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In this work, the interaction between a boundary layer and a circular cylindrical cavity

is studied. Experimental pressure and velocity results for a cavity of diameter 10 cm and

depth ranging from 10 to 15 cm are described, for flow velocities between 50 and

110 m s�1. This flow configuration is found to generate intense discrete depth- and

found in shallow rectangular cavities. Differences between the cylindrical cavity’s mean

flow and that of a similarly sized rectangular cavity are highlighted. The development of

the shear layer is quantified, in terms of thickening and of velocity statistics profiles.

Radial and azimuthal acoustic modes are observed in the acoustic field inside the cavity.

A feedback model based on the coupled behaviour of the fundamental acoustic depth

mode of the cavity and the large scale dynamics of the shear layer is constructed, and its

response is compared to experimental data. A good qualitative agreement between

available data and modeled behaviour is observed, allowing the two acoustic modes

found in this work to be attributed to the interaction of the shear layer with the cavity’s

fundamental depth mode.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The noise generated by civil aircraft both in taking-off and in landing phases is currently one of the main aspects
limiting traffic growth in large international airports. Among the different causes of total aircraft noise, acoustic radiation
due to various elements of the airframe is one of the major sources of community-perceived aircraft noise during the
approach configuration [1]. There are many contributors to airframe noise, including for example landing gear and high-lift
devices, both of which have been studied in numerous research works. The tonal noise generated by burst-disk cavities
and vent holes located under wings has been subject to less investigation, despite being clearly identifiable in fly-over
measurements [2] even if there is no direct impact on current certification levels.

Noise generated by rectangular cavities excited by a grazing flow has been the focus of countless studies in
aeroacoustics since the 1950s and the pioneering work of Roshko [3] and Karamcheti [4]. Noteworthy general reviews
on the subject have been written by Rockwell and Naudascher [5] or Rockwell [6] for instance. It was quickly noted that
cavity radiation was often tonal, with one or multiple discrete tones being emitted, and moreover that detailed cavity
geometry, as well as precise incoming flow conditions, can have a strong influence both on mean flow inside the cavity and
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Nomenclature

c speed of sound
Cp mean pressure coefficient, Cp ¼ ðp�p1Þ=

ðr1U2
1=2Þ

D cavity diameter, D¼ 2r0 ¼ 10 cm
f frequency
h cavity depth
H¼ d%=dy boundary layer shape factor
k¼o=Uc hydrodynamic wavenumber
k0 ¼o=c acoustic wavenumber
M¼U1=c1 Mach number

qac acoustic volume flow through the cavity
mouth

qh hydrodynamic volume drive flow generated
by shear layer motion

r0 cavity radius
S cavity mouth area S¼ pr2

0

Uc convection velocity
U1 free stream velocity
wac acoustic velocity through the cavity mouth
d% displacement thickness
dy momentum thickness
dh cavity depth correction term
x vertical displacement of the shear layer
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on the noise radiated by the cavity. Accordingly, a large number of experimental studies have looked into the influence of
the cavity dimensions [3,4,7,8], thickness of the incoming boundary layer and its laminar or turbulent state [4,8–10], and
Mach number.

One of the first and most well-known explanations of tonal noise generation is due to Rossiter [11]. His extensive
experimental campaign showed discrete tones varying in frequency with Mach number and cavity length, and he proposed
a semi-empirical model that fitted his observations reasonably accurately. In this model, large vortical structures are
created at the leading edge, convected by the shear layer at a certain fraction of the freestream velocity, and impact the
downstream cavity edge. The resulting acoustic waves propagate upstream and, for certain wavelengths, synchronise the
development of new large-scale vortices, thus creating self-sustaining flow oscillations, similar to the oscillations
described and modeled by Powell [12] for jet-edge interactions. This description thus corresponds to a feedback model,
with a hydrodynamic forward path and an acoustic backward path, and links the Strouhal number St of oscillations to an
average number n of discrete vortices in the shear layer, an average convection velocity of large vortical structures in the
shear layer Uc and Mach number M by

St¼
fL

U1
¼

n�a
U1=UcþM

(1)

where a is a delay term with a value of roughly one quarter, and L the length of the rectangular cavity.
A number of refinements to Rossiter’s model have since been proposed. Some of these modifications are relatively

minor, allowing for example to fit tones resulting from supersonic flow speeds [13], or to better describe the effect of the
cavity length to depth ratio [14]. Other authors have proposed analytical developments to clarify the role of the shear
layer. Bilanin and Covert [15] accounted for the phase of velocity perturbations convected by an infinitely thin shear layer,
hoping to find a physical justification for the constants in Rossiter’s model. Block [14] proposed to generalise Bilanin’s
model by accounting for acoustic reflexions on the cavity floor in the acoustic feedback path. In a later work, Tam and
Block [7] replaced the vortex sheet assumption previously used by a linear stability analysis on hyperbolic tangent shear
layer velocity profiles. They suggested that for lower Mach numbers Mo0:2, depth modes dominate the acoustic emission
of deep cavities, yielding frequencies independent of freestream flow velocity. They also provided experimental results for
different cavity depths substantiating this claim. Blake [16] proposed a physical explanation for the commonly observed
value of 1/4 for one of the key constants in Rossiter’s formula, a in Eq. (1), linking it to an optimal phase lag of p=2 between
inflow at the downstream edge and shear layer forcing at the upstream edge.

More recently, Direct Noise Computations have also been realised with success for two dimensional [17,18] and three
dimensional configurations [19] by direct numerical simulation and large-eddy simulation, respectively. Investigations of
the three-dimensional flow dynamics through large-eddy simulations have also been performed [20] as well as studies of
control techniques as a possible means of reducing noise generation [21,22]. Recent syntheses of the extensive literature
on this topic can be found in Cattafesta et al. [23] or in Rowley and Williams [24].

Cavities of cylindrical shape have received far less attention from the research community than their rectangular
counterparts. Deep cylindrical cavities, such as organ pipes and cavities encountered in hydraulic side-branches, are an
exception. Powell [12] first suggested that organ pipe sound production could be due to an edgetone excitation mechanism
interacting with a depth-mode resonance. Later researchers developed the idea in more detail, in particular explaining
how the resulting pipe frequency was relatively independent of the jet excitation velocity [25,26]. Side branch pipes in
hydraulic systems, exhibiting fluid-resonant behaviour, have also been studied in some detail [5]. Experimental and
theoretical studies have been performed on various aspects such as the flow velocity required for the onset of oscillations
[27–29], nonlinear coupling of acoustic modes [30], and the effect of pipe and branch geometry [31]. However,
documentation on shallower cylindrical cavities, with a diameter-to-depth ratio of the order of one, is relatively scarce.
Elder [32] studied a cylindrical cavity partially closed by a flat plate with a rectangular opening. Thanks to the
simultaneous measurement of hot-wire signals in the shear layer and a pressure signal in the cavity, he was able to
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show that the shear layer exhibited a large-scale interface wave whose behaviour was well predicted by linear instability
theory, despite the turbulent nature of the incoming boundary layer. He then used this to relate both resonant frequencies
and resonance amplitude to cavity geometry and flow speed. Parthasarathy et al. [33] examined the sound generated by
small cylindrical cavities at relatively low Mach numbers, and found that for his experimental conditions, a strong tonal
frequency was generated that varied with the flow speed according to fpð1�MÞ�1. He was able to match a simple 1D
oscillator model to his results, explaining qualitatively the acoustic power output variation as a function of flow velocity. It
is interesting to note that these two studies, both performed at relatively low Mach numbers Mo0:25, provided
experimental data showing acoustic frequency varying with flow Mach number, contrary to results shown published by
Tam and Block [7] for rectangular cavities of similar aspect ratios.

In the present work, self-sustained flow and acoustic oscillations generated by a turbulent boundary layer grazing a
cylindrical cavity set in a flat plate are investigated experimentally. This configuration is currently being studied by a number of
research teams working with numerical simulations to document cylindrical cavity acoustics [34–36]. Such cavities are found
on the pressure side of civil aircraft wings in the form of kerosene over-pressure vents. Therefore, an attempt is made to provide
a reference test case with flow and geometric parameters adapted to this aeronautical context, for which numerous and varied
experimental results are described. The turbulent flow around a 10 cm diameter cavity and its acoustics are characterised for a
depth-to-diameter ratio between 1 and 1.5, and freestream velocities in the range of 50–110 m s�1. Strong tonal peaks are
observed in the far acoustic field. Peak frequencies vary both with flow velocity and with cavity depth. Acoustic behaviour is
found to be well described by an acoustic depth-mode resonance excited by shear layer instabilities. A symmetrical but highly
3D mean flow is observed from static pressure measurements inside the cavity. Internal radial and azimuthal cavity modes are
found to be excited, but they are not radiated to the far field. A model proposed by Elder [32], adapted here for cylindrical
cavities, is then used to discuss acoustic results. A good match between frequencies observed in experiments and those
predicted by the model is found, suggesting that feedback between large-scale shear layer oscillations and the cavity depth
mode is responsible for the tonal acoustic emission observed in this study.

2. Experimental setup and techniques

2.1. ECL facility

The experiments were conducted in the main subsonic wind tunnel of the Centre Acoustique at the Ecole Centrale de
Lyon (ECL) in France. The flow is generated by a 350 kW Neu centrifugal blower delivering a nominal mass flow rate of
15 kg s�1, and the fan is powered by an electronically controlled Tridge-Electric LAK 4280A motor. Air passes through a
settling chamber as well as through a honeycomb and several wire meshes designed to reduce free stream turbulence.
Acoustic treatment on the wind tunnel walls and baffled silencers allow flow noise levels and contamination of the
acoustic measurements performed in the anechoic chamber to be kept to a minimum. As shown in Fig. 1, the flow is finally
guided into a large anechoic room of 10�8�8 m3, by a rectangular nozzle with a cross-section of 0.5 by 0.25 m over a flat
plate measuring 0.8 m in the streamwise direction by 0.6 m in the cross-flow direction, thus forming a rectangular-section
wall jet. The round cavity of radius r0 ¼ 50 mm is placed 450 mm downstream from the nozzle exit, well inside the
potential core of the wall jet. Fig. 2 provides a schematic view of the setup and coordinate system. In order to obtain a
reproducible turbulent incoming boundary layer, a strip of sandpaper is placed inside the nozzle before the convergent
zone, thus ensuring a complete transition to a turbulent state for all flow velocities of interest. The main flow and
geometric parameters of the study are listed in Table 1. The main part of the study deals with a cavity depth of 100 mm,
but depths of up to 150 mm are also considered.
Fig. 1. Picture of the experimental setup in the ECL anechoic wind tunnel including the semi-circular rotating antenna of microphones.
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Fig. 2. Schematic view of the round cavity and the Cartesian coordinate system.

Table 1
Main parameters of the flow configurations studied. The

Reynolds number based on the cavity diameter lies in the

range 3:3� 105 rReD r7:3� 105.

Cavity radius r0 50 mm

Cavity depths h 100, 125, 150 mm

Flow velocities U1 50–110 m s�1

Boundary layer thickness d99 17 mm
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2.2. Pressure measurements

The cavity has been instrumented in order to allow the measurement of both static and fluctuating wall pressure. For
static wall pressure measurements, 0.7 mm stainless steel tubes are flush-mounted on the cavity walls, and connected to a
Furness manometer using atmospheric pressure as reference. These pressure tappings are located along four vertical lines
on the cylindrical wall, and along two perpendicular diameters on the cavity floor. The cavity block can be rotated with
respect to the grazing flow, allowing the static pressure to be measured at any angular position around the cavity. In a
similar way, the cavity can be fitted with a total of 201

4

00
Brüel and Kjær Type-4935 microphones, arranged in four vertical

lines comprising of four microphones each, and four microphones on the cavity floor. Again, the instrumented cavity can
be rotated with respect to the flow in order to obtain fluctuating pressure measurements anywhere on the cavity walls.
Far-field acoustic directivity measurements have also been performed, thanks to seven Brüel and Kjær ICP type 4935
microphones placed on a semi-circular rotating antenna of radius 1 m centred on the middle of the cavity opening.

2.3. Characterisation of turbulent velocity fields

Turbulent velocity fields have mainly been obtained by time resolved particle image velocimetry (TR-PIV). The CMOS
camera used in the present TR-PIV system is a Phantom V12 with a resolution of 1280�800 pixels and a dynamic range of
12 bits. The camera was inclined by an angle of 71. with respect to the flat plate, in order to obtain a 100�60 mm2 window
of the shear layer above and just under the cavity opening. Images were corrected for the resulting optical distortion. The
light sheet was provided by a Quantronix Darwin Duo Nd:YLF dual-cavity laser with a pulse energy of 18 mJ and a 527 nm
wavelength. A data set consists of 2700 pairs of images, obtained at a repetition rate of 3000 Hz in the present
experiments. A total of six data sets were recorded during the experimental campaign. The laser and camera synchroniser
are triggered by a microphone signal of the sound field radiated by the cavity. LaVision DaVis v7.2 software is used to
compute flow fields from pairs of images by multipass correlation. A pass subregion size of 128�128 pixels is first
considered. The interrogation window is then reduced to 16�16 pixels with 50 percent overlap. Finally to seed the flow
field, a SAFEX smoke generator was used to create glycol particles of size 1 mm.

Hot-wire anemometry has also been used both to validate PIV data and to characterise the incoming boundary layer.
The hotwire data was obtained using a Dantec model 55p11 with a 5 mm diameter, 1.25 mm long platinum-plated
tungsten wire. The hotwire was operated at an overheat ratio of 0.8 and was controlled by a Dantec Streamline 90C10
module. The hotwire signal was digitised at 10 kHz and 24 bits resolution using a PXI-4472 system. An anti-aliasing filter
was applied to the hotwire signal before its digitisation.

2.4. Incoming mean flow

Flow velocity ranges from 50 to 110 m s�1, or approximately M¼0.15 to M¼0.34. The boundary layer thickness d99,
also reported in Table 1, varies between around 18 mm and 16 mm over this Mach number range, while the shape factor
remains approximately constant at HC1:35. Turbulence levels in the free stream are low, and do not exceed 1 percent of
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the freestream velocity. Maximum fluctuation levels in the boundary layer are recorded at a distance of approximately
3 mm from the wall, but this distance is probably overestimated due to the hot-wire setup used for performing the
measurements. Mean and rms fluctuation velocity profiles for the 70 m s�1 case, measured 225 mm upstream of the cavity
leading edge by HWA, are shown in Fig. 3, in (a) physical units on the left and (b) wall units on the right. From the
representation scaled in wall variables, a strong wake component is observed in the velocity profile, which may be due to
the nonconfined nature of the wall-jet flow. Velocity profiles have also been measured at different values of the cross-
stream y coordinate to ensure that the boundary layer is relatively two-dimensional upstream of the cavity. Profiles of
streamwise velocity, not represented, display reasonable similarity, with differences not exceeding 4 m s�1 throughout the
boundary layer. The transversal velocity component also remains small, not exceeding 3 m s�1 at any of the measurement
locations.

3. Experimental results

In this section, acoustic results measured in the far field above the cavity are first reported. The flow field in the shear
layer and inside the cavity are then described, based on velocity and static wall pressure measurements.

3.1. Acoustic trends

General properties of the far acoustic field are first described. An estimate of the acoustic output as a function of
velocity is presented in Fig. 4(a). The power of the acoustic signal measured at a distance of 1 m directly above the cavity is
represented over the range U1 ¼ 50 m s�1 to U1 ¼ 110 m s�1, for a cavity depth of h¼100 mm. It can be seen to increase
from 79 dB for an upstream flow velocity of 50 m s�1, to 104.5 dB at 110 m s�1, with a local maximum of 95.5 dB at
70 m s�1. It is compared to a U6

1 evolution, represented by the dashed line, scaled to correspond to the experimental
power level at 50 m s�1. Acoustic scaling based on U6

1 is typical of compact dipolar noise source mechanisms, such as
turbulent fluctuations close to a rigid surface. Thus a sixth power scaling could be anticipated in the absence of notable
acoustic resonance or feedback in the cavity, as a result of the shear layer interaction with the downstream cavity wall.
While the U6

1 scaling matches the minima of the acoustic power evolution quite well, notable deviations are visible for
velocities around 70 m s�1 and around 100 m s�1. In Fig. 4(b), a spectral representation of the pressure signals is given for
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three freestream velocities, namely 70, 90 and 110 m s�1. The 70 and 90 m s�1 flow speeds exhibit a single sharp peak in their
spectra, while the flow speed of 90 m s�1 generates two smaller peaks in the far field. At 70 m s�1 the peak is found at a
frequency of 660 Hz, about 10 percent above the acoustic depth resonance frequency, and this frequency emerges from the
broadband noise by around 27 dB to reach a level of 87 dB. Its first harmonic is also distinctly visible, at a frequency of 1320 Hz.
The two distinct peaks at 90 m s�1, occur at frequencies of 500 Hz and 795 Hz. The lower frequency peak is slightly more
intense, reaching a maximum of 80 dB, while the higher frequency peak reaches 72 dB. Neither of the two peaks exhibits
discernible harmonics. Finally the 110 m s�1 flow velocity results in a single intense acoustic peak at a frequency of 580 Hz.
The peak has a considerably higher quality factor than that observed at 70 m s�1, and emerges from the background noise by
more than 30 dB to reach a maximum of 96 dB. Its first harmonic at 1180 Hz is also very pronounced, with an emergence of
18 dB, and the second and even third harmonics are noticeable in the experimental PSD.

The spectral content of the acoustic far field is represented as a function of flow velocity in Fig. 5 for cavity depths of
100, 125 and 150 mm. A number of discrete peaks are seen to emerge from the base noise level, providing a pattern similar
to those observed in many studies focusing on rectangular cavities. The peaks’ frequencies increase with flow velocity, in a
roughly linear fashion over the range of velocities studied here, giving rise to acoustic modes in the far field. This is
different from the tonal behaviour of deeper rectangular cavities, such as those examined by Yang et al. [37] who found
that for the cavities of length-to-depth ratio of 1/7 and smaller, observed frequencies were independent of flow velocity.
Tam and Block [7] also found tonal behaviour to be independent of flow velocity for rectangular cavities of similar length-
to-depth ratios at low Mach numbers Mo0:2.

The level of total radiated noise increases with depth. For a depth of h¼100 mm, two main modes are clearly visible,
and are of similar amplitude. The first mode goes from a frequency of 500 Hz at a flow velocity of 50 m s�1 to 850 Hz at
100 m s�1, while the second goes from 450 Hz at 80 m s�1 to 570 Hz at 110 m s�1. For depths of h¼125 mm and
h¼150 mm, both modes drop in frequency. The higher-frequency mode (2) migrates towards lower velocities and
diminishes in strength, while the lower-frequency mode (1) increases in intensity and extends towards lower velocities.
Harmonics of mode (1) are present at all depths. For the 100 mm cavity, only the first harmonic is visible, and only at flow
speeds above 100 m s�1. As the cavity depth is increased, the second and third harmonics appear, and are present at lower
flow speeds down to 75 m s�1 for h¼150 mm.

3.2. Flow inside the cavity

It is not easy to measure mean flow properties in the cavity interior, because of the cavity’s cylindrical geometry.
Nevertheless, two-component U-V LDA measurements inside the cavity have been performed in the y¼0 plane, and static
pressure has been measured on the cavity walls.

The mean and fluctuating streamwise velocity inside the cavity is illustrated in Fig. 6(a) and (b). These measurements
show a large recirculation whose centre is located in the bottom half of the cavity, similar to what is observed for square-
section cavities at moderate Reynolds numbers [38]. The recirculating flow along the floor of the cavity is intense, reaching
18 m s�1 at x¼0 and z¼�98 mm. This strong wall shear is enough to generate intense turbulent fluctuations, reaching
r.m.s levels of 35 percent of the local mean velocity at the same measurement location.

The static pressure distribution on the cavity wall can also give useful insight into the behaviour of the mean flow, and
in particular its differences with respect to better known rectangular cavity flows. The pressure coefficient Cp on the cavity
wall and floor for a flow velocity of 70 m s�1 is shown in Fig. 7. The pressure distribution is almost, but not exactly,
symmetrical with respect to the flow direction. For smaller depth-to-diameter ratios around 0.5, it has been shown that a
strongly asymmetric mean flow can be generated [39–41] but such phenomena have not been observed for a depth-to-
diameter ratio of one, as in this work. The slight asymmetry is presumed to stem from an imperfect alignment in the
experimental set-up, but its origin has not been investigated further, since it is almost everywhere inferior to 5 percent of
the Cp values. The impact zone of the shear layer on the downstream wall is clearly visible, corresponding to the zone of
positive Cp centred around the polar angle y¼ 0 indicating the downstream direction. It is substantially lower than for
rectangular cavities with similar length-to-depth ratios and Mach numbers, where the Cp in the impact zone is typically around
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0.3–0.4. This impact generates a general downward motion along the downstream vertical edge, and creates a large central
recirculation zone, rotating around an axis aligned with the cross-flow y direction, and whose shape is skewed slightly due to
the round geometry of the cavity. Its Cp ¼ 0 trace on the cavity floor has a characteristic horseshoe shape, as also seen in results
from [39,40]. Along the upstream bottom edge, there are signs of a smaller counter-rotating recirculation, as often seen in
rectangular cavities. Unlike in rectangular cavities, however, where this counter-rotating recirculation is mostly aligned with
the cross-flow direction, here the vortex geometry is constrained by the circular cavity wall, yielding a crescent-like shape
visible in its contact zone of positive Cp on the floor, which extends around 901 to each side of the y¼ 1801 direction. Similar
pressure distributions are observed for velocities over the range 50rU1r110 m s�1.

3.3. Upstream boundary layer characteristics

Flow features around the cavity are studied by LDA and HWA in the upstream boundary layer and by PIV in the shear
layer above the cavity. It has been shown in a number of past studies that the properties of the incident boundary layer
exert a decisive influence on the presence, frequency and amplitude of cavity oscillations. For the present study, these
parameters are as follows. The boundary layer thickness measured 225 mm upstream of the cavity by hot wire
anemometry is found to be d99 ¼ 17 mm and the momentum thickness, dy ¼ 1:8 mm. This yields a ratio of cavity diameter
to momentum boundary layer thickness of D=dy ¼ 55, and a diameter to boundary layer thickness of D=d99 ¼ 5:9. The
second ratio is substantially smaller than the minimum value of L=d99415 proposed by Ahuja and Mendoza [8], under
which shallow 2D rectangular cavities grazed by a turbulent incident boundary layer should not generate oscillations.

3.4. Shear layer characteristics

Flow field features in the shear layer were investigated by PIV. Fig. 8 presents the mean streamwise U and vertical W

velocity fields in the y¼0 plane of symmetry, while rms values of the corresponding fluctuating fields are shown in Fig. 9.
The upper extremity of the cavity recirculation is visible in particular on the mean W component shown in Fig. 8(b), with a
wide upward movement of between 2 and 5 m s�1 over the first two thirds of the cavity opening, and a more localised and
stronger downward motion of around 5 m s�1 near the cavity’s downstream edge. From Fig. 8(a), it can be seen that over
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most of the cavity diameter, the mean streamwise velocity just under the shear layer is between 10 and 15 m s�1, or
between 14 and 21 percent of the freestream velocity.

Maximum fluctuation levels of up to 13 percent of the freestream velocity for u0 and 10 percent for w0 are observed in the
shear layer, as seen in Fig. 9(a) and (b). For laminar incoming boundary layers, Sarohia [42] observed maximum u0 levels in the
shear layer above rectangular cavities of around 15 percent, while in the case of turbulent incoming boundary layers, observed
maxima vary from around 17 percent [43] to roughly 25 percent [10]. Profiles of u0 are seen to change progressively from a
characteristic boundary layer shape with a maximum very close to z¼0, to a shape and indeed amplitude similar to those found
in free mixing layers [44]. To illustrate this point more quantitatively, Fig. 10 represents scaled Reynolds-stress profiles as a
function of the scaled cross-stream coordinate. Both the /u02S and /u0w0S profiles are scaled by the square of the velocity
difference across the shear layer, Us ¼Uo�Ui, where Uo is the local mean velocity outside the shear layer and Ui the velocity
underneath the shear layer, and are represented as a function of the cross-stream z coordinate scaled as m¼ ðz�z50Þ=ðz90�z10Þ

where za is such that /Uðx,0,zaðxÞÞS¼UiþaðUo�UiÞ. Reasonable self-similarity is found for profiles of both quantities in the
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second half of the cavity mouth, over the range 0rxr33 mm. Reynolds-stress levels are close to those measured by Bell and
Mehta in free shear layers [44].

From the mean flow field measured by PIV, the streamwise growth rate of the shear layer can be estimated in the y¼0
plane. It is represented for momentum thickness

dy ¼
Z rU�ðrUÞi
ðrUÞo�ðrUÞi

1�
rU�ðrUÞi
ðrUÞo�ðrUÞi

� �
dz

and also for vorticity thickness

do ¼
Us

maxðdU=dzÞ

in Fig. 11(a) and (b), respectively. As can be seen from the mean velocity field shown in Fig. 8, the lower boundary of the
recorded flow field is very close to the lower edge of the shear layer. A direct calculation of the momentum thickness dy
from the measured mean field would thus be prone to a bias dependent on the streamwise x position. In order to avoid
this, for each streamwise location x, U(x,z) is fitted by a function f ðzÞ ¼ aþb tanhðczÞ, and the momentum-based thickness
dy is obtained from functions b(x) and c(x).

For the vorticity-based thickness, Us should be defined as the local difference between flow speed above and below the shear
layer, Us ¼Uo�Ui, but here we take Us¼Uo for simplicity. It can be noted that this leads to an error which depends on the
streamwise x position, since Ui is seen to vary in Fig. 8(a). Based on dy, the growth rate exhibits two distinct zones, a first zone
extending from the leading edge to roughly x¼�0.03 m where the shear layer thickens rapidly at a rate of ddy=dx¼ 0:0515, and
then a second zone that ends 1 cm from the downstream edge, where the growth rate is limited to ddy=dx¼ 0:0292. Based on
do, two regions are again observed, the first extending to x¼�0.02 m with a growth rate of ddo=dx¼ 0:261 and the second with
a growth rate of ddo=dx¼ 0:146. The second zone corresponds approximately to the region in which fluctuation profiles are self-
similar. These growth rates can be compared to measurements performed on a variety of rectangular cavities. Forestier et al. [45]
studied a deep rectangular cavity grazed by a turbulent boundary layer at a Mach number of 0.8, and found an established
growth rate of ddy=dx¼ 0:042. Sarohia studied laminar cavity flows at lower Reynolds numbers [42], and found a maximum
value of ddy=dx¼ 0:022.

3.5. Coherent structures in the shear layer

An investigation of the existence of large structures in the shear layer is performed by computing spatial two-point
correlations of the streamwise and vertical velocity fluctuations. Normalised correlations are computed as

Ru0
i
u0

j
ðxo,zo,x,zÞ ¼

/u0iðxo,zoÞu0jðx,zÞSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/u02i ðxo,zoÞS/u02j ðx,zÞS

q
and the ensemble averaging is performed on a total of 16200 PIV images issued from six consecutive runs. Normalised spatial
correlations of u0u0 and w0w0 are shown in Fig. 12(a) and (b), respectively, for zo ¼ 0 and values of xo ranging from xo=ro ¼�0:65
to xo=ro ¼ 0:85. The streamwise velocity correlation exhibits a main peak with an elongated ellipsoidal shape, consistent with
measurements performed in incompressible free shear layers [46]. Interestingly, for negative values of xo, a secondary peak in
the correlation is visible almost exactly 50 mm downstream of the main peak. In the vicinity of its maximum, the cross-stream
w0w0 correlation shows a good quantitative agreement with measurements performed by Olsen et al. [46]. The shape of
the maximum is again elliptical, but oriented vertically rather than horizontally as for u0u0, and upstream and downstream of the
maximum, characteristic negative lobes associated with large-scale spanwise structures in sheared flow are observed. In the
second half of the shear layer, a marked correlation of wavelength 50 mm is observed. For xo=ro ¼ 0:85 the correlation between
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ðxo,zoÞ and ðxo�50,zoÞ reaches a value of 0.14. This value of 0.14 is larger than it might appear at first sight, due to the spatial
variation of /w02S along the turbulent shear layer. This suggests an average of two large-scale structures present at any one
time in the shear layer, value which will be discussed in Section 4.
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3.6. Wall pressure fluctuations

Inside the cavity, wall pressure fluctuations have two origins. Firstly, there are fluctuations of a hydrodynamic nature,
due both to the impact of the shear layer on the downstream cavity wall, and to the strong, turbulent, recirculation present
inside the cavity. Secondly, there are resonant fluctuations linked to the geometry of the cavity. For an open-closed
cylindrical cavity of radius r0 and depth h placed in an infinite flat plate, the velocity potential for an acoustic cavity mode
can be written as [47]

cijkðr,y,zÞ ¼ Jjðljkr=r0Þcos
ipz

2h0

� �
sinðjyþcÞ

where i¼0, 1, 3,y is the number of quarter-wavelengths in the depth direction, j¼0, 1, 2,y is the number of nodal
diameters, Jj the associated Bessel function of the first kind, k¼0, 1, 2,y is the number of nodal circles, h0 ¼ hþ0:8216r0 is
the effective acoustic depth including the length correction due to the infinite flange for low frequencies [48], and c an
arbitrary phase term. The resulting resonant cavity mode frequencies are written as

f ijk ¼
c

2p
ljk

r2
0

þ
i2p2

4h02

 !1=2

Values of ljk and frequencies of interest for the cavity in this work are presented in Table 2.

3.6.1. U1 ¼ 70 m s�1 flow speed

Some of these cavity modes are visible in the power spectral densities of wall pressure signals shown in Fig. 13, which
represents PSDs as a function of polar angle y. These measurements were performed using 20 quarter-inch Brüel and Kjær
microphones, and time signals acquired by a National Instruments PXI over 64 s at a sampling frequency fs¼12.8 kHz.
Power spectral densities were directly computed by the spectral analyser using a Hanning weighting and 500 samples.
Firstly, the impact zone of the unsteady shear layer, along with the downward-oriented wall jet which it generates along
the downstream cavity wall, can clearly be seen stretching roughly 551 to each side of the flow direction. It is characterised
by its wide-band nature, with a high level of fluctuations up to a frequency of around 3.5 kHz. It is not quite symmetrical
with respect to the flow direction, as was previously observed with the static wall pressure, but the asymmetry is again
slight. For angles greater than 651, the spectra are essentially unaffected by the shear layer impact, and the remaining
peaks are of acoustic origin. There is a very intense peak at 656 Hz, which is visible for all angles, and which corresponds to
the strong tonal frequency observed in the acoustic far field in Fig. 5(a). The peak in the wall-pressure spectra is more
intense in the shear impact zone than elsewhere, suggesting that the shear layer is also marked by this frequency.

The dotted black line in Fig. 13 at 608 Hz corresponds to the corrected depth mode f100 with no azimuthal or radial
contributions. The þ symbol corresponds to the first two azimuthal modes combined with the first depth mode, f110 and
f120. The spectra vary little with depth inside the cavity, both in terms of general level and in terms of shape. A lower
frequency peak can also be observed at around 395 Hz. It is more noticeable in the shear layer impact zone, reaching a
level of 113 dB, but is also present at lower levels outside of the impact zone.
Table 2
First resonant frequencies fijk of a cylindrical open-closed cavity of depth h¼10 cm.

ljk j¼0 1 2 3

k¼0 0 1.8412 3.0542 4.2012

1 3.8317 5.3314 6.7061 8.0152

f 010 ¼ 2:01� 103 Hz f 001 ¼ 4:18� 103 Hz f 011 ¼ 5:82� 103 Hz

f 100 ¼ 608 Hz f 110 ¼ 2:1� 103 Hz f 120 ¼ 3:39� 103 Hz f 101 ¼ 4:23� 103 Hz

Fig. 13. Fluctuating wall-pressure spectra measured at z¼�0.1, �0.5, and �0.75 h along the circumference inside the cavity as a function of the polar

angle y, where y¼ 01 designates the downstream direction. Acoustic cavity modes are indicated by – – – for the first depth mode f100 and þ for combined

azimuthal and depth modes f110 and f120. Freestream flow velocity of 70 m s�1.



Fig. 14. Fluctuating wall-pressure spectra measured on the cavity floor at r¼0, 12.5, 25, 37.5 mm as a function of the polar angle y, where y¼ 01

designates the downstream direction. Acoustic cavity mode frequencies are represented by – – – for f100, J for f101, and þ for f110, f120 and f130.

Freestream flow velocity of 70 m s�1.
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On the cavity floor, both azimuthal and radial modes are observed. This is visible in Fig. 14(a)–(d), which represent wall
pressure spectra as a function of y on the cavity floor, respectively, for r¼0, 12.5, 25 and 37.5 mm. Fig. 14(a) is symmetrical by
construction and included for comparison, showing the spectrum measured for r¼0 duplicated in the y direction. The J

symbol corresponds to the first radial mode combined with the first depth mode, f101. The observed pressure amplitude for this
mode is maximum for r¼0 mm, which agrees with the Bessel function J0 function being maximal in zero. The azimuthal modes
are again represented with þ signals. The observed maximum amplitude of the first mode is at the microphone location
farthest away from the centre, at r¼37.5, while its predicted maximum is given by the maximum of J1ðl01rÞ, reached at r¼ r0.
All of the observed azimuthal modes have a maximum in y¼ 0, i.e. for c¼ 0. Their position is fixed by the recirculation at the
downstream wall. At all depths on the cylindrical wall, a hump is present at around 3 kHz, which is too wide to be attributed to
a specific cavity mode, and whose origin is not clear. Again at all depths, a very low frequency component, 0o f o200 Hz, is
visible around y¼ 71201. This noise appears to be the trace of the upstream recirculation, which splits into a Y-shape before
reaching the cavity mouth rather than follow directly the upstream edge at y¼ 1801.

The fluctuating pressure signals discussed above were recorded simultaneously, and they can thus be studied with tools
such as coherence and correlation functions. The coherence function g2 between two signals u and v is defined as follows:

g2ðf Þ ¼
Suv S%

uv

SuuSvv
(2)

where Suv is the cross-power spectral density function and % denotes the complex conjugate. This function is plotted in Fig. 15
for the upstream and downstream fluctuating wall pressure inside the cavity with an upstream flow velocity of 70 m s�1.

An almost perfect coherence is obtained for the peak acoustic frequency of f¼656 Hz at both z¼�0:1 h and z¼�0:75 h,
indicating as expected a strong acoustic correlation across the diameter of the cavity. There is also a significant peak in the
coherence for f¼400 Hz, which is also visible in the shear layer impact zone in Fig. 13. This frequency is not noticeable in the far
acoustic field, but nevertheless appears to be the continuation of the lower frequency mode referred to as mode 1 in Fig. 5(a).
Acoustic cavity modes described previously are also clearly visible around f¼2130 Hz, f¼3400 Hz and f¼4650 Hz.

The time delay between the downstream and upstream fluctuating wall pressure signals can be estimated by
computing the cross-correlation function RppðtÞ

Rppðx1,x2,tÞ ¼ p0ðx1,tþtÞp0ðx2,tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02ðx1,tÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02ðx2,tÞ

q (3)

between the two signals recorded at x1 ¼ ðr0,0,�0:1hÞ and x2 ¼ ð�r0,0,�0:1hÞ. This function is displayed in Fig. 16.
Although the pressure signal inside the cavity is highly periodic, as can be seen from the strongly emerging single peak in
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the spectra presented in Fig. 13, the correlation function exhibits a maximum for a time delay of Dt¼ 3:1� 10�4 s. This
time delay can be compared to the acoustic propagation time ta across the cavity diameter d0 at an estimated velocity c in
the range c�U1rcrc, which yields 3� 10�4rta ¼D=cr4� 10�4 s.
3.6.2. U1 ¼ 90 m s�1 flow speed

The configuration at 90 m s�1 is interesting because it exhibits two nonharmonic peaks of similar amplitude in the
acoustic far field, one at 500 Hz and the second at 794 Hz, as shown in Fig. 4(b). These frequencies coexist, as can be seen
from the short-time Fourier transforms shown in Fig. 17(a) and (b), (a) corresponding to a 40 s period and (b) to a 2 s
period of signal examined with 1024 points per FFT and 90 percent overlap between adjacent segments. While the lower
frequency peak is more distinct and regular, there is no visible switching occurring between the two frequencies, and
indeed both frequencies are simultaneously present for a large fraction of the time. The two peaks are therefore not the
result of a mode-switching phenomenon observed in certain rectangular cavity flows [19,49].

Wall pressure measurements have also been performed at this flow speed. Fig. 18 shows the pressure spectra on the
cavity walls, while spectra on the cavity floor are provided in Fig. 19. The two far-field peaks are visible at all locations on
the wall and floor. Both the lower frequency peak at 500 Hz and the higher frequency peak at 794 Hz emerge considerably
more strongly from background noise inside the cavity than in the far acoustic field, the difference being of around 6 dB. In
addition to this, azimuthal modes are visible everywhere other than at r¼0 on the floor, and on the cavity floor the first
radial mode is also present, as in the 70 m s�1 case. Both azimuthal and radial modes emerge from the background noise
more strongly at 90 m s�1 than at 70 m s�1. As in the 70 m s�1 configuration, a hump of undetermined origin is visible in
the wall pressure spectra around f¼3 kHz. It is more intense than at the lower flow velocity, and appears to be stronger in
the upstream direction around y¼ 71801 than in the downstream direction. The low frequency trace of the Y-shaped
recirculation is again visible around y¼ 71201.

The coherence function is plotted in Fig. 20 for the upstream and downstream fluctuating wall-pressure inside the
cavity with an upstream flow velocity of 90 m s�1. At this flow speed, a high level of coherence is obtained for the two



Fig. 17. Short-time Fourier transforms of the acoustic signal measured at z¼1 m above the cavity. FFTs computed with 1024 points, at a sampling

frequency of 25 kHz, and an overlap of 90 percent. Freestream flow velocity of 90 m s�1.

Fig. 18. Fluctuating wall-pressure spectra measured at z¼�0.1, �0.5, and �0.75 h along the circumference inside the cavity as a function of the polar angle y,

where y¼ 01 designates the downstream direction. Acoustic cavity modes f110 and f120 are represented by þ symbols. Freestream flow velocity of 90 m s�1.

Fig. 19. Fluctuating wall-pressure spectra measured on the cavity floor at r¼0, 12.5, 25, 37.5 mm as a function of the polar angle y, where y¼ 01

designates the downstream direction. Acoustic cavity modes are indicated by J for f101 and þ for f110, f120 and f130. Freestream flow velocity of 90 m s�1.
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frequencies visible in the acoustic far field, at f¼505 Hz and f¼800 Hz, for both microphone depths z¼�0:1h and
z¼�0:75h. The low frequency peak is around 8 dB more intense than the higher frequency peak in the far field, and its
coherence is greater than 99 percent, as compared to 86 percent for the higher frequency. Acoustic modes in the cavity are
again visible, with as expected higher levels of coherence than at 70 m s�1.
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The cross-correlation function RppðtÞ is again computed for the pressure signals recorded at x1 ¼ ðr0,0,�0:1hÞ and
x2 ¼ ð�r0,0,�0:1hÞ, and shown in Fig. 21. Interestingly, the maximum correlation is found for a substantially larger time
delay of Dt¼ 0:001 s, as compared to 3.1�10�4 for the freestream velocity of U1 ¼ 70 m s�1, and its value is negative.

4. Nonlinear describing function model for cylindrical cavity noise

4.1. Organised oscillations in cylindrical cavities

Fig. 5 exhibits similar trends to those measured in many studies on rectangular cavities [13,50,51]. A number of past
experimental studies have shown that for rectangular cavities of aspect ratio L=H41, if strong acoustic fluctuations are
produced, they are majoritarily due to synchronised shear layer fluctuations often referred to as Rossiter modes. As
mentioned in the introduction, Rossiter [11] was the first to propose a physical explanation for such tonal noise generation
in cavity flows, as well as a semi-empirical relationship predicting discrete Strouhal numbers at which such tones can be
observed. Rossiter reasoned that tonal amplification was due to a feedback mechanism between vorticity creation at the
cavity leading edge, and the noise emitted by the same vorticity impinging the downstream cavity wall after having been
convected across the shear layer. His relationship (1) suggests that tonal amplification can take place at frequencies such
that the convection time L=Uc for vortices across the cavity opening, added to the acoustic propagation time between the
downstream and upstream cavity corners, L=c1, is a multiple of the period, with the integer n corresponding to the average
number of vortices in the shear layer.

This relationship has been shown to work well for a wide variety of different rectangular cavity configurations [5,6]. For
round cavities, however, it does not seem well suited, since the Strouhal number relationship relies on convection and
propagation times across the cavity opening being independent of the cross-flow y coordinate. This is obviously not
the case for round cavities. Moreover, a strong dependence of the modes’ frequencies on cavity depth is observed in
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Fig. 5(a)–(c). While variants of Rossiter’s formula such as that of Block [14] have been proposed to take into account depth
effects for rectangular cavities, they do not correctly describe the variations observed in this work.

4.2. Elder’s model for cylindrical cavity noise

Elder [32] investigated depth-mode resonance of flush mounted cylindrical cavities in turbulent flows and developed a
model for explaining and predicting their tonal behaviour. The model is based on the assumptions that the shear layer
development is forced by the acoustic depth mode standing wave formed inside the cavity, and that the fluctuating mass
flow into and out of the cavity generated by the shear layer is responsible for maintaining the standing wave’s amplitude,
as described in detail for the case of organ pipes [26]. Both the shear layer’s effect on the acoustic standing wave and the
acoustic effect on the shear layer are described by frequency response functions, whose product, for frequencies at which
acoustic radiation is observed, should be equal to one. This approach has since been referred to as describing function
analysis by Mast and Pierce [52] who studied the response of resonators to grazing flow.

In Elder’s original work, the resonant cavity had a cylindrical pipe shape, but was partially closed on its flow-facing side
by a rectangular aperture. His model predicted not only values of possible frequencies as a function of slot length, but also
the variation of acoustic sound pressure amplitudes of different modes with slot length, yielding a good qualitative
agreement for both aspects with his experimental data. In this work, a similar approach is followed for the case of an open
cylindrical cavity.

4.3. Forward transfer function

The effect of the acoustic depth mode on the shear layer above the cavity is first considered. The fluctuating volume
flow generated by the unsteady shear layer through the cavity mouth, or drive flow, is related to the acoustic standing
mode amplitude by a Forward Transfer Function G12 ¼ qh=qac where qh is the hydrodynamic driving volume flow, and
qac ¼wacS the acoustic volume flow due to the acoustic velocity wac through the cavity opening of area S¼ pr2

0.
The drive flow is generated by the time dependent vertical velocity field through the cavity opening, qh ¼

R
Srw. This

quantity is in turn is estimated from the time-dependent vertical displacement of the shear layer above the cavity. Here we
focus on the vertical displacement, noted x, of fluid particles in the time-dependent emission line from the upstream cavity
edge. In the analysis performed by Elder, x was modeled as a one dimensional function, depending only on the streamwise
x coordinate and on time, thanks to linear stability theory. This simplification was justified by the presence of the
rectangular aperture placed over Elder’s cavity, which firstly allowed the shear layer development to be assumed
independent of the cross-stream y coordinate, and secondly allowed the streamwise evolution of the mean shear layer to
be assumed slow. In the present case of a cylindrical cavity with no aperture, both of these assumptions appear to be
somewhat bold. Indeed, shear layer properties undoubtedly have a dependence on y due to the circular opening. Moreover,
the shear layer development near the upstream wall is influenced by the strong recirculation inside the cavity, while at the
downstream end it is affected by its impingement on the cavity wall, suggesting that a 1D model based on stability theory
is overly simplistic for the present study.

However, despite the seemingly oversimplistic nature of this model for the complex geometry in this work, it is shown
in what follows to provide a reasonable prediction of acoustic frequencies resulting from the interaction between the flow
and the cavity. The development of a more realistic model, for example based on a global stability analysis, would require
greater knowledge of the mean flow field in the cavity than easily obtainable experimentally, and might thus be point of
interest in a numerical study based on Large Eddy Simulation.

For a harmonically oscillating flow state, the displacement can be written as xðx,tÞ ¼ A cosðotþfÞ ¼ Reða expðiðotþfÞÞÞ
where o¼ 2pf is the angular frequency of interest, x is the streamwise coordinate with respect to the cavity mouth’s centre,
and a a spatially varying amplitude. In what follows, the Re operator will be omitted for concision. This displacement can be
decomposed as the sum of an acoustic term and a term due to the shear layer’s intrinsic instability. The acoustic displacement
term is due to the acoustic velocity wac at the cavity mouth, which is assumed to be spatially uniform. The resulting
displacement can thus be written as ðwac=ioÞexp ðiotÞ. The transverse wave term is modeled following Michalke’s work on
spatially evolving disturbances in a shear layer [53]. It is of a convective nature, and thus has an ðot�kxÞ dependence where the
wavenumber k is a function of frequency f, freestream flow velocity U1 and an upstream length scale of the initial shear layer
doo ¼U1=ð2 dU=dzÞ. The wave’s amplitude is assumed to grow exponentially in the streamwise direction, with a spatially
varying growth rate a computed from the local velocity profile. Given the simplistic nature of the modeling undertaken here,
the displacement’s dependence on z is neglected. These different points allow the instability displacement at location x to be
written as

A exp

Z x

�r0

aðx0Þ dx0
� �

exp½iðot�kxÞ�

where A is now a constant. Thus the total displacement x can be written

xðx,tÞ ¼ ðwac=ioÞexpðiotÞþA exp

Z x

�r0

aðx0Þ dx0
� �

exp½iðot�kxÞ�
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This previous expression can be simplified by noting the boundary condition which must be satisfied by x immediately
downstream of the separation point,

lim
x-�r0

xðx,tÞ ¼ 0

Accordingly, the constant A can be expressed in terms of acoustic displacement, yielding the following expression for total
displacement:

xðx,tÞ ¼ ðwac=ioÞexpðiotÞ 1�exp

Z x

�r0

aðx0Þ dx0
� �

expð�ikðxþr0ÞÞ

� �

Fig. 22(a)–(d) illustrates the manner in which the hydrodynamic drive flow is estimated from the interface displacement. They
show the position of the emission interface in the y¼0 plane at four equally spaced instants of a period for a shear layer
dominated by a single large perturbation. Arrows represent the direction of fluid particles from the outer region, in white, and
from the inner region, in black. The flow entering the cavity is maximum at instant (b), when the displacement streamwise
profile is entirely inside the cavity. At this moment, for xo0 outside flow is entering the cavity, and over the second half of the
cavity the flow near the interface is essentially horizontal. This instant is referred to as closure in Elder’s work. One half period
later in the cycle, see Fig. 22(d), the displacement streamwise profile is located entirely outside the cavity, and because of the
fluid particles exiting through the first half of the cavity xo0, outgoing volume flow is at its maximum. Instants shown in
Fig. 22(a) and (c) correspond roughly to moments in the cycle when outgoing flow is approximately balanced by entering flow,
yielding an overall volume flow through the cavity opening close to zero.

The amplitude of the time-varying volume flow can be estimated from the positions of the interface at maximum inflow and
outflow, shown, respectively, in Fig. 23(a) and (b). In these views, xM marks the streamwise location at which the displacement

at closure is maximum. This maximum displacement is noted xM . At closure, the volume flow qþ passing between the z¼0
plane and the interface at xM, whose velocity is noted uþ in Fig. 23(a), is roughly equal to the volume flow entering the cavity.
Indeed, downstream of xM the flow is essentially horizontal and therefore does not contribute to the volume flow. The volume
inflow is thus located upstream of xM, and by continuity is equal to qþ . A similar reasoning yields q� as the maximum volume
outflow, occurring half a period later and shown in Fig. 23(b). It should be noted at this point that this reasoning should be
performed on the streamline leaving the cavity’s leading edge, rather than on the corresponding emission line, in order for the
continuity argument to be fully valid. Here, it is assumed that the maximum displacement of the streamline at location xM is

equal to the maximum displacement of the emission line, xM . The accuracy of this assumption will be assessed later based on
experimental data. It is now necessary to estimate qþ and q� to obtain the amplitude of the volume flow oscillations. For a
rectangular cavity opening, qþ and q� can be easily estimated as the product of the spatial-average flow velocity at streamwise

position xM, respectively, uþ and u� , by the dimensions through which this flow is passing xMW where W is the rectangular

cavity’s width. The drive flow amplitude would then be given by qh ¼WxMðuþ þu�Þ=2, which, for moderate oscillation

amplitudes, could be approximated by qh ¼WxMU0 where U0 is the time averaged velocity at xM and z¼0. For cylindrical

cavities, the effective cross-stream width depends on the streamwise position x according to 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0�x2
q

. Nevertheless, the same
Fig. 22. Interface displacement over one period illustrated for the mode N¼1, arrows indicate flow direction through the cavity mouth.

U∞ U∞
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ξM
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xM xM

Fig. 23. Maximum inflow (a) and outflow (b) instants in a cycle.
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method is used here to provide a rough approximation of the drive flow generated by the shear layer in the present cylindrical

cavity configuration, explicitly qh ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0�x2
M

q
xMU0.

In order to use the above expression of the driving volume flow, xM and xM must be calculated. In Elder’s work,
amplification of the wave term along the shear layer was sufficiently small to be neglected, allowing the wave term to be
simplified to �ðwac=ioÞexp½iðot�kxÞ�. At the same time, Elder observed that over the second half of the mouth opening, the
acoustic contribution to total displacement x could also be neglected, with the waveform x¼ iðwac=oÞexp½iðot�kxÞ�

correctly describing his experimental data. In the study presented here, streamwise amplification of the wave term
appears to be substantial, as will be shown subsequently. This suggests that the acoustic term can also be neglected for the
cylindrical cavity, allowing the interface displacement over the second half of the cavity mouth to be written

xðx,tÞ ¼ iðwac=oÞexp

Z x

�r0

aðx0Þ dx0
� �

exp½iðot�kðxþr0ÞÞ� (4)

The maximum displacement position xM corresponds to largest value of x verifying dx=dx¼ 0 at closure. It is assumed
that the streamwise amplification

exp

Z x

�r0

aðx0Þ dx0
� �

is sufficiently slow for the maximum of xðxÞ to be given by the maximum of Reði exp½iðot�kðxþr0ÞÞ�Þ, or in other words the
values of x annulling dx=dx are approximately those annulling

df�ðwac=oÞsin ðot�kðxþr0ÞÞg=dx

Accordingly, xM verifies

otM�kðxMþr0Þ ¼�ð2N�1Þp=2, N¼ 1;2,3, . . .

where N corresponds to the average number of structures of wavelength l along the shear layer. At closure, the
displacement at the downstream corner is also zero, as shown in Fig. 22(b), providing the second condition

kD�otM ¼Np

These two relations combined yield the desired position xM as xM ¼ r0�l=4, which can be injected into Eq. (4) to provide

xMðtÞ ¼ iðwac=oÞexp

Z xM

�r0

aðx0Þ dx0
� �

exp½iðot�kðD�l=4ÞÞ� ¼ ðwac=oÞexp

Z xM

�r0

aðx0Þ dx0
� �

exp½iðot�kDþpÞ�

Finally, the forward transfer function G12 can be written as

G12 ¼
qh

qac

¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0�x2
M

q
xMU0

Swac expðiotÞ
¼A exp½ið�kDþpÞ� (5)

where

A¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0l=2�l2=16

q
U0=ðSoÞexp

Z xM

�r0

aðx0Þ dx0
� �

corresponds to an amplitude term.

4.4. Backward transfer function

The Backward Transfer Function, G21 ¼ qac=qh describes the efficiency with which the deep cavity converts the drive
flow qh into the acoustic forcing term qac. It can be expressed using the acoustic impedance of the cavity as seen from the
mouth, ZC, and the impedance of the opening as seen from inside the cavity, ZM.

The cavity impedance can be written analytically as ZC ¼ ðrc=SÞða0h�i cotðk0hÞÞ where a0 is the acoustic attenuation
coefficient per unit length in a pipe and k0 ¼o=c the acoustic wavenumber.

The mouth impedance ZM is modeled as that of an infinitely flanged round pipe [48] in the linear regime and for a
medium at rest. This impedance is written as ZM C ðrc=SÞð1þRÞ=ð1�RÞ, and following the work of Norris and Sheng [54],
the reflexion coefficient R¼ 9R9expð2ikodhÞ is approximated thanks to its amplitude 9R9C1�0:5ðk0r0Þ

2 and the length
correction dhCr0ð0:82159�0:49ðk0r0Þ

2
Þ=ð1�0:46ðk0r0Þ

3
Þ. The influence of grazing flow on the termination impedance

depends strongly on the ratio of diameter to boundary layer thickness. For small diameters, typically D=d99o0:5,
numerous studies focused on acoustic liner behaviour have shown that resistance increases roughly linearly with grazing
flow speed [55,56], while reactance varies in a less predictable fashion. For larger orifices also, impedance varies with
grazing flow as a function of the diameter-based Strouhal number, as measured by Ronnenberger [57]. This variation is large for
low Strouhal numbers Sto1:2, but for larger Strouhal numbers the impedance converges towards its value in the absence of
grazing flow. Given the high minimum Strouhal number of oscillations observed in this work, Stmin ¼oD=U1 ¼ 1:66, the cavity
mouth impedance should not vary significantly from its value for a medium at rest. Unlike in Elder’s work, in this study it
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should not be necessary to specify a nonlinear resistance term proportional to 9wac9=c in the mouth impedance, as the small
depth-to-diameter ratio induces large linear resistance in the mouth: 9wac9=c51=2ðk0r0Þ

2. Using these terms, the Backwards
Transfer Function is simply written

G21 ¼�ZC=ðZMþZCÞ (6)
4.5. Transfer function product

Given the definitions of G12 and G21 seen previously, configurations exhibiting stable harmonic acoustic radiation
should verify the condition G12G21 ¼ 1. Elder used this condition to obtain oscillation parameters at resonance, i.e. at
frequencies corresponding to a cavity depth mode, and to determine for what slot lengths H resonance would be achieved.

In this work, the approach is used to estimate the effect of flow velocity on acoustic frequencies emitted by a round
cavity. This complex equality G12G21 ¼ 1 has two parts, requiring both the modulus to be equal to 1 and the argument to be
nil. The argument describes the necessary phase match between the forward and backward transfer functions, and thus
provides possible feedback frequencies. In this respect it is similar to Rossiter’s formula for rectangular frequencies, in that
it gives no indication as to which of these possible frequencies are indeed present in a given configuration. This role is
performed by the modulus part of the equality. Frequencies present in the far acoustic field should verify 9G12G219¼ 1,
while those such that 9G12G219o1 should be stable.

The argument of the transfer function product is evaluated for the geometry and flow speeds studied in this work.
Parameters necessary for the forward transfer function, in particular U0, are computed from the PIV data measured at
70 m s�1, and scaled linearly with flow velocity. Depending on the flow velocity, one or two frequencies are found to verify
the condition

argðG12 � G21Þ ¼ 0 (7)

As noted by Elder, these frequencies approximately verify the condition kD¼ 2Np�p=2 where N¼1, 2, 3,y corresponds to
the number of large-scale vortices in the shear layer. The two frequency modes obtained by solving Eq. (7) are represented
in Fig. 5(a)–(c) by white circles. A good agreement is observed for both modes at all frequency depths. This strongly
suggests that the dominant behaviour for these geometries is acoustic depth modes coupling with the two first shear layer
modes. This can be regarded as a strong coupling, in the sense that observed frequencies are not simply fixed by the depth
mode, as has been observed for substantially deeper cavities, but are instead velocity-dependent equilibria between losses
due to acoustic radiation and gains due to shear layer dynamics.

The modulus of the transfer function product computed from the model is too large, with 9G12G219Z2:5 for frequencies
at which tones are observed in the far field, indicating that the amplitude of the forward transfer function G12 is likely
overestimated due to the assumptions made in its derivation. This overestimation is discussed in Section 4.6.

4.6. Comparison with high-speed PIV data

High-speed PIV data was obtained in the y¼0 plane of the shear layer for the freestream flow velocity of 70 m s�1. This
data allows different aspects of the previously presented model to be examined in more detail.

In order to illustrate the importance of shear layer amplification in this work, approximate interface waves are shown
at four equally spaced times in the acoustic period in Fig. 25 for a freestream flow velocity of 70 m s�1. These interface
waves have been inferred from high-speed shear layer PIV images as follows. The PIV flow fields are sorted and phase-
averaged thanks to a pressure signal recorded at the bottom of the cavity, which is synchronised with the PIV system. The
pressure signal is mostly harmonic, but it exhibits periods during which the main frequency is drowned out by other flow
features. Only images corresponding to relatively sinusoidal portions of the pressure signal are retained for the phase
averaging. In practice about two thirds of the signal was rejected based on this criterion. The remaining flow fields were
separated into twelve time intervals or bins, and each bin was averaged according to the technique proposed by Hussain
and Reynolds [58] to obtain the ensemble averaged and cyclic horizontal and vertical components of the shear layer flow,
U, W, ~u and ~w. The cyclic fields ~uðx,z,tÞ and ~wðx,z,tÞ were then each fitted by a function aðx,zÞsinðot�fðx,zÞÞ, in which both
the spatial amplitude a and the phase f were low-pass filtered. The resulting filtered fields provided a reasonable match
with the initial data, the r.m.s. difference between the PIV data and the filtered fields not exceeding 30 percent throughout
the shear layer. Fig. 24(a) and (b) provides an illustration of this fit, showingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

0
½a sinðot�fÞ� ~wðtÞ�2 dt

s
=maxð ~wÞ

in the shear layer and a sinðot�fÞ and ~w at ðx¼ r0=2,z¼ 0Þ over one period T, respectively. The high levels of relative error
observed outside the shear layer in Fig. 24(a) reflect the low value of maxð ~wÞ in these zones. This procedure allowed for ~u
and ~w to be inferred at any time in the acoustic cycle. The phase-averaged fields thus obtained were used to compute time
dependent particle emission lines from the upstream cavity edge, by integrating Uþ ~uðx,z,tÞ and Wþ ~wðx,z,tÞ. These



x (mm)

z 
(m

m
)

−50 0 50
−10

0

10

20

30

40

0.0 0.25 0.5 0.75 1.0
−6

−3

0

3

6

 t/T

 w

Fig. 24. Match between PIV data ~w and fitted sinusoidal velocity a sinðot�fÞ. RMS differences in the shear layer (a), with contours ranging from

10 percent to 50 percent of local velocity amplitude maxð ~wÞ, and ~w ð2�2�2Þ and a sinðot�fÞ at ðx¼ r0=2,z¼ 0Þ (– – –) over one period (b).

−50 −25 0 25 50
−10

0

10

20

x (mm)

z 
(m

m
)

−50 −25 0 25 50
−10

0

10

20

x (mm)

z 
(m

m
)

−50 −25 0 25 50
−10

0

10

20

x (mm)

z 
(m

m
)

−50 −25 0 25 50
−10

0

10

20

x (mm)

z 
(m

m
)

Fig. 25. Interface (dashed line) and cyclic vertical velocity perturbations during one acoustic cycle, estimated from high-speed PIV. Grey scale ranges

from �6 (white) to 6 (black) m s�1. The perturbation envelope predicted by linear stability theory is represented as dashed-dotted lines.

O. Marsden et al. / Journal of Sound and Vibration 331 (2012) 3521–35433540
particle positions are represented by dashed lines in Fig. 25. Also represented is the envelope given by the instability
amplification

exp

Z xM

�r0

aðx0Þ dx0
� �

multiplied by the acoustic displacement amplitude wac=o, shown in dashed-dotted lines. The acoustic velocity wac is
estimated from the pressure signal at the bottom of the cavity, at around 2.5 m s�1. Unlike in Elder’s study, interface
displacement clearly grows as perturbations are convected along the shear layer, and the maximum displacement is
roughly ten times greater than the acoustic displacement. It can be seen from Fig. 25 that the maximum displacement
obtained from PIV is in fact reasonably well predicted by linear stability theory.

Another point that can be examined from the PIV is that of the estimation of the drive flow qh according to

qh ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0�x2
M

q
xMU0. The PIV flow data allows xM to be estimated at around 6 mm according to the technique described

previously, and Uo¼25 m s�1. The driving volume flow would thus be qhC1:3� 10�2 cosðotÞm3 s�1. The volume flow
thus estimated relies on the assumption that the maximum streamline deviation at xM is equal to the maximum emission

line deviation at the same location, xM . Upon verification with the fitted data, xM is approximately 2.2 times the streamline

displacement, leading to a revised estimation of the volume flow, by this method, of qhC6� 10�3 cosðotÞm3 s�1. The

phase-averaged cyclic velocity fluctuation ~wðx,z,tÞ can also be used directly to obtain an estimation of qh according to

qhðtÞ ¼

Z r0

�r0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0�x2
q

~wðx,z¼ 0,tÞ dx

which yields qhðtÞC4� 10�3 cosðotÞm3 s�1. Both of these estimations are based on the assumption that important flow

quantities, xM and Uo for the first method and ~w for the second, are uniform across the cavity opening in the cross-stream y

direction.
Nevertheless, with the second estimation obtained by integrating ~wðx,z¼ 0,tÞ for 70 m s�1, the product G12G21 has a value

of 1.1, close to the expected value of 1. Thus this approach successfully predicts frequencies at which oscillations can be
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observed for the configurations studied in this work, but due to considerable uncertainty in the determination of the forward
transfer function’s magnitude, prediction of the acoustic amplitude reached for these frequencies cannot be expected.

4.7. Interpretation of acoustic data

Results presented in Section 3.1 are now discussed in light of the model proposed in this work.
Parthasarathy et al. [33] studied the acoustic radiation of small deep round cavities under grazing flow, and proposed a

simple 1D forced oscillator analogy explaining the effect of the grazing flow on the frequency of a round cavity’s acoustic
resonance, as a comparison to his experimental data. The conclusion of his study was that for low Mach number grazing
flows, Mo0:2, and relatively deep cavities, typically D=ho0:5, acoustic wavelength l is roughly proportional to both the
effective depth [59,60] ðhþaDÞ with a¼ 1, and to the factor (1�M). He found that the simple empirical formula
l=ðhþDÞ ¼ 4ð1�MÞ described his data well. Parthasarathy referred to such behaviour as acoustic resonance, as opposed to
shear layer resonance. Although Parthasarathy’s simple formula matches some of the frequencies observed to a reasonable
extent, the overall match is less good than that given by Elder’s model, given in expression (7), and is accordingly not
shown here. Parthasarathy also examined the acoustic SPL emitted by a round cavity as a function of velocity, and found
that radiated pressure increased linearly with velocity, i.e. SPL¼ SPLrefþ20 log10ðU1=Uref Þ. This is clearly not the case with
the current results, as can be seen in Fig. 4.

The adaptation of Elder’s model to the cylindrical cavity provides acoustic frequencies that match those observed in
experimental data, and its description of shear layer behaviour also compares favourably to that educed from high speed
PIV results at a freestream flow velocity of 70 m s�1. The cavity’s general dynamics can therefore reasonably be interpreted
according the model’s assumption of coupling between large scale shear layer fluctuations and the cavity’s acoustic depth
mode. Both the decrease in frequencies and the rise in sound level as cavity depth is increased, reported in Section 3.1 and
Fig. 5(a)–(c), are consistent with the cavity’s depth mode playing an active part in noise generation.

The higher frequency mode labeled (2) in Fig. 5 is generated by an average of two large structures in the shear layer,
while the lower frequency mode (1) results from a single large structure. The higher frequency mode (2) dominates for
flow velocities between 50 and 80 m s�1 for the cavity of depth 100 mm, while the lower frequency mode (1) is the main
contributor to far field sound levels for flow velocities above 100 m s�1. Wall pressure measurements inside the cavity for
a flow speed of 70 m s�1, described in Section 3.6.1, show the presence of a low frequency that corresponds to the
continuation of mode (1), despite this mode not being visible in the far field. For flow speeds in the range of 80–100 m s�1,
the model suggests that both shear layer modes (1) and (2) are active and of comparable magnitude. Wall pressure results
discussed in Section 3.6.2 show that the frequencies associated with the two modes coexist rather than compete. Future
experiments or computations might allow to confirm and study more in detail the simultaneous presence of two large
structures of different wavelengths in the shear layer. The presence of two coherent structures associated with the second
shear layer mode is confirmed by two-point velocity correlations described in Section 3.5 as well as phase-averaged
velocity fields discussed in Section 4.6.

5. Conclusions

Acoustic radiation and flow characteristics around a circular cylindrical 10 cm-diameter cavity under grazing flow have
been studied experimentally. Flow features have been studied thanks to HWA, LDA and PIV techniques, and inner cavity
fluctuating pressure measured with wall-mounted microphones. Cavity depths from 100 to 150 mm have been studied, at
flow velocities between 50 and 110 m s�1.

For the 100 mm deep cavity, far-field acoustic power is shown to vary roughly with the sixth power of the upstream
Mach number over the range of flow velocities studied. Strong depth- and velocity-dependent tonal components are
observed in the far acoustic field at all flow velocities. These discrete frequencies are well described by a shear-layer
excitation of the cavity’s acoustic depth mode. Depending on the freestream flow velocity, one or two modes are
simultaneously present. The shear layer impact on the downstream cavity edge also excites other cavity modes. Both
radial and azimuthal modes are observed, and their intensity is observed to increase with flow velocity and cavity depth.

A feedback model based on the interaction of the cavity’s acoustic depth mode with large scale shear layer fluctuations
is proposed. The model uses linear stability theory to describe shear layer behaviour over the cavity opening, and classical
acoustic results to model the cavity’s response to shear layer forcing. Acoustic tones measured in the far field are well
matched by the model’s predictions.
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directe par une approche multidomaine d’ordre élevé (Noise Radiated by a Cylindrical Cavity Placed in a Subsonic Flow: Experimental Study and
Direct Acoustic Computation Via a High-order Multidomain Approach), PhD Thesis, Ecole Centrale de Lyon, 2010.

[37] Y. Yang, D. Rockwell, K. Lai-Fook Cody, M. Pollack, Generation of Tones Due to Flow Past a Deep Cavity: Effect of Streamwise Length, Technical
Report LM-06K055, 2006.

[38] T. Faure, P. Adrianos, F. Lusseyran, L. Pastur, Visualizations of the flow inside an open cavity at medium range Reynolds numbers, Experiments in
Fluids 42 (2) (2007) 169–184.

[39] M. Hiwada, T. Kawamura, I. Mabuchi, M. Kumada, Some characteristics of flow pattern and heat transfer past a circular cylindrical cavity, Bulletin of
the JSME 26 (220) (1983).

[40] J. Dybenko, E. Savory, An Experimental Investigation of Turbulent Boundary Layer Flow over Surface-mounted Circular Cavities, CSME Forum, 2006.
[41] C. Haigermoser, F. Scarano, M. Onorato, Investigation of the flow in a circular cavity using stereo and tomographic particle image velocimetry,

Experiments in Fluids 46 (3) (2009) 517–526.
[42] V. Sarohia, Experimental and Analytical Investigation of Oscillations in Flows Over Cavities, PhD Thesis, California Institute of Technology, 1975.
[43] J. Pereira, J. Sousa, Influence of impingement edge geometry on cavity flow oscillations, AIAA Journal 32 (8) (1994) 1737–1740.
[44] J. Bell, R. Mehta, Development of two-stream mixing layer from tripped and untripped boundary layers, AIAA Journal 28 (12) (1990) 2034–2042.
[45] N. Forestier, L. Jacquin, P. Geffroy, The mixing layer over a deep cavity at high-subsonic speed, Journal of Fluid Mechanics 475 (2003) 101–145.
[46] M. Olsen, J. Dutton, Stochastic estimation of large structures in an incompressible mixing layer, AIAA Journal 40 (12) (2002).
[47] R.D. Blevins, Formulas for Natural Frequency and Mode Shape, Krieger Pub. Co, 2001.
[48] Y. Nomura, I. Yamamura, S. Inawashiro, On the acoustic radiation from a flanged circular pipe, Journal of the Physical Society of Japan 15 (3) (1960).
[49] M. Kegerise, E. Spina, S. Garg, L. Cattafesta, Mode-switching and nonlinear effects in compressible flow over a cavity, Physics of Fluids 16 (3) (2004)

678–687.
[50] H. Heller, D. Bliss, The Physical Mechanism of Flow-induced Pressure Fluctuations in Cavities and Concepts for Their Suppression, AIAA Paper, No.

75-491, 1975.

dx.doi.org/10.1006/jfls.1998.0189


O. Marsden et al. / Journal of Sound and Vibration 331 (2012) 3521–3543 3543
[51] J. Malone, M. Debiasi, J. Little, M. Samimy, Analysis of the spectral relationships of cavity tones in subsonic resonant cavity flows, Physics of Fluids 21
(055103) (2009) 1–9.

[52] T.D. Mast, A.D. Pierce, Describing-function theory for flow excitation of resonators, Journal of the Acoustical Society of America 97 (1) (1995) 163–172.
[53] A. Michalke, On spatially growing disturbances in an inviscid shear layer, Journal of Fluid Mechanics 23 (3) (1965) 521–544.
[54] A. Norris, I. Sheng, Acoustic radiation from a circular pipe with an infinite flange, Journal of Sound and Vibration 135 (1) (1989) 85–93.
[55] A. Goldman, R. Panton, Measurement of the acoustic impedance of an orifice under a turbulent boundary layer, Journal of the Acoustical Society of

America 60 (6) (1976) 1397–1404.
[56] X. Sun, X. Jing, H. Zhang, Y. Shi, Effect of grazing-bias flow interaction on acoustic impedance of perforated plates, Journal of Sound and Vibration 254

(3) (2002) 557–573.
[57] D. Ronnenberger, The acoustical impedance of holes in the wall of flow ducts, Journal of Sound and Vibration 24 (1) (1972) 133–150.
[58] A.K.M.F. Hussain, W.C. Reynolds, The mechanics of an organized wave in turbulent shear flow, Journal of Fluid Mechanics Digital Archive 41 (02)

(1970) 241–258.
[59] J. Rayleigh, The Theory of Sound, vol. II, revised ed., Dover Publications, New York, 1945.
[60] L. East, Aerodynamically induced resonance in rectangular cavities, Journal of Sound and Vibration 3 (1966) 277–287.


	Investigation of flow features and acoustic radiation of a round cavity
	Introduction
	Experimental setup and techniques
	ECL facility
	Pressure measurements
	Characterisation of turbulent velocity fields
	Incoming mean flow

	Experimental results
	Acoustic trends
	Flow inside the cavity
	Upstream boundary layer characteristics
	Shear layer characteristics
	Coherent structures in the shear layer
	Wall pressure fluctuations
	Uinfinequal70msminus1 flow speed
	Uinfinequal90msminus1 flow speed


	Nonlinear describing function model for cylindrical cavity noise
	Organised oscillations in cylindrical cavities
	Elder’s model for cylindrical cavity noise
	Forward transfer function
	Backward transfer function
	Transfer function product
	Comparison with high-speed PIV data
	Interpretation of acoustic data

	Conclusions
	Acknowledgments
	References




