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Résumé

Un modèle de prédiction du bruit de jet de mélange est développé dans l’objectif d’obtenir une

estimation précise des effets de l’installation du moteur sur l’aile tout en maintenant un temps

de calcul faible. Le modèle de prédiction de Tam et Auriault est utilisé comme point de départ.

L’écoulement est simplifié en assimilant le jet à un milieu uniforme connecté au milieu ambiant,

lui aussi uniforme, par une couche de mélange infiniment mince. La propagation des ondes sonore

depuis le jet jusqu’à un observateur situé en champ lointain est ici simulée grâce à l’acoustique

géométrique, utilisée dans ce milieu homogène par morceau. Le nouveau modèle est nommé

TAGA pour Tam Auriault - Geometrical Acoustics.

Le modèle TAGA est d’abord appliqué sur un cas académique, un jet simple sans gradient de

température, placé à proximité d’une plaque plane. Le bruit de jet est prédit sur toute la gamme

d’azimut, à un plan axial coïncidant avec la sortie de la tuyère. Moyennant une correction sur le

niveau absolu, les résultats obtenus pour les microphones situés sous la plaque correspondent aux

données expérimentales. Pour des observateurs positionnés au dessus de la plaque, les prédictions

sont proches des mesures pour la gamme de fréquence correspondant au maximum du spectre.

L’effet de masquage de la plaque est surestimé pour les plus hautes fréquences. Les résultats avec

TAGA sont ensuite présentés d’une manière différente. La différence entre les spectres installés

et isolés est ajoutée au spectre isolé mesuré. Cette méthode de mise à l’échelle permet d’obtenir

une forme de spectre plus fidèle aux mesures. Un écart maximal, entre les prédictions et les

données expérimentales, de 1 dB pour toutes les fréquences au dessus de 1 kHz est obtenu. L’étude

permet aussi la compréhension d’un pic secondaire observé dans les mesures. Ce phénomène est

effectivement expliqué par l’interférence entre des rayons réfractés et réfléchis.

Une seconde étude est menée sur un jet coaxial. Le cône de silence dû aux effets de réfraction

est observé à une valeur proche de sa position théorique. Malgré les différences entre l’écoulement

réel et sa modélisation dans TAGA, des résultats encourageants sont observés pour une large

partie de la plage d’angles polaires. La méthode de mise à l’échelle est aussi utilisée pour la

prédiction des effets de chevrons. L’augmentation du bruit à haute fréquence est bien estimée

par le modèle TAGA. La réduction à basse fréquence n’est pas obtenue avec la formulation actuelle

du modèle.

Mots clés : bruit de jet; acoustique géométrique; effets d’installation.
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Abstract

A jet mixing noise prediction model is developed with the objective of obtaining an accurate

estimate of installation effects while maintaining a low computing time. The Tam and Auriault

prediction model is used as a starting point for the source term of the new formulation. The

base flow is simplified by modelling the jet as a uniform medium connected to a uniform external

medium through an infinitely thin mixing layer. The propagation of sound waves from the jet to

an observer located in the far field is here simulated using geometrical acoustics. The new model

developed is called TAGA for Tam Auriault - Geometrical Acoustics.

The TAGA model is first applied to an academic configuration, a single jet without tempera-

ture gradient placed near a flat plate. Jet noise is predicted over the entire azimuth range, at an

axial plane coinciding with the nozzle outlet. With an absolute level correction, the results ob-

tained for the microphones under the plate match the experimental data. For observer positions

above the plate, the predictions are close to measurements for the frequency range corresponding

to the maximum of the spectrum. The shielding effect of the plate is however overestimated for

the highest frequencies. The TAGA results are then reported in a different way. The difference

between the installed and isolated spectra is added to the measured isolated spectrum. This

scaling method allows a more accurate spectrum shape to be obtained. A maximum deviation,

between predictions and experimental data, of 1 dB for all frequencies above 1 kHz is then ob-

tained. The study also allows to understand a secondary peak observed in the measurements.

This phenomenon is indeed explained by the interference between refracted and reflected rays.

A second study is conducted on a coaxial jet. The cone of silence due to refraction effects

is observed at a value close to its theoretical position. Despite the differences between the jet

flow and its modelling in TAGA, encouraging results are observed for a large part of the polar

angle range. The scaling method is also used to predict chevrons effects. The increase in high

frequency noise is well estimated by the TAGA model. The reduction at low frequency is not

found by the current formulation of the model.

Keywords : jet noise; geometrical acoustics; installation effects.
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Nomenclature

Acronyms

CHE Convected Helmholtz equation

DES Detached Eddy Simulation

DNS Direct Numerical Simulation

LEE Linearised Euler equation

LES Large Eddy Simulation

PSD Power Spectral Density

RANS Reynolds-Averaged Navier-Stokes

TAGA Tam Auriault Geometrical Acoustics

Greek characters

ρ̄ Mean density

τ̄ij Viscous stress tensor

ε Turbulent dissipation

γ Specific heat ratio

µt Turbulent dynamic viscosity

ω Pulsation

τs Decay time of the fine scale turbulence

θ Polar angle in the cylindrical frame centered on the nozzle exit plane

Latin characters

ūi Mean velocity components

p̂′a Adjoint Green pressure fluctuations in the Fourier domain
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Nomenclature

û′a Adjoint Green fluctuating velocity in the Fourier domain

q̃s Measure of the intensity of the fluctuation of the kinetic energy of the fine scale turbulence

ks Kinetic energy of the fine scale turbulence

kt Turbulent kinetic energy

ls Length scale of the fine scale turbulence

p Pressure

p′ Pressure fluctuations

p′(n) Green pressure fluctuations

pref Pressure of reference

qs Source term driven by the fine scale turbulence

S Pressure power spectral density

Sij Deformation tensor

t Time

u′(n) Green fluctuating velocity

u′i Fluctuating velocity components

Superscripts

′ Superscript relative to the fluctuating part

′′ Superscript relative to the Favre fluctuating component

a Superscript relative to an adjoint Green function

(n) Superscript relative to a Green function

Subscripts

M Subscript relative to an observer

S Subscript relative to a source

s Subscript relative to the the fine scale turbulence

Other

¯ Time-average

ˆ Fourier transform

˜ Favre average component
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1 Introduction

1.1 Context of the study

With the development of air traffic, new challenges arose for aircraft manufacturers, and topics

that were once put in the background are now driving the engineering process. Among these

new problems features the field of acoustics. The ever growing number of flights created a noise

pollution issue in the vicinity of airports and led to the creation of thresholds for aircraft noise

emission. An evolution of the tightening of the certification process for new aircrafts is presented

in Fig 1.1 reproduced from [30]. The objective is to pursue this trend with goals set by FlightPath

2050 [26] of a reduction by 65% of the perceived noise level compared to the standards from 2000.

Figure 1.1: Evolution of the legislation on total aircraft noise, from [30].

Three certification positions were introduced to evaluate the noise generated by an aircraft, as

depicted in Fig 1.2. The sideline certification point corresponds to the maximum of the recording

at a microphone located 450m from the runway axis during take-off. The flyover certification

point (or cutback) is located 6.5 km away from the brake release point, under the take-off flight

path. The approach certification point is set 2 km away from the runway threshold, under the

approach flight path. These operating conditions correspond to characteristic flight steps and

accurately display the different noise components contained in the total aircraft noise spectrum.
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Chapter 1 : Introduction

Figure 1.2: Noise certification points, from [45].

Successive improvements on the engines allowed a 23 dB reduction of the total aircraft noise

in 50 years [54]. An example of such improvements is the use of turbofan engines which, thanks

to a secondary flow, can generate a given thrust with slower jet. The reduction in jet speed

decreases turbulence intensity in the mixing layer between the jet plume and the external flow

and thus cuts down jet noise. These new geometries also increased the variety of the noise

generation mechanism linked to the engine as well as their relative weight. The main impact

has been the introduction of fan noise. A distribution of the noise production between these

different mechanisms at the three certification points listed above is presented in Table 1.1. This

decomposition shows that even though the new generation of engines has reduced the jet noise,

it remains a dominant contribution at take-off.

Approach Flyover Sideline
Jet 0% 20% 40%

Combustion 5% 30% 20%
Turbine 10% 0% 0%

Forward fan 45% 15% 5%
Rearward fan 40% 35% 35%

Table 1.1: Distribution of the different noise contributions for a typical CFMI engine, from [24].

The evolution in engine geometries and the emergence of disruptive technologies have boosted

research activities in aeroacoustics. Three related objectives drive the scientific community,

namely the need of a global understanding of the different noise generating mechanisms, the

development of noise reduction techniques and of noise prediction methods. Aircraft manufac-

turers do not produce the engines themselves but are responsible of their integration into the

aircraft and are accountable for the aircraft noise to the airworthiness authorities. In that con-

text, the development of accurate noise prediction methods constitutes a real challenge.

Research in jet noise prediction began in 1952 with the publication of the first acoustic anal-

ogy by Lighthill [46]. Since then, the understanding of this noise component has been pushed to
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1.2 Outline of the manuscript

new heights, especially so with the advancement of technology in both the experimental and com-

putational domains. The increased comprehension of turbulent flows allowed the identification

of several sub-mechanisms in jet noise each driven by particular flow factors and each featuring

specific spectral features. But although this domain of acoustics has come a long way over the

last 70 years, a lot remains to be understood. Nowadays, researchers rely on jet flow simula-

tions of ever growing complexity to gain access to previously unavailable details. Despite the

advancement of modern computers, the escalation of simulation’s complexity is still followed by

a rise of the restitution time and overall cost. This evolution, however, does not fit the industrial

requirements. Engine and aircraft manufacturers therefore need to bring forward methods that

can find the best ratio between precision and cost. This issue is addressed in this thesis with the

development and the validation of a new jet mixing noise prediction model.

1.2 Outline of the manuscript

The document is organised as follows. The second Chapter first presents the jet mixing noise

from fine scale turbulence and the specifications set by Airbus for the desired method. A review

of the literature on prediction models of the range of interest is then given. Acoustic analogies

are described, highlighting the similarities in the final expression of the power spectral density in

each case and in particular the presence of two key elements: the source modelling and a term

accounting for the propagation. An overview of the different methods available in the literature

for the statistical modelling of the source terms is given along with the commonly used inputs.

In a second time the propagation of the sound waves is addressed with the introduction of several

methods. In particular, the degree of details included in each of them and their restitution time

are discussed. Finally, the choices made for the modelling of the sources and the computation of

the propagation are given and argued.

The third Chapter contains the mathematical derivation of the equations allowing the com-

putation of the noise spectrum. This part is built around three sections. The first one presents

the outline of the CFD/CAA method. The objective is to have a pragmatic understanding of

the main elements composing the model before they are analytically derived. The fine scale

jet mixing noise model by Tam and Auriault [78] is used as a stepping stone and is therefore

analysed and redeveloped in details in the second section. A simplified propagation medium is

then introduced to allow for a faster computation of sound wave propagation. The last section

explains how the work from Tam and Auriault can be applied to this new flow description and

the calculations needed to obtain an expression of the power spectral density are provided.

The different validation studies and application cases performed during the PhD are reported

in the fourth Chapter. A first part addresses the practical implementation of the model and in

particular the reduction of the continuous propagation medium into two homogeneous parts. The

ray tracing tool is also presented with validation elements. Two nozzles are used for the assessment

of the accuracy of the noise prediction model. The first is a single cold jet. This configuration is
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Chapter 1 : Introduction

used to perform computations on the full azimuth range to validate the predictions of installation

effects. The second configuration, called EXEJET, is a hot coaxial jet used to investigate the

performance of the method on nozzle geometries closer to real engines. Refraction effects are first

assessed before using the developed model as a scaling tool to predict the impact of chevrons on

jet mixing noise.

In appendix are given reminders about the theory behind Green functions and geometrical

acoustics. Parts of the calculations judged too tedious to remain in the main body are also

provided. Finally, data regarding the RANS inputs and the full noise predictions are presented.

1.3 Notations convention

A brief explanation of the notations used throughout the manuscript is given below to ensure

clarity of the equations later discussed in the thesis.

The presence of the arrow above the character denotes a vector. Its coordinates are given

without an arrow but with the corresponding axis as a subscript. Moreover, the role of these

vectors is indicated with a subscript. Note that this subscript is not provided in the coordinates

to keep the notations light. An S means that it is the location of a source point while an M

indicates that it refers to an observer location. This way, we can introduce a source point at ~ξS
with the following coordinates in a polar frame (ξx, ξr, ξθ).

A few variables are also present in the equations. Their mean value is highlighted by the

presence of a bar whereas their fluctuating part is indicated by the presence of an apostrophe.

In the case of vectors, like the velocity, there is no arrow on top of the character but they are

written in bold to differentiate them from the points. Similarly, their coordinates are given with

their corresponding axis as a subscript. As an example, the mean velocity relative to the jet is

noted ūjet with the following coordinates in a generic frame (ū1, ū2, ū3).

Finally, Green functions are distinguishable from their corresponding variables by the presence

of the superscript (n) where n is an integer and the superscript a in the case of adjoint Green

functions. The application of a Fourier transform is indicated by the presence of a circumflex.

As an illustration, the adjoint Green pressure fluctuations in the Fourier domain is noted p̂′a.
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2 Statistical modelling of jet mixing noise

2.1 Jet mixing noise

As mentioned in the introduction, various noise generation mechanisms are involved in isolated

jet flows. They need to be studied separately. As described by Miller [55], there is

• the jet mixing noise: This is the noise mechanism that will be considered in this thesis.

This mechanism is defined by the noise generated by turbulence developing in the mixing

layers between the jet and the external flow.

• the BroadBand Shock Associated Noise (BBSAN): This is the noise created by the presence

of shock cells in the jet plume due to a static pressure jump between the nozzle exit and

the pressure outside the nozzle. The generated noise is broadband and dominant upstream

at mid to high frequencies if the Mach of the jet is high enough.

• the screech: This is a tonal noise caused by the interaction between waves impacting the

nozzle exit thus creating a perturbation that will generate a second wave thus creating a

feedback loop. Tones of high amplitude are thus observed in the acoustic spectra.

Power spectral densities for the total jet noise at three different locations are plotted in Figure

2.1 from Miller [55]. The different contributions are highlighted on this graph. Jet mixing noise

is evidently a major contributor in jet noise and especially for subsonic jets.

An in-depth study of the jet mixing noise allows the identification of two separate mechanisms.

First, there are small structures with a short lifetime. Such structures are represented in Fig 2.2.

They act as compact sources and generate a broadband noise that dominates the spectrum at

a polar angle of 90◦ and upstream as explained in Tam, Golebiowski and Seiner [80]. There

is no intrinsic directivity, but propagation effects can be observed. There are also some larger

structures, more coherent than the smaller ones. They exist over a longer lifetime and can be

seen travelling downstream. Such structures are represented in Fig 2.3. They also generate

a broadband noise but with a sharper peak centered at a slightly lower frequency. Because

these structures are more coherent, they will have an intrinsic directivity. This component will

dominate the spectrum mainly for an observer located downstream [80]. The focus of this study
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Chapter 2 : Statistical modelling of jet mixing noise

Figure 2.1: Sound pressure level per unit Strouhal number resulting from aMd = 1.00,Mj = 1.50,
and TTR = 1.00 jet. The red lines represent the noise that is dominated by turbulent mixing,
black lines represent noise that is dominated by BBSAN, and green lines represent noise that is
dominated by discrete tones (screech). Ψ is the angle from the upstream jet axis to the observer
centered about the nozzle exit at R/D = 100. From Miller [55]

is the noise of fine scale turbulence. The dominance of these two different sources at 90◦ and

downstream is illustrated in Fig 2.4 from [83] where the similarity spectra introduced by Tam

et al. [80] are fitted on the experiments. The black symbols show the large scale dominated

spectrum downstream and the white symbols show the fine scale dominated spectrum at 90◦.
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2.1 Jet mixing noise

Figure 2.2: Representation of fine scale turbulent structures within a jet plume

(a) (b)

(c) (d)

Figure 2.3: Representation of a large scale turbulent structure within a jet plume

Figure 2.4: Comparison of measured spectra with similarity spectra of unheated jets. The black
symbols are from measurements at 155◦ and the white symbols are from measurements at 90◦.
From Viswanathan [83]

21



Chapter 2 : Statistical modelling of jet mixing noise

2.2 Specifications of the prediction method

In terms of precision, the jet mixing noise prediction method should

• Take into account refraction effects caused by the propagation of the wave through the

mixing layer between the jet an the external medium.

• Take also into account the possible installation effects such as reflection of acoustic waves on

the wing or on the contrary its blockage, called shielding effect. In addition, the diffraction

of the incident acoustic field by the wing edges should also be predicted.

This work is first of all motivated by an industrial need which means that the end product is

intended to be used by Airbus engineers and thus need to comply with a few practical aspects.

First, the method should allow the computation of noise predictions within a reasonable time. In

practice the target for the maximum restitution time lies at around ten hours for the noise pre-

diction, given that all the desired inputs are available. This aspect should drive the development

of the method almost as much as the other precision-oriented objectives. Moreover, because the

intention is to use the present work within a design loop, the nature of the input and the means

necessary to obtain them should also be taken into consideration. In the framework of this thesis,

the use of RANS-based prediction methods appears to be appropriate. They consist of the use

of RANS CFD simulations to feed analytical and empirical models to predict the far-field noise.

They give relatively accurate results compared to their limited computing needs. Because of the

time-averaging of the turbulence inherent of the RANS model, the simulated turbulent field does

not represent a realistic flow. This statistical description of the turbulence represents fine scale

structures. Considering the importance of the instantaneous evolution of the large coherent struc-

tures in the noise production mechanism, RANS-based method are expected to show weaknesses

regarding that noise component. Other noise prediction techniques could have been considered.

However, they include heavy scale-resolving methods such as direct numerical simulations (DNS)

[34], large eddy simulations (LES) [15] or detached eddy simulations (DES) [60]. Because of the

strong objectives in terms of restitution time, these other methods will be left aside from this

review.

2.3 Acoustic analogies

In recent years, numerous jet mixing noise prediction methods have been developed; all of which

based on acoustic analogies. This concept is described in the following subsection along with a

few examples covering most of the existing different RANS-based models.

2.3.1 Lighthill’s analogy

Lighthill [46] introduced the concept of the acoustic analogy in 1952. The idea is to build an

equation to describe the radiation of aeroacoustic sources. In this equation, the left hand side is a
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2.3 Acoustic analogies

differential equation accounting for the propagation of the wave and the right hand side describes

the sources in the flow. As a starting point, he uses the continuity and momentum equations.

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (2.1)

∂(ρui)

∂t
+
∂(ρuiuj + Pij)

∂xj
= 0 (2.2)

where Pij = pδij − τij with τij the viscous stresses and δij the Kronecker delta function. Both

equations are combined to form the following wave equation

∂2ρ

∂t2
−
∂2(ρuiuj + Pij)

∂xi∂xj
= 0 (2.3)

The term −c2
0∇2ρ is added on both sides giving

∂2ρ

∂t2
− c2

0∇2ρ =
∂2(ρuiuj + Pij − c2

0ρij)

∂xi∂xj
(2.4)

and classicaly rewritten

∂2ρ

∂t2
− c2

0∇2ρ =
∂2Tij

∂xi∂xj
(2.5)

with Tij = ρuiuj − τij + (p − c2
0ρ)δij referred to as the Lighthill stress tensor. The Lighthill

equation is a recombination of the equations of fluid mechanics and is therefore exact at this

step. Eq (2.5) is comparable to the classical wave equation and the problem can then be seen as

the propagation of sources of strength Tij in a homogeneous medium at rest. In such a medium,

the mean pressure p̄ and mean density ρ̄ are constant. Therefore, if the fluctuations of pressure

p′ = p− p̄ and the fluctuations of density ρ′ = ρ− ρ̄ are introduced, Eq (2.5) can be rewritten as

∂2ρ′

∂t2
− c2

0∇2ρ′ =
∂2Tij

∂xi∂xj
(2.6)

The analytical solution of Eq (2.6) is known. It is obtained by convolution with a Green

function, which yields

ρ′(~xM , t) =

ˆ
~ξS

ˆ
t1

G(~ξS , ~xM ; t, t1)
∂2Tij

(
~ξS , t1

)
∂ξi∂ξj

d~ξSdt1 (2.7)

with the Green function in free space

G(~ξS , ~xM ; t, t1) = δ
(
t1 − t+

∣∣∣~xM − ~ξS∣∣∣ /c0

)
/
(

4πc2
0

∣∣∣~xM − ~ξS∣∣∣) (2.8)

substituted into Eq (2.7) and the integration according to τ is achieved, giving
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Chapter 2 : Statistical modelling of jet mixing noise

ρ′(~xM , t) =
1

4πc2
0

ˆ
~ξS

1∣∣∣~xM − ~ξS∣∣∣
∂2

∂ξi∂ξj
Tij

(
~ξS , t−

∣∣∣~xM − ~ξS∣∣∣ /c0

)
d~ξS (2.9)

and

p′(~xM , t) =
1

4π

ˆ
~ξS

1∣∣∣~xM − ~ξS∣∣∣
∂2

∂ξi∂ξj
Tij

(
~ξS , t−

∣∣∣~xM − ~ξS∣∣∣ /c0

)
d~ξS (2.10)

In the far-field, the differentiation can be recast as

p′(~xM , t) =
1

4πc2
0

ˆ
~ξS

(xi − ξi)(xj − ξj)∣∣∣~xM − ~ξS∣∣∣3
∂2Tij

∂t2

~ξS , t−
∣∣∣~xM − ~ξS∣∣∣

c0

d~ξS (2.11)

By definition, the power spectral density of the pressure fluctuations is given by

Ŝ(~xM , ω) =
1

2π

∞̂

−∞

〈
p′(~xM , t)p

′(~xM , t+ τ)
〉
eiωτdτ (2.12)

In this formula, the brackets 〈..〉 denote a statistical average. For an ergodic process, one has

〈
p′(~xM , t)p

′(~xM , t+ τ)
〉

= lim
T→∞

1

T

T̂

−T

p′(~xM , t)p
′(~xM , t+ τ)dt (2.13)

Inserting Eq (2.11) in Eq (2.12) gives

Ŝ(~xM , ω) =
1

32π3c4
0

ˆ
τ

ˆ
~ξS

ˆ
~ζS

(xi − ξi)(xj − ξj)(xk − ζk)(xl − ζl)∣∣∣~xM − ~ξS∣∣∣3∣∣∣~xM − ~ζS∣∣∣3〈
∂2Tij

∂t2

(
~ξS , tξ

) ∂2Tkl

∂t2

(
~ζS , tζ + τ

)〉
eiωτdτd~ξSd~ζS

(2.14)

with the following change of variables

tξ = t−

∣∣∣~xM − ~ξS∣∣∣
c0

, and tζ = t−

∣∣∣~xM − ~ζS∣∣∣
c0

(2.15)

In order to simplify the notation, the fourth-order correlation tensor is introduced

Rijkl(~ξS , ~s, τ) =

〈
∂2Tij

∂t2

(
~ξS , t

) ∂2Tkl

∂t2

(
~ξS + ~s, t+ τ

)〉
(2.16)

with ~s = ~ζS − ~ξS . Giving for the power spectral density,
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2.3 Acoustic analogies

Ŝ(~xM , ω) =
1

32π3c4
0

ˆ
τ

ˆ
~ξS

ˆ
~ζS

(xi − ξi)(xj − ξj)(xk − ζk)(xl − ζl)∣∣∣~xM − ~ξS∣∣∣3∣∣∣~xM − ~ζS∣∣∣3 Rijkl(~ξS , ~s, τ)eiωτdτd~ξSd~ζS

(2.17)

In addition, the following approximations can be done in the far-field:

xj − ξj 'xj∣∣∣~xM − ~ξS∣∣∣ ' ∣∣∣~xM − ~ζS∣∣∣ '|~xM | (2.18)

The power spectral density in Eq (2.17) is finally recast in the following compact form

Ŝ(~xM , ω) =
1

32π3c4
0

xixjxkxl

|~xM |6

ˆ
τ

ˆ
~ξS

ˆ
~s
Rijkl(~ξS , ~s, τ)eiωτdτd~ξSd~s (2.19)

Two main drawbacks arise from this acoustic analogy. First, even though the analogy is an

exact description of the physics, the sound propagation is done for a homogeneous medium at

rest. Flow effects are therefore formally included in the source term. Second, the Lighthill stress

tensor is not readily obtained and needs to be modelled. In an effort to properly separate the

source terms and the propagation terms, successive formulations were introduced using the work

performed by Lighthill.

2.3.2 Goldstein’s analogy from 1976

Goldstein’s analogy [35] is a slight variation of Lighthill’s formulation. The starting point is Eq

(2.5) applied in a shifted frame x̃i = xi − δixūxτ where a uniform mean flow ūx is considered in

the ~x direction. With this change of variable, a convected wave equation is obtained

D2ρ′

Dt2
− c2

0∇2ρ′ =
∂2T̃ij

∂xi∂xj
(2.20)

with the material differentiation along the mean flow defined as
D
Dt

=
∂

∂t
+ūx

∂

∂xx
and the modified

Lighthill stress tensor

T̃ij = ρũiũj − τij + (p− c2
0ρ)δij (2.21)

where ũi = ui − δixūx. Although the wave operator has increased in complexity, a solution can

still be analytically obtained because the left hand side is the convected Helmholtz equation. The

Green function solution of Eq (2.21) is noted GCHE. The pressure fluctuation field is given by

p′(~xM , t) =

ˆ
~ξS

ˆ
t1

GCHE(~xM , ~ξS ; t, t1)
∂2T̃ij

∂ξi∂ξj
(~ξS , t1)d~ξSdt1 (2.22)
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Eq (2.22) is inserted in Eq (2.12) to obtain the power spectral density. That gives,

Ŝ(~xM , ω) =
1

2π

ˆ
τ

ˆ
t1

ˆ
~ξS

ˆ
~s
GCHE(~xM , ~ξS ; t, t1)GCHE(~xM , ~ξS + s; t, t1 + τ)

R̃ijkl(~ξS , ~s, τ)eiωτdτdt1d~ξSd~s

(2.23)

with

R̃ijkl(~ξS , ~s, τ) =

〈
∂2T̃ij

∂ξi∂ξj

(
~ξS , t

) ∂2T̃kl

∂ξk∂ξl

(
~ξS + ~s, t+ τ

)〉
(2.24)

Only the modified Lighthill stress tensor T̃ij remains part of the autocorrelation function

R̃ijkl. Because the Green function GCHE is deterministic, it can be taken out of the statistical

average.

Thanks to the work from Goldstein, a first step has been done in the improvement of Lighthill’s

analogy. By transferring the terms linked to the mean axial velocity ūx from the right to the left

hand side, the convective effects have successfully been included in the wave operator.

2.3.3 Lilley’s analogy

Phillips [62] introduced a new analogy in which the convective effects are included in the wave

operator. The addition of these effects is embodied by the presence of a material differentiation

in place of the time differentiation. The tedious calculations can be simplified by introducing a

new variable π′ = ln(p′/p0). The updated form of the analogy is

D2π′

Dt2
−

∂

∂xi

c̄2
∂π′

∂xi

 = γ
∂ui

∂xj

∂uj

∂xi
+ γ

D
Dt

 1

cp

Ds
Dt

− ∂

∂xi

γ
ρ

∂τij

∂xj

 (2.25)

with the material differentiation along the mean flow defined as
D
Dt

=
∂

∂t
+ ūx

∂

∂xx
. Here, s is the

specific entropy, cp is the heat capacity at constant pressure and c̄ is the mean sound velocity in

the flow. A part of refraction effects is unfortunately still missing in the wave operator. Lilley [48]

successfully incorporated the remaining term in the left hand side by applying an additional time

differentiation, thus forming a third-order differential equation. The Lilley operator is expressed

as

∂

∂t

D2π′

Dt2
−

∂

∂xi

c̄2
∂π′

∂xi


− 2γ

∂ūi

∂xj

∂

∂xi

c̄2
∂π′

∂xi

 = Λ(~x, t) (2.26)

where Λ regroups all of the remaining terms, forming the source term of Lilley’s analogy. While

this additional derivation adds a layer of complexity in terms of both solving and interpreting

this equation, it allows for the inclusion of the refraction effects. Λ contains only non linear

terms, the source and propagation-related terms are therefore fully separated in this formulation.
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2.3 Acoustic analogies

There is however no analytical Green function. The propagation has to be numerically performed

or simplifications have to be done to obtain a solvable form of Lilley’s operator. Balsa [8] and

Goldstein [35] introduced asymptotic solutions at low and high frequencies using Green functions.

Therefore, with similar calculations as with Goldstein’s analogy, the power spectral density can

be written using the Green function GL, asymptotic solution of Lilley’s equation.

Ŝ(~xM , ω) =
1

2π

ˆ
τ

ˆ
t1

ˆ
~ξS

ˆ
~s
GL(~xM , ~ξS ; t, t1)GL(~xM , ~ξS + ~s; t, t1 + τ)

RΛ(~ξS , ~s, τ)eiωτdτdt1d~ξSd~s

(2.27)

with

RΛ(~ξS , ~s, τ) =
〈

Λ(~ξS , t)Λ(~ξS + ~s, t+ τ)
〉

(2.28)

Only the source term Λ stays in the autocorrelation function RΛ. The Green function GL is

taken out of the statistical average.

Lilley successfully introduced an exact equation in which the left hand side accounts for the

propagation of the wave and the right hand side contains only the exciting source terms. Bailly

et al. [5] showed that the linearised Euler equations, if associated with the appropriate source

terms, could be recast into Lilley’s equation. As such, the computation of the propagation using

the LEE or Lilley’s operator holds the same level of accuracy.

2.3.4 Tam and Auriault’s analogy

Tam and Auriault developed a semi empirical model [78] in which a tailored source term is added

to the linearised Euler equation. This source term is the gradient of qs = 2/3ρk̂s where k̂s is

associated with the kinetic energy of fine scale turbulence. These equations are joined with the

continuity equation with no forcing term. That gives

ρ̄

∂u′i
∂t

+ ūj
∂u′i

∂xj
+ u′j

∂ūi

∂xj

+
∂p′

∂xi
= −

∂qs

∂xi

∂p′

∂t
+ ūj

∂p′

∂xj
+ γp̄

∂u′j

∂xj
= 0

(2.29)

Tam and Auriault used a vectorial adjoint Green function to solve the LEE and showed that

the power spectral density, given in Eq (2.12), can be reduced to

Ŝ(~xM , ω) =

ˆ
ω1

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

p̂′a(~ξS , ~xM ;ω1)p̂′a(~ζS , ~xM ;ω)

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
e−i(ω1+ω)t+iω1t1+iωt2dω1d~ξSd~ζSdt1dt2

(2.30)

27



Chapter 2 : Statistical modelling of jet mixing noise

Here again, only the qs-dependent terms remain within the brackets, for the same reason as

in the previous analogies. The correlation term can be written as

Rs(~ξS , ~ζS , t1, t2) =

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
(2.31)

Just like Lilley’s acoustic analogy, the pressured field cannot be analytically obtained because

p̂′a is unknown. Some simplifications or a numerical computation are required. This can be done

in numerous ways and Tam and Auriault decided to solve numerically the problem after some

simplifications.

Although the formulation of the problem cannot be considered as exact, in the sense that

these equations are not obtained from fluid mechanics equations, Tam and Auriault argued that

the new source modelling gives a more precise representation of the noise generation mechanism.

Indeed, Tam questions the Lighthill analogy [76], claiming that the so-called quadrupole sources

do not describe accurately the sources of jet noise. However, Morris and Farassat [58] showed the

equivalence of Lighthill’s analogy and Tam and Auriault’s model when applied in a homogeneous

medium at rest. Moreover, and as previously mentioned, using Lilley’s operator or the LEE does

not change the level of accuracy on the sound propagation. Under these considerations, Tam and

Auriault’s model can be seen as a modern formulation of the propagation of sound waves in a

sheared flow.

2.3.5 Generic structure of the power spectral density

Comparing Eq (2.19), (2.23), (2.27) and (2.30) highlights a similar structure for the expression

of the power spectral density Ŝ(~xM , ω) regardless of the chosen analogy. This generic structure

is reminded below,

Ŝ(~xM , ω) =
1

2π

ˆ
τ

ˆ
t1

ˆ
~ξS

ˆ
~s
G(~xM , ~ξS ; t, t1)G(~xM , ~ξS + ~s; t, t1 + τ)R(~ξS , ~s, τ)eiωτdτdt1d~ξSd~s

(2.32)

The formulation of the PSD can be split in two parts with first the Green function G handling

the propagation, and second the two-point space-time correlation of the source term R taking

care of the source modelling. The expression of the latter, more than the detailed behaviour of

the source term itself, is required for the computation. The next subsection gives a review of the

methods developed to obtain both parts.

2.4 Source modelling

The description of the sources within the jet is addressed in two independent steps. The first

part is the use of a mathematical representation of these sources and the second is the use of

inputs to compute their strength. The mathematical formulation of the autocorrelation of the
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source terms is first addressed. An example of experimental data of this correlation, made by

Davies et al. [27], is pictured in Fig 2.5. The exact values of these terms in the whole jet plume

is often unknown and a statistical approach is used to provide these correlations to the model

functions. A review of different ways the correlation term R has been modelled is first presented.

This review aims at highlighting what exactly is included in the source model and the domain

of application of each formulation. Using a statistical description of the turbulence implies the

introduction of scaling parameters. These are described in a second subsection and formulations

used to model them are presented. Finally, different input options for the computation of R are

given.

Figure 2.5: Cross correlation of axial velocity fluctuations with downstream wire separation every
0.1 in. From Davies et al. [27]

2.4.1 Statistical model

Khavaran et al. [43] were among the first to introduce a jet mixing noise prediction method

of the range of interest here. They considered that the noise spectrum would be dominated by

the unsteady momentum stress meaning that Tij ' ρuiuj and therefore Rijkl ' ρ2〈uiujukul〉.
Citing Ribner [68], they argue that the space and time factors of the correlation decay could be

separated. The space factor is established using a homogeneous isotropic turbulence model from

Batchelor [11] whereas the time factor is introduced as a Gaussian decay. Hence

Rijkl(~ξS , ~s, τ) = Rijkl(~ξS , 0, 0) exp

−τ2

τ2
0



f +

1

2
|~s| f ′

 δij −
1

2
f ′
sisj

|~s|

 (2.33)

where the longitudinal correlation function f is approximated by a Gaussian function following

Lilley [47] and f ′ = df/dsi.
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f(|~s|) = exp

−π|~s|2
l2

 (2.34)

For the full computation of this model function, the three scaling elements Rijkl(~ξS , 0, 0), τ0

and l have to be defined. They are respectively the magnitude of the autocorrelation, a time

scale and a length scale. The next subsection goes more in details regarding these parameters.

Later, Khavaran [41] went one step further by introducing a new formulation for its correlation

model function by considering an axisymmetric turbulence instead of an isotropic state, using

Chandrasekhar [25] with good results. Later, Khavaran et al. [42] extended their work to hot jets

by adding a modelling of the enthalpy source term in the Lighthill stress tensor independently

of the already included momentum source term. Tam and Auriault used results from Davies et

al. [27]. Experimentally, it was found that the spatial decay can be assimilated to a Gaussian

function whereas the time decay fits an exponential decrease. These observations translates

mathematically to a correlation function of the following form

Rs(~ξS , ~ζS , t1, t2) =
I2
s

τ2
s

exp

−|ξx − ζx|
ūxτs


exp

− ln 2

l2s

[
[(ξx − ζx)− ūx(t1 − t2)]2 + (ξy − ζy)2 + (ξz − ζz)2

] (2.35)

where τs and ls are respectively the time and length scale of the fine scale turbulence. Tam

and Auriault’s work was nevertheless limited to isothermal jets while also neglecting the density

gradient. To make up for these effects, Tam et al. [81] introduced an updated version of their

model function with an additional term based on the measurements of Doty and McLaughlin

[31]. Improved results were observed when applied to hot jets, compared to the previous theory.

Morris and Boluriaan [57] also started from the LEE like Tam and Auriault [78] but included more

terms in the right hand side of the momentum equation citing Morris and Farassat [58]. They also

added an equivalent dilatation rate source term to the continuity equation. These source terms

are in fact the remainders from the linearisation of the Euler equation. It is assumed that the

two-point correlation functions of both source terms follow the same decay pattern as in Eq (2.35)

albeit some minor changes. It is also assumed that they are uncorrelated with each other. Self

[71] [72] followed the same assumption as Khavaran et al. [43] regarding the expression of Tij . He

however modelled directly the cross-spectral density, that is the Fourier transform of the space-

time correlation function. This was motivated by the observation that the characteristic scales

involved are function of the frequency [37]. The model function introduced is of the following

form
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2.4 Source modelling

R̂s(~ξS , ~s, ω) = u42
√
πτs exp

−ω2(1−Mc cos θ)2τ2
s

4

 exp

−s2
x

l2x
−
s2
y

l2y
−
s2
z

l2z

 (2.36)

where u is a characteristic velocity of the turbulence, τs and li are time and length scales, Mc is

the jet Mach number and θ is the polar angle of the observer. The relation between the frequency

and the scaling parameters is explicited in the next subsection. Semiletov and Karabasov [74]

chose yet another formulation for Rijkl with the same asumption on Tij ' ρuiuj as done by

Khavaran et al. [43]. Citing [36], they write

Rijkl(~ξS , ~s, ω) = Rijkl(~ξS , 0, 0) exp

−
√√√√√
 |Ucτ |

lτ

2

+

 |sx − Ucτ |
lx

2.5

+

∣∣sy∣∣
ly

2.5

+

 |sz|
lz

2.5


(2.37)

where lτ and li are length scales whose values are obtained through a fit with measurements.

Their formulation showed good agreements with the experimental data of R1111 and R2222.

To sum up, there is a wide range of possibilities in terms of model functions and the fact

that these formulations are still used in parallel shows that there is no consensus on a general

expression. Given the inherent level of accuracy of RANS-based methods, it is arguable that any

of these statistical descriptions would lead to similar results.

2.4.2 Calibration of the model

A number of variables are required to compute the model functions for the two-point correlation

presented in the previous subsection. Some are readily available because related to basic flow data

but a few scaling parameters also appear as time scales, length scales and turbulence strengths.

The present subsection gives ways to get either directly the exact value of these turbulent scales,

or how to reconstruct them using RANS CFD simulations. Khavaran et al. [43] and Bailly et al.

[7] suggested that the time and length scales in Eq (2.33) could be obtained using the turbulent

kinetic energy kt and the turbulent dissipation ε with

τ0(~ξS) =cτ
kt(~ξS)

ε(~ξS)

l(~ξS) =cl
k

3/2
t (~ξS)

ε(~ξS)

(2.38)

Khavaran et al. [43] added the following expression for the magnitude of the two-point

correlation function

Rijkl(~ξS , 0, 0) = Aρ2(~ξS)k2
t (
~ξS) (2.39)
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with ρ being the density. These formulations are often referred as classical scales and are widely

used by numerous research groups. As a reminder to previously cited papers, Tam and Auriault

[78], Morris and Boluriaan [57] used these scales. However, alternative expressions have also

been proposed. Self [71] [72] introduced a frequency dependency on the time scale to match with

the observations of Harper-Bourne [37]. The work was extended with a new formulation by Self

and Azarpeyvand [73] using the rate energy transfers in which the frequency does not appear

explicitly, thus reducing the empiricism of the previous. A simplified version of this formulation

was inserted in Eq (2.33) by Azarpeyvand and Self [4]. Predictions using these scales showed

better results than when using Eq (2.38). These improved results were attributed to a better

representation of the underlying physics. Raizada and Morris [66] also introduced a frequency

dependence but here applied on the length scale, which also led to improved predictions compared

to the traditional scales. In addition to an updated two-point space-time correlation function for

the study of hot jets, Tam et al. [81] also introduced a perturbation term to the different scaling

variables, as proposed by Tam and Ganesan [79]. This term is linked to the density gradient.

2.4.3 Inputs

As early as 1994, Bailly et al. [7] and Khavaran et al. [43] used Reynolds-Averaged Navier-Stokes

(RANS) simulation based on a k− ε model to feed local values to the source models. Since then,

the use of RANS simulations has been very popular for jet mixing noise predictions due to the

relatively short restitution time of the method. However, the results are often not considered sat-

isfactory as is and the characteristic scales are fitted on experimental results [43][78][55] through

an optimisation of the value of cl, cτ and A. Ideally the testcase used for the simulation and the

predictions should match, as done by Khavaran et al. [43]. Under some assumptions, the fit could

still be done with another jet. For example, Tam and Auriault [78] proposed a generic set of coef-

ficients obtained by fitting the model function on experimental data using jets with a wide range

of temperature ratio and jet speeds. Karabasov et al. [40] broke ground by using data from a

large eddy simulation instead of farfield measurements to calibrate the scaling parameters. They

indeed obtained the correlation shapes from a LES and then performed a Gaussian fit to extract

the coefficients of the classical scales. Not only did this method show good results, but they also

obtained good agreements downstream where the large scale spectrum dominates without the

addition of another source. Depuru-Mohan et al. [28] reproduced the same process on jet noise

from chevron nozzles [18] with good results. Since the fit is done prior to the noise predictions

the robustness of the method is increased, there is however a need of a rather costly LES. In the

same way, experimental data could be used for this calibration. And even though this is more

complicated because of the large quantity of data required and because of the difficulty to obtain

clean data in all the flow, some have succeeded. Bridges and Wernet [19] measured a substantial

portion of the two-point space-time velocity correlation in hot, high-speed turbulent jets using

Particle Image Velocimetry (PIV). From this, the length and timescales can be computed and

used for the constant fit. In conclusion a RANS simulation is not enough to perform the noise
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predictions, it has to be joined by a constant set appropriately chosen.

2.5 Resolution of the propagation

Once the source has been modelled, the noise has to be propagated to the observer. This subsec-

tion presents some options for the execution of this step along with their main advantages and

drawbacks.

2.5.1 Analytical resolution

The analytical resolution of the differential equations governing the propagation is both the fastest

and the most accurate from a mathematical point of view. This is however only possible when

using Lighthill’s or Goldstein’s analogy. This option is interesting both in terms of computing

time and power and it was chosen by numerous school of thought within the jet noise community.

As an example, one can cite the MGBK model, developped first by Mani-Gliebe-Balsa in [51] [10]

and [9] and completed by Khavaran et al. [43] and Khavaran [41]. This model uses as a starting

point Lighthill’s analogy. Similarly, Self [71] [72], Self and Azarpeyvand [73] and Azarpeyvand

and Self [4] used Goldstein’s approach. But these analogies do not account for refraction effects.

It is however possible to include the reflection effects, as it has been done by Lyu et al. [50] by

solving the differential equation with the introduction of boundary conditions. The LEE or Lilley

operator contain more propagation effects but do not have a solution readily available. Balsa [8]

and Goldstein [35] introduced however asymptotic versions of Lilley’s analogy at high and low

frequencies that allow for analytical resolutions using Green functions. In parallel, Morris and

Boluriaan [57] showed that when considering a parallel axisymmetric mean flow, the LEE could be

simplified. In this new form, the Lilley operator can be introduced. By linking both fomulations,

they also linked the LEE solution to the asymptotic solutions of Lilley’s equation. Further

simplifying the problem, Brouwer and Nijboer [20] applied the work of Tam and Auriault [78] in

a homogeneous medium thus reducing the LEE to a convected Helmholtz equation. Incidentally,

they could use the analytical formulation of the adjoint Green’s function of the CHE.

2.5.2 Numerical resolution

The LEE or Lilley operator might also be treated using a numerical approach to fully solve

differential equation without simplifying the problem. Bechara et al. [12] and Bailly and Juve

[6] solved the LEE in their primitive form in the frame of the Stochastic Noise Generation and

Radiation (SNGR) model. The introduction of the adjoint problem has shown great improvement

regarding the numerical resolution compared to the direct problem. Indeed, by inverting the

roles of the sources and the observers, the number of points in which Green functions need to

be computed is considerably reduced. Tam and Auriault [78] and Miller [55] used this solution.

Beyond the numerical gains of the adjoint method, it also helped Tam and Auriault [78] reduce

the number of Green function to calculate at each source point from three to only one.
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2.5.3 Geometrical acoustics

Finally, another propagation model based on geometrical acoustics has to be addressed. As

described by Candel [22], if the acoustic wavelength is quite small compared to the characteristic

lengthscale of the propagation medium, here the jet radius, waves can be considered locally

plane waves. In this approximation, the solution can be sought as u(~x, t) = A(~x, t) exp
(
iψ(~x, t)

)
where A is an amplitude vector and ψ is the phase. From this comes a dispersion relation

allowing the computation of the propagation of the ray through the propagation medium. The

conservation of energy given by the Blokhintzev invariant [13] is then used on the ray path

to obtain the amplitude. In the frame of geometrical acoustics, the characteristic length and

characteristic time of the propagation medium are considered greatly superior to respectively the

wavelength and the period of the considered wave [22]. The ray is computed step by step from

the source, there are thus no guarantee that it will reach the desired observer. This eigen-ray is

found by convergence using successive ray-shooting steps. Depending on the complexity of the

problem and the number of sources, this iterative process might lead to heavy computing times.

There is a possible simplification of the model by considering that the propagation medium is

homogeneous by part with infinitely thin interfaces. In this case, the ray changes its path only

when reaching an interface instead of every infinitesimal variation in the fluid properties. The

reduction in complexity of the wave path induces a simplification of the search for the eigen

rays. The change of amplitude linked to a refraction or a reflection on a curved surface has been

calculated by Deschamps [29]. Such a method has been proposed already for corrections applied

to experimental experiments in case of open jet wind tunnels by Amiet [2]. This was extended for

sources located off the jet axis by Morfey and Joseph [56] and later by McLaughlin et al. [52] to

model the jet-blockage for installed jets using image sources. These methods do not predict noise

spectra but correct existing spectra to obtain predictions in other configurations. The diffraction

of the waves on edges was not included in these methods. Candel [23] introduced a similar method

where a sheared flow is discretised into stratified homogeneous flows. Although this method is

not linked with geometrical acoustics, it shows that this simplification of the propagation medium

has already been done for jet noise.

2.6 Solution used for the noise predictions

An overview of statistical methods for jet mixing noise predictions has been presented. A choice

regarding the source and propagation models needs to be done to address our requirements that

are reminded here.

• Take into account refraction effects when passing through the jet mixing layer, the reflections

on the surrounding boundaries, i.e. a pylon, a wing and flaps as well as the diffraction on

edges.

• Be able to tackle a realistic 3D geometry such as an installed jet.
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• Be able to produce results within a reasonable computing time as the process should be

usable within design loops.

The compromise between the savings of computing resources and the inclusion of propagation

effects is the core of the study. On the contrary, the choice of the source model appears to be less

critical. Lighthill’s and Goldstein’s analogy do not match the requirements considering the lack

of propagation effects included. On the contrary, the LEE and Lilley’s equation fit the desired

framework. Ray tracing techniques and approximated analytical solutions as done by Morris

and Boluriaan [57] are appropriate options while a numerical resolution of the propagation is

expected to be too computer heavy, especially if done on industrial meshes. There is not a unique

solution to address the problematic set in this thesis so the convenience of the implementation

of this new model should play a role. One of the method used by Airbus for jet mixing noise

predictions is based on the work from Tam and Auriault [78] and Brouwer and Nijboer [20]

on 2D RANS CFD simulations and shows encouraging results. Additionally, a ray tracing tool

named Acti-HF is available. Historically it was developed for electromagnetism problems and

therefore uses homogeneous media. It can tackle refractions, reflections and diffractions on edges

which matches the requirements in terms of propagation effects while being faster than what was

proposed by Candel [22]. Considering the existing solutions within Airbus’ numerical toolbox

and the requirements for the newly developed model it is chosen to use Tam and Auriault’s [78]

formulation and their source model as a starting point. Their flow description is simplified as

to introduce homogeneous media in order to solve the propagation using simplified ray tracing

techniques.
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3 Development of the mixing noise model

The objective of this Chapter is to introduce a fine scale jet mixing noise prediction method. In

Section 2.5, the choice of a coupling between a source model based on the Tam and Auriault study

[78] and the use of geometrical acoustics in a simplified medium was justified. The mathematical

development for the binding of these two theories into a legitimate prediction model is presented

in the following sections. First, the global skeleton of a CFD/CAA method is detailed in order

to highlight its main components. The choice of source and propagation model by Tam and Au-

riault [78] is first reminded before introducing the new propagation method based on geometrical

acoustics.

3.1 Presentation of the outline of a CFD/CAA method

A CFD/CAA prediction method is a method where a numerical simulation, here a RANS com-

putation, is used as input to obtain the different data needed to predict the full noise spectrum.

It was shown in Section 2.3 that the spectral density in ~xM and at a pulsation of ω can be written

in the simplified form

Ŝ(~xM , ω) =

ˆ
~ζS

AS(~ζS , ω)PS(~xM , ~ζS , ω)d~ζS (3.1)

A closer inspection of Eq (3.1) shows the different elements leading to the noise spectrum.

The amplitude of the source AS is computed using the flow data at the location of a source

point ~ζS and the studied pulsation ω. The propagation PS of the wave from a source point ~ζS
to an observer written as ~xM is computed using the location of these two points as well as the

pulsation. The convolution product of these two terms represents the contribution for one source

in the total spectrum. This is then done at each source location and all the contributions are

integrated. The steps leading to noise prediction are the following:

• Discretisation of the volumic source domain into a cloud of elementary sources using the

CFD mesh

• Use of the flow data at each source/cell to compute the source amplitude

37



Chapter 3 : Development of the mixing noise model

• Use of the position of the sources and the position of the observer to compute the propa-

gation of each wave

First, the jet is discretised using the mesh from a RANS computation. This step is illustrated

in Fig 3.1 going from a real jet in (a) to a numerical simulation in (b). Once the simulation is

done, using a source model presented in Section 2.4 and the local flow data, the sources amplitude

AS can be computed as shown in (c). At this point all the cells in the jet plume are considered

as sources. Because the local data is used to compute the source amplitude, AS is null in some

locations. It means that the source is shut down and do not contribute to the noise spectrum.

(a)

(b)

(c)

Figure 3.1: Modelling of the source term using a RANS CFD computation

Once AS is obtained, the propagation is taken care of, as shown in Fig 3.2. As explained,

each cell of the mesh is considered to be a source (a), thus creating a cloud of sources (b). Using

a propagation method from Section 2.4, the noise is propagated to an observer ~xM as pictured in

(c) and PS is obtained at each source point ~ζS . Given that the source amplitude was found in the

previous step, each source is here considered unitary and will only be linked to their amplitude

later on.

(a) (b) (c)

Figure 3.2: Computation of the propagation using each cell of the mesh as a source

AS and PS are now known at each elementary source ~ζS of the full source domain, the
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contributions can be integrated on the whole jet and Ŝ can be obtained.

3.2 Jet mixing noise prediction model

In Section 3.1, the outline of a generic CFD/CAA method has been presented. The model

developed by Tam and Auriault [78] is explicited in this section to highlight the main steps.

3.2.1 Formulation of the problem

The first step is to write the equations governing the problem. Tam and Auriault use a direct

approach to set the problem. An acoustic analogy is built by combining two sets of equation.

The left hand side of the system is the wave operator and the right hand side as a source term.

The Favre average variables [32] are introduced with the following decomposition

f = f̃ + f ′′ (3.2)

where f̃ and f ′′ are respectively the Favre average and Favre fluctuating components, with f̃

defined as f̃ = ρf/ρ̄. Tam and Auriault rederive the transport equation using the Favre average

variables, giving

ρ̄

∂ũi
∂t

+ ũj
∂ũi

∂xj

+
∂p′

∂xi
=

∂

∂xj
(−ρu′′i u′′j + τ̄ij) (3.3)

Following the classical RANS approach, the Boussinesq closure for the Reynolds stresses is

adopted, giving

− ρu′′i u′′j = 2µt

Sij − 1

3
Skkδij

− 2

3
ρ̄ksδij (3.4)

where µt is the turbulent dynamic viscosity and Sij is the deformation tensor, expressed as

Sij =
1

2

∂ũi

∂xj
+
∂ũj

∂xi

 (3.5)

In addition, the kinetic energy of the fine scale turbulence per unit mass ks is defined as

ρu′′i u
′′
i = 2ρ̄ks (3.6)

ρ̄ is the mean density; p′ is the fluctuating pressure; τ̄ij and −ρu′′i u′′j are respectively the

viscous and Reynolds stresses. The Einstein notation is used, that is an implicit summation on

dummy indices. In addition, the subscript i is implicitly associated with the space dimensions,

meaning that i = [1, 2, 3].
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Next, Tam and Auriault consider the linearised form of Eq (3.3). These authors also argue

that both the molecular and viscosity terms can be ignored because they would only have a small

influence on the source term intensity, leaving only the term in ρ̄ks, in the right hand side of the

system. Finally they consider that the acoustic field is only due to the time-dependent part of

ks, denoted k̂s. The transport equation (3.7) simplifies to

ρ̄

∂u′i
∂t

+ ūj
∂u′i

∂xj
+ u′j

∂ūi

∂xj

+
∂p′

∂xi
= −

∂qs

∂xi
(3.7)

ūi and u′i are respectively the mean and fluctuating velocity components in Cartesian coordi-

nates;

with

qs =
2

3
ρ̄k̂s (3.8)

The system is completed with the linearised continuity and energy equations. The final system

of four first-order differential equations is the following

ρ̄

∂u′i
∂t

+ ūj
∂u′i

∂xj
+ u′j

∂ūi

∂xj

+
∂p′

∂xi
= −

∂qs

∂xi

∂p′

∂t
+ ūj

∂p′

∂xj
+ γp̄

∂u′j

∂xj
= 0

(3.9)

The wave operator is developed in cylindrical coordinates (x, r, φ) and simplified using the

locally parallel flow approximations. In this frame, the velocity components are denoted ū =

(ūx, ūr, ūφ) for the mean velocity and u′ = (u′x, u
′
r, u
′
φ) for the fluctuating field. For a sheared

mean flow, ūx and ρ̄ are function of r only; ūr and ūφ are null and p̄ is constant. These assumptions

translate to the following relations

ūx = ūx(r)

ūr = ūφ = 0

ρ̄ = ρ̄(r)

p̄ = p̄∞

(3.10)

The system (3.9) is simplified to
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ρ̄

∂u′x
∂t

+ ūx
∂u′x

∂xx
+ u′r

∂ūx

∂xr

+
∂p′

∂xx
= −

∂qs

∂xx

ρ̄

∂u′r
∂t

+ ūx
∂u′r

∂xx

+
∂p′

∂xr
= −

∂qs

∂xr

ρ̄

∂u′φ
∂t

+ ūx
∂u′φ

∂xx

+
1

xr

∂p′

∂xφ
= −

1

xr

∂qs

∂xφ

∂p′

∂t
+ ūx

∂p′

∂xx
+ γp̄∞

∂u′x
∂xx

+
1

xr

∂(xru
′
r)

∂xr
+

1

xr

∂u′φ

∂xφ

 = 0

(3.11)

The wave operator is now established with Eq (3.11). The next step is to solve this linear

system to obtain the expression of the fluctuating pressure. This is done using Green functions.

A reminder of the theory behind such functions can be found in Appendix A. A vectorial Green

function
(
u
′(n)
x , u

′(n)
r , u

′(n)
φ , p′(n)

)
is introduced.

ρ̄

∂u′(n)
x

∂t
+ ūx

∂u
′(n)
x

∂xx
+ u′(n)

r

1

xr

∂(xrūx)

∂xr

+
∂p′(n)

∂xx
= −δ(~xM − ~ξS)δ(t− t1)δn1

ρ̄

∂u′(n)
r

∂t
+ ūx

∂u
′(n)
r

∂xx

+
∂p′(n)

∂xr
= −δ(~xM − ~ξS)δ(t− t1)δn2

ρ̄

∂u′(n)
φ

∂t
+ ūx

∂u
′(n)
φ

∂xx

+
1

xr

∂p′(n)

∂xφ
= −δ(~xM − ~ξS)δ(t− t1)δn3

∂p′(n)

∂t
+ ūx

∂p′(n)

∂xx
+ γρ̄

∂u′(n)
x

∂xx
+

1

xr

∂(xru
′(n)
r )

∂xr
+

1

xr

∂u
′(n)
φ

∂xφ

 = 0

(3.12)

The vectorial Green function is related to the state vector
(
u′x, u

′
r, u
′
φ, p
′
)
where n = [1, 2, 3]

is associated with the three different source terms shown in the equation above. There are no

source term in the fourth equation in System (3.11) so there is no need to introduce a fourth

system of equations in (3.12). The pressure fluctuations is expressed as a function of the three

Green pressure fluctuations p′(1), p′(2), p′(3) and the source terms in Sys (3.11) using (A.7). The

position of the observer ~xM = (xx, xr, xφ) and the position of a source point ~ξS = (ξx, ξr, ξφ) are

introduced. The pressure fluctuations are then given by

41



Chapter 3 : Development of the mixing noise model

p′(~xM , t) =

ˆ
~ξS

ˆ
t1

[
− p′(1)(~xM , ~ξS ; t, t1)

∂qs

∂ξx

− p′(2)(~xM , ~ξS ; t, t1)
∂qs

∂ξr

− p′(3)(~xM , ~ξS ; t, t1)
1

ξr

∂qs

∂ξφ

]
d~ξSdt1

(3.13)

A Fourier transform is applied to switch into the frequency domain from the t1 time compo-

nent. The following convention has been chosen

p′(n)(~xM , ~ξS ; t, t1) =

∞̂

−∞

p̂′(n)(~xM , ~ξS ;ω)e−iωteiωt1dω (3.14)

p̂′(n)(~xM , ~ξS ;ω)e−iωt =
1

2π

∞̂

−∞

p′(n)(~xM , ~ξS ; t, t1)e−iωt1dt1 (3.15)

The dependency in t has been taken out of the Fourier transform of the pressure fluctuations.

This is done so that the time difference appears explicitly in equations. The integral expression

of the pressure field is finally expressed as

p′(~xM , t) =

ˆ
ω

ˆ
~ξS

ˆ
t1

[
− p̂′(1)(~xM , ~ξS ;ω)

∂qs

∂ξx

− p̂′(2)(~xM , ~ξS ;ω)
∂qs

∂ξr

− p̂′(3)(~xM , ~ξS ;ω)
1

ξr

∂qs

∂ξφ

]
e−iω(t−t1)dωd~ξSdt1

(3.16)

3.2.2 Adjoint problem

The direct computation of the vectorial Green functions p′(n) is not done. Instead, the adjoint

problem is introduced to obtain the expression of the pressure fluctuations by searching for only

one Green function rather than three. A presentation of the concept of adjoint Green functions

can also be found in Appendix A. By introducing the adjoint problem using Eq (A.9), Tam and

Auriault [77] presented a new system with a source term in the continuity equation but no source

term in the momentum equations, making it lighter than Sys (3.11). Using as variable the adjoint

Green vector in the Fourier domain (û′ax , û
′a
r , û

′a
φ , p̂

′a), the adjoint system is
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ρ̄

iωû′ax + ūx
∂û′ax

∂ξx

+ γρ̄
∂p̂′a

∂ξx
= 0

ρ̄

iωû′ar + ūx
∂û′ar

∂ξx
+ û′ax

∂ū

∂ξr

+ γρ̄
∂p̂′a

∂ξr
= 0

ρ̄

iωû′aφ + ūx
∂û′aφ

∂ξx

+ γρ̄
1

ξr

∂p̂′a

∂ξφ
= 0

iωp̂′a + ūx
∂p̂′a

∂ξx
+

∂û′ax
∂ξx

+
1

ξr

∂(ξrû
′a
r )

∂ξr
+

1

ξr

∂û′aφ

∂ξφ

 = −
1

2π
δ(~xM − ~ξS)

(3.17)

Future calculations will show that only the last equation in Sys (3.17) is used in this work,

namely

iωp̂′a + ūx
∂p̂′a

∂ξx
+

∂û′ax
∂ξx

+
1

ξr

∂(ξrû
′a
r )

∂ξr
+

1

ξr

∂û′aφ

∂ξφ

 = −
1

2π
δ(~xM − ~ξS) (3.18)

This equation can be rewritten using the vector notation û′a = (û′ax , û
′a
r , û

′a
φ ) as

iωp̂′a + ūx
∂p̂′a

∂ξx
+∇ · û′a = −

1

2π
δ(~xM − ~ξS) (3.19)

Additionally, Tam and Auriault used the following relations, obtained citing the Appendix A

of reference [77],

p̂′(1)(~xM , ~ξS ;ω) = û′ax (~ξS , ~xM ;ω)

p̂′(2)(~xM , ~ξS ;ω) = û′ar (~ξS , ~xM ;ω)

p̂′(3)(~xM , ~ξS ;ω) = û′aφ (~ξS , ~xM ;ω)

(3.20)

Note the inversion of the spatial variables ~xM and ~ξS on each side of the equations. Eq (3.16)

and Eq (3.20) are then combined to obtain

p′(~xM , t) =

ˆ
ω

ˆ
~ξS

ˆ
t1

−û′ax ∂qs∂ξx
− û′ar

∂qs

∂ξr
− û′aφ

1

ξr

∂qs

∂ξφ

 e−iω(t−t1)dωd~ξSdt1 (3.21)

With the vector notation û′a = (û′ax , û
′a
r , û

′a
φ ), the previous equation is rewritten as

p′(~xM , t) = −
ˆ
ω

ˆ
~ξS

ˆ
t1

û′a · ∇qse−iω(t−t1)dωd~ξSdt1 (3.22)

Using the fact that ∇ · [û′aqs] = qs∇ · û′a + û′a · ∇qs, it gives
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p′(~xM , t) = −
ˆ
ω

ˆ
~ξS

ˆ
t1

(
∇ · [û′aqs]− qs∇ · û′a

)
e−iω(t−t1)dωd~ξSdt1 (3.23)

p′(~xM , t) = −
ˆ
ω

ˆ
~ξS

ˆ
t1

∇ · [û′aqs]e−iω(t−t1)dωd~ξSdt1 +

ˆ
ω

ˆ
~ξS

ˆ
t1

qs
(
∇ · û′a

)
e−iω(t−t1)dωd~ξSdt1

(3.24)

The divergence theorem is then applied on the first integral. That leads to

p′(~xM , t) = −
ˆ
ω

‹
S

ˆ
t1

(
û′a · ~n

)
qse
−iω(t−t1)dωdSdt1 +

ˆ
ω

ˆ
~ξS

ˆ
t1

qs
(
∇ · û′a

)
e−iω(t−t1)dωd~ξSdt1

(3.25)

with ~n the outward normal vector to the surface S. If S is chosen as the surface containing the

whole jet, the first integral is null as there is no source on S, qs = 0. The expression of the

pressure fluctuation is simplified to

p′(~xM , t) =

ˆ
ω

ˆ
~ξS

ˆ
t1

qs
(
∇ · û′a

)
e−iω(t−t1)dωd~ξSdt1 (3.26)

Eq (3.19) is used for an observer located outside of the jet flow, that is ~xM 6= ~ξS . In this case

the delta function is set to 0 and the equation is reduced to

∇ · û′a = −

iω + ūx
∂

∂ξx

 p̂′a (3.27)

Inserting the previous equation in (3.26) gives

p′(~xM , t) = −
ˆ
ω

ˆ
~ξS

ˆ
t1

qs

iω + ūx
∂

∂ξx

 p̂′ae−iω(t−t1)dωd~ξSdt1 (3.28)

and in the time domain

p′(~xM , t) = −
ˆ
~ξS

ˆ
t1

qs

 ∂

∂t1
+ ūx

∂

∂ξx

 p′ad~ξSdt1 (3.29)

An integration by parts according to the convective derivative is done, followed by a Fourier

transform on p′a, leading to

p′(~xM , t) =

ˆ
ω

ˆ
~ξS

ˆ
t1

Dqs
Dt1

p̂′a(~ξS , ~xM ;ω)e−iω(t−t1)dωd~ξSdt1 (3.30)

with the convective derivative in the axial direction defined as
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D
Dt1

=
∂

∂t1
+ ūx

∂

∂ξx
(3.31)

Having obtained an expression of the pressure, the power spectral density of the radiated

pressure field can be computed using the following formula

Ŝ(~xM , ω) =
1

2π

∞̂

−∞

〈
p′(~xM , t)p

′(~xM , t+ τ)
〉
eiωτdτ (3.32)

In this formula the brackets 〈..〉 stands for the mathematical expectation. By substituting Eq

(3.30) in Eq (3.32) above, the power spectral density is

Ŝ(~xM , ω) =
1

2π

ˆ
τ

ˆ
ω1

ˆ
ω2

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

p̂′a(~ξS , ~xM ;ω1)p̂′a(~ζS , ~xM ;ω2)

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
e−iω1(t−t1)e−iω2((t+τ)−t2)eiωτdτdω1dω2d~ξSd~ζSdt1dt2

(3.33)

Only the term in qs stays in the autocorrelation function because it contains the random part,

the other terms have a deterministic feature and can be taken out. The mathematical expectation

handles the integration according to the time, but t still appears in the exponents in the equation

above. A change of variable t1 = t1 − t and t2 = t2 − t was omitted. The corrected version is

Ŝ(~xM , ω) =
1

2π

ˆ
τ

ˆ
ω1

ˆ
ω2

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

p̂′a(~ξS , ~xM ;ω1)p̂′a(~ζS , ~xM ;ω2)

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
eiω1t1e−iω2(τ−t2)eiωτdτdω1dω2d~ξSd~ζSdt1dt2

(3.34)

The Fourier transform of the Dirac function can be recognised in the equation above with the

classical identity

ˆ
τ
ei(ω−ω2)τdτ = 2πδ(ω − ω2) (3.35)

allowing the integration according to τ and subsequently according to ω2. Ŝ is then simplified to

Ŝ(~xM , ω) =

ˆ
ω1

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

p̂′a(~ξS , ~xM ;ω1)p̂′a(~ζS , ~xM ;ω)

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
eiω1t1+iωt2dω1d~ξSd~ζSdt1dt2

(3.36)

The calculations cannot be pushed further yet. The next step is the introduction of a statistical

modelling for fine scale turbulence.
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3.2.3 Source modelling

The correlation function for the full convective derivative has not yet been measured but Davies

et al. [27] and Fleury et al. [33] among others studied and measured the two-point space-time

correlation of the fluctuating axial velocity component in jets. Tam and Auriault argued that the

autocorrelation function needed should be similar to the one from Davies et al [27]. The model

function used for the autocorrelation is the following

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
=

q̃2
s

c2τ2
s

exp

−|ξx − ζx|
ūxτs

−
ln 2

l2s

[
[(ξx − ζx)− ūx(t1 − t2)]2 + (ξy − ζy)2 + (ξz − ζz)2

]
(3.37)

So when ~ξS → ~ζS and t1 → t2

〈Dqs(~ξS , t)
Dt

2〉
=

q̃2
s

c2τ2
s

=
I2
s

τ2
s

(3.38)

In this expression, a few key terms need to be defined

q̃s

c
= Aq = A

2

3
ρ̄kt = Is

ls = cl
k

3/2
t

ε

τs = cτ
kt

ε

(3.39)

Here, kt is the turbulent kinetic energy, ε is the turbulent dissipation and c is a constant

controlling the kinetic energy of the fine scale turbulence; ls is the length scale of the fine scale

turbulence; τs is the decay time; q̃s is a measure of the intensity of the temporal fluctuation of

the kinetic energy of the fine scale tubulence. The adjustment constants are set by Tam and

Auriault [78] to be A = 1.5855, cl = 0.256 and cτ = 0.233. Is, ls and τs can be computed using a

RANS simulation. Even though it was explained earlier with the definition of qs in Eq (3.8) that

the turbulent kinetic energy ks used was only the one responsible for fine scale turbulence, the

value used for the modelling of the sources in Eq (3.39) is directly the one given by the RANS

simulation and does not take any kind of filtering on the size of the turbulent structure. Tam and

Auriault argue that ks and kt should be proportional, hence the introduction of the adjustment

constants.

The autocorrelation function presented above can be assimilated to a Gaussian function in

four dimensions. It can be separated in two parts, the height of the curve’s peak expressed in

Eq (3.38) and the attenuation factor being the exponent. What is expressed here is that the
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correlation of two source points at two given time is a function of the difference in distance

between these two points and the difference between the two time-steps.

A smaller spatial difference leads to a higher correlation with a maximum being expressed

in Eq. (3.38) and on the contrary a higher spatial difference will drive the correlation function

to zero. The rate at which the correlation function will decrease is controled by the choice of

the length scale ls. Here this length scale is the one from the fine scale turbulence. Note that

the term "fine scale" corresponds to the definition introduced by Tam and not the one from

Kolmogorov. Using ls as the length scale means that only sources within a single structure are

coherent. That describes the physics well because as explained in [82], the sources responsible

for the fine scale turbulence jet mixing noise is a compact source. Note that the use of Gaussian

functions to describe the evolution of the coherence depending on the distance between the source

points is justified empirically with measurements presented in [27]. The same analysis can be

done concerning the correlation in time while noting the difference in rate of the decrease with the

time difference. This is also motivated by the results of experiments presented in [27] showing

that the effect on the correlation could be assimilated to an exponential decrease and not a

Gaussian function. Morris and Boluriaan [57] and Miller [55] introduced similar expressions of

the time-space correlation function. Despite the difference in the formulation, the modelling of

the autocorrelation of the sources remains a Gaussian fit.

As for the amplitude of this correlation function, this is nothing else than a scaling of the

kinetic energy over a time scale which here would be the lifetime of turbulent structures or, as

describe by Tam, the decay time. Although qs is evaluated at two separated position and time

in the left hand side of Eq (3.37), q̃s, τs and ls are evaluated at an unspecified position and time

in the right hand side. Using the compactness of sources, if two source points are close enough

that their correlation is not null, the value of both the decay time and the kinetic energy should

be very close. That would justify evaluating Is, τs and ls in either (~ξS , t1) or (~ζS , t2).

The source model in Eq (3.37) is now substituted in Eq (3.36) in order to carry on with the

calculations. The power spectral density Ŝ is now expressed as

Ŝ(~xM , ω) =

ˆ
ω1

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

p̂′a(~ξS , ~xM ;ω1)p̂′a(~ζS , ~xM ;ω)
I2
s

τ2
s

exp

−|ξx − ζx|
ūxτs

− ln 2

 [(ξx − ζx)− ūx(t1 − t2)]2

l2s
+

(ξy − ζy)2

l2s
+

(ξz − ζz)2

l2s




eiω1t1+iωt2dω1d~ξSd~ζSdt1dt2
(3.40)

The integration according to t1, t2 and ω1 is performed in Appendix C.1. A simplified

expression of Ŝ is finally obtained,
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Ŝ(~xM , ω) = 2π

 π

ln 2

1/2 ˆ
~ξS

ˆ
~ζS

I2
s ls

τ2
s ūx

p̂′a(~ξS , ~xM ;−ω)p̂′a(~ζS , ~xM ;ω)

exp

− ω2l2s

(4 ln 2)ū2
x

−
|ξx − ζx|
ūxτs


exp

− ln 2

(ξy − ζy)2

l2s
+

(ξz − ζz)2

l2s

− iω(ξx − ζx)

ūx

 d~ξSd~ζS

(3.41)

If p̂′a is known, the whole spectrum can then be computed. But this might be expensive

because it would be necessary to implement a double space integration. To solve that issue,

Tam and Auriault presented an approximation that will avoid the computation of the double

integration and simplify it to a single integration.

3.2.4 Far-field and compactness approximations

The objective is now to introduce a way to perform analytically one of the two space integrations

in order to save a lot of computing time and power. For that, two properties of the problem are

used by Tam and Auriault. First, using the fact that the observer is in the far-field, one could

argue that for two source points relatively close to each other, the propagation of sound waves

through the shear layers would be very similar. Using geometrical acoustics, the propagation can

be drawn, as pictured in Figure 3.3.

Figure 3.3: Schematic diagram showing the difference δ in ray paths between source points ~ξS
and ~ζS

Noting that the propagation paths could be assimilated to be parallel, the difference between

the red and green ray paths can be calculated using the difference of position of the sources in

the axial direction and the polar angle θ of the observer. This difference reads δ = (ξx− ζx) cos θ.
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In terms of propagation this difference in ray length translates to a difference of phase. From

this comes the following relation between the adjoint pressure fluctuation for two nearby source

points.

p̂′a(~ξS , ~xM ;−ω) = p̂′a(~ζS , ~xM ;−ω) exp

i ω
cext

cos θ(ξx − ζx)

 (3.42)

with cext the speed of sound in the far field at ~xM . By the property of the Fourier transform,

there is

F
[
p′a(~ζS , ~xM ; t)

]
= p̂′a(~ζS , ~xM ;ω) (3.43)

and

F
[
p′a∗(~ζS , ~xM ; t)

]
= p̂′a∗(~ζS , ~xM ;−ω) (3.44)

Using the fact that p′a is real and thus p′a∗(~ζS , ~xM ; t) = p′a(~ζS , ~xM ; t), the two equations

above are equal. The following relation is established

p̂′a(~ζS , ~xM ;ω) = p̂′a∗(~ζS , ~xM ;−ω) (3.45)

and with a change of variable on the pulsations

p̂′a(~ζS , ~xM ;−ω) = p̂′a∗(~ζS , ~xM ;ω) (3.46)

The product of adjoint pressure fluctuations can finally be simplified, giving

p̂′a(~ξS , ~xM ;−ω)p̂′a(~ζS , ~xM ;ω) = |p̂′a(~ζS , ~xM ;ω)|2 exp

i ω
cext

cos θ(ξx − ζx)

 (3.47)

Even though this approximation is only true for two nearby source points, it can be generalised

to the whole source domain. By using the compactness of the sources, the exponent in Eq (3.41)

is null for two source points far from each other. The error in the propagation term is therefore

rendered irrelevant because multiplied by zero. By removing the dependence in one of the source

point, it allows the analytical calculation of the integral according to ~ξS .

3.2.5 Propagation to the far field

The spatial integration according to ~ξS can now be performed in order to obtain a compact

formulation of the noise spectrum. Eq (3.42), provided by the previous subsection, is substituted

in Eq (3.41). The simplified form of the power spectral density reads

49



Chapter 3 : Development of the mixing noise model

Ŝ(~xM , ω) = 2π

 π

ln 2

1/2 ˆ
~ξS

ˆ
~ζS

I2
s ls

τ2
s ūx
|p̂′a(~ζS , ~xM ;ω)|2 exp

i ω
cext

cos θ(ξx − ζx)


exp

− ω2l2s

(4 ln 2)ū2
x

−
|ξx − ζx|
ūxτs


exp

− ln 2

(ξy − ζy)2

l2s
+

(ξz − ζz)2

l2s

− iω(ξx − ζx)

ūx

 d~ξSd~ζS

(3.48)

The three integrations along the coordinates of ~ξS are performed in Appendix C.2. Eq (3.48)

is finally recast as

Ŝ(~xM , ω) = 4π

 π

ln 2

3/2 ˆ
~ζS

I2
s l

3
s

τs
|p̂′a(~ζS , ~xM ;ω)|2

exp

− ω2l2s

4 ln 2ū2
x


1 +

1−
ūx

cext
cos θ

2

ω2τ2
s

d~ζS (3.49)

Eq (3.49) can be compared with the simplified form Eq (3.1), reminded below,

Ŝ(~xM , ω) =

ˆ
~ζS

AS(~ζS , ω)PS(~xM , ~ζS , ω)d~ζS (3.50)

By identification, AS and PS can be expressed as

AS(~xM , ~ζS , ω) =4π

 π

ln 2

3/2
I2
s l

3
s

τs

exp

− ω2l2s

4 ln 2ū2
x


1 +

1−
ūx

cext
cos θ

2

ω2τ2
s

PS(~xM , ~ζS , ω) =|p̂′a(~ζS , ~xM ;ω)|2

(3.51)

The source term can be determined from the flow properties at the source location, the

pulsation and the polar angle θ of the observer. As stated above in this section, the source

amplitude AS can be computed using a RANS simulation. If an appropriate way of obtaining

the adjoint pressure fluctuations is found, the propagation term PS can also be computed and

the power spectral density (PSD) in dB/Hz and as a function of the frequency would be finally

obtained with
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Ŝ(~xM , f) = 10 log

4πŜ(~xM , ω)

p2
ref

 (3.52)

The main issue here is that there are no numerical tool to obtain the value of p̂′a readily

available and the implementation of a solver that would account for the propagation in a realistic

medium would require a computing time that might not fit the industrial requirements. A new

propagation model is now introduced to compute PS in place of the adjoint approach proposed

by Tam and Auriault.

3.3 Sound propagation using geometrical acoustics

Tam and Auriault provided a near-complete method for fine scale jet mixing noise prediction.

However, p̂′a needs to be found in order to properly obtain the noise spectra. The idea is therefore

to keep the general structure of the development of the method presented in Section 3.2 but to

simplify the physics in order to make it easier to compute the propagation part. First, a new

description of the propagation medium is presented. Then, a new set of equation is developed,

setting the ground for the introduction of geometrical acoustics. Finally the calculations are

carried on to obtain a usable formula for the noise spectrum.

3.3.1 Reduction of the continuous propagation medium to two homogeneous
media

One of the main challenges in solving sound propagation in a realistic medium is that every little

change in terms of flow velocity and temperature has an impact on sound waves. This kind of

resolution is heavy and does not comply with the requirements set in this study. At the other

extreme, the medium can be simplified heavily so that the propagation can be straightforward.

As an example, Brouwer and Nijboer [20] used Tam and Auriault method and applied it on a

homogeneous medium. They then performed the propagation using the convected Helmholtz

equation (CHE). In this case, the propagation term PS is obtained analytically but will not

account for numerous required propagation effects such as the refraction through the mixing

layer or the reflection on the wing. A middle ground has to be found.

(a) (b)

Figure 3.4: Reduction of the problem from a continuous medium to two homogeneous media

As a first estimation, two main domains of the propagation medium can be identified namely
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the jet plume where the source are located and the external flow where the flight effects take

place. They are separated by a smooth shear layer. A first step in the simplification of the

problem is to consider these two regions as two separated media. The waves coming from sources

in the jet cross an infinitely thin layer and reach the observer located in the external flow. The

second part of the simplification is to consider that both media are homogeneous with their own

properties and their own uniform flow. The transition from the first, realistic description of the

problem to the simplified description is pictured in Fig 3.4.

Figure 3.5: Illustration of the difficulty to locate the interface between the two artificial domains

Two main issues arise from this simplification. The first one concerns the interface used to

separate the two media. It is clear that in reality the mixing layer is not infinitely thin so a

criterion has to be chosen as to where the interface is set. This problem is illustrated in Fig 3.5.

All the sources are assumed to be in the domain "jet" and their radiated sound waves have to

pass through the mixing layer before reaching the observer. Under this consideration, the surface

separating the two domains has to be set so that the whole transition region is contained in the

domain "jet". The practical use of this method is explained in more details in Chapter 4.

Figure 3.6: Illustration of the wide range of Mach number in the plume of a subsonic jet

The second criticism that can be made on this simplification is the choice to consider the

two media to be homogeneous with a uniform mean flow. If the approximation can be easily

justified for the external flow, it is hardly the case for the jet plume. Indeed, in both the axial

and the radial directions there are major changes in the flow characteristics. As an example, the
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map of the Mach number in the jet plume for a single jet nozzle is pictured in Fig 3.6. This

might arguably be one of the main drawback of the propagation method that is developed in this

section and appropriate values have to be taken as to have a description of the flow as close to

reality as possible. This will be again discussed in the next chapter.

(a) (b) (c)

Figure 3.7: Impact on the wave path of the reduction of the problem from a continuous medium
to two homogeneous media

Fig 3.7 illustrates the impact of the medium modelling on acoustic propagation. The wave

path from a source point ~ξS to an observer ~xM is pictured in red using geometrical acoustics

in (a). Picture (b) shows how the medium is then reduced to two homogeneous media. They

are separated by an infinitely thin interface located at one edge of the mixing layer as described

above. Finally, considering the two new media, the wave path in green is computed. The

difference between the real path and the approximated ray is pictured in (c).

Obviously, the frame of application of this method has to be carefully detailed. The theory

behind this new set-up is first explained in what follows.

3.3.2 Formulation of the problem in a homogeneous by part medium

As mentioned in the previous subsection, the application of the Tam and Auriault method in a

homogeneous medium has already been performed by Brouwer and Nijboer [20]. Their work is

used as a starting point here. First, let’s consider the jet plume, a homogeneous medium with a

uniform mean flow. In the framework of Tam and Auriault study, the linearised Euler equation

given by (3.9) are

ρ̄

∂u′i
∂t

+ ūj
∂u′i

∂xj
+ u′j

∂ūi

∂xj

+
∂p′

∂xi
= −

∂qs

∂xi

∂p′

∂t
+ ūj

∂p′

∂xj
+ γp̄

∂u′j

∂xj
= 0

(3.53)

For a uniform mean flow, the system reduces to
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ρ̄
Du′i
Dt

+
∂p′

∂xi
= −

∂qs

∂xi

Dp′

Dt
+ γp̄

∂u′j

∂xj
= 0

(3.54)

where the convective derivative along the mean flow is defined as

D
Dt

=
∂

∂t
+ ūj

∂

∂xj
=

∂

∂t
+ ū · ∇ (3.55)

Taking the divergence of the momentum equation and the convective derivative of the conti-

nuity equation leads to

ρ̄
D
Dt
∇u′ +∇2p′ = −∇2qs (3.56)

D2p′

Dt2
+ ρ̄c2

D
Dt
∇u′ = 0 (3.57)

where c =
√
γp̄/ρ̄ is the mean speed of sound. Substracting Eq (3.56) from Eq (3.57), the

convected wave equation is obtained

1

c2
jet

D2p′

Dt2
−∇2p′ = ∇2qs (3.58)

with the source term ∇2qs on the right hand side, and c = cjet, see Fig 3.8.

Now let’s introduce a second uniform medium around the jet corresponding to the external

flow, without source. A similar development can be done giving another convected equation. It

should be noted that the presence of foreign bodies in this medium such as a wing or a pylon

could be taken into account by appropriate boundary conditions in a first approximation. This

way, this formulation can also be used to characterise installation effects,

1

c2
ext

D2p′

Dt2
−∇2p′ = 0 (3.59)

Figure 3.8: Illustration of the two homogeneous media

The association of the two media is pictured in Fig 3.8. The situation described by the
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3.3 Sound propagation using geometrical acoustics

junction of these two convected Helmholtz equations is the sound propagation in a homogeneous

by part medium with sources of amplitude ∇2qs. The resolution of this problem can be done

using geometrical acoustics as presented in Appendix B. Indeed, if the wavelength is greatly

inferior to the characteristic length of the problem, here the radius of the nozzle, the plane-wave

approximation can be taken. That means that if Rjet � λ the pressure in the far field can be

expressed as

p′(~xM , t) =

ˆ
ω

ˆ
~ξS

ˆ
t1

Ĝ(~xM , ~ξS , ω)e−iω(t−t1)∇2qs(~ξS , t1)dωd~ξSdt1 (3.60)

with Ĝ the transfer function provided by geometrical acoustics. This high frequency approx-

imation allows the asymptotic approach of the Green function to account for refraction and

reflections effects and suggests that the diffraction through the mixing layer can be neglected for

the considered frequency range.

Eq (3.60) is therefore an application of Eq (B.32), reminded below, for a source amplitude

I = ∇2qs.

p′(~xM , t) =

ˆ
~ξS

ˆ
ω

ˆ
t1

I(~ξS , ω)Ĝ(~ξS , ~xM ;ω)e−iω(t−t1)d~ξSdωdt1 (3.61)

Now that the propagation part has been presented, its compatibility with the source model

has to be justified. The following calculations will show how an analog formula as Eq (3.49) can

be obtained. The first step is to obtain an expression similar to Eq (3.30) in order to introduce

the source model as given by Tam and Auriault, in particular the following two-point space-time

correlation,

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
(3.62)

Applying an integration by parts twice in Eq (3.60) gives

p′(~xM , t) =

ˆ
ω

ˆ
~ξS

ˆ
t1

∇2Ĝ(~xM , ~ξS ;ω)e−iω(t−t1)qs(~ξS , t1)dωd~ξSdt1 (3.63)

Note that the divergence is applied on ~ξS , the coordinates associated with sources. Because

of the high frequency approximation, only plane waves are considered. They are, by definition,

solutions of the local wave equation. In this case ~ξS is taken inside the jet flow. The wave

equation to consider is

1

c2
jet

D̂
2
Ĝ = ∇2Ĝ (3.64)

with the convective derivative in the Fourier domain,

D̂ = −iω + ūjet · ∇ (3.65)
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and in the time domain

D
Dt

=
∂

∂t
+ ūjet · ∇ (3.66)

Inserting (3.64) in Eq (3.63) gives

p′(~xM , t) =
1

c2
jet

ˆ
ω

ˆ
~ξS

ˆ
t1

D̂
2
Ĝ(~xM , ~ξ;ω)e−iω(t−t1)qs(~ξS , t1)dωd~ξSdt1 (3.67)

An integration by parts allows to write

p′(~xM , t) =
1

c2
jet

ˆ
ω

ˆ
~ξS

ˆ
t1

D̂Ĝ(~xM , ~ξS ;ω)e−iω(t−t1)
Dqs
Dt

(~ξS , t1)dωd~ξSdt1 (3.68)

This equation can then be put directly in parallel with Eq (3.30), reminded below,

p′(~xM , t) =

ˆ
ω

ˆ
~ξS

ˆ
t1

p̂′a(~ξS , ~xM ;ω)e−iω(t−t1)
Dqs
Dt

(~ξS , t1)dωd~ξSdt1 (3.69)

By identification, the adjoint pressure fluctuations p̂′a is linked to the Green function of

geometrical acoustics by

p̂′a(
~ξS , ~xM , ω) =

1

c2
jet

D̂Ĝ(~xM , ~ξS ;ω) (3.70)

Substituting Eq (3.68) in Eq (3.32) gives the following expression of the power spectral density

Ŝ,

Ŝ(~xM , ω) =
1

2π

1

c4
jet

ˆ
τ

ˆ
ω1

ˆ
ω2

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

D̂Ĝ(~xM , ~ξS ;ω1)D̂Ĝ(~xM , ~ζS ;ω2)〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
eiω1t1e−iω2(τ−t2)eiωτdτdω1dω2d~ξSd~ζSdt1dt2

(3.71)

The integration according to τ and ω2 are performed using the Fourier transform of the Dirac

function given in Eq (3.35). A simplified expression of Ŝ is obtained,

Ŝ(~xM , ω) =
1

c4
jet

ˆ
ω1

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

D̂Ĝ(~xM , ~ξS ;ω1)D̂Ĝ(~xM , ~ζS ;ω)

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
eiω1t1+iωt2dω1d~ξSd~ζSdt1dt2

(3.72)

Eq (B.31) is susbstituted in Eq (3.72) to highlight the ray paths connecting ~ξS and ~xM .
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3.3 Sound propagation using geometrical acoustics

Ŝ(~xM , ω) =
1

c4
jet

ˆ
ω1

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

D̂N(~ξS)∑
r=1

Ĝr(~xM , ~ξS ;ω1)


D̂N(~ζS)∑

r=1

Ĝr(~xM , ~ζS ;ω)


〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
eiω1t1+iωt2dω1d~ξSd~ζSdt1dt2

(3.73)

Tam and Auriault have introduced a source model using a unique length scale ls for the three

directions. This view is not shared by all the aeroacoutics community. As an example, Fleury

et al. [33] measured a factor two between the transverse and axial length scales in the case of

the isotropic turbulence. The following expression of the autocorrelation function with different

length scales is used instead.

〈
Dqs(~ξS , t1)

Dt1

Dqs(~ζS , t2)

Dt2

〉
=
I2
s

τ2
s

exp

−|ξx − ζx|
ūxτs

− ln 2

 [(ξx − ζx)− ūx(t1 − t2)]2

l2x
+

(ξy − ζy)2

l2y
+

(ξz − ζz)2

l2z




(3.74)

Although more advanced modelling have been introduced in Sec 2.4.2, the scaling parameters

Is, li and τs are computed using the classical formulation presented in Eq (2.38). New formulations

could be used in future improvements of the method. The calculations used to go from Eq (3.40)

to Eq (3.41), detailed in Appendix C.1, are again performed. Hence,

Ŝ(~xM , ω) = 2π

 π

ln 2

1/2 ˆ
~ξS

ˆ
~ζS

I2
s lx

τ2
s ūxc

4
jet

D̂N(~ξS)∑
r=1

Ĝr(~xM , ~ξS ;−ω)


D̂N(~ζS)∑

r=1

Ĝr(~xM , ~ζS ;ω)


exp

− ω2l2x

(4 ln 2)ū2
x

−
|ξx − ζx|
ūxτs


exp

− ln 2

(ξy − ζy)2

l2y
+

(ξz − ζz)2

l2z

− iω(ξx − ζx)

ūx

 d~ξSd~ζS

(3.75)

It is not yet possible to jump forward to Eq (3.49) with the updated propagation term because

the simplifications due to the far field and compactness approximations are not straightforward.

In this case there are several key differences, one being that the rays are not straight anymore.

There might also be several rays from one single source that could reach the observer. Such a
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Chapter 3 : Development of the mixing noise model

case is pictured in Fig 3.9.

Figure 3.9: Illustration of the difference in multiple ray paths between two source points ~ξS and
~ζS perceived by a far-field observer ~xM in the case of an installed configuration

In this case, it is fair to consider that for two sources close enough to each other, all the rays

reaching ~xM can be paired. This is presented in Fig 3.9 by the pairs between the refracted rays

and the reflected rays. For each pair, the paths are of equal lengths except for the last segment.

Given that the observer is located in the far field, all the last segments have the same polar angle

of θ from the jet axis. Therefore, the path difference for each pair is δ, refer to Fig 3.3.

In Morris and Boluriaan [57], a more general, 3D version of the approximation is proposed.

p̂a(~ξS , ~xM ;−ω) = p̂a(~ζS , ~xM ;−ω) exp

i ω

cext‖~xM‖
~xM · ~ηS

 (3.76)

with ~ηS = ~ξS − ~ζS . The developped expression of the phase jump is

exp

i ω

cext‖~xM‖
~xM · ~ηS

 = exp

[
i
ω

cext

(
cos θ(ξx − ζx)

+ sin θ cosφ(ξy − ζy)

+ sin θ sinφ(ξz − ζz)
)] (3.77)

That expression will be used here. Ĝ1 and Ĝ2 are the Green functions of geometrical acoustics

associated with respectively the refracted rays noted 1 and the reflected rays noted 2. The relation

between the Green functions of two nearby points is expressed as follows.
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3.3 Sound propagation using geometrical acoustics

Ĝ1(~xM , ~ξS ;−ω) = Ĝ1(~xM , ~ζS ;−ω) exp

i ω

cext‖~xM‖
~xM · ~ηS

 (3.78)

Ĝ2(~xM , ~ξS ;−ω) = Ĝ2(~xM , ~ζS ;−ω) exp

i ω

cext‖~xM‖
~xM · ~ηS

 (3.79)

Ĝ1(~xM , ~ξS ;−ω) + Ĝ2(~xM , ~ξS ;−ω) =
(
Ĝ1(~xM , ~ζS ;−ω) + Ĝ2(~xM , ~ζS ;−ω)

)
exp

i ω

cext‖~xM‖
~xM · ~ηS

 (3.80)

In the general case, one has,

N(~ξS)∑
r=1

Ĝr(~xM , ~ξS ;−ω) =

N(~ζS)∑
r=1

Ĝr(~xM , ~ζS ;−ω)

 exp

i ω

cext‖~xM‖
~xM · ~ηS

 (3.81)

Figure 3.10: Illustration of an extreme case where two sources close to each other do not have
matching rays

In some extreme cases, the rays coming from two nearby sources cannot be paired. An

example is pictured in Figure 3.10 with the case of one ray reflecting just before the tip of the

wing and one ray missing the wing. It is chosen to neglect these particular cases considering the

rarity of these events and also the small size of correlation scales. Using the identity established

in Eq (3.46)
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N(~ζS)∑
r=1

Ĝr(~xM , ~ζS ;−ω) =

N(~ζS)∑
r=1

Ĝ∗r(~xM ,
~ζS ;ω) (3.82)

In Eq (3.75), the power spectral density Ŝ can be expressed using only one source coordinates

with

Ŝ(~xM , ω) =2π

 π

ln 2

1/2 ˆ
~ξS

ˆ
~ζS

I2
s lx

τ2
s ūxc

4
jet

∣∣∣∣∣∣∣D̂
N(~ζS)∑
r=1

Ĝr(~xM , ~ζS ;ω)

∣∣∣∣∣∣∣
2

exp

i ω
cext

(
cos θ(ξx − ζx) + sin θ cosφ(ξy − ζy) + sin θ sinφ(ξz − ζz)

)
exp

− ω2l2x

(4 ln 2)ū2
x

−
|ξx − ζx|
ūxτs


exp

− ln 2

(ξy − ζy)2

l2y
+

(ξz − ζz)2

l2z

− iω(ξx − ζx)

ūx

 d~ξSd~ζS

(3.83)

The integration according to ~ξS is similar to the developments performed in Eq (3.48). The

calculations are presented in Appendix C.3. The resulting formula for the PSD of the radiated

noise using geometrical acoustics is

Ŝ(~xM , ω) = 4π

 π

ln 2

3/2 ˆ
~ζS

I2
s lxlylz

τsc4
jet

∣∣∣∣∣∣∣D̂
N(~ζS)∑
r=1

Ĝr(~xM , ~ζS ;ω)

∣∣∣∣∣∣∣
2

exp

− ω2

4 ln 2ū2
x

l2x +
ū2
x

c2
ext

[l2y sin2 θ cos2 φ+ l2z sin2 θ sin2 φ]




1 +

1−
ūx

cext
cos θ

2

ω2τ2
s

d~ζS

(3.84)

Eq (3.84) can now be put in parallel with the simplified form introduced in Eq (3.1), reminded

below,

Ŝ(~xM , ω) =

ˆ
~ζS

AS(~ζS , ω)PS(~xM , ~ζS , ω)d~ζS (3.85)

The new formulation of the source term is almost identical to the formulation from Tam and

Auriault. The minor differences come from the use of a more complete version of the far-field

and compactness approximations as well as the use of different length scales of the fine scale
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tubulence in the three directions. The source term AS is, respectively for Tam and Auriault,

AS(~xM , ~ζS , ω) = 4π

 π

ln 2

3/2
I2
s l

3
s

τs

exp

− ω2l2s

4 ln 2ū2
x


1 +

1−
ūx

cext
cos θ

2

ω2τ2
s

(3.86)

and its updated form,

AS(~xM , ~ζS , ω) =4π

 π

ln 2

3/2
I2
s lxlylz

τs

exp

− ω2

4 ln 2ū2
x

l2x +
ū2
x

c2
ext

[l2y sin2 θ cos2 φ+ l2z sin2 θ sin2 φ]




1 +

1−
ūx

cext
cos θ

2

ω2τ2
s

(3.87)

As for the propagation

PS(~xM , ~ζS , ω) = |p̂a(~ζS , ~xM ;ω)|2 (3.88)

and its new form, using geometrical acoustics,

PS(~xM , ~ζS , ω) =
1

c4
jet

∣∣∣∣∣∣∣D̂
N(~ζS)∑
r=1

Ĝr(~xM , ~ζS ;ω)

∣∣∣∣∣∣∣
2

=
1

c4
jet

∣∣∣D̂Ĝ(~xM , ~ζS ;ω)
∣∣∣2 (3.89)

A new method for the prediction of fine scale jet mixing noise has been developed. In the

framework of the model established by Tam and Auriault, the adjoint Green function has been

replaced by a numerical calculation based on geometrical acoustics. It will be shown in the next

chapter that the implementation of the ray tracing to determine PS can be very efficient.
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4 Application of the TAGA model

A new model for jet mixing noise has been developed in the previous chapter. It has been chosen

to name it TAGA since its formulation is based on the Tam and Auriault source model and

Geometrical Acoustics for the propagation. The objective of this chapter is to evaluate the

accuracy of noise predictions provided by the TAGA model. A description of the implementation

of the model is first presented. Then, a study on installation effects is performed for a cold jet.

Finally, the model is used on a more realistic nozzle to study refraction effects and the impact of

chevrons.

4.1 Implementation

In this section, the practical application of the TAGA model is described. In particular are

discussed the assumptions used in Chapter 3 to build the model. The ray tracing tool Acti-HF

is also presented as well as some validation.

4.1.1 Reduction of the problem to two homogeneous media

In Sec 3.3 was presented how the propagation medium is reduced to two homogeneous media.

Two issues have been raised. The interface location between the jet and the external medium is

first addressed, then the homogenisation of both media is explained.

4.1.1.1 Introduction of the artificial jet surface

The mixing layer is seen as the surface containing all the sources and is built following this

definition. This choice is justified by the fact that if sources are outside of this surface, their

acoustic field will not be attenuated by the refraction through the interface. Poor results are

then obtained. Fig 4.1 shows all the sources contributing for at least one frequency in the noise

spectrum. This domain is contained in a surface of revolution shown in green in Fig 4.2. For now

the surface is manually created for each case. This process must be automated.
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Figure 4.1: Representation of the filtered source domain in red

Figure 4.2: Representation of the artificial jet mixing layer in green containing the source domain
in red

Figure 4.3: Mach number in the flow
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4.1.1.2 Definition of the homogeneous jet plume

The second issue concerns the approximation of the jet flow by homogeneous media. Fig 4.3

shows the Mach number of a subsonic jet determined by a RANS computation, the solid line

marks the delimitation between the two media. The simplification of the external medium is

straightforward because external flow is assumed to be homogeneous. In the second medium, the

flow is not homogeneous and varies over short distances. For example, the Mach number at the

nozzle exhaust is 0.9 but decreases to about 0.5 after the potential core.

Figure 4.4: Experimental measurements of the PSD at θ = 90◦ and φ = 180◦ for the isolated
case at M = 0.9

(a) (b)

Figure 4.5: (a) Sources amplitude at f = 2000Hz (b) Corresponding Mach number in the source
domain

In order to assign one single value for the Mach number in the inner domain, the most

valuable part of the jet plume is identified. Fig 4.4 shows an example of spectrum for the single

jet configuration in the isolated case atM = 0.9 with an observer located at θ = 90◦ and φ = 180◦.

The top of the curve is located at 2000Hz. The source domain at this peak frequency is shown in
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Fig 4.5 (a). Picture (b) shows the Mach number M in this source domain. At this location, M is

relatively constant at around M ' 0.5. It is naturally chosen to define a homogeneous medium,

with a flow at M = 0.5 in the ~x direction.

4.1.2 Numerical computation of the rays

4.1.2.1 Introduction of Acti-HF

Acti-HF is a tool tracing rays inside media that are homogeneous by parts. Each medium is de-

scribed by a prescribed value for the pressure, the temperature and the velocity in each direction.

Figure 4.6: Example of an Acti-HF project set up with two surfaces: a jet and a flat plate.

Surfaces and edges are introduced to model interfaces between media or to model solid en-

tities. The surfaces are defined according to their nature and interactions allowed with rays.

For example, the surface corresponding to a wing is set as perfectly reflective. The surface cor-

responding to the mixing layer is however set as permeable but non reflective to neglect the

latter contribution. The edges can themselves be set as diffracting or not. Fig 4.6 provides an

illustration with two surfaces for the jet and a plate.

For simplicity the term event is used to designate either a reflection (R), refraction (T) or

diffraction (D). The rays are computed using predetermined path instructions imposing the nature

and the order of the events during the propagation. For example, if the path T is taken into

account, only the rays encountering a unique refraction are computed. That corresponds to the

isolated case. If the path T*R is also included, the rays passing through the mixing layer and then

reflecting on the wing are taken into account. This would be used in an installed configuration.

Any number of events and in any particular order can be instructed but computing time increases

exponentially with the number of events.

The sources are introduced using their position, amplitude, phase and directivity. In this

model, the source description is handled by the source term AS obtained using Tam and Auriault

[78]. The sources are set as monopoles of unitary amplitude. The observers are finally introduced

by their coordinates.

Acti-HF does not provide access to the intermediate value of Ĝ but directly to the value of

p̂. Using Eq (B.16), if I is set to 1, the value of p̂ and Ĝ are equal baring a change in units.
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A numerical convective derivative is then applied to Ĝ to obtain the value of PS , based on Eq

(3.89).

4.1.2.2 Validation of Acti-HF

The ray tracing module is validated with two academic cases. The refracted angles θt given

by Acti-HF are compared with the predictions by the Snell Law (B.3). In the second case, the

reflected angles θr given by Acti-HF are compared with the theoretical value θr = θi.

The first case is built using a cylinder of diameter D in the ~x direction separating two media.

The medium inside the cylinder is denoted "jet" and the medium outside, "ext". Four config-

urations are considered with the velocities and speed of sound either equal or different between

the two media. In the full case, Vjet = 291 m s−1 and Vext = 91 m s−1 for the jet and the external

flow both in the ~x direction. The speed of sound used are respectively cjet = 368 m s−1 and

cext = 333 m s−1. This gives the Mach numbers Mjet = 0.79 and Mext = 0.28, which are realistic

values for a jet at take-off. Planes of sources are introduced at several axial positions and a polar

arc of observers is also taken. There are between 250 and 300 rays depending on the case. The

maximum of the error between the predicted refracted angle θt and their respective value as given

by the Snell law are is given in Table 4.1. A very good agreement is found for all cases with a

maximum error of less than 0.1◦.

cjet = cext cjet = cext cjet 6= cext cjet 6= cext
Vjet = Vext Vjet 6= Vext Vjet = Vext Vjet 6= Vext

∆θmax 0.0025 0.025 0.06 0.08

Table 4.1: Maximum error in degrees between the predicted refracted angle and the theoretical
one

The second test case is built using the same source and observer distribution without cylinder.

A flat plate is introduced at 2D. Two configurations are considered with a case at rest, meaning

Vext = 0 and a case with an external flow with Vext = 91 m s−1, cext = 333 m s−1, giving Mext =

0.28. IThe maximum of the error between the predicted reflected angle θr and their respective

incident angle θi are plotted in Table 4.1. There is a good agreement for every ray considered

with a maximum error of less than 10−4 ◦.

Vext = 0 Vext 6= 0

∆θmax 0.0001 0.0001

Table 4.2: Maximum error in degrees between the predicted reflected angle and the theoretical
one

Acti-HF is compared to the analytical solution in free field. The same test case used to

validate the refraction angle is used as a reference. The medium jet is set equal to the external

medium while still separated by an interface. The agreement is very good for every ray with a

maximum error of less than 10−7%.
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No comparison was performed against other noise prediction tools, due to prior validations of

the code [49]. Comparisons with predictions made using SAbrinA [67] from ONERA have been

carried out. The test case aimed at the study of the refraction of sound through a plane interface

between two moving media. Additional evaluations were performed on a benchmark problem

done in collaboration with ISVR [65]. The topic of the scattering of sound by a uniform jet was

studied. Although these two test cases do not describe exactly the configuration addressed here,

it is believed that the ray tracing computations is well validated.

4.2 Cold jet from a single convergent nozzle

4.2.1 Isolated subsonic jet

4.2.1.1 Description of the configuration

Figure 4.7: Experimental setup of the installed jet at the PPRIME Institute.

The configuration used is an isothermal jet associated with a flat plate, see Fig 4.7. The

experiments were conducted in the Bruit et Vent anechoic facility of the PPRIME Institute,

Poitiers, France. The jet nozzle diameter is D = 0.05 m The flat plate is rectangular with a span

of 15D and a chord of 9D. The plate is positioned, in the axial direction, from xmin = −5D

to xmax = 4D and in the radial direction, at 2D from the jet centerline, towards the azimuthal

angle φ = 90◦. At this distance the plate is not interacting with the jet flow. An azimuthal

array of microphones along an arc of radius 14.2D is used with a discretisation of ∆φ = 20◦.

The array ranges from xmin = −2.5D to xmax = 39D. The equivalent span is θmin = 80◦ and

θmax = 160◦. The orientation of the polar angle is defined using the convention provided in

Fig 4.8. For an observer ~xM , θ = 180◦ if xr = 0 and xx > 0. Measurements are available

for Mjet = [0.4; 0.6; 0.8; 0.9]. The speed of sound is 347m s−1. More details can be found in
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Piantanida et al. [63].

Figure 4.8: Convention for the definition of the polar angle θ.

Figure 4.9: Experimental measurements of the PSD at θ = 90◦ and φ = 180◦ for the isolated
case at M = 0.9.

The theoretical limit of the application of geometrical acoustics is Rjet � λ which would

translate in terms of frequency to f � 14 kHz. Fig 4.9 shows an example of spectrum for the

isolated configuration at M = 0.9 with an observer located at θ = 90◦ and φ = 180◦. The top of

the curve is located approximately at f = 2 kHz, equivalent to St = 0.32. If the high frequency

criterion is applied as is, the propagation method is not valid on the frequency range of interest

here. This frequency criterion is however very restrictive in practice and geometrical acoustics

appears to be valid over a larger frequency range [70] [39]. In the present work, the propagation

step is performed with geometrical acoustics on the whole frequency range. Weaknesses are thus

to be expected at low frequencies. Let’s define a criterion coefficient . It can be assumed that

the accuracy of the propagation model is linked to how small ελ = λ/Rjet is. The present study

also tries to evaluate the maximum value for the high frequency criterion for which the developed

method still holds.
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4.2.1.2 RANS inputs

The RANS solver used to compute the base flows is FLUSEPA [1]. It is the unstructured finite-

volume solver developed for 30 years by the ArianeGroup company to calculate compressible,

multidimensional, unsteady, viscous and reactive flows over bodies in relative motion. The space

integration is based on a Godunov’s type unstructured finite volume method suitable for highly

compressible turbulent scale-resolving simulations around complex geometries and constructed

by using a successive correction technique [16]. The conservative Chimera body fitted meshing

technique based on geometrical intersections used in the solver allows to adress complex geome-

tries efficiently and to perform parametric studies [64]. In the present study, the k-ω SST model

[53] is used to close RANS equations. The temporal integration for the time-marching procedure

is a first order Newton GMRES-QR algorithm. Comparison with measurements are provided in

Appendix D.1. The simulations were performed by Grégoire Pont at Airbus. The post treatments

are done using Antares [3].

The following convention is used for the presentation of spectra. The experimental data is

plotted in grey and the predicted spectra in black. The isolated configuration is represented with

dashed lines and the installed one with full lines.

Measurements TAGA
Isolated case
Installed case

Table 4.3: Convention used for the plots presented in this section.

(a) (b)

Figure 4.10: Difference between the PSD using Acti-HF and using the analytical solution. (a)
Absolute error (b) Error margin.

A validation of the refinement of the mesh has been carried out with the comparison of results

given by geometrical acoustics to the analytical solution of the propagation in free field. Although

the quality of the mesh has no impact on the computation of Ĝ with Acti-HF, it plays a role

in the obtention of PS through the numerical derivation. As done in Section 4.1, the medium

jet is set equal to the external medium. The difference in dB is plotted in Fig 4.10 (a) and the
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equivalent error margin is plotted in Fig 4.10 (b). The agreement between the two predicted

noise levels is very good between 100Hz and 10 kHz, and acceptable up to 50 kHz. In terms of

Strouhal number, it corresponds respectively to St = 0.016, St = 1.6 and St = 8. There are

some discrepancies outside of this range.

(a)

(b)

Figure 4.11: Source domain at (a) 50Hz and (b) 5 kHz on the CFD mesh.

The differences at high frequencies are caused by the mesh, not fine enough for the given

frequency range. The mesh is pictured alongside the source domain in Fig 4.11 for (a) 50Hz

(St = 0.08) and (b) 5 kHz (St = 0.8). The mesh is coarser downstream but only the lowest

frequencies are impacted because their corresponding source domains are located downstream

enough to be in this unrefined area. Overall, the resulting error is negligible, less than 2.5% and

for frequency bands outside of the range of interest, see Fig 4.9.

In Sections 3.2 and 3.3 were introduced the far-field and compactness approximations. Eq

(3.37) states that for two points far from each other, the autocorrelation is null. The associated

correlation length scale is estimated. The model function in Eq (3.37) is simplified keeping only

the axial distance between the two source points. This function is referred as E and is expressed

as,

E = exp

− ln 2

l2s
(ξx − ζx)2

 (4.1)

E takes the form of a Gaussian function with a standard deviation σ = ls/
√

ln 2. With such

functions, there is E(3σ) ' 0.01. If ξx − ζx > 3σ it can be considered that E is small enough to

be approached by zero, meaning that the correlation is null. The criterion L = 3σ = 3ls/
√

ln 2
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is therefore introduced to evaluate the distance for which two source points are uncorrelated.

Figure 4.12: Representation of the source amplitude Is of Eq (3.38) in the source domain for
2kHz.

Figure 4.13: Representation of the length scale L, normalised by the nozzle diameter D in the
source domain for 2 kHz.

The length scale L is plotted in Fig 4.13 for the peak frequency. The distance of correlation

is always less than one diameter overall and is of the order of 0.5D at the maximum of Is, at

x ' 9D. As a reminder of the different characteristic lengths in this study, the observer is located

at 14.2D, the flat plate has a span of 15D and a chord of 9D and the wavelength at 2kHz is

λ ∼ 3.5D. The same study is done at 200Hz and 20 kHz, respectively frequencies before and

after the peak. The results are shown in Table 4.4. Over the whole spectrum, L is inferior or

greatly inferior to the different length scales governing the studied configuration. The far-field

and compactness approximations are therefore validated.

200Hz 2 kHz 20 kHz
λ 35D 3.5D 0.35D
L 1D 0.5D 0.05D

Table 4.4: Estimate of the wavelength λ and the scale length L normalised by the jet nozzle
diameter.
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4.2.1.3 Normalisation of the predictions

Fig 4.14 (a) shows the OASPL level of the measurements and the predictions. Although the

relative difference between the isolated and installed configurations seems right, the absolute

levels do not match. Since there is a good agreement between the computed turbulent kinetic

energy and experimental data, see comparisons in Appendix D.1, this difference is likely due to

the erroneous computation of the scaling parameters in Eq (3.39). A fit of the constants A, cl
and cτ could fix this discrepancy. Instead, a constant noise level correction based on the OASPL

in the isolated configuration is introduced,

∆OASPL = OASPLiso,exp −OASPLiso,TAGA (4.2)

(a) (b)

Figure 4.14: OASPL (a) before and (b) after application of a corrective delta for an azimuthal
array located at the polar angle θ = 90◦.

where the bar denotes here the azimuthal mean value.

Here, ∆OASPL ' 6dB. The same delta, still using the isolated configuations is applied on the

installed predictions. The OASPL predictions after the application of the emipirical correction

Eq (4.2) are shown in Fig 4.14 (b). With this correction, the installed predictions are now of the

same order as the experimental data.

4.2.2 Installation effects

The accuracy of the predictions for installation effects is examined in this subsection. A study on

the full azimuth range is done at the Mach numberM = 0.9. Three axial positions are considered

θ = 90◦, θ = 100◦ and θ = 110◦. As shown in Fig 4.15, the measurements more downstream

cannot be used because driven by large scale turbulence and there are no measurements from the

upstream arc. The plate is far from jet flow, so it can be considered that the source domain is

equal for both configurations and only the propagation causes differences between the two cases.

In the isolated configuration, the only contribution used is T (Transmission). In the installed

configuration T (Transmission), T*R (Transmission then Reflection) and T*D (Transmission then

Diffraction) are used, so that the rays that reflect on the flat plate and that are diffracted on the

edges of the plate are also taken into account.
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Figure 4.15: Polar evolution of the measured and predicted OASPL in the isolated configuration.

(a) (b)

Figure 4.16: Illustration of (a) the jet blockage configuration and (b) its resolution.

A phenomenon of jet blockage appears for observers at an azimuthal angle between 260 and

280 degrees. The three contributions used do not allow the passage of rays through the jet

after reflecting on the flat plate. This is illustrated in Fig 4.16 (a). This is not an issue for

the other observers. To prevent erroneous predictions, the additional contribution T*R*T*T (a

Transmission followed by a Reflection and two Transmissions) is also used at these particular

locations. Fig 4.16 (b) shows the updated situation. The increased computation time does not

constitute a problem given the few azimuthal angles concerned and the possibility to parallelise

the ray tracing calculations.
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4.2 Cold jet from a single convergent nozzle

Figure 4.17: OASPL prediction at θ = 90◦.

4.2.2.1 Noise predictions at M = 0.9 and θ = 90◦

One specific case will be commented, namely for the azimuthal microphone array of radius 14.2D

at θ = 90◦ for a jet Mach number of 0.9. Fig 4.17 shows the comparison for the OASPL between

the measurements and the prediction by TAGA corrected with the delta from Eq (4.2). The flat

plate is located at φ = 90◦. The azimuthal array can be decomposed into four areas. Table 4.5

shows these areas with the contributions reaching the observers. As a reminder, T stands for a

transmission, R a reflection and D a diffraction. Fig 4.17 shows that in terms of OASPL, there

is a good agreement for all zones. The zone around the flat plate sides shows an over prediction

that could be linked to the diffraction. The OASPL is however a metric that integrates the noise

level over the whole frequency range. The Power Spectral Density PSD is considered for more

in depth analysis. The predictions are symmetric with respect to the 90◦ − 270◦ axis, therefore

only half the predictions are shown. One point of comparison is presented for each area. The full

results are provided in Appendix D.2. The spectra are plotted following the convention provided

in Table 4.3. It is reminded that the PSD spectra for both configurations are also scaled using

the correction presented in Eq (4.2). This fit only uses the experimental data from the isolated

case despite being applied on the installed predictions.

Areas Angles Contributions
Above the plate [20◦; 160◦] T, T*D

Around the plate sides [160◦; 200◦] ∪ [340◦; 20◦] T, T*D, T*R if possible
Under the plate - Sideline [200◦; 240◦] ∪ [300◦; 340◦] T, T*R
Under the jet - Cutback [240◦; 300◦] T, T*R*T*T

Table 4.5: The four different zones in the azimuthal range.

The isolated predictions are axisymmetric but they are still shown as a reference next to the

installed predictions. When corrected with Eq (4.2), there is a good agreement over the whole
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(a) (a)

Figure 4.18: PSD for an observer at a polar angle of θ = 90◦ and φ = 340◦ for (a) the measure-
ments and (b) the predictions.

frequency range with a maximum of 3 dB between the predictions and the measurements. Fig

4.19 shows the isolated predictions by TAGA against the measurements at θ = 90◦ and φ = 280◦.

Overall there is a good agreement after normalisation. The peak frequency is slightly under

estimated, the lower frequencies are over predicted while the higher frequencies are a bit under

predicted.

(a) (a)

Figure 4.19: PSD for an observer at a polar angle of θ = 90◦ and φ = 340◦ in (a) the isolated
case and (b) the installed case.

Fig 4.18 shows the noise measurements (a) and predictions (b) for an observer under the flat

plate, at φ = 340◦. Experimentally, it can be seen that the installation effects cause a local

decrease in PSD between 2 kHz and 3 kHz followed by a sharp increase around 4 kHz and above.

The presence of this secondary peak is explained by an interference phenomenon. Section 4.2.2.3

shows an in-depth analysis of this phenomenon. The TAGA model predicts accurately the local

decrease as well as the increase at 4 kHz. The increase is however slightly less pronounced as in the

experimental data. The noise level at the peak is also well caught but there is an over estimation

under 1 kHz. Investigations showed that this discrepancy is also linked with the interference
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phenomenon. This is also discussed in more details in Section 4.2.2.3.

Figure 4.20: PSD for an observer at a polar angle of θ = 90◦ and φ = 280◦ in (a) the isolated
case and (b) the installed case.

The noise predictions for an observer under the jet at φ = 280◦ are given in Fig 4.20. The

agreement at this position, corresponding to the cutback certification point, is good for frequencies

above 1 kHz. TAGA predicts a noise spectrum that matches the experimental data in terms of

peak frequency and amplitude. A similar over prediction at lower frequency is however observed.

An over prediction of the interference phenomenon between the T and T*R*T*T rays could

explain this difference. The shape of the spectrum at high frequencies shows the same weaknesses

as in the isolated case but remains a good fit.

(a) (a)

Figure 4.21: PSD for an observer at a polar angle of θ = 90◦ and φ = 80◦ in (a) the isolated case
and (b) the installed case.

The comparison between the noise predictions and the measurements for an observer above

the plate at φ = 80◦ is shown in Fig 4.21. The introduction of the flat plate leads to a decrease of

around 5 dB at 2 kHz and above. This is explained by a shielding by the plate of the sound waves

coming from the part of the flow directly after the nozzle. Indeed, this part of the jet plume is

known to contain sources contributing to the high frequencies. A sharper decrease of around 10 dB
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is predicted by TAGA. This gap between the prediction and the measurements hints at a missing

contribution or an erroneous computation of the energy brought by diffracted rays. Under 2 kHz

the noise is increased in the measurements but not in the predictions. The predictions match

the measurements at low frequencies but it is believed to be a false positive. This increase is

explained by an interaction between the plate and the hydrodynamic pressure field around the

jet. These fluctuations diffract on the plate edges and propagate a low frequency noise [50] that

is not taken into account in the present model. The peak amplitude is well predicted by TAGA

when corrected.

(a) (a)

Figure 4.22: PSD for an observer at a polar angle of θ = 90◦ and φ = 20◦ in (a) the isolated case
and (b) the installed case.

Fig 4.22 shows the PSD for an observer slightly above the flat plate. The predicted shielding

is over estimated even with the addition of the diffraction on the edges. It is believed that the

lower frequency behaviour is analog to what was shown under the plate with an interference

between the refracted rays and the diffracted rays. This over prediction at 1 kHz and under leads

to an over estimation of the peak amplitude by 2-3 dB.

A study on the full azimuth range at an axial plan located at the nozzle exit was presented.

The prediction of installation effects by TAGA was compared with measurements on cold single

jet. For observers under the plate, a good agreement is seen for frequencies above 1 kHz. The

noise is over predicted for frequencies under this value. Measurements showed a secondary peak

for observers at these locations. The noise prediction model catches well the frequency and the

amplitude of this secondary peak. The agreement above the flat plate is less satisfactory with

stronger discrepancies outside of the hump of the spectrum. Indeed, the shielding is over predicted

above 8 kHz, especially well above the plate. At these positions, the increase under 1 kHz, is not

predicted because outside of the scope of the model. The predictions between φ = 20◦ and

φ = 160◦ are however less important because not linked to the certification process, see Section

1.1.
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(a) (b) (c)

Figure 4.23: Comparison of the PSD in the installed configuration at M = 0.9 for an observer at
φ = 340◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦.

(a) (b) (c)

Figure 4.24: Comparison of the PSD in the installed configuration at M = 0.9 for an observer at
φ = 80◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦.

4.2.2.2 Complementary results

The previous subsection went into details for a jet at M = 0.9 and microphones in the axial plan

located at the nozzle exit. As mentioned above, more results were obtained during this thesis.

The full results are provided in Appendix D.2 but an extract of these results is commented here.

TAGA was also tested at axial positions more downstream than θ = 90◦, namely θ = 100◦ and

θ = 110◦. Fig 4.23 shows the comparison between TAGA and the measurements at these three

polar angles for an observer under the plate while 4.24 shows the comparisons for an observer over

the flat plate. For the first category of observers, there is a good agreement for all frequencies

over 1 kHz. The differences between the TAGA predictions and the experimental data are of a

similar extent for the three polar positions. The secondary peak is also well caught at θ = 100◦

and does not appear in either the measurements or the predictions at θ = 110◦. With the second

category of observers, the peak frequency and amplitude is well caught while the shielding effects

is over estimated. Just like the observers under the plate, the differences between the TAGA

predictions and the experimental data are of a similar extent for the three polar positions. The

conclusions drawn in the previous subsection can therefore be generalised to the two other axial

plans.

4.2.2.3 Investigation of the secondary peak in the installed case

At certain azimuthal positions, the presence of a secondary peak can be observed in both the

experimental data and the noise predictions. An example is shown in Fig 4.25 for an observer
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located slightly under the flat plate, at 340◦ and at a polar angle of 90◦. Whatever the cause

of this secondary peak is, it is accurately predicted by the present model. Fig 4.26 shows the

PSD for three observers located at a polar angle θ = 90◦ and azimuthal angles of φ = 330◦;

φ = 340◦; φ = 350◦ with a line at 3150Hz. This highlights the importance of the position of the

observer on the peak frequency. The objective of this subsection is to offer an explanation for this

phenomenon through two studies. The first study aims at showing what happens at φ = 340◦;

φ = 350◦, but not at φ = 330◦, at a frequency of 3150Hz. The second one shows what happens

at φ = 350◦, at 4 kHz and above.

For these predictions, the length scales in the three directions are set equals lx = ly = lz = ls.

Under this assumption, Eq (3.87) can be reduced to a form independent of the azimuth φ.

AS(~xM , ~ζS , ω) ∝
I2
s lxlylz

τs

exp

− ω2

4 ln 2ū2
x
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ū2
x

c2
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Figure 4.25: Noise prediction at θ = 90◦ and φ = 340◦.

The source term AS is not a function of the azimuth φ, meaning that AS is constant for all

three observer positions considered in this study, leaving only the propagation term PS as cause

of this phenomenon. This propagation term is pictured in Fig 4.27, 4.28 and 4.29, respectively for
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Figure 4.26: Noise prediction at θ = 90◦ and φ = 330◦; φ = 340◦; φ = 350◦.

(a) (b)

Figure 4.27: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 330◦ for f = 3150Hz.

(a) (b)

Figure 4.28: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 340◦ for f = 3150Hz.

observers at φ = 330◦, φ = 340◦ and φ = 350◦. Fig 4.30 shows Is at f = 3150Hz. Two separate

domains can be seen for the axial representations. The domain that is further from the jet nozzle

represents the points where only one ray can link the source and the observer: a refracted one.

The second domain, closer to the jet nozzle and actually under the plate, represents the points
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(a) (b)

Figure 4.29: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 350◦ for f = 3150Hz.

Figure 4.30: Is for an observer at θ = 90◦ at f = 3150Hz.

where two rays can link the source and the observer: a refracted one and a refracted then reflected

one. There is a discontinuity between the two domains because in these simulations the diffracted

rays are not included. The fact that two rays coming from the same source coexist creates a 3D

interference pattern. This is especially visible in the cross sections. The interference phenomenon

is linked to the phase difference between the two rays which itself is a function of the difference

of ray path between the two interfering rays as well as the frequency. Because the observers are

relatively close to each other, from Fig 4.27 to Fig 4.29 it is possible to see the fringe move down

in pictures (a) and right in pictures (b). In this case, the fringe spacing is of the same order of

the jet radius meaning that for a given observer, a destructive fringe can occupy the jet plume

like in Fig 4.29 for φ = 350◦ leading to a deficit in energy. Similarly, a constructive fringe can

occupy the domain like in Fig 4.27 and 4.28 for respectively φ = 330◦ and φ = 340◦ and thus lead

to an increase in energy. It is also interesting to point out that compared to the case where only

one refracted ray is possible, a constructive fringe involves a much larger increase of PS than the

loss induced by a destructive fringe.

Let us now fix φ = 350◦ and vary the frequency f . Fig 4.31 to Fig 4.35 show the propagation

term PS for f from 2500Hz to 6300Hz. Here again the passage of the fringes can be clearly
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(a) (b)

Figure 4.31: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 350◦ for f = 2500Hz.

(a) (b)

Figure 4.32: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 350◦ for f = 3150Hz.

(a) (b)

Figure 4.33: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 350◦ for f = 4000Hz.

seen when the frequency evolves. The start of the increase in noise level at f = 4000Hz is easily

explained. Indeed, before this value, the zone is dominated by a destructive fringe whereas above

4 kHz a contructive fringe occupies the space.

These comparisons showed the arrival of a constructive fringe with the increase of the fre-

quency but it is fair to assume that this passage of constructive and destructive fringes is a

periodic phenomenon that would lead to several peaks instead of just one secondary peak. In
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(a) (b)

Figure 4.34: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 350◦ for f = 5000Hz.

(a) (b)

Figure 4.35: Propagation term PS in the jet plume at (a) z/D = 0 and (b) x/D = 3 for an
observer at θ = 90◦ and φ = 350◦ for f = 6300Hz.

(a) (b) (c)

Figure 4.36: Propagation term PS in the jet plume at x/D = 3 for an observer at θ = 90◦ and
φ = 350◦ for (a) f = 10000Hz, (b) f = 12500Hz and (c) f = 16000Hz.

reality, the extent of this interference phenomenon is linked to the relative size of the jet plume

and the width of the interference fringes. The fringes get thinner with increased frequency, as

depicted in Fig 4.36, thus reducing the predominance of either a constructive or destructive in-

terference. The zone under the plate is therefore more homogeneous in terms of PS and that

translates to an increase of PSD that tends to a limit value. The fringe pattern still varies with

the frequency which explains the oscillations after the peak, see Fig 4.25. It can be expected that

if the frequency discretisation in the spectrum was higher and the plot done in a non-logarithmic

scale, these oscillations would be clearer.
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Figure 4.37: Noise prediction (black) compared with the sum of the propagation term under the
flat plate (grey) at θ = 90◦ and φ = 330◦. The full line is the installed case and in dotted line is
the isolated case.

Figure 4.38: Noise prediction (black) compared with the sum of the propagation term under the
flat plate (grey) at θ = 90◦ and φ = 340◦. The full line is the installed case and in dotted line is
the isolated case.

To conclude this investigation, both the noise level and the propagation term for the domain

under the flat plate are plotted against the frequency in Fig 4.37, 4.38 and 4.39. Plotting the

integrated value of the propagation term is equivalent to plotting the power spectral density in

the case of AS = 1. The passage of the fringes is quite clear with this representation. There is a

good agreement between the increase of the noise level and the nature of the fringes present. The

shift of the fringes when the observer is moved is also clear. The limit value of the increase with

the reduction of the fringe width is well displayed above 10 kHz. The over predictions observed
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Figure 4.39: Noise prediction (black) compared with the sum of the propagation term under the
flat plate (grey) at θ = 90◦ and φ = 350◦. The full line is the installed case and in dotted line is
the isolated case.

at low frequencies in the previous subsection can also be explained. Indeed, a first constructive

fringe passes in the zone under the plate at around 200Hz for all three microphones leading to a

sharp increase of the PSD.

4.2.2.4 Use of the model as a scaling tool

(a) (b)

Figure 4.40: Noise prediction at θ = 90◦ and φ = 320◦ in the (a) isolated case and (b) installed
case.

As explained in the literature review, the set of constants governing the traditional calibrating

scales are often fitted to the experimental data to improve the results [43][78][55]. This fit can

correct the shape of the spectrum as well as its peak frequency. This optimising step can only

be done if the experimental measurements are available and in this case, there is little use of
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predictions anymore. A new method to improve the predictions is introduced. The results

presented in the previous subsections showed that the model developed in this thesis was rather

successful but had some key flaws. First, the absolute level is off by several dB leading to the

need of a previous correction introduced in Eq (4.2). Next, the shape of the spectrum does not

follow the experiment with an over prediction at low frequencies and an under prediction at high

frequencies in both the isolated and installed case as shown in Fig 4.40. A parallel can be drawn

between the two cases. Indeed, the predictions in both configurations lack accuracy at the same

frequency ranges and to the same extent. This means that the evolution of the spectrum with

the introduction of the flat plate is well predicted with TAGA. Mathematically, this translates to

PSDins,TAGA − PSDiso,TAGA ' PSDins,exp − PSDiso,exp (4.5)

with "ins" designing the installed configuration and "iso" the isolated configuration. The scaled

noise spectrum for the installed case can therefore be obtained using the noise spectrum of the

isolated case and both noise predictions with

PSDins,scaled =
(
PSDins,TAGA − PSDiso,TAGA

)
+ PSDiso,exp (4.6)

It should be noted that this scaling technique uses the same amount of information as the

previous fit done with Eq (4.2). This subsection evaluates the performance of the TAGA model

as a scaling tool.

Figure 4.41: Azimuthal evolution of the OASPL for an observer at a polar angle of θ = 90◦.

Eq (4.6) is used on the measurements in the isolated case for a Mach number of 0.9. Fig

4.41 shows the OASPL of the measurements in grey and the scaled spectrum in black. As could

be expected the pattern resembles the one obtained for the absolute comparisons, see Fig 4.17,

with an under prediction of the noise level for observers located above the flat plate, an accurate

prediction of the noise level for observers under the plate. Comparing the two OASPL diagrams

does not show any improvement. The power spectral density has to be studied for more accurate
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comparison between the two corrections.

(a) (b)

Figure 4.42: PSD for an observer at a polar angle of θ = 90◦ and φ = 340◦ in the installed case.
Predictions using (a) the normalised TAGA results and (b) the scaled TAGA results.

Comparisons for an observer located under the flat plate, at an azimuthal angle of φ = 340◦ are

shown in Fig 4.42. The use of the measured isolated spectrum as a base provides a better shape

for the spectrum and thus increases the frequency range for which the agreement is very good.

Just like the normalised predictions, the secondary peak due to the interference phenomenon is

well caught in both frequency and amplitude. An over estimation under 1 kHz is seen. A possible

explanation could be given by drawing a parallel with the interference patterns. As explained

previously, this is due to the presence of a constructive fringe that occurs at the exact frequency

range where the over prediction occurs, see Fig 4.38. An incorrect evaluation of this phenomenon

coupled with a frequency range outside of the frame of geometrical acoustics could be the cause

of this over estimation.

(a) (b)

Figure 4.43: PSD for an observer at a polar angle of θ = 90◦ and φ = 280◦ in the installed case.
Predictions using (a) the normalised TAGA results and (b) the scaled TAGA results.

Noise predictions for an observer under the jet at φ = 280◦ are pictured in Fig 4.43. The

conclusions are the same as for observers located further from the jet. The agreement above

88



4.2 Cold jet from a single convergent nozzle

1 kHz is very good with a better prediction of the shape of the spectrum.

(a) (b)

Figure 4.44: PSD for an observer at a polar angle of θ = 90◦ and φ = 20◦ in the installed case.
Predictions using (a) the normalised TAGA results and (b) the scaled TAGA results.

Fig 4.44 shows the PSD for an observer slightly above the plate at φ = 20◦. In both version of

the TAGA predictions, the agreement is not as good as under the plate with a under estimation

at the high frequencies linked to the shielding. The scaling of the PSD allows for a better peak

amplitude and reduces the under prediction above 4 kHz. The same behaviour under 1 kHz can

be observed.

(a) (b)

Figure 4.45: PSD for an observer at a polar angle of θ = 90◦ and φ = 80◦ in the installed case.
Predictions using (a) the normalised TAGA results and (b) the scaled TAGA results.

The PSD spectra are plotted in Fig 4.45, at an azimuthal angle of φ = 80◦, meaning that

the observer is located above the plate. Here, the scaled spectrum agrees slightly more with the

measurements than with the previous fit, especially in terms of shape and peak frequency. Nev-

ertheless, this confirms the previously stated drawbacks of this method with an over estimation

of the shielding effect above 6 kHz. The agreement under 1 kHz is deteriorated but as mentioned

before an interaction between the flat plate and the hydrodynamic pressure field around the jet

causes a augmentation of the noise level at these frequencies. This phenomenon is not linked to
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fine scale turbulence so the agreement at this frequency range cannot be discussed.

To conclude, the use of the scaling method to predict the installation effect turns out to be

more effective than using the absolute predictions corrected with Eq (4.2) mainly due to the

change of the shape of the spectrum. Moreover, these improved results come at the same cost

as the OASPL correction because both need the measurements for the isolated case. In terms of

quality of the predictions, the method is of industrial standard for all observers under the plate.

The fact that this process works also shows that the installation effects scale linearly. A possible

defect of this method should however be addressed. The performance of the scaling process is

conditioned by the quality of the isolated measurement. If they are polluted by experimental

errors, these anomalies will appear in the scaled spectra.

(a) (b)

Figure 4.46: PSD for an observer at a polar angle of θ = 90◦ and φ = 340◦ in the installed case.
Results using (a) measurements and (b) a LES for the scaling of the TAGA predictions.

Finally, this scaling process has been performed using experimental data as a base spectrum

but it could be done using other type of data. Fig 4.46 shows the comparison between the use of

measurements or a LES as a base of the scaling. Between 1 kHz and 10 kHz, both scaling show

good results. The cut-off frequency of the LES used is around 10 kHz and makes the comparison

impossible above. Considering that no experimental data was used in this prediction, this method

shows promising results for an industral application. It is also believed that the use of a well

resolved LES could allow the prediction on the full frequency range.

4.3 Noise predictions on a realistic nozzle

4.3.1 EXEJET nozzle

4.3.1.1 Description of the configuration

The second jet used is the EXEJET nozzle designed by Safran. The experiments were conducted

at CEPRA19 wind tunnel from Onera, Saclay, France. This dual flow nozzle has a core of

diameter 130mm and a bypass of diameter 220mm. Various configurations were tested in the
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frame of the EXEJET project. Two of them have been selected for this study, namely the

isolated configuration with and without chevrons, see Fig 4.47. The measurements as well as

the present numerical prediction are both made at conditions matching the sideline certification

point, meaning a Mach number for the primary flow of Mcore = 0.68, for the secondary flow

Mfan = 0.84 and thus a jet mixing Mach number of Mjet = 0.78. The external flow Mach number

is Mext = 0.23. This operating point provides realistic flow conditions, a validated jet noise

signal and a sizeable flight effect. The noise is measured using a polar microphone arc of radius

R = 6m. The jet is coaxial even though this is not taken into account in the model and with

a temperature ratio Tcore/Tfan = 2.43. More information can be found in Huber et al. [38].

This study being partially confidential, the absolute noise levels are not shown. The following

convention will be used for the presentation of the results. The experimental data is plotted in

grey and the predicted spectra in black. The round nozzle data is represented with dashed lines

and the data from the nozzle with chevrons is in full line. This convention is summarised in the

following table.

Measurements TAGA
Round nozzle
Chevron nozzle

Table 4.6: Convention used for the plots presented in this section.

(a) (b)

Figure 4.47: EXEJET nozzle (a) without chevrons (b) with chevrons.

4.3.1.2 RANS inputs

The same validation of the refinement of the mesh as performed in Section 4.2 is reproduced

for the EXEJET nozzle The results obtained by the TAGA model, with both media set equal,

are compared to the analytical solution of the propagation in free field. The difference in dB is

plotted in picture Fig 4.49 (a) and the equivalent error margin is plotted in Fig 4.49 (b). The

range in which there is a good agreement between the two predicted noise levels is the same as

with the single-jet nozzle. Indeed, both power spectral density match between 100Hz and 10 kHz.

There are some discrepancies outside of this range that can be explained by the same reasons

presented in Section 4.2. Fig 4.48 shows measurements at a polar angle of θ = 90◦ and highlights
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Figure 4.48: Experimental measurements of the PSD at θ = 90◦ with and without chevrons.

(a) (b)

Figure 4.49: Difference between the PSD using Acti-HF and using the analytical solution. (a)
Absolute error (b) Error margin.

the fact that the frequency range on which the mesh is fine enough corresponds to the range of

interest of the study.

The validity of the far-field and compactness approximations are also checked. The length

scale L = 3ls/
√

ln 2 is used again as a measure of the distance of correlation. The same evaluation

presented in the previous section is done here at 100Hz, 1 kHz and 10 kHz. The results are shown

in Table 4.7. Over the whole spectrum, L is inferior or greatly inferior to both the diameter

of the nozzle and the wavelength. The far-field and compactness approximations are therefore

validated.

4.3.2 Refraction effects

The objective of this subsection is the evaluation of refraction effects as predicted by TAGA.

Unlike the previous studied nozzle, there are several major differences between the actual flow
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100Hz 1 kHz 10 kHz
λ 17D 1.7D 0.17D
L 0.5D 0.2D 0.05D

Table 4.7: Estimate of the wavelength λ and the scale length L normalised by the jet nozzle
diameter.

and its modelling. The subject is a coaxial jet, which means that considering the first medium

containing the jet flow as homogeneous is even more debatable. The presence of entropic sources

and density gradients are also expected for such a hot jet, even though the model does not take

them into account.

Figure 4.50: Representation of a ray with a refraction

The presence of a cone of silence is a trademark of refraction effects. The value obtained

numerically is compared to the theoretical value obtained using the Snell law, reminded below,

c1

sin θ1
+ V1 =

c2

sin θ2
+ V2 (4.7)

where the notation are displayed in Fig 4.50 with V1 = M1c1 and V2 = M2c2. From this

equation, the critical angle θc corresponding to the cone of silence (COS) can be obtained by

setting θ1 = θjet = 90◦. Its expression is given by

θc = arcsin

 c2

c1 + (V1 − V2)

 (4.8)

In this case V1 = Vjet = 291, V2 = Vext = 91, c1 = cjet = 368 and c2 = cext = 333. That gives

the theoretical value θc = 36◦. From Fig 4.50, the angle for which the cone of silence appears is

linked to this critical angle by θCOS = θc + 90◦ = 126◦. Fig 4.51 shows the polar evolution of

the OASPL. The cone of silence begins to appear downstream for angles larger than 100◦ but

the predicted noise level drops above 120◦. This behaviour agrees well with the theoretical value

of the cone of silence θCOS = 126◦. This decrease in energy is not present in the experimental

data because downstream, the large scale jet mixing noise dominates the spectrum. This noise

mechanism is not affected by the refraction in the same way as fine scale turbulence because

of the size and the nature of these structures. Indeed their characteristic lengths are too large
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Figure 4.51: Polar evolution of the measured and predicted OASPL in the configuration without
chevrons.

compared to the jet plume and therefore they radiate noise directly outside of the mixing layer

and not through it. In terms of evolution, before the apparition of the cone of silence, the increase

in OASPL is of 0.45 dB every 10◦ in the measurements whereas the increase rate is twice as much

with 0.9 dB every 10◦ according to TAGA.

Figure 4.52: PSD for an observer at a polar angle of θ = 90◦.

The predicted power spectral density is now compared to the experimental data. Fig 4.52

shows the results at θ = 90◦. This position can be considered free of the contribution of jet

mixing noise from large scale turbulence. In a similar manner as the single jet predictions, the

shape of the spectrum is close but does not match the experimental data, it is even more the case

with the EXEJET nozzle. The shape of the spectrum is directly linked to the source modelling so

the discrepancies can be due to any combination of the following causes. First, neither the model

function of the autocorrelation of the source terms nor the scaling parameters take into account
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(a) (b)

Figure 4.53: PSD for an observer at a polar angle of θ = 90◦ for (a) the single jet (b) the coaxial
jet.

the variation of density in hot jets as introduced by Tam et al. [81]. It is however suprising

that in [78], their model scales well with heated jets although, by construction, the effects linked

to the temperature are not present. Then, the constants used for the scaling parameters were

obtained by Tam [78] by best fit on single jets. It is possible that the introduction of a primary

flow changes enough the behaviour of the mixing layer that a new set of constants is needed to

maintain an accurate description of the turbulence. The comparison of a spectrum of the single

jet with one of the coaxial jet, in Fig 4.53, highlights this change of shape. In this study the peak

amplitude is however well enough caught by the model so that there is no need of a correction

like in Section 4.2.

(a) (b)

Figure 4.54: PSD for an observer at a polar angle of (a) θ = 45◦ and (b) θ = 75◦.

The results are presented using the convention reminded in Table 4.6. The predictions for

two microphones located at θ = 45◦ and θ = 75◦ are presented in Fig 4.54. Although the peak

amplitude is caught well enough by the model, there is an over prediction of the peak frequency.

The shape of the spectrum is also off, especially at high frequency. This is explained by the

shielding, by the nozzle, of the zone responsible for high to very high frequency. Less rays are
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blocked when the polar angle increases, hence the rise of the noise level over 10 kHz for θ = 75◦

relatively to θ = 45◦.

(a) (b)

Figure 4.55: PSD for an observer at a polar angle of (a) θ = 90◦ and (b) θ = 120◦.

The results for θ = 90◦ and θ = 120◦ are presented in Fig 4.55. The agreement in terms of

peak amplitude is still good and the peak frequency is still over predicted. For these observers,

the decrease of the noise level after the peak with TAGA gets more linear and although the slope

is steeper than in the experiment, the right behaviour is predicted. With this improvement comes

a good overall prediction of the spectrum shape for observers located in this zone.

Figure 4.56: PSD for an observer at a polar angle of θ = 150◦.

Fig 4.56 shows the comparison between the predictions and the experimental data for an

observer placed downstream, past the cone of silence. In the measurements, an inflection around

4 kHz for θ = 150◦ can be seen, suggesting the emergence of the large scale turbulence spectrum.

This additional source, which is not taken into account in the model, coupled with the noise

reduction in the cone of silence, induces a noticeable deficit in energy of 10 dB over the whole

frequency range for θ = 150◦. Given the trends presented in Fig 4.51, the poor agreement above
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a polar angle of 105◦-120◦ was expected.

In this section was presented the predictions of refraction effects with a polar study on the

EXEJET nozzle. Compared to the previous nozzle, there is a wider range of differences between

the real jet plume and the modelled flow in TAGA, as mentioned previously in this subsection.

Considering the amount of aspects not included in the prediction model and the fact that no fit

was done to improve the calculations, the results can be considered encouraging. The right trend

of the polar evolution of the OASPL is predicted with the presence of the cone of silence at a value

close to the theory. Moreover, the peak amplitude is overall well caught at all positions below

120◦. In their paper, Tam et al. [81] stated that their updated model showed very promising

results on coaxial jets. It would be interesting to see if this new formulation could lead to improved

predictions.

4.3.3 Predictions with chevrons

In this subsection, the model is used to predict the effects of chevrons on nozzles. The scaling

method introduced in Sec 4.2 showed great results. The satisfying performance is in part due

to the use of a base spectrum of the same nozzle, which produces a spectrum with a shape that

is very close to the experimental data. The relative impact of the introduction of chevrons as

computed by TAGA is therefore applied on the measurements of the round nozzle giving the

following formula for the scaled spectrum,

PSDchevrons,scaled =
(
PSDchevrons,TAGA − PSDround,TAGA

)
+ PSDround,exp (4.9)

Figure 4.57: Comparison of measured PSD of the round and chevron nozzle at a polar angle of
θ = 90◦.

The introduction of chevrons leads to an increase of the turbulent kinetic energy near the

nozzle exit forcing the mixing of the jet in the external flow, early in the jet plume. This increase
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of the turbulence field has a second impact. With the improvement of the mixing, the potential

core is reduced and the turbulent kinetic energy field is attenuated further downstream [21]. In

terms of power spectral density, these two modifications in the topology of the flow translate

respectively to an increase of the noise level at high frequencies. Fig 4.57 shows the comparison

at θ = 90◦ between the round and chevron nozzle. Both modifications of the spectrum are

present with a reduction of around 5 dB at the peak and a relatively constant increase of 3 dB

above 5 kHz.

(a) (b)

Figure 4.58: PSD for an observer at a polar angle of (a) θ = 45◦ and (b) θ = 75◦.

The results are presented using the convention reminded in Table 4.6. The results for micro-

phones located at θ = 45◦ and θ = 75◦ are presented in Fig 4.58. Of the two expected impacts

of the installation of chevrons, only the increase at high frequency is present. Fig 4.59 shows a

map of the turbulent kinetic energy field kt for both nozzles. Above is the nozzle with chevrons

and below is the round nozzle. As explained above, there is a local increase right after the nozzle

exit followed by a reduction of kt around the potential core. In terms of source domain, that

translates to the results presented in Fig 4.60 for the peak frequency f = 400Hz and in Fig 4.61

for the frequency f = 10000Hz. The increase of the source amplitude at high frequency at the

nozzle exit is noticeable in Fig 4.61. AS is more important above for the nozzle with chevrons

as below for the round nozzle. At the frequency of the peak, the reduction of the source term

AS is however not as clear as with the kt field. Both source domains are similar with only a

slight reduction with the introduction of the chevrons. This will lead to a negligble reduction of

the noise level at the peak in the spectra. At the time of writing, no definitive explanation can

be given for the absence of noise reduction at the hump of the spectrum. On the one hand, it

is unknown if the RANS computations are accurate by not predicting a heaver reduction of kt
more around the potential core. On the other hand, the source model from the Tam and Auriault

could also be at fault too because only the strong variations of kt translate to a modification of

the source amplitude AS .

The noise predictions for microphones at θ = 90◦, θ = 120◦ and θ = 150◦ are shown in Fig

4.62 and Fig 4.63. The conclusions drawn for observers located upstream can be generalised
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Figure 4.59: Map of the turbulent kinetic energy field kt for the nozzle with chevrons (above)
and the round nozzle (below).

Figure 4.60: Map of the source term AS at f = 4000Hz for the nozzle with chevrons (above) and
the round nozzle (below).

Figure 4.61: Map of the source term AS at f = 10000Hz for the nozzle with chevrons (above)
and the round nozzle (below).

for these polar positions. The noise level at the peak matches the one from the round nozzle

meaning that TAGA does not predict any difference between the two nozzles. Concerning the

noise amplification at higher frequencies, the level is also well caught with around a 3 dB increase.

The start of this amplification is however still late with an increase of this difference with the

polar angle.

The use of TAGA as a scaling tool for the prediction of the installation of chevrons has been

presented in this subsection. If the TAGA model was unable to predict the noise reduction at

low frequencies, good results were obtained regarding the high frequency behaviour. As of now
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(a) (b)

Figure 4.62: PSD for an observer at a polar angle of (a) θ = 90◦ and (b) θ = 120◦.

Figure 4.63: PSD for an observer at a polar angle of θ = 150◦.

the noise prediction model does not seem mature enough for this kind of study. In a similar way

as done by Bodard et al. [14] absolute predictions using a LES and relative predictions using this

model could be used to predict respectively the low and high frequencies. Preliminary results

are given in Fig 4.64 with the LES under 5 kHz and TAGA above. With this new method, there

are encouraging results for all frequencies over 300 kHz. This would also allow the use of a less

resolved LES as what would be needed for predictions on the full frequency range.
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(a) (b)

Figure 4.64: PSD for an observer at a polar angle of (a) θ = 90◦ and (b) θ = 120◦ using a hybrid
formulation of TAGA and a LES.
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5 Conclusion and perspectives

5.1 Summary

The objective of this study was to introduce a prediction model for jet mixing noise, and more

specifically for fine scale turbulence. This model had to take into account mean flow effects,

namely the convection and refraction of the sound waves in the jet flow. Installation effects had

to be included too, in particular the reflection, diffraction and shielding of the sound waves caused

by the wing. The investigation of realistic three dimensional configurations should be possible

within a reasonable computing time.

The second Chapter introduced the concept of acoustic analogies. Although several versions

had been derived over the past few years, it was pointed out that similarities in the mathematical

formulation could be identified. Indeed, two main parts appear in the expression of the power

spectral density. The first element is the autocorrelation of the source term from the chosen

analogy. A review of the literature showed that a statistical modelling of this source correlation

fed with data from a RANS computation constituted an efficient way of obtaining this first term.

The second element in the formula of the PSD accounts for the propagation of the sound waves

and its expression corresponds to the solution of the differential equation of the desired acoustic

analogy. It was explained that an analytical resolution was only possible for models assuming the

flow is uniform whereas models with more detailed flow descriptions required heavy numerical

means. Considering the available methods and the industrial framework, it was chosen to use

the work performed by Tam and Auriault [78] as a starting point and to substitute the adjoint

Green function used for the computation of the propagation by the use of geometrical acoustics

applied to a simplified propagation medium.

The prediction model has been analytically derived in a third Chapter built in two major

steps. First, the methodology introduced by Tam and Auriault [78] has been carefully analysed.

The linearised Euler equations forced by a tailored source term were used as a starting point.

The resolution was performed using adjoint Green functions and allowed the expression of the

fluctuating pressure and subsequently the power spectral density in an integral form. A model

function of the source autocorrelation was substituted in that integral to permit the computation

of the source amplitude. Tam and Auriault then recast the mathematical formulation to perform
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one of the two spatial integration by means of far field and compactness approximations, thus

cutting down the computational cost of this method. In the original work, the PSD was finally

obtained by numerically computing the adjoint fluctuating pressure. Second, it is shown how

the methodology could be altered to save the cost of this numerical calculation. The first step

was to simplify the flow description by approximating the propagation medium into two homo-

geneous media, namely the jet itself and the external flow. The pressure in the far field was then

expressed using geometrical acoustics. Next, a modified formulation of the Tam and Auriault

model has been derived to isolate that the propagation term in the alternative formulation could

be computed using a ray tracing tool instead of the costly numerical resolution of the adjoint

pressure in the original formulation. The name TAGA (Tam Auriault - Geometrical Acoustics)

was given to this prediction model.

The newly developed model was applied to several configurations in Chapter four. It was

chosen to predict jet mixing noise on two types of nozzles. The first jet is a cold single jet

and constitutes a good validation case because of its simplicity. The second, from the EXEJET

research program, is a hot coaxial jet that is closer to an industrial nozzle. The prediction of

installation effects was first investigated through a study on the whole azimuthal range for the

single jet. The jet Mach number wasM = 0.9 and a flat plate located at 2D was used to introduce

installation effects. The results on the installed configuration were first presented with a correction

on the absolute level. This offset is the difference between the OASPL of the predictions and

the experimental data in the isolated configuration. Although the shape of the spectrum did not

exactly fit the measurements, a good agreement was found for observers located under the plate

and for frequencies above 1 kHz. The shielding by the plate seemed however over predicted by

TAGA leading to an under estimation at high frequency. The analysis of the results highlighted a

peak in the experimental data that was well captured by the model. An in-depth investigation of

the predictions showed an interference phenomenon between rays that exit the jet plume and rays

that reflect on the wing. The presence of either a constructive or a destructive interference fringe

coincided with respectively the local increase or decrease of noise level in the experimental data,

indicating that it was indeed the right interpretation of the phenomenon. An improved approach

for the computation of noise levels for installed configurations was then introduced. The difference

between the installed and isolated predictions is added to the measured isolated spectrum. The

use of this technique improved the agreement both in terms of peak frequency and shape of the

spectrum. The updated results showed excellent results for microphones under the wing at 1 kHz

and above, while the same issues linked to the shielding at high frequencies remained. This

new approach for the presentation of the results showed that the improvement of the shape of

the spectrum could be done without fitting the scaling parameters in the model. The EXEJET

configuration was used for the evaluation of refraction effects. Although TAGA provided an

accurate prediction of the cone of silence, the shape of the spectra showed a poor agreement with

the experimental data. It is believed that these issues were caused by the disparities between

the real jet flow and the reduction to homogeneous media in TAGA. The last study was the
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prediction of the effect of chevrons on jet mixing noise. The scaling method was used again to

improve the shape of the predicted spectra. Chevrons induce a reduction of the peak amplitude

and an increase of the PSD at high frequency. Only the latter effect was accurately predicted

with a good agreement of the extent of the noise amplification.

Overall, the results were deemed satisfactory, especially so with the predictions of installation

effects and despite the amount of simplifications done regarding the description of the flow. The

introduction of a method with a good ratio between performance and cost has been successful.

Indeed, the target in terms of restitution time was reached with the possibility to obtain results

on a full test matrix in under a week.

5.2 Main results

The main contributions of the present manuscript are the following,

• A new model named TAGA has been introduced. The model developed by Tam and

Auriault [78] has been reformulated using a simplified flow description to allow for the

resolution of the propagation with geometrical acoustics. The account of mean flow and

installation effects are therefore possible while maintaining a low computation time.

• TAGA showed good results for the prediction of jet mixing noise from fine scale turbulence

when applied on installed jets. The agreement found with the experimental data was

especially great for the whole azimuthal range under the flat plate, which includes the three

certification positions.

• The use of TAGA as a scaling tool allowed to reach industrial standards for the quality of

noise predictions with a maximum deviation of 1 dB for the frequency range of interest. A

unique set of constants in the scaling parameters has been used during the whole study,

giving accurate results without fit.

• The presence of a hump in the experimental data from installed jets, for observer located

slightly under the flat plate, has been explained. The interference between rays refract-

ing through the mixing layer and rays reflecting on the plate has been highlighted. This

phenomenon was well caught both in terms of frequency and amplitude by TAGA.

• The prediction of the cone of silence due to refraction effects was achieved and a good

match was found with the theoretical value for the polar angle corresponding to the cone

edge. Although the base flow does not fully describe the complexity of a realistic nozzle,

encouraging results were found for noise predictions of coaxial nozzles. The prediction of

chevrons effects has been partially carried out with a reasonable estimation of the high

frequency noise level increase.
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• In terms of computation time, the target has been reached. As an illustration, the 114

calculations performed for the study presented in Section 4.2 were produced within a week

time.

The work performed has been the topic of two conference papers,

• Martelet, Y., Suratteau, J.-Y., Pont, G., and Bailly, C. (2019). Prediction of fine-scale jet

mixing noise using geometrical acoustics. In 25th AIAA/CEAS Aeroacoustics Conference,

pp. 1–18.

• Martelet, Y. and Bailly, C. (2018). Prediction of fine scale jet mixing noise refraction

effects using a two-step propagation technique. In EURONOISE 2018, pp. 135-142.

5.3 Perspectives

Although the TAGA model displayed satisfactory results in the different configurations studied,

there is room for improvements. The model function and the scaling parameters used by Tam

and Auriault could arguably be replaced by more recent and more advanced formulations which

would hopefully lead to better results. Such formulations have been mentioned in Section 2.4. As

an illustration, among the weaknesses pointed out in Chapter four, the poor agreement in terms

of shape of the predicted spectra for the realistic nozzle is especially problematic. Indeed, in the

frame of an industrial use, better performance are expected on hot coaxial jet. The first lead

to investigate would be the implementation of the extension of the Tam and Auriault model by

Tam et al. [81]. This updated model was developed to include the impact of density gradients

from high-temperature jets. Moreover, in their conclusion, they also mention encouraging results

regarding predictions on dual-stream jets. The use of scaling parameters function of the frequency

as done by Self [71] [72] is also contemplated. Another lead in the improvement of the source

modelling comes from the work by Karabasov et al. [40]. By deducing the constants used in the

scaling parameters from the data from a LES, they obtained good results and remarkably so at

positions were jet mixing noise from large scale turbulence dominates. This technique would also

improve the robustness of the method for absolute predictions.

Further applications of the model would also answer some questions left opened. First, the

single jet nozzle used in the study presented in Section 4.2 had the disadvantage of not having

experimental data at polar angles under θ = 90◦. The assessment of refraction effects had

therefore to be performed on a coaxial jet. This assessment should be repeated on a simpler nozzle

to confirm that the less satisfactory results were due to the use of a nozzle outside of the model’s

range and not due to an issue with TAGA or Acti-HF. Furthermore, only the configuration with

a flat plate far enough from the jet has been examined. By moving the plate closer, additional

noise sources shall appear in the experimental data. A first estimation of the validity range of

the model could be deduced by a parametric study consisting in the variation of the distance

between the plate and the jet axis. The prediction of installation effects was successfully displayed
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in the case of a flat plate. The introduction of a real wing in place of this plate is the next step

for the validation of the method. On the matter of the implementation of the model, some

improvements were already mentioned in Section 4.1. Indeed the production of the interface

delimiting the jet and the external flow is done manually at the moment. This is also the case for

the velocity data used for the definition of the homogeneous medium surrounding the jet. With

the automatisation of these two steps, not only would the robustness of the method be increased

but the flow definition would be also be improved. The issue with the over prediction of the

shielding also has yet to be addressed. This could be explained by a physical effect that is not

included in the TAGA model. It could also be due to an issue in the diffraction module of the

ray tracing tool. Further investigations in that direction should remove that uncertainty.

Finally, one important limitation of the TAGA model for jet mixing noise prediction is the

absence of the contribution from large scale turbulence. At the moment, the noise predictions

are limited to observers located upstream and slightly above 90◦. The addition of this noise

mechanism would extend the model to the rearward polar angles. It is however unlikely that the

method developed in this thesis could include this noise mechanism. Indeed, the hypothesis of

compactness of the sources in the frame of geometrical acoustics seem incompatible with the size

of the turbulent structures considered. The use of TAGA in coordination with another model

focused on large scale jet mixing noise would be a more reasonable approach.
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A Introduction to the Green and adjoint

Green functions

A few mathematical tools are used in the core of this report. They are detailed in the following

section to provide the reader with all the notions necessary to understand the calculations per-

formed in the development of the different prediction models. First the Green functions and in

particular the vectorial Green functions are introduced then the adjoint problem and the adjoint

Green functions are presented.

A.1 Definition of the Green function

The introduction of the Green function has been motivated by the idea of solving a problem

independently of its forcing term [69]. They can therefore be defined as the response to an

impulse excitation of a boundary value problem. They are especially used in order to solve

differential equations. An example of their use is given.

Let L be a linear operator such as

L(f(~x, t)) = S(~x, t) (A.1)

The Green function fG is defined this way

L(fG(~x, ~ξ; t, t1)) = δ(~x− ~ξ)δ(t− t1) (A.2)

Upon finding fG, f can be obtained using the convolution of the Green function and the

source term S with

f(x, t) =

ˆ
~ξ

ˆ
t1

fG(~x, ~ξ; t, t1)S(~ξ, t1)d~ξdt1 (A.3)

The use of the Green function is then interesting on two levels. First, because fG is indepen-

dent of S, the same solution can be used for different excitation thus saving numerous resolutions

of equations. Moreover the resolution itself is often easier since the source term is only an impulse.
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A.2 Use of vectorial Green functions to solve a system of equation

The Green function has been presented in the previous subsection. The example given was for

only one function f but in some case, several functions can intervene thus forming a vector of

state variable. In this case, there are more than one differential equation governing the physics

but the Green functions can still be introduced for the resolution of such problems.

That technique can be interpreted as a resolution by superposition. Instead of considering

all the sources at once, the system is solved by considering only one source and switching off

the others. This is repeated until all the different sources have been considered. Finally, all

the elementary solutions are superposed so that it accounts for the real problem. For example,

solving

L1(f(~x, t), g(~x, t)) = S1(~x, t)

L2(f(~x, t), g(~x, t)) = S2(~x, t)
(A.4)

where L1 and L2 are two linear operators, can be done by first solving these two systems

L1

(
f (1)(~x, ~ξ; t, t1), g(1)(~x, ~ξ; t, t1)

)
= δ(~x− ~ξ)δ(t− t1)

L2

(
f (1)(~x, ~ξ; t, t1), g(1)(~x, ~ξ; t, t1)

)
= 0

(A.5)

and

L1

(
f (2)(~x, ~ξ; t, t1), g(2)(~x, ~ξ; t, t1)

)
= 0

L2

(
f (2)(~x, ~ξ; t, t1), g(2)(~x, ~ξ; t, t1)

)
= δ(~x− ~ξ)δ(t− t1)

(A.6)

Although there are now two systems, the resolution is easier overall. After finding f (1), f (2),

g(1) and g(2), the solutions of the initial system are obtained with the convolution between the

source terms at the right hand side of Sys (A.4) and the Green functions for either f or g, giving

f(~x, t) =

ˆ
~ξ

ˆ
t1

[
f (1)(~x, ~ξ; t, t1)S1(~ξ, t1) + f (2)(~x, ~ξ; t, t1)S2(~ξ, t1)

]
d~ξdt1 (A.7)

g(~x, t) =

ˆ
~ξ

ˆ
t1

[
g(1)(~x, ~ξ; t, t1)S1(~ξ, t1) + g(2)(~x, ~ξ; t, t1)S2(~ξ, t1)

]
d~ξdt1 (A.8)

A.3 Definition of the adjoint problem and the adjoint Green func-

tion

Finally, the adjoint problem is defined. Let L be a linear differential operator, f a state variable

and S a source term so that L(f(~x, ~ξ)) = S(~x, ~ξ) or in short L(f) = S. The adjoint operator La

and the adjoint state variable fa are defined this way [75]

〈fa, L(f)〉 = 〈La(fa), f〉 (A.9)
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with 〈., .〉 a scalar product. Note that when working in the complex domain this scalar product is

also Hermitian. An adjoint source Sa can be defined in a similar manner as S so that La(fa) = Sa.

It can be noted that La, fa and therefore Sa are not unique but dependent on the choice of the

scalar product. By introducing the Green function fG solution of L there is L(fG(~x, ~ξ)) = δ(~x−~ξ)
and in a similar way La(fa,G(~x, ~ξ)) = δ(~x− ~ξ).

In the case of a scalar equation, meaning that fG and therefore fa,G are scalars and not vec-

tors, a relation between the direct and adjoint Green functions can be obtained as demonstrated

in [75]

fa,G(~x, ~ξ) =
[
fG(~ξ, ~x)

]∗
(A.10)

where ∗ is the complex conjugate.
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B Geometrical acoustics

B.1 Introduction of geometrical acoustics

At a frequency high enough, it can be assumed that the amplitude and the direction of propagation

vary only slightly over distances of the order of the wavelength as explained by Landau and

Lifshitz [44]. In this case the sound wave can be assimilated as a plane wave. In the frame of

this approximation, geometrical acoustics describe the wave propagation as a ray which respects

geometrical rules that are explained in this appendix.

Figure B.1: Representation of a ray with a total reflection

The surrounding medium can change the wave path in several ways. First, the presence of a

surface will induce a reflection of the wave, an example is pictured in Fig B.1. The angle between

the incident ray and the normal to the surface is equal to the angle between the reflected ray and

the normal to the surface. Giving

θ1 = θ2 (B.1)

Depending on the type of interface, there can be a total reflection meaning that the amplitude

of the wave stays the same between the incident and the reflected rays or there can be a dissipation

of energy with the split of the incident wave into a reflected wave and a transmitted one. The

passage from one medium to another is called a refraction and is pictured in Fig B.2

In this case, the relation between the two refraction angles is given by the Snell-Descartes

law, with V1 = M1c1 and V2 = M2c2,
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Figure B.2: Representation of a ray with a refraction

c1

sin θ1
+ V1 =

c2

sin θ2
+ V2 (B.2)

This formula is only true in the case of two coplanar velocities. If this is not the case, the

incident ray, the refracted ray and the normal to the surface are not coplanar anymore and the

Snell-Descartes law has to be recast as,

c1

sin θ1
+ V1,proj =

c2

sin θ2
+ V2,proj (B.3)

with Vproj the projected velocity on either of the refraction plans. The refraction plan contains

one of the rays and the normal to the surface.

As seen in Eq (B.2), the path of the way is deviated depending on the properties of both

media. In the case of sources in the jet, the situation in terms of indices of media is such that the

ray will diverge their path away from the jet axis. It will give a directivity to the noise mechanism

by highly reducing the noise level downstream. This is described as a cone of silence in Tam et

al. [80].

B.2 Expression of the pressure after a refraction or a reflection

In this section, the mathematical formulation of the pressure after any number of reflection or

refraction is presented. For simplicity the term event is used to designate either a reflection of a

refraction. Obviously the nature of the event has an impact on the formula but a standardised

term will help the understanding.

B.2.1 The transmission and reflection coefficients

The impact of the refraction and the reflection on the wave path has been explained, now the

effect on the amplitude is also described. As mentionned above, by going through a change of
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medium and switching propagation indices, the ray is split in two parts. Both are attenuated by

a factor. The reflection factor KR is given in Section 11.1 from [59] in the case of a ray going

from a medium 1 to a medium 2.

KR =
ρ2c

2
2 sin (2φ1)− ρ1c

2
1 sin (2φ2)

ρ2c2
2 sin (2φ1) + ρ1c2

1 sin (2φ2)
(B.4)

with

KT = 1 +KR (B.5)

The refraction (or transmission) factor KT is then

KT =
2ρ2c

2
2 sin (2φ1)

ρ2c2
2 sin (2φ1) + ρ1c2

1 sin (2φ2)
(B.6)

Note that in [59], the angle φ used is the one between the ray and the surface. There is

therefore the following relations between the two angles

θ = 90− φ (B.7)

It is straightforward to see that in case of a fully reflective surface KR = −1 and KT = 0.

B.2.2 The divergence coefficient

Figure B.3: Simple 2D representation of the divergence of the pencil ray induced by the refraction
through a curved interface

A last effect has to be taken into account which is the fact that when passing through a curved

interface or reflecting on a curved surface, the section of the pencil ray changes as pictured in

Figure B.3. This is described by Deschamps [29]. There is the following relation between the two
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sections S1 and S2 respectively before and after the refraction or reflection

S2 = KDS1 (B.8)

The divergence coefficient is expressed that way

KD =

√√√√ re1r
e
2

(re1 + s)(re2 + s)
(B.9)

with re being the radii of curvature of the emerging (or reflected) wave and with s the distance

between the location of the event to the observer. In the case of multiple events, s is the distance

between the location of the considered event and the location of the next one. In a homogeneous

medium it is readily seen that the classical attenuation in 1/r is found because the incident and

emerging radii of curvature are identical. In the case of a curved interface between two media,

these radii are not equal.

The calculation to obtain the radii of curvatures are detailed in Deschamps [29] and will not

be presented here for conciseness.

B.2.3 Expression of the pressure

The practical computation of the pressure fluctuations is explained in details, among others, in

Pathak et al. [61]. For one ray going from ~ξS to ~xM passing by ~xR where a refraction or a

reflection happens, as illustrated respectively in Fig. B.4 and Fig. B.5, the pressure in ~xM can

be expressed in function of the pressure in ~xR with,

p̂′(~xM ;ω) = p̂′(~xR− ;ω)KDKT Φ̂(~xM , ~xR+ ;ω) (B.10)

Figure B.4: Representation of a ray being refracted through the mixing layer

where ~xR− is a point on the wave path right before the interface between the two media and thus

before the event and ~xR+ is a point on the wave path right after the interface between the two

media and thus after the event.
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Figure B.5: Representation of a ray being reflected on a wing

Φ̂ is a phase jump expressed, in the case of a flow in the x direction, as

Φ̂(~xM , ~xR+ ;ω) = e
ik′

[
|~x′M−~x

′
R+ |+Mext(~x′M,x−~x

′
R+,x

)

]
(B.11)

with Mext the Mach number of the medium in which the second part of the ray is located.

The following change of variable, dependent on the Mach number of the medium in which the

corresponding point is located, is introduced.

x = x′
√

1−M2
ext (B.12)

y = y′ (B.13)

z = z′ (B.14)

k = k′
√

1−M2
ext (B.15)

with k = 2π/λ the wavenumber.

For one ray, the pressure can be written as

p̂′(~xM , ω) = I(~ξS , ω)Ĝ(~xM , ~ξS ;ω) (B.16)

with I the amplitude of the source and Ĝ the propagation function from the source to the observer

taking into account all the changes induced by the events as shown in Eq (B.10). Once this is

done for each ray, the pressure at the location of the observer is obtained with the summation of

all the contribution of each ray.

B.2.4 Application of the ray theory: Practical case

A realistic case is taken in order to show the practical use of the ray theory. Let’s consider the

situation pictured in Fig. B.6 of three rays coming from two source points ~ξS and ~ζS of respective
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amplitude I(~ξS , ω) and I(~ζS , ω). One ray is going out of the jet, impacting the wing and going

through the jet before reaching the observer ~xM while the others are exiting the jet and reaching

~xM .

Figure B.6: Practical case of a ray with mutliple refractions and reflections

The pressure in ~xM is expressed using Eq (B.16) giving the following formula

p̂′(~xM , ω) = I(~ξS , ω)
(
Ĝ1.1(~xM , ~ξS ;ω) + Ĝ1.2(~xM , ~ξS ;ω)

)
+ I(~ζS , ω)Ĝ2.1(~xM , ~ζS ;ω) (B.17)

with Ĝn the propagation term for each path. As an illustration, this term for the path 1.2 will

be explicited.

Using Eq (B.10) for each event

p̂′(~xM , ω) = p̂′(~xP−4
, ω)KD(~xP4)KT (~xP4)Φ̂ext(~xM , ~xP+

4
, ω) (B.18)

p̂′(~xP−4
, ω) = p̂′(~xP−3

, ω)KD(~xP3)KT (~xP3)Φ̂ext(~xP−4
, ~xP+

3
, ω) (B.19)

p̂′(~xP−3
, ω) = p̂′(~xP−2

, ω)KD(~xP2)KT (~xP2)Φ̂ext(~xP−3
, ~xP+

2
, ω) (B.20)

p̂′(~xP−2
, ω) = p̂′(~xP−1

, ω)KD(~xP1)KT (~xP1)Φ̂ext(~xP−2
, ~xP+

1
;ω) (B.21)

with KT (~xP2) = 1 because in ~xP2 there is a total reflection and not a refraction.

Let’s introduce the following notation

K̂(~xPn+1 , ~xPn ;ω) = KD(~xPn)KT (~xPn)Φ̂(~xP−n+1
, ~xP+

n
;ω) (B.22)

where KD and KT are calculated with the correct formula depending on the nature of the event.
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p̂′1.2(~xM , ω) = p̂′(~xP−4
, ω)K̂(~xM , ~xP4 ;ω) (B.23)

p̂′(~xP−4
, ω) = p̂′(~xP−3

, ω)K̂(~xP4 , ~xP3 ;ω) (B.24)

p̂′(~xP−3
, ω) = p̂′(~xP−2

, ω)K̂(~xP3 , ~xP2 ;ω) (B.25)

p̂′(~xP−2
, ω) = p̂′(~xP−1

, ω)K̂(~xP2 , ~xP1 ;ω) (B.26)

leading to

p̂′1.2(~xM , ω) = p̂′(~xP−1
, ω)

4∏
n=1

K̂(~xPn+1 , ~xPn ;ω) (B.27)

Finally, the last step is the propagation from ~ξS to ~xP−1 , which is done with the convected

Helmholtz equation. That gives, for a source amplitude in ~ξS noted I(~ξS , ω) and the solution to

the CHE noted Ĝ(~ξS , ~xP−1
, ω)

p̂′1.2(~xM , ω) = I(~ξS , ω)Ĝ(~ξS , ~xP−1
;ω)

4∏
n=1

K̂(~xPn+1 , ~xPn ;ω) = I(~ξS , ω)Ĝ1.2(~xM , ~ξS ;ω) (B.28)

B.2.5 Formula in the general case

Now that a practical case has been presented, the formula in the general case can be deduced.

Eq (B.16) can be written in the general case of N sources as

p̂′(~xM , ω) =
N∑
n=1

I(~ξSn , ω)

Nn∑
r=1

Ĝr(~xM , ~ξSn ;ω) (B.29)

where Nn is the number of rays starting from the source point ~ξSn and reaching the observer ~xM .

By using a volume of sources and thus a volumic amplitude for each source it leads to the

following integral formulation

p̂′(~xM , ω) =

ˆ
~ξS

I(~ξS , ω)

N(~ξS)∑
r=1

Ĝr(~xM , ~ξS ;ω)d~ξS (B.30)

with the transfer function Ĝ being

Ĝ(~ξS , ~xM , ω) =

N(~ξS)∑
r=1

Ĝr(~xM , ~ξS ;ω) (B.31)

In the time domain, that makes

p′(~xM , t) =

ˆ
~ξS

ˆ
ω

ˆ
t1

I(~ξS , ω)Ĝ(~ξS , ~xM ;ω)e−iω(t−t1)d~ξSdωdt1 (B.32)
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C Calculations

C.1 Model from Tam and Auriault - Integrations according to t1,

t2 and ω1

The integration of Eq (3.40) according to t1, t2 and ω1 is performed.

Ŝ(~xM , ω) =

ˆ
ω1

ˆ
~ξS

ˆ
~ζS

ˆ
t1

ˆ
t2

p̂a(~ξS , ~xM ;ω1)p̂a(~ζS , ~xM ;ω)
I2
s

τ2
s

exp

−|ξx − ζx|
ūxτs

− ln 2

 [(ξx − ζx)− ūx(t1 − t2)]2

l2s
+

(ξy − ζy)2

l2s
+

(ξz − ζz)2

l2s




eiω1t1+iωt2dω1d~ξSd~ζSdt1dt2
(C.1)

The integration according to t1 and t2 are first taken care of.

I =

ˆ
t1

ˆ
t2

exp (iω1t1) exp(iωt2) exp

− ln 2

l2s
[(ξx − ζx)− ūx(t1 − t2)]2

 dt1dt2 (C.2)

The following change of variable is done.

s = (t1 − t2)−
ξx − ζx
ūx

(C.3)

With s in place of t1, I becomes

I =

ˆ
s

ˆ
t2

exp

iω1

s+ t2 +
ξx − ζx
ūx


 eiωt2 exp

− ln 2

l2s
(ūxs)

2

 dsdt2 (C.4)

The integrals can now be separated.
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I = exp

iω1

ξx − ζx
ūx


 ˆ

t2

ei(ω+ω1)t2dt2
ˆ
s

exp

− ln 2

l2s
(ūxs)

2 + iω1s

 ds (C.5)

The integration according to t2 is done using the Fourier transform of the Dirac function given

in Eq (3.35). The simplified form of I is

I = 2πδ(ω1 + ω) exp

iω1

ξx − ζx
ūx


 ∞̂

−∞

exp

− ln 2

l2s
(ūxs)

2 + iω1s

 ds (C.6)

The following manipulation is done to regroup the terms in s.

−
ln 2

l2x
(ūxs)

2 + iω1s =−
ln 2

l2s
ū2
x

s2 − iω1s
l2s

ū2
x ln 2


=−

ln 2

l2s
ū2
x

s− i ω1l
2
s

2ū2
x ln 2

2

−
1

4

ω2
1l

2
s

ū2
x ln 2

(C.7)

The following change of variable is done to highlight a Gaussian integral.

s̃ = s− i
ω1l

2
s

2ū2
x ln 2

(C.8)

With the new variable s̃, the integral becomes

I = 2πδ(ω1 + ω) exp

iω1

ξx − ζx
ūx

− 1

4

ω2
1l

2
s

ū2
x ln 2

 ∞̂

−∞

exp

− ln 2

l2s
ū2
xs̃

2

 ds̃ (C.9)

The value of a Gaussian integral is given by the following property

ˆ ∞
−∞

exp−ax
2
dx =

√
π

a
(C.10)

which gives

I = 2πδ(ω1 + ω) exp

iω1

ξx − ζx
ūx

− 1

4

ω1l
2
s

ū2
x ln 2


√√√√ πl2s

ū2
x ln 2

(C.11)

I = 2π

 π

ln 2

1/2

δ(ω1 + ω) exp

iω1

ξx − ζx
ūx

− 1

4

ω1l
2
s

ū2
x ln 2

 ls

ūx
(C.12)

So, by setting this into Eq (3.40) it follows
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Ŝ(~xM , ω) = 2π

 π

ln 2

1/2 ˆ
ω1

ˆ
~ξS

ˆ
~ζS

p̂a(~ξS , ~xM ;ω1)p̂a(~ζS , ~xM ;ω)
I2
s ls

ūxτ2
s

exp

− ω2
1l

2
s

(4 ln 2)ū2
x

−
|ξx − ζx|
ūxτs


exp

− ln 2

(ξy − ζy)2

l2s
+

(ξz − ζz)2

l2s

+
iω1(ξx − ζx)

ūx


δ(ω1 + ω)dω1d~ξSd~ζS

(C.13)

The integration according to ω1 is straightforward, giving

Ŝ(~xM , ω) = 2π

 π

ln 2

1/2 ˆ
~ξS

ˆ
~ζS

I2
s ls

τ2
s ūx

p̂a(~ξS , ~xM ;−ω)p̂a(~ζS , ~xM ;ω)

exp

− ω2l2s

(4 ln 2)ū2
x

−
|ξx − ζx|
ūxτs


exp

− ln 2

(ξy − ζy)2

l2s
+

(ξz − ζz)2

l2s

− iω(ξx − ζx)

ūx

 d~ξSd~ζS

(C.14)

C.2 Model from Tam and Auriault - Integration according to ~ξS

The integration of Eq (3.48) according to ~ξS needs to be taken care of.

Ŝ(~xM , ω) = 2π

 π

ln 2

1/2 ˆ
~ξS

ˆ
~ζS

I2
s ls

τ2
s ūx
|p̂a(~ζ, ~xM ;ω)|2 exp

i ω
cext

cos θ(ξx − ζx)


exp

− ω2l2s

(4 ln 2)ū2
x

−
|ξx − ζx|
ūxτs


exp

− ln 2

(ξy − ζy)2

l2s
+

(ξz − ζz)2

l2s

− iω(ξx − ζx)

ūx

 d~ξSd~ζS

(C.15)

Three variable changes on the coordinates of ~ξS are doneX = ξx−ζx , Y = ξy−ζy, Z = ξz−ζz.
The terms in Y and Z are isolated and taken care of first.
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I =

ˆ
Y

ˆ
Z

exp

− ln 2

Y 2

l2s
+
Z2

l2s


 dY dZ (C.16)

The value of a Gaussian integral is given by the following property

ˆ ∞
−∞

exp−ax
2
dx =

√
π

a
(C.17)

The integration according to Y and Z are then done.

I = l2s
π

ln 2
(C.18)

For the integration according to X, a separation between positive and negative values is first

done, giving

I =

ˆ ∞
−∞

exp

− |X|
ūxτs

−
iωX

ūx

1−
ūx

cext
cos θ


dX (C.19)

I =

ˆ ∞
0

exp


− 1

ūxτs
−
iω

ūx

1−
ūx

cext
cos θ


X

dX

+

ˆ 0

−∞
exp


 1

ūxτs
−
iω

ūx

1−
ūx

cext
cos θ


X

dX

(C.20)

The integration of the exponential is done for both integrals.

I =
− 1

1

ūxτs
+
iω

ūx

1−
ūx

cext
cos θ


exp


− 1

ūxτs
−
iω

ūx

1−
ūx

cext
cos θ


X



∞

0

+
1

1

ūxτs
−
iω

ūx

1−
ūx

cext
cos θ


exp


 1

ūxτs
−
iω

ūx

1−
ūx

cext
cos θ


X




0

−∞

(C.21)

There is
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∣∣∣∣∣∣∣∣exp

 − iω
ūx

1−
ūx

cext
cos θ

X


∣∣∣∣∣∣∣∣ = 1 (C.22)

and

lim
X→∞
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The primitive in ∞ is obtained using the following limit value.
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and subsequently

lim
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The value of I is finally obtained with
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2ūxτs
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The spatial integration according to ~ξS is done and Eq (3.48) can now be written in this final

form
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x


1 +

1−
ūx
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C.3 Sound propagation using geometrical acoustics - Integration

according to ~ξS

The integration of Eq (3.83) according to ~ξS needs to be taken care of.
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Three variable changes on the coordinates of ~ξS are doneX = ξx−ζx , Y = ξy−ζy, Z = ξz−ζz.
The terms in Y and Z are isolated and taken care of first.
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The following manipulation is done to regroup the terms in Y .
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The change of variable Ỹ = Y −
iωl2y

2cext ln 2
sin θ cosφ is done to highlight a Gaussian integral.
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In the same way Z̃ = Z −
iωl2z

2cext ln 2
sin θ sinφ. That gives the following updated form for I.
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The value of a Gaussian integral is given by the following property
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The integration according to Ỹ and Z̃ are then done.
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For the integration according to X, a separation between positive and negative values is first

done, giving
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ūx

cext
cos θ


X

dX

(C.36)

The integration of the exponential is done for both integrals.
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ūxτs
−
iω

ūx
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ūx

1−
ūx
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The primitive in ∞ is obtained using the following limit value.
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and subsequently
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The value of I is finally obtained with
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The spatial integration according to ~ξS is done and Eq (3.83) is finally recast as
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D Results

D.1 Analysis of the RANS computations

The hotwire measurements [17] are compared to the value given by the RANS computations.

(a) (b)

Figure D.1: Comparisons of the axial mean velocity from the measurements and the RANS
computations at (a) x = 0D (b) x = 1D.

(a) (b)

Figure D.2: Comparisons of the axial mean velocity from the measurements and the RANS
computations at (a) x = 5D (b) x = 10D.
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(a)

Figure D.3: Comparisons of the axial mean velocity from the measurements and the RANS
computations alonxg the x axis.

(a) (b)

Figure D.4: Comparisons of the axial fluctuating velocity from the measurements and the RANS
computations at (a) x = 0D (b) x = 1D.

(a) (b)

Figure D.5: Comparisons of the axial fluctuating velocity from the measurements and the RANS
computations at (a) x = 5D (b) x = 10D.

There is a good agreement between the value provided by the RANS computation and the

measurements for both the mean and fluctuating velocities.
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D.2 Noise predictions on the single nozzle

(a) (b) (c)

Figure D.6: Comparison of the PSD in the installed configuration at M = 0.9 for an observer at
φ = 280◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦

(a) (b) (c)

Figure D.7: Comparison of the PSD in the installed configuration at M = 0.9 for an observer at
φ = 300◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦

(a) (b) (c)

Figure D.8: Comparison of the PSD in the installed configuration at M = 0.9 for an observer at
φ = 320◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦
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(a) (b) (c)

Figure D.9: Comparison of the PSD in the installed configuration at M = 0.9 for an observer at
φ = 340◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦

(a) (b) (c)

Figure D.10: Comparison of the PSD in the installed configuration at M = 0.9 for an observer
at φ = 360◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦

(a) (b) (c)

Figure D.11: Comparison of the PSD in the installed configuration at M = 0.9 for an observer
at φ = 20◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦

(a) (b) (c)

Figure D.12: Comparison of the PSD in the installed configuration at M = 0.9 for an observer
at φ = 40◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦
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(a) (b) (c)

Figure D.13: Comparison of the PSD in the installed configuration at M = 0.9 for an observer
at φ = 60◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦

(a) (b) (c)

Figure D.14: Comparison of the PSD in the installed configuration at M = 0.9 for an observer
at φ = 80◦ and (a) θ = 90◦, (b) θ = 100◦, and (c) θ = 110◦
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