), b) top view of the !x vorticity in the same boundary layer (gray and black surfaces

correspond to�1:5 � 105 s�1), and c) side view of the !x vorticity.

Fig. 10 Snapshot of the fluctuating pressure field around the NACA

0012 airfoil atRec � 5 � 105 andM � 0:22 (grayscale is between�5 and
5 Pa).
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domain is taken and scaled, supposing that the radiation is of a two-
dimensional nature in a uniform flow. The two spectra are observed
tomatchwell, with levels issued from the computation being slightly
higher than experimental levels, but with differences not exceeding
3 dB. The simple scaling of pressure from a single point is a
somewhat rough approximation and calls for a few remarks. Indeed,
it first supposes that the flow from the computational measurement
point (10 cm away from the trailing edge) outward to the
experimental measurement point is uniform,which, judging from the
computational results at the computational domain’s boundaries, is a
reasonable assumption. Furthermore, the simple scaling assumes that
there is no diffraction from the leading edge of the airfoil back toward
the measurement point, because only information on the direct
propagation path from the trailing edge to the measurement point is
used. This acoustic signal therefore does not contain the pressure
fluctuations back-scattered by the leading edge toward the
experimental measurement point, but contains the signal back-
scattered toward the point at which the signal is measured in the
computational domain. The assumption that the back-scattering is
negligible at 90 deg to the trailing edge is especially true for higher
frequencies; but, in any case, analytical studies of leading-edge back-
scattering [49] suggest that this effect should remain marginal in the
configuration studied here.

Supposing that the acoustic radiation is two-dimensional leads to
an overestimation of the pressure level that is frequency-dependent,
because the correlation length should depend on the frequency.
Unfortunately, no experimental spanwise coherence data were
provided by Lee and Kang [34] for their experiments. However, in
the present simulation, once well outside the boundary layer, the
pressure correlation across the domain’s width is very high, on the
order of 0.99, and hence the approximation should be sufficient to
compare trends between experimental acoustic data and those
obtained from the computation.

Unlike in experiments, it is not necessary to apply a correction to
sound ray trajectories. Indeed, in experiments, sound propagating
away from the airfoil is refracted by the shear layer of the
experimental jet before reaching the microphone. This is not the case
in the present simulation, because the flow covers the entire
computational domain.

It can be noted that there is no indication of a strongly tonal
Tollmien–Schlichting type acoustic radiation present in Fig. 13. This
is in agreement with experimental observations by McAlpine et al.
[50] for aNACA0012 airfoil at aReynolds number of 340,000 and at
zero incidence to the flow. They observed a laminar-to-turbulent
transition shortly upstream of the trailing edge and concluded that
this transition broke any possible Tollmien–Schlichting feedback
loop, thus precluding tonal noise.

IV. Conclusions

The flow around a 3-D NACA 0012 airfoil at a transitional chord-
based Reynolds number of 500,000 and a Mach number of 0.22 was

studied numerically with a parallel curvilinear compressible solver
based on high-order methods. The airfoil is placed in a uniformmean
flow at zero incidence to the direction of the flow. According to
available experimental results, the airfoil’s boundary layers at this
Reynolds number are initially in a laminar state and transition toward
turbulent boundary layers along the second half of the airfoil. The
computational results presented in thiswork show that the location of
the transition zone is well-captured and that the mean velocity field
after the transition region is well-described by the modified turbulent
logarithmic law, including adverse pressure gradient effects.
Furthermore, rms velocity fluctuation profiles and skin-friction
values are in reasonable agreement with experimental data. The
acoustic field resulting from turbulent boundary-layer structures
crossing the trailing edge is also determined in the same computation.

First analyses indicate that acoustic data follow expected trends. A
broadband radiation pattern is observed, and no tonal Tollmien–
Schlichting feedback loop is detected. A reasonable match is
obtained between computational results and corresponding third-
octave acoustic experimental spectra.

It is hoped in the near future to perform similar computations at
different Mach numbers, allowing the comparison of the acoustic
scaling with the analytical dependence on the fifth power of the
velocity, which, to our knowledge, has not as yet been verified in
compressible computations of turbulent flows crossing a trailing
edge.

Appendix A: Navier–Stokes Equations
in Curvilinear Coordinates

I. Curvilinear Equations

The geometrical transform between the physical domain and its
computational counterpart is characterized by its Jacobian matrix,
which describes the variations of the computational coordinates �, �,
and 
 as a function of the physical coordinates x, y, and z, is given by
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U � ��; �u; �v; �w; �et�T (A2)

and the inviscid and viscothermal fluxes are given, respectively, by
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Subscripts denote partial differentiation with respect to the
subscripted variable (i.e., u� � @u=@�). The shear stress terms are
given by the following expressions:
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where the heat flux terms qx, qy, and qz are obtained using Fourier’s
law:

q ��krT

where k� �cp= (� is the dynamicmolecular viscosity specified by
Sutherland’s law, cp is the specific heat at constant pressure, and  is
Prandtl’s number, for which the value is generally set to 0.72 for
typical airflows).

II. Wall Condition

At a hard surface, velocity components are equal to zero and do not
need to be updated. The equations governing density and total energy
are also simplified by the zero velocity at the wall. For instance, for a
wall described by �� 0, the density equation thus becomes
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The right-hand spatial derivatives are computed using the one-
sided 11-point differencing scheme for which the details are
presented in Berland et al. .
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